《直线与平面平行的判定》教案

合集下载

直线与平面平行的判定_教案

直线与平面平行的判定_教案

§2.2.1直线与平面平行的判定一、教学目标1、知识与技能(1)理解并掌握直线与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法学生通过观察图形,借助已有知识,通过探索得出直线与平面平行的判定定理,并掌握直线与平面平行的判定定理及其灵活应用。

3、情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。

二、教学重点、难点1.教学重点:直线与平面平行的判定定理及应用.2.教学难点:直线与平面平行的判定定理的探索及灵活应用。

三、教学手段及教具准备1、运用多媒体电脑教室,教学课件;2、教具准备:直线2条、平面、长方体模型各一个。

四、教学过程(一)复习旧知,创设问题情境.师:直线和平面的位置关系有几种,分别是什么?生:直线和平面的位置关系有三种:直线在平面内;直线和平面相交;直线和平面平行.师:直线和平面平行的定义怎样?生:如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行.(二)提出问题.师:可不可以用这个方法判定直线与平面平行?还有没有更好的办法?(三)引导学生探索新知,发现定理.师:直线和平面平行的判定不仅可以根据定义,还有更好的方法.让我们先来观察(动手操作):【实例1】门框的对边是平行的,如图1,a ∥b ,当门扇绕着一边b 转动时,另一边a 始终与b 所在的门框平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象。

【实例2】如图2,将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB 所在直线与桌面所在平面具有什么样的位置关系?(模型演示)图1图2——启发学生观察,积极进行思考,探索、总结归纳直线与平面平行的判定定理。

生:不会有公共点,即AB 平行于桌面所在的平面. 探究: 平面外的直线平行于平面内的直线.(1)这两条直线共面吗?(2)直线与平面相交吗?生:直线与直线共面,直线与平面不可能相交,直线与平面平行。

直线与平面平行的判定定理教案

直线与平面平行的判定定理教案

直线与平面平行的判定定理教案在几何学中,判定直线与平面是否平行是非常重要的基础知识。

本教案将介绍直线与平面平行的判定定理,帮助学生更好地理解和掌握这一知识点。

一、直线与平面平行的判定定理1. 定理一:一条直线与平面平行的充分必要条件是,这条直线与平面内一条直线平行。

证明:设直线l与平面α平行,直线m与平面α内一条直线平行。

不妨设直线m与直线l相交于点A,过点A作平面α的一条平行直线n。

则直线l与平面α平行,直线m与平面α内一条直线平行,因此直线l与直线m平行,即得证。

2. 定理二:一条直线与平面平行的充分必要条件是,这条直线与平面内一条平行线的垂线平行。

证明:设直线l与平面α平行,直线m与平面α内一条平行线的垂线平行。

不妨设直线m与直线l相交于点A,过点A作平面α的一条平行线n。

则直线l与平面α平行,直线m与平面α内一条平行线的垂线平行,因此直线l与直线m平行,即得证。

二、教学重点与难点1. 教学重点:理解直线与平面平行的判定定理,掌握定理的证明方法。

2. 教学难点:理解平面内平行线的垂线平行的概念,掌握直线与平面平行的判定方法。

三、教学过程与方法1. 导入:通过提出问题引导学生思考直线与平面平行的概念,激发学生的学习兴趣。

2. 讲解:通过示意图和具体例题,讲解直线与平面平行的判定定理,引导学生理解定理的含义和应用方法。

3. 练习:让学生进行练习,通过多个例题加深对直线与平面平行的判定方法的理解,提高解题能力。

4. 总结:对直线与平面平行的判定定理进行总结,强调定理的重要性和应用范围。

四、教学反思与展望直线与平面平行的判定定理是几何学中的基础知识,理解和掌握这一定理对学生的几何学学习至关重要。

本教案通过系统的讲解和练习,帮助学生掌握直线与平面平行的判定方法,提高解题能力。

在未来的教学中,可以通过更多的实例和练习,进一步巩固学生的理解和应用能力,帮助他们更好地掌握直线与平面平行的判定定理。

直线与平面平行判定定理说课教案

直线与平面平行判定定理说课教案

直线与平面平行判定定理说课教案第一章:直线与平面平行的概念引入教学目标:1. 让学生理解直线与平面平行的基本概念。

2. 培养学生运用几何图形进行直观思考的能力。

教学内容:1. 直线与平面平行的定义。

2. 直线与平面平行的判定条件。

教学步骤:1. 引入直线与平面平行的概念,通过实物模型或图形进行展示,让学生感受直线与平面平行的直观形象。

3. 讲解直线与平面平行的判定条件,引导学生理解并掌握判定方法。

巩固练习:2. 利用直线与平面平行的判定条件,证明一条直线与一个平面平行。

第二章:直线与平面平行判定定理的证明教学目标:1. 使学生理解直线与平面平行判定定理的内容。

2. 培养学生运用逻辑推理和几何证明的能力。

教学内容:1. 直线与平面平行判定定理的表述。

2. 直线与平面平行判定定理的证明过程。

教学步骤:1. 引入直线与平面平行判定定理,让学生理解定理的含义。

2. 讲解直线与平面平行判定定理的证明过程,引导学生理解并掌握证明方法。

3. 通过图形示例,让学生运用直线与平面平行判定定理进行判断。

巩固练习:1. 证明一条直线与一个平面平行。

第三章:直线与平面平行判定定理的应用教学目标:1. 使学生掌握直线与平面平行判定定理的应用方法。

2. 培养学生运用定理解决实际问题的能力。

教学内容:1. 直线与平面平行判定定理在实际问题中的应用。

2. 直线与平面平行判定定理在其他几何问题中的应用。

教学步骤:1. 讲解直线与平面平行判定定理在实际问题中的应用,引导学生运用定理解决问题。

2. 引导学生思考直线与平面平行判定定理在其他几何问题中的应用,如证明定理、求解几何问题等。

巩固练习:第四章:直线与平面平行判定定理的综合训练教学目标:1. 使学生熟练掌握直线与平面平行判定定理。

2. 培养学生运用定理解决综合问题的能力。

教学内容:1. 直线与平面平行判定定理的综合应用。

2. 直线与平面平行判定定理与其他几何定理的关联。

教学步骤:1. 给出直线与平面平行判定定理的综合应用问题,引导学生运用定理解决问题。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。

2. 引导学生掌握直线与平面平行的判定定理。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学内容1. 直线与平面平行的定义。

2. 直线与平面平行的判定定理。

三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。

2. 教学难点:直线与平面平行的判定定理的证明和应用。

四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。

2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。

3. 设计典型例题,培养学生运用判定定理解决问题的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。

2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。

3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。

4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。

5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。

6. 课堂小结:总结本节课的主要内容和知识点。

7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。

这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。

希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。

2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。

3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。

七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。

2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。

3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能让学生掌握直线与平面平行的判定定理,并能够运用该定理判断直线与平面的位置关系。

1.2 过程与方法通过观察实例,引导学生发现直线与平面平行的判定规律,培养学生运用几何推理解决问题的能力。

1.3 情感态度与价值观激发学生对几何学的兴趣,培养学生的逻辑思维能力和创新意识。

第二章:教学重难点2.1 教学重点直线与平面平行的判定定理的表述及证明。

2.2 教学难点如何引导学生理解并证明直线与平面平行的判定定理。

第三章:教学方法与手段3.1 教学方法采用问题驱动法、实例分析法、小组讨论法等。

3.2 教学手段多媒体课件、几何模型、黑板等。

第四章:教学过程4.1 导入新课通过展示生活中的实例,如墙角、桌面等,引导学生观察直线与平面的位置关系,激发学生的学习兴趣。

4.2 探究与讲解引导学生发现直线与平面平行的判定规律,讲解直线与平面平行的判定定理及证明过程。

4.3 巩固练习设计相关练习题,让学生运用所学知识判断直线与平面的位置关系。

4.4 拓展与应用引导学生思考直线与平面平行在现实生活中的应用,如建筑设计、机械制造等。

第五章:作业布置与课后反思5.1 作业布置布置一些有关直线与平面平行的判定定理的应用题,巩固所学知识。

5.2 课后反思教师应及时反思本节课的教学效果,针对学生的掌握情况,调整教学策略,为后续教学做好准备。

第六章:教学评价6.1 评价目标评价学生对直线与平面平行判定定理的理解程度及运用能力。

6.2 评价方法采用课堂问答、练习批改、小组讨论等方式进行评价。

6.3 评价内容重点评价学生对直线与平面平行判定定理的掌握情况,以及能够运用该定理解决实际问题的能力。

第七章:教学拓展7.1 拓展内容介绍直线与平面平行判定定理在现实生活中的应用,如建筑设计、计算机图形学等。

7.2 拓展方式邀请相关领域专家进行讲座,或组织学生进行实地考察。

7.3 拓展目标培养学生对几何学的兴趣,提高学生的实践能力。

《直线与平面平行的判定》教案、导学案、课后作业

《直线与平面平行的判定》教案、导学案、课后作业

《8.5.2 直线与平面平行》教案第1课时直线与平面平行的判定【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

【教学目标与核心素养】课程目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线与平面平行的判定定理及其应用.难点:直线与平面平行的判定定理,找平行关系.【教学过程】一、情景导入问题1.观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?【答案】平行.问题2.请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?桌面内有与l 平行的直线吗?【答案】平行,有.问题3.根据以上实例总结在什么条件下一条直线和一个平面平行? 要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本135-137页,思考并完成以下问题 1、直线与平面平行的判定定理是什么?2、怎样用符号语言表示直线与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、直线与平面平行的判定定理四、典例分析、举一反三题型一直线与平面平行的判断定理的理解 例1 下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α ②若直线l 上有无数个点不在平面α内,则l ∥α ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行 ④若l 与平面α平行,则l 与α内任何一条直线都没有公共点 ⑤平行于同一平面的两直线可以相交A.1B.2C.3D.4【答案】B【解析】①a⊄α,则a∥α或a与α相交,故①不正确;②当l与α相交时,满足条件,但得不出l∥α,故②不正确;③若l∥α,则l与α内的无数条直线异面,并非都平行,故③错误;若l∥α,则l与α内的任何直线都没有公共点,故④正确;若a∥α,b∥α,则a与b可以相交,也可以平行或异面,故⑤正确.解题技巧(判定定理理解的注意事项)(1)明确判定定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β【答案】D.【解析】A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.题型二直线与平面平行的判断定理的应用例2 在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.【答案】证明见解析【解析】∵AE=EB,AF=FB,∴EF∥BD.EF⊄平面BCD,BD⊂平面BCD.∴ EF ∥平面BCD解题技巧: (判定定理应用的注意事项) (1)欲证线面平行可转化为线线平行解决.(2)判断定理中有三个条件,缺一不可,注意平行关系的寻求.常常利用平行四边形、三角形中位线、等比例线段、相似三角形.跟踪训练二1.如图,已知OA,OB,OC 交于点O,AD 12OB,E,F 分别为BC,OC 的中点.求证:DE∥平面AOC.【答案】证明见解析 【解析】 证明 在△OBC 中, 因为E,F 分别为BC,OC 的中点, 所以FE 12OB,又因为AD12OB,所以FE AD.所以四边形ADEF 是平行四边形. 所以DE ∥AF.又因为AF ⊂平面AOC,DE ⊄平面AOC. 所以DE ∥平面AOC. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本139页练习1、2、3题,143页习题8.5的4、5、6题.【教学反思】本节课,从内容上来说,学生基本掌握判定定理,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.从方法上来说,通过本节课判定定理的学习,学生理解证明一条直线与一个平面平行,只要在这个平面内找出一条与此直线平行的直线就可以了,让学生初步感知空间问题可以转化为平面问题解决.《8.5.2 直线与平面平行》导学案第1课时直线与平面平行的判定【学习目标】知识目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线与平面平行的判定定理及其应用.【学习难点】:直线与平面平行的判定定理,找平行关系.【学习过程】一、预习导入阅读课本135-137页,填写。

直线与平面平行的判定教案

直线与平面平行的判定教案

直线与平面平行的判定教案直线与平面平行的判定教案范文直线与平面平行的判定教案1一、教学目标1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。

2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。

3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

二、教学重点、难点1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。

2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。

三、课前准备1.教师准备:教学课件2.学生自备:三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板四、教学过程设计1.直线与平面垂直定义的建构(1)创设情境①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?③请将①中旗杆与地面的位置关系画出相应的几何图形。

(2)观察归纳①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?②多媒体演示:旗杆与它在地面上影子的位置变化。

③归纳出直线与平面垂直的定义及相关概念。

定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。

用符号语言表示为:(3)辨析(完成下列练习):①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。

②若a⊥α,bα,则a⊥b。

在创设情境中,学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调,并指出这就叫直线与平面垂直,引出课题。

在多媒体演示时,先展示动画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。

再展示动画2使学生明确旗杆AB所在直线与地面内任意一条不过点B 的直线B1C1也垂直,进而引导学生归纳出直线与平面垂直的定义。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理(一)教学设计(教案)1000字一、教学目标:1. 了解直线与平面平行的定义及判定方法;2. 能运用相关的知识解决几何问题;3. 培养学生的逻辑思维、分析问题的能力。

二、教学重点:1. 直线与平面平行的定义及判定方法;2. 运用相关的知识解决几何问题。

三、教学难点:1. 引导学生理解直线与平面平行的概念;2. 培养学生的分析推理能力。

四、教学方法:1. 演示法:通过图形演示、引导学生理解直线与平面平行的概念;2. 讨论法:通过讨论引导学生理解判定方法及其应用;3. 实践法:通过习题训练提高学生解决问题的能力。

五、教学过程:1. 导入环节:教师先提问:“直线与平面什么时候叫做平行?”引导学生基于实际生活中的经验进行回答,帮助学生由表及里地理解平行的概念。

2. 讲授环节:(1)直线与平面平行的定义教师通过图形演示,向学生讲解直线与平面平行的定义。

然后向学生介绍平行的概念及平行公理。

(2)平行公理教师通过展示平行公理,指导学生理解平行公理的内容。

(3)判定直线与平面平行的方法学生已经知道直线与平面平行的定义,那么如何判定一个直线与一个平面是否平行呢?教师可以通过讲授以下几点:①两点法:在这种情况下,绘制从平面内通过直线的两条不相交的直线。

然后,选择一个点,可以是直线与另一直线的交点或是单独的一个点,到其中一个直线,从而确定所需的指向平面的向量(请参见示例)。

然后,将向量应用到直线的另一个点上并绘制另一条直线。

如果第二条直线不与平面相交,则直线与平面平行。

②垂线法:从平面内通过直线绘制一条垂直于该直线的直线。

如果该直线与平面相交于一个点,则它与该平面垂直,与该平面平行。

③斜率法:对于平行的一段直线,它们的斜率是相等的。

(4)一些练习题在这部分,教师可以通过一些练习题,让学生掌握相关的知识点,同时还可以提高学生的分析推理能力。

3. 巩固练习环节:教师可以出几道题目,让学生在课堂上进行解答,并就解答过程进行引导。

直线与平面平行的判定 优秀教案

直线与平面平行的判定 优秀教案

直线与平面平行的判定优秀教案一、教学目标1. 知识与技能:使学生能够准确理解直线与平面平行的定义,掌握直线与平面平行的判定定理,并能灵活运用这些定理进行空间平行关系的判定。

2. 过程与方法:通过实例分析、动手实践、逻辑推理等方式,培养学生的空间想象能力和几何推理能力。

3. 情感态度与价值观:激发学生对空间几何的兴趣,培养学生严谨的科学态度和探索精神。

二、教学重难点重点:直线与平面平行的判定定理的理解和应用。

难点:对判定定理的深入理解和灵活运用。

三、教学准备教具:黑板、粉笔、直尺、模型(如门、书本等)四、教学过程(一)导入新课1. 复习提问:空间中直线与平面有几种位置关系?分别是什么?2. 引入课题:今天我们要来学习的是直线与平面平行的判定。

(二)新课展开1. 直线与平面的位置关系(1)通过实物模型(如门、书本等)展示直线与平面的三种位置关系:直线在平面内、直线与平面相交、直线与平面平行。

(2)引导学生理解直线与平面平行的定义:如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。

2. 直线与平面平行的判定定理(1)引导学生观察实物模型,发现直线与平面平行的判定条件:如果一条直线与一个平面内的两条相交直线都平行,那么这条直线与这个平面平行。

(2)通过实例分析,让学生理解判定定理的应用。

例如,门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行。

3. 判定定理的证明(1)引导学生根据判定定理的条件,利用反证法进行证明。

(2)通过证明过程,让学生理解判定定理的严谨性和正确性。

4. 判定定理的应用(1)通过例题讲解,让学生掌握利用判定定理证明直线与平面平行的方法。

(2)引导学生自主思考,尝试运用判定定理解决空间平行关系问题。

(三)课堂练习1. 判断题:判断下列说法是否正确,并说明理由。

(1)如果一条直线与一个平面内的无数条直线平行,那么这条直线与这个平面平行。

(2)如果一条直线与一个平面内的两条平行直线平行,那么这条直线与这个平面平行。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)第一章:直线与平面平行的概念引入1.1 教学目标让学生了解直线与平面平行的概念。

学生能够通过实例判断直线与平面是否平行。

1.2 教学内容直线与平面平行的定义。

直线与平面平行的判定方法。

1.3 教学步骤1. 引入直线与平面平行的概念,展示实例图片,引导学生观察并描述直线与平面的关系。

2. 给出直线与平面平行的定义,解释其含义。

3. 引导学生通过实例判断直线与平面是否平行,引导学生运用定义进行判断。

1.4 教学评估通过课堂提问,检查学生对直线与平面平行概念的理解。

通过实例判断练习,检查学生能否运用定义判断直线与平面是否平行。

第二章:直线与平面平行的判定定理2.1 教学目标让学生了解直线与平面平行的判定定理。

学生能够运用判定定理判断直线与平面是否平行。

2.2 教学内容直线与平面平行的判定定理。

判定定理的证明。

2.3 教学步骤1. 引入直线与平面平行的判定定理,展示实例图片,引导学生观察并描述直线与平面的关系。

2. 给出判定定理,解释其含义。

3. 进行判定定理的证明,解释证明过程。

4. 引导学生通过实例判断直线与平面是否平行,引导学生运用判定定理进行判断。

2.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理的理解。

通过实例判断练习,检查学生能否运用判定定理判断直线与平面是否平行。

第三章:直线与平面平行的判定定理的应用3.1 教学目标让学生能够运用直线与平面平行的判定定理解决实际问题。

3.2 教学内容直线与平面平行的判定定理在实际问题中的应用。

3.3 教学步骤1. 引入实际问题,展示实例图片,引导学生观察并描述直线与平面的关系。

2. 引导学生运用判定定理解决实际问题,解释解题过程。

3. 提供练习题,让学生独立解决实际问题,并提供解答。

3.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理在实际问题中的应用的理解。

通过练习题,检查学生能否独立解决实际问题。

人教版直线与平面平行的判定教案

人教版直线与平面平行的判定教案

人教版直线与平面平行的判定教案一、教学目标1. 让学生理解直线与平面平行的概念,掌握直线与平面平行的判定方法。

2. 培养学生运用几何知识解决实际问题的能力,提高空间想象能力。

3. 通过对直线与平面平行的学习,培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 直线与平面平行的定义2. 直线与平面平行的判定定理3. 直线与平面平行的判定条件4. 直线与平面平行的判定方法及步骤5. 直线与平面平行的应用实例三、教学重点与难点1. 教学重点:直线与平面平行的判定方法及步骤。

2. 教学难点:直线与平面平行的判定条件的理解和应用。

四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定方法。

2. 利用几何模型和实物模型,帮助学生直观理解直线与平面平行的概念。

3. 运用案例分析法,让学生通过解决实际问题,巩固直线与平面平行的判定方法。

4. 组织小组讨论,培养学生的团队合作精神和沟通能力。

五、教学步骤1. 导入新课:通过展示生活中常见的直线与平面平行现象,引导学生思考直线与平面平行的概念。

2. 讲解直线与平面平行的定义,让学生理解直线与平面平行的基本含义。

3. 引导学生探究直线与平面平行的判定方法,讲解判定定理和判定条件。

4. 通过几何模型和实物模型,让学生直观理解直线与平面平行的判定方法。

5. 运用判定方法,分析实际案例,让学生巩固所学知识。

6. 组织学生进行小组讨论,分享各自的学习心得和解决问题的方法。

7. 总结直线与平面平行的判定方法,强调判定条件的运用。

8. 布置课堂练习,让学生运用所学知识解决实际问题。

9. 课堂反馈:听取学生对直线与平面平行判定方法的理解和应用,及时进行点评和指导。

10. 课后作业:布置相关习题,巩固直线与平面平行的判定方法。

六、教学评估1. 课堂练习:通过布置相关的练习题,检查学生对直线与平面平行判定方法的理解和掌握程度。

2. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和沟通能力。

高中数学《直线与平面平行的判定》教案

高中数学《直线与平面平行的判定》教案

高中数学《直线与平面平行的判定》教案一、教学目标1.了解平面和直线的性质。

2.学会判断平面和直线是否平行。

3.掌握平面和直线平行的性质和应用。

4.了解平面和直线的几何应用。

二、教学重点1.直线和平面平行的概念、性质。

2.平行线的判定、条件。

3.平面和直线平行的判定、条件。

三、教学难点平行线判定的学习。

四、教学方法理论讲授、图像分析、练习、探究。

五、教学过程1.导入请学生回顾“平面”和“直线”的定义和性质。

2.提出问题请学生思考如何确定平面和直线是否平行。

3.学习平行线的判定(1)定义:“如果两条直线在同一平面内且不相交,则这两条直线互相平行。

”(2)判定方法:①同向性判定法:向同一方向延申出两条射线,如果两条射线在另一条直线上的同一侧,则两线平行;反之,不平行。

②夹角大小判定法:如果两条线段及其相邻角之和为180度,则两线段是平行的。

③斜率判定法:如果两条直线的斜率相等,则两直线平行。

4.学习平面和直线平行的判定(1)定义:“如果一条直线和一个平面没有交点,那么这条直线在这个平面上的任意一条互不重合的直线上的任意一点和这条直线的任意一点的连线就在这个平面上,这时这条直线与这个平面是平行的。

”(2)判定方法:①两直线平行,其中一条直线在所在平面内,则另一条直线与该平面平行。

②直线与平面垂线所在的平面与给定平面互相平行。

③如果一平面与一直线在空间中相交,并且在交点处的夹角是直角,则该平面与该直线平行。

5.练习请学生完成平面和直线平行的练习题。

6.课堂巩固请学生回答以下问题:(1)平行的两条直线斜率是否相同?(2)如何确定两平面是否平行?(3)如果一条直线在平面内,直线上有一点在平面外,这条直线与平面是否平行?(4)如果一个平面和一条直线互相平行,它们有什么共同点?7.作业请学生完成课堂练习题,并预习下节课内容。

六、板书设计高中数学《直线与平面平行的判定》1.平行线的判定①同向性判定法②夹角大小判定法③斜率判定法2.平面和直线平行的判定①两直线平行,在所在平面内,另一条直线与该平面平行。

直线与平面平行的性质教案

直线与平面平行的性质教案

直线与平面平行的性质教案一、教学目标:1. 让学生理解直线与平面平行的概念,掌握直线与平面平行的判定方法。

2. 培养学生运用直线与平面平行的性质解决几何问题的能力。

3. 提高学生的空间想象能力和逻辑思维能力。

二、教学内容:1. 直线与平面平行的定义。

2. 直线与平面平行的判定定理。

3. 直线与平面平行的性质定理。

4. 直线与平面平行在实际问题中的应用。

三、教学重点与难点:1. 教学重点:直线与平面平行的判定方法,直线与平面平行的性质定理。

2. 教学难点:直线与平面平行的性质定理在实际问题中的应用。

四、教学方法:1. 采用讲解法、演示法、讨论法、练习法等相结合的教学方法。

2. 通过实物模型、几何画板等工具,直观展示直线与平面平行的性质。

3. 组织学生进行小组讨论,培养学生的合作意识。

五、教学过程:1. 导入新课:通过展示生活中的实例,引出直线与平面平行的概念。

2. 讲解直线与平面平行的判定方法,引导学生理解并掌握判定定理。

3. 讲解直线与平面平行的性质定理,并通过实物模型、几何画板等进行展示。

4. 组织学生进行小组讨论,探索直线与平面平行的性质在实际问题中的应用。

5. 布置课堂练习,巩固所学知识。

6. 总结本节课的主要内容,强调直线与平面平行的性质在几何问题解决中的重要性。

7. 布置课后作业,鼓励学生深入研究直线与平面平行的性质。

六、教学评价:1. 通过课堂提问、作业批改等方式,评价学生对直线与平面平行概念的理解和判定方法的掌握。

2. 注重评价学生在实际问题中运用直线与平面平行性质的能力,以及空间想象能力和逻辑思维能力的提升。

3. 结合小组讨论情况,评价学生的合作意识和交流沟通能力。

七、教学反馈:1. 收集学生作业,分析掌握情况,针对普遍问题进行有针对性的辅导。

2. 听取学生对课堂教学的反馈意见,了解教学方法的适用性,及时调整教学策略。

3. 关注学生在小组讨论中的表现,鼓励表达自己的想法,提高自信心。

《直线与平面平行的判定》教学设计

《直线与平面平行的判定》教学设计

《直线与平面平行的判定》教学设计一、课题分析:本节内容选自《人民教育版》a版必修课第2节“直线与平面平行性的判断与性质”第一节。

在学习点、线、平面的位置关系后,进一步研究直线与平面的位置关系。

平行关系是本章的重要内容。

线平面平行是平行关系的初步判断,是判断平面平行的依据。

它还映射了线平面垂直的相关内容,起到了连接作用。

因此,本节内容具有承前启后的功能,其地位十分重要二、三维目标:(一)知识和技能1、通过直观感知.操作确认,理解直线与平面平行的判定定理并能进行简单应用;2、进一步培养学生观察、发现问题的能力和空间想像能力。

(二)过程与方法1.启发法。

以实物(门、书等)为媒介,启发和诱导学生逐步体验定理的直观感知过程;2、指导学生进行合情推理。

对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题,教师予以指导、帮助学生合情推理、澄清概念、加深认识,正确运用。

(三)情感态度和价值观1、让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力;2.在培养学生逻辑思维能力的同时,培养学生认真细致的做事习惯和理性推理的探索精神。

三、重点难点:教学重点:直线与平面平行关系判断的形成过程;(通过视觉类比、探索和发现突出重点)教学难点:直线与平面平行判定定理的理解和应用。

(通过分组讨论、设计练习等教学手段来突破难点)四、教学过程(一)回顾与介绍问题:回顾直线与平面的位置关系。

设计意图:通过师生互动,回忆旧知识,帮助学生巩固旧知识,让学生在体验学习数学成就感的同时学习新知识,营造轻松愉快的学习氛围。

(二)感知定理思考1:根据定义,如何确定直线平行于平面?直线L与图中平面α平行?lα思考2:若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?思考3:有一块木头,如图所示。

P是平面BCEF中的一个点。

需要通过点P在平面BCEF中绘制一条直线,该点平行于平面ABCD。

直线和平面平行的判定定理应用教案

直线和平面平行的判定定理应用教案

直线和平面平行的判定定理应用教案一、教学目标1. 让学生掌握直线和平面平行的判定定理。

2. 培养学生运用判定定理解决实际问题的能力。

3. 提高学生的空间想象能力和思维能力。

二、教学内容1. 直线和平面平行的判定定理。

2. 判定定理的应用。

三、教学重点与难点1. 教学重点:直线和平面平行的判定定理及其应用。

2. 教学难点:判定定理在实际问题中的运用。

四、教学方法1. 采用讲解法,引导学生理解判定定理的内涵。

2. 利用几何模型,直观展示直线和平面的位置关系。

3. 设计练习题,培养学生的实际应用能力。

五、教学过程1. 导入:回顾直线和平面的位置关系,引导学生思考如何判断直线和平面的平行关系。

2. 新课讲解:介绍直线和平面平行的判定定理,结合几何模型展示,让学生理解判定定理的推导过程。

3. 例题讲解:分析典型例题,引导学生运用判定定理解决问题,巩固所学知识。

4. 课堂练习:设计相关练习题,让学生独立完成,检验对判定定理的掌握程度。

5. 总结与拓展:对本节课的内容进行总结,引导学生思考判定定理在实际问题中的应用,拓展思维。

6. 作业布置:布置适量作业,巩固所学知识。

六、教学评估1. 课堂练习的完成情况,观察学生对判定定理的理解和应用能力。

2. 学生对典型例题的分析和解答,评估其逻辑思维和解决问题的能力。

3. 作业的完成质量,了解学生对课堂所学知识的巩固程度。

七、教学反馈与调整1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出优点和不足。

2. 对学习有困难的学生,提供个别辅导,帮助其克服困难。

3. 根据学生的学习情况,调整教学进度和难度,确保教学内容适合学生的实际需求。

八、课后作业1. 复习本节课所学的直线和平面平行的判定定理。

2. 完成课后练习题,包括判断题和应用题,巩固所学知识。

3. 选择一道拓展题,提高自己的空间想象能力和思维能力。

九、课后反思1. 回顾本节课的教学内容,总结教学方法和策略。

2. 思考如何更好地引导学生理解和应用判定定理。

直线与平面平行的判定定理教案

直线与平面平行的判定定理教案

直线与平面平行的判定定理教案一、教学目标1.掌握直线与平面平行的判定定理。

2.能够运用所学知识解决相关问题。

二、教学内容直线与平面平行的判定定理三、教学重难点1.重点:直线与平面平行的判定方法。

2.难点:如何运用所学知识解决相关问题。

四、教学方法讲授法、示范法、启发式教学法五、教学过程1.导入(5分钟)通过引入相关问题,引发学生对本节课的兴趣,并激发他们思考的欲望,例如:“如果一条直线和一个平面是相交的,那么它们是否可能是平行的呢?”2.讲解(20分钟)(1)定义:如果一条直线和一个平面没有交点,那么这条直线与该平面就是平行的。

(2)判定方法:①法向量法:如果一条直线的方向向量与该平面的法向量垂直,则这条直线和该平面是相交于一个点或者互相重合,因此不可能是平行的。

反之,则它们是平行的。

②截距法:如果一条直线在该平面上有两个不同的交点,则这条直线和该平面相交,因此不可能是平行的。

反之,则它们是平行的。

(3)实例演示:通过具体的例子,让学生更好地理解直线与平面平行的判定方法。

3.练习(20分钟)让学生在课堂上完成一些相关练习,以检验他们对所学知识的掌握情况。

4.总结(5分钟)通过总结本节课所学内容,让学生更好地理解和记忆直线与平面平行的判定定理。

六、教学评估1.教师观察法:观察学生在课堂上的表现,了解他们对所学知识的掌握情况。

2.书面测试法:通过给学生布置相关试题,以考查他们对所学知识的掌握情况。

七、教后反思本节课采用了多种教学方法,如讲授法、示范法和启发式教学法等。

通过引入问题、讲解定理、演示实例和练习等环节,使得本节课具有很好的连贯性和完整性。

同时,在评估环节中也采用了多种方式进行考查,以更全面地了解学生对所学知识的掌握情况。

在今后的教学中,需要进一步完善教学方法,提高课堂效果。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

章节一:直线与平面平行的概念引入教学目标:使学生了解直线与平面平行的基本概念,理解直线与平面平行的直观含义。

教学内容:1. 直线与平面的基本概念复习2. 直线与平面平行的定义3. 直线与平面平行的实例解析教学方法:采用直观演示法,结合实例进行讲解。

教学活动:1. 复习直线与平面的基本概念2. 引入直线与平面平行的定义3. 通过实例解析直线与平面平行的特征章节二:直线与平面平行的判定定理教学目标:使学生理解直线与平面平行的判定定理,能够运用判定定理判断直线与平面的平行关系。

教学内容:1. 直线与平面平行的判定定理的表述2. 直线与平面平行的判定定理的证明3. 直线与平面平行的判定定理的应用教学方法:采用讲解法,结合图形进行说明。

教学活动:2. 讲解直线与平面平行的判定定理的证明3. 通过例题演示直线与平面平行的判定定理的应用章节三:直线与平面平行的判定定理的运用教学目标:使学生能够运用直线与平面平行的判定定理解决实际问题。

教学内容:1. 直线与平面平行的判定定理在实际问题中的应用2. 直线与平面平行关系的判断与证明教学方法:采用案例教学法,引导学生运用判定定理解决实际问题。

教学活动:1. 分析直线与平面平行的判定定理在实际问题中的应用2. 提供练习题,让学生运用判定定理判断直线与平面的平行关系章节四:直线与平面平行的判定定理的综合训练教学目标:使学生能够综合运用直线与平面平行的判定定理解决复杂问题。

教学内容:1. 直线与平面平行关系的复杂问题解析2. 综合运用直线与平面平行的判定定理进行判断与证明教学方法:采用问题解决法,引导学生进行综合训练。

教学活动:1. 提供直线与平面平行关系的复杂问题,让学生进行分析2. 引导学生综合运用判定定理进行判断与证明章节五:直线与平面平行的判定定理的复习与总结教学目标:使学生巩固直线与平面平行的判定定理,总结学习过程中的重点与难点。

教学内容:1. 直线与平面平行的判定定理的复习2. 学习过程中的重点与难点总结教学方法:采用问答法,引导学生进行复习与总结。

直线与平面平行的判定

直线与平面平行的判定

教学内容及过程
2. 直线与平面平行的判 定定理
接下来,我们将介绍直线与平面 平行的判定定理。这个定理是: 如果一条直线与一个平面平行, 那么这条直线与此平面内的任何 一条直线都平行。这个定理的证 明可以通过直观的几何方式进行 ,证明方法有很多种
教学内容及过程
3. 定理的应用 与解析
理解了定理后,我们 需要通过一些例题来 加深对定理的理解和 应用。我们会选择一 些具有代表性的题目 ,让学生们进行思考 和解答。通过这些题 目,学生们可以了解 到定理的应用方法和 技巧
教学内容及过程
4. 学生的互动 与讨论
在讲解例题的过程中 ,我们会邀请学生们 进行互动和讨论。学 生们可以通过讨论, 互相学习,共同解决 问题。这样不仅能够 提高他们的学习兴趣 和积极性,还能够培 养他们的合作精神和 沟通能力
PART 4
教学方法及手段
教学方法及手段
我们会采用讲解、演示、互 动等多种教学方法,让学生 们能够深入理解直线与平面 平行的判定定理
同时,我们还会使用多媒体 教学工具,通过图像和动画 等形式,让学生们更直观地 理解几何概念和定理
PART 5
教学评估与反馈
教学评估与反馈
在教学过程中,我们会进 行多次评估和反馈
然后,在课程结束后,我们会 进行大测试,检验学生们对整 个课程的理解和应用能力
x
首先,在讲解每个知识点后, 我们会进行小测试,检查学 生们对知识点的理解情况
PART 2
教学目标
教学目标
我们的教学目标是让学生理解直线与平面平行的判 定定理,掌握其应用方法,并能够在各种不同的几
何环境中灵活运用
PART 3
教学内容及过程
教学内容及过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线与平面平行的判定》教案
《直线与平面平行的判定》教案
《直线与平面平行的判定》教案
一、设计思路1.指导思想:以新课程理念为指导,遵循教育教学规律,利用多媒体辅助教学。

以问题设计为主要表现形式,创设良好的教学情境,充分发挥学生的主体参与作用,在教师引导下让学生进行自主探索,合作交流,达到教学的三维目标(即:知识和能力、过程和方法、情感态度和价值观)。

2.设计理念:本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,归纳出直线与平面平行的判定定理,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

3.教材分析:本节课《直线与平面平行的判定》选自高一数学第二册第一章第五节第1课时。

直线与平面平行问题是高考考查的重点之一,在前面已经学习空间点、线、面位置关系的基础上,结合有关实物模型,通过直观感知、操作确认归纳出直线与平面平行的判定定理。

通过对定理的概括及应用,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。

4.学情分析:对高一的学生来说,该学段的学生学习兴趣较高,但学习立体几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

但是在前面直线与平面平行学习的基础上,结合实物模型,对学生在理解接受上有很大帮助。

二、教学目标1、知识与技能(1)通过直观感知、操作确认,理解直线与平面平行的判定定理并能进行简单应用。

(2)进一步培养学生观察、发现问题的能力和空间想象能力。

(3)通过例题及习题的思考,交流及释疑掌握平行关系的判定方法,培养灵活思维、严谨推理的好习惯。

2、过程与方法(1)启发式:以实物(门、书、)为媒体,启发、诱导学生逐步经历定理
的直观感知过程。

(2)指导学生进行合情推理。

对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题、教师予以指导,帮助学生合情推理、澄清概念、加深认识、正确运用。

3、情感、态度与价值观(1)让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力。

(2)在培养学生逻辑思维能力的同时,养成学生办事认真仔细的习惯及合情推理的探究精神。

4、现代教学手段运用(1)以生动的多媒体课件为平台,激发学生兴趣,活跃课堂气氛;(2)通过探究讨论,让学生理解和把握重难点知识,使复杂问题简单化,抽象问题具体化,且发挥了学生主体作用,给学生展示和发表自己观点的机会。

三、教学的重点与难点:教学重点:直线和平面平行的判定定理的探究及其应用。

教学难点:从生活经验归纳直线和平面平行的判定定理。

四、教学准备(1)学生的学习准备:指导学生有效预习,搜集线面平行的图片和例子,课前进行汇总。

(2)教师的教学准备:汇总学生图片,做成幻灯片。

(3)教学环境的设计与布置:选择多媒体教室、投影仪等。

(4)教学用具的设计和准备:三角板,笔,课本,扩音器。

五、教学过程[设计意图]利用生活情境,比较容易吸引学生注意力,激发学生进行积极的思维,这样做既帮助学生对线面平行的位置关系有一个直观的立体初步感受,又可为引出课题埋下伏笔。

老师提出:怎样判定直线与平面平行呢?根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢?(引导学生寻找其他简便的方法。

)2.2探索研究、操作确认1)探索研究教师:当门扇绕着一边转动时,门扇外边缘所在直线b与门框所在平面具有什么样的位置关系?(图一)学生:平行教师:门扇外边缘所在直线b与转轴a是否平行?学生:平行教师:a在门框所在平面内吗?
学生:a在门框平面内教师:b在门框所在平面内吗?学生:b不在门框在平面内学生实践:将课本的一边AB紧靠桌面,并绕AB转动,观察AB的对边CD在各个位置时,是不是都与桌面所在的平面平行?教师:直线AB、CD各有什么特点呢?
有什么关系呢?从中得出什么结论?学生:CD是桌面外一条直线,AB是桌面内一条直线,CDAB,则CD桌面2)提出问题辨析1:如果、a、b是两条直线,且a//b,那么a平行于经过b的任何平面吗?
辨析2:如果一条直线平行于平面内的无数条直线,那么这条直线与这个平面是否平行?学生活动:将学生分成四组进行讨论交流。

[设计意图]:通过各种手段和方法引导学生从直观感知角度,动手操作的切身体验,感受线面平行应具有的特点,培养学生的数学素养及空间想象力。

关键:在平面内找一条直线与平面外的直线平行教学活动:教师板书,学生分析概括。

4)操作确认教学活动:学生观察教室中直线与平面平行的例子,举手或点名回答。

(1)桌子的边与地面、墙面;
(2)门框的边与门、墙面(3)灯管与地面、墙面;(4)墙面的交线与地面、墙面等。

[设计意图]突出“操作探究”和“讨论交流”,强调实际操作模型对想象和推理的促进作用,自己归纳线面平行的判定定理,在身边寻找实际原型,巩固探究成果,并为探究、理解平面与平面平行的判定奠定基础。

相关文档
最新文档