专题46 椭圆——椭圆的概念及其性质(PPT)-2020年新高考数学一轮复习之考点题型深度剖析

合集下载

高中数学一轮复习课件:“椭圆的定义及其标准方程” (共28张PPT)

高中数学一轮复习课件:“椭圆的定义及其标准方程” (共28张PPT)

问题3:在笔尖运动的过程中,哪些 长度
是变化的?哪些长度是不变的?
并且回答问题2:椭圆是满足什么条件的轨 迹呢?
请看用超级画板进行的动态演示:
(超级链接2)
椭圆的定义
椭圆定义的文字表述: 椭圆定义的符号表述:
• 平面上到两个定点 的距离的和(2a) 等于定长(大于 |F1F2 |)的点的轨 迹叫椭圆。 • 定点F1、F2叫做椭 圆的焦点。 • 两焦点之间的距离 叫做焦距(2C)。
♦ 求动点轨迹方程的一般步骤: 坐标法 (1)建系; (2)设点; (3)列等式; (4)等式坐标化; (5)检验.
师生互动,导出椭圆的方程:
♦ 问题8、探讨建立平面直角坐标系的方案
(学生分组讨论,合作探究) y y y
y F1
O O O
y F2
M M
O F2
xx x
O
x F1
x
方案二 方案一 原则:一般利用对称轴或已有的互相垂直的线段 所在的直线作为坐标轴.这样能使方程的形式简单、 运算简单。
(问题11)如果椭圆的焦点 在y上,那么椭圆的标准方程 又是怎样的呢?
如果椭圆的焦点在y轴上(选取方式不同,调换x,y F1 (0, c), F2 (0, c) 轴) 如图所示,焦点则变成 x2 y2 只要将方程中 2 2 1 的 x, y 调换,即可得
课题:
二、【自主探究,形成概念】 ——“定性”地画出椭 圆
问题2: 动点按照某种规律运动形成的轨迹叫
曲线,那么椭圆是满足什么条件的轨迹呢?
数学实验(做一做)
请同学们拿出课前准备好的一块纸板, 一段细绳,两枚图钉,同桌间相互磋商、动手 绘图 .并思考问题:
在绳长 (设为 2 a )不变的条件下, 实验1:当两个图钉重合在一点时,画出 的图形是什么? (圆) 实验2:改变两个图钉之间的距离(让绳 长大于两个图钉之间的距离),画出的图形是 什么? (椭圆)

高考数学一轮复习考点题型课下层级训练46椭圆——椭圆的概念及其性质(含解析)

高考数学一轮复习考点题型课下层级训练46椭圆——椭圆的概念及其性质(含解析)

课下层级训练(四十六) 椭圆的概念及其性质[A 级 基础强化训练]1.(2019·山东滨州模拟)若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A .12 B .33 C .22D .24【答案】C [依题意可知,c =b ,又a =b 2+c 2=2c , ∴椭圆的离心率e =c a =22.] 2.(2018·广东惠州调研)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】C [把椭圆方程化成x 21m+y 21n=1.若m >n >0,则1n >1m>0.所以椭圆的焦点在y 轴上.反之,若椭圆的焦点在y 轴上,则1n >1m>0即有m >n >0.故为充要条件.]3.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ) A .4 B .3 C .2D .5【答案】A [由题意知|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.]4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B两点.若△AF 1B 的周长为43,则C 的方程为( ) A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=1 【答案】A [由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.] 5.(2019·山东烟台模拟)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2 B .3 C .6D .8【答案】C [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2.∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.]6.焦距是8,离心率等于0.8的椭圆的标准方程为____________________.【答案】x 225+y 29=1或y 225+x 29=1 [由题意知⎩⎪⎨⎪⎧2c =8,c a=0.8,解得⎩⎪⎨⎪⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,当焦点在x 轴上时,椭圆方程为x 225+y 29=1,当焦点在y 轴上时,椭圆方程为y 225+x 29=1.]7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________________.【答案】(-5,0) [∵圆的标准方程为(x -3)2+y 2=1,∴圆心坐标为(3,0),∴c =3.又b =4,∴a =b 2+c 2=5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).]8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为____________.【答案】7 [由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.]9.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.【答案】解 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12.10.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.【答案】解 椭圆方程可化为x 2m +y 2mm +3=1,m >0.∵m -mm +3=m m +m +3>0,∴m >mm +3,∴a 2=m ,b 2=mm +3,c =a 2-b 2= m m +m +3.由e =32,得 m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长和短轴长分别为2a =2和2b =1,焦点坐标为F 1⎝ ⎛⎭⎪⎫-32,0,F 2⎝ ⎛⎭⎪⎫32,0,四个顶点的坐标分别为A 1(-1,0),A 2(1,0),B 1⎝ ⎛⎭⎪⎫0,-12,B 2⎝ ⎛⎭⎪⎫0,12. [B 级 能力提升训练]11.(2019·山东德州模拟)已知两定点A (0,-2),B (0,2),点P 在椭圆x 212+y 216=1上,且满足|AP →|-|BP →|=2,则AP →·BP →的值等于( ) A .-12 B .12 C .-9D .9【答案】D [由题意易知A (0,-2),B (0,2)为椭圆x 212+y 216=1的两焦点,∴|AP →|+|BP →|=2×4=8.又|A P →|-|BP →|=2,∴|A P →|=5,|B P →|=3. ∵|A B →|=4∴△ABP 为直角三角形,∴A P →·B P →=(AB →+BP →)·BP →=|BP →|2=9.]12.(2019·山东临沂月考)过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则△PQF 周长的最小值是( ) A .14 B .16 C .18D .20【答案】C [如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.]13.(2019·山东东营检测)已知△ABC 的顶点A (-3,0)和顶点B (3,0),顶点C 在椭圆x 225+y 216=1上,则5sin Csin A +sin B=____________.【答案】3 [由椭圆方程x 225+y 216=1,得长轴长2a =10,短轴长2b =8,焦距2c =6,则顶点A ,B 为椭圆的两个焦点.在△ABC 中,|AB |=6,|BC |+|AC |=10,由正弦正理可得,5sin C sin A +sin B =5|AB ||BC |+|AC |=5×610=3.]14.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是______________.【答案】⎝ ⎛⎭⎪⎫12,23 [如图所示,|AF 2|=a +c ,|BF 2|=a 2-c 2a ,∴k =tan ∠BAF 2=|BF 2||AF 2|=a 2-c 2a a +c =a -ca=1-e .又∵13<k <12,∴13<1-e <12,解得12<e <23.]15.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.【答案】解 (1)设椭圆半焦距为C .由题意AF ,AB 的中垂线方程分别为x =a -c2,y -b 2=a b (x -a2), 于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2.所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c2=1,设M (x ,y ),则-2c ≤x ≤2c ,所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2;当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72,解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1..。

椭圆及其几何性质课件-高三数学一轮复习

椭圆及其几何性质课件-高三数学一轮复习

B 分别为 C 的左,右顶点.P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l
与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C
的离心率为( A )
A.13
B.12
C.23
D.34
[解析] 设点 M(-c,y0),OE 的中点为 N,则直线 AM 的斜率 k=a-y0 c, 从而直线 AM 的方程为 y=a-y0 c(x+a), 令 x=0,得点 E 的纵坐标 yE=aa-y0c.同理,OE 的中点 N 的纵坐标 yN=aa+y0c. 因为 2yN=yE,所以a+2 c=a-1 c,即 2a-2c=a+c,所以 e=ac=13.故选 A.
(2)已知椭圆xa22+by22=1(a>b>0)上有一点 A,它关于原点的对称点为 B,点 F
为椭圆的右焦点,且 AF⊥BF.设∠ABF=α,且 α∈1π2,π6,则该椭圆的离 心率 e 的取值范围为( A )
A.
3-1,
6
3
B.[ 3-1,1)
C.
46,
6
3
D.0,
6
3
[解析] 如图所示,设椭圆的左焦点为 F′,连接 AF′,BF′,则四边形 AFBF′
为矩形,因此|AB|=|FF′|=2c,|AF|+|BF|=2a,|AF|=2csin α,|BF|=2ccos
α,∴2csin α+2ccos α=2a,
∴e=sin
1 α+cos
α=
2sin1α+π4.∵α∈1π2,π6,∴α+π4∈π3,51π2,
∴sinα+π4∈ 23,
2+ 4
6,∴
2sinα+π4∈ 26,1+2

椭圆的定义课件(2023版ppt)

椭圆的定义课件(2023版ppt)

椭圆的离心率为e = c/a,
04 其中c为椭圆的焦距,a
为椭圆的长半轴
椭圆的图形表示
椭圆的图形特征
椭圆是一种封闭的曲线图形,由两个焦点和
01
一条长轴组成。
椭圆的形状可以根据长轴和短轴的长度比例来
02
变化,当长轴和短轴相等时,椭圆变为圆。
椭圆上任意一点到两个焦点的距离之和是常
03
数,这个常数叫做椭圆的焦距。
01
02
03
04
椭圆的性质与定理
椭圆的性质
椭圆的定义:平面 内到两个固定点的 距离之和等于常数 的点的轨迹
椭圆的焦点:椭圆 的两个固定点,决 定了椭圆的形状和 大小
椭圆的离心率:椭 圆焦点到椭圆中心 的距离与椭圆长轴 长度的比值,决定 了椭圆的扁平程度
椭圆的顶点:椭圆 与坐轴的交点, 决定了椭圆的位置 和方向
2
椭圆在物理学中 的应用:椭圆轨 道、椭圆振动等
3
椭圆在工程学中 的应用:椭圆形 建筑、椭圆形管
道等
4
椭圆在艺术设计 中的应用:椭圆 形构图、椭圆形
图案等
谢谢
椭圆的周长与面积可以通 过公式计算
椭圆的离心率决定了椭圆 的形状
椭圆的焦点决定了椭圆的 位置和方向
椭圆的方程
椭圆的标准方程:
x^2/a^2 + y^2/b^2 01
=1
椭圆的焦点在x轴和y轴
上的坐标分别为(a,0)和 03
(0,b)
椭圆的顶点坐标为(a,0) 05
和(0,b)
02
a和b分别表示椭圆的长 半轴和短半轴
椭圆的性质:椭圆具
2 有对称性、周期性、 可积性等性质,这些 性质在几何应用中具 有重要作用。

最新高考数学(理)一轮复习 椭圆及其性质

最新高考数学(理)一轮复习  椭圆及其性质
2
01
基础知识 自主回顾
02
核心考点 深度剖析
03
高效演练 分层突破
上一页
返回导航
下一页
3
上一页
返回导航
下一页
4
上一页
返回导航
下一页
5
上一页
返回导航
下一页
6
上一页
返回导航
下一页
7
上一页
返回导航
下一页
8
上一页
返回导航
下一页
9
上一页
返回导航
下一页
10
上一页
返回导航
下一页
11
上一页
返回导航
返回导航
下一页
24
上一页
返回导航
下一页
25
上一页
返回导航
下一页
26
上一页
返回导航
下一页
27
上一页
返回导航
下一页
28
上一页
返回导航
下一页
29
上一页
返回导航
下一页
30
上一页
返回导航
下一页
31
上一页
返回导航
下一页
32
上一页
返回导航
下一页
33
上一页
返回导航
下一页
34
上一页
返回导航
下一页
下一页
12
上一页
返回导航
下一页
13
上一页
返回导航
下一页
14
上一页
返回导航
下一页
15
上一页
返回导航
下一页
16
上一页
返回导航

椭圆ppt课件

椭圆ppt课件

02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例

【课件】椭圆完全解读课件-2023届高三数学一轮复习

【课件】椭圆完全解读课件-2023届高三数学一轮复习

②求斜率为2的平行弦的中点轨迹方程。
椭圆的常见模型
中点弦问题
3.已知椭圆: + �� = ( > > )的左右焦点分别为�� , ,点 ,



上,



且∆ 的面积为.
①求椭圆的标准方程;
②若椭圆上存在, 两点关于直线 = �� + 对称,求的取值范围.
圆的离心率的取值范围是.

,

,则该椭
椭圆的定义及其方程
第二定义
平面内一定点距离与一定直线距离之比为常数 < < 的点的轨迹.
焦 点
相应准线
离心率
焦半径: = + , = −
∈ − , +
≤ ∙ ≤

= ∙
(其为参数)
= ∙
③极坐标方程: =
=



(极点为左焦点)


(极点为右焦点)
+
+


= (焦点在轴)
椭圆的定义及其方程
椭圆的方程
③极坐标方程


例6.已知椭圆:

+


= ,过左焦点作两条相互垂直的直线,分别交椭圆于, , , 四点,


在椭圆
椭圆的常见模型
斜率型定点定值

1.已知椭圆:

+


= ( > > ),四点 , , , , −,


, ,


中恰有三点在椭圆上.
①求 的方程;

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

《椭圆的定义和性质》教学课件ppt

《椭圆的定义和性质》教学课件ppt
∴|PF1|=2a-|PF2|=10-6=4.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.(2016·全国Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为 其短轴长的 14,则该椭圆的离心率为
1 A.3
√1
B.2
2 C.3
3 D.4
解析 如图,由题意得,|BF|=a,|OF|=c,|OB|=b,|OD|=14×2b=21b.
多维探究
题型二 椭圆的标准方程
命题点1 定义法
例1 (1)已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线
段AB的垂直平分线交BF于P,则动点P的轨迹方程为
A.1x22 +1y12 =1
B.3x62 -3y52 =1
C.x32-y22=1
√D.x32+y22=1
解析 由题意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=2 3>|AF|=2,∴点
解析 ∵△AF1B 的周长为 4 3,∴4a=4 3,
∴a= 3,∵离心率为 33,∴c=1, ∴b= a2-c2= 2,∴椭圆 C 的方程为x32+y22=1. 故选A.
1234567
自主演练
题型一 椭圆的定义及应用
1.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,
把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,
1234567
题组三 易错自纠
5.若方程 x2 + y2 =1 表示椭圆,则m的取值范围是 5-m m+3
A.(-3,5)
B.(-5,3)
√C.(-3,1)∪(1,5)
解析

高考数学总复习——椭圆课件

高考数学总复习——椭圆课件

椭圆中的最值问题
运用基本不等式
解决椭圆中的最值问题时,可以运用基本不等式,通过合理转化,将问题转化为 容易处理的形式。
椭圆中的最值问题
数形结合
结合椭圆的几何图形,将问题转化为几何问题,利用几何性质求解最值,是解决这类问题的常用方法 。
椭圆中的最值问题
代数运算
02
01
在解决椭圆最值问题时,需要进 行一些代数运算,如配方、换元
2018年高考数学全国卷Ⅱ 椭圆题目:已知椭圆C的中 心在原点,焦点在x轴上, 椭圆C上的点P到焦点的距 离和为12,点P的横坐标是 3,且过点P作短轴的垂线
,垂足Q的轨迹为圆C。
01
2019年高考数学全国卷Ⅲ 椭圆题目:已知椭圆C的中 心在原点,焦点在x轴上, 椭圆C上的点P到焦点的距 离和为10,点P的横坐标是 4,且过点P作短轴的垂线
椭圆的参数方程
椭圆的参数方程是 $left{ begin{array}{l} x = a cos theta y = b sin theta end{array} right.$,其中 $theta$ 是参数。
该方程通过三角函数将椭圆上的点与角度 $theta$ 关联起来,方便进行角度和距离 的计算。
高频考点总结与预测
总结
通过对近五年高考真题的分析,可以发现椭 圆的离心率的计算、直线与椭圆的交点以及 弦长问题等知识点是高频考点。同时还需要 注意椭圆的几何意义和性质的应用。
预测
根据高频考点的规律和趋势,预测未来高考 中可能会出现的考点包括椭圆的切线问题、 椭圆的参数方程以及椭圆的对称性等知识点 。
椭圆的标准方程
椭圆的标准方程是 $frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴。

2024年高考数学一轮复习(新高考版)《椭圆》课件ppt

2024年高考数学一轮复习(新高考版)《椭圆》课件ppt

A.x62+y52=1
√B.x52+y42=1
C.x32+y22=1
D.x42+y32=1
如图,不妨设A(x0,y0)在第一象限,由椭圆的左焦 点F1(-1,0),点C,F1是线段AB的三等分点, 得C为AF1的中点,F1为BC的中点, 所以x0=1, 所以a12+by202=1, 解得 y0=ba2,即 A1,ba2, 所以 C0,2ba2 ,B-2,-2ba2 ,
(2)(2022·全国甲卷)椭圆 C:ax22+by22=1(a>b>0)的左顶点为 A,点 P,Q 均 在 C 上,且关于 y 轴对称.若直线 AP,AQ 的斜率之积为14,则 C 的离心 率为
√A.
3 2
1 C.2
2 B. 2
1 D.3
设P(m,n)(n≠0),
则Q(-m,n),易知A(-a,0),
常用结论
(3)|PF1|max=a+c,|PF1|min=a-c. (4)|PF1|·|PF2|≤|PF1|+2 |PF2|2=a2. (5)4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos θ. (6)焦点三角形的周长为2(a+c).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.
b4 将点 B 的坐标代入椭圆方程得a42+4ba22=1, 即a42+4ba22=1,
结合a2-b2=c2=1,解得a2=5,b2=4, 所以椭圆的标准方程是x52+y42=1.
题型三 椭圆的几何性质
命题点1 离心率 例 4 (1)(2022·太原模拟)设 F1,F2 是椭圆 E:ax22+by22=1(a>b>0)的左、右

高考理数复习---椭圆及其性质基础知识梳理PPT课件

高考理数复习---椭圆及其性质基础知识梳理PPT课件
高考理数复习---椭圆及其性质基础知 识梳理PPT课件
1.椭圆的定义 (1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的 点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离 叫做椭圆的焦距.
2
(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数 且a>0,c>0.
x42+y32=1 [设椭圆的标准方程为ax22+by22=1(a>b>0).因为椭圆
c=1,
的一个焦点为F(1,0),离心率e=12,所以ac=12,
解得
a2=b2+c2,
ba2==23c,=2,故椭圆的标准方程为x42+y32=1.]
16
本课结束
①当2a>|F1F2|时,M点的轨迹为椭圆; ②当2a=|F1F2|时,M点的轨迹为线段F1F2; ③当2a<|F1F2|时,M点的轨迹不存在.
3
2.椭圆的标准方程和几何性质
标准方程
ax22+by22=1(a>b>0)
ay22+bx22=1(a>b>0)
图形
4
范围
-a≤x≤a -b≤y≤b
-b≤x≤b -a≤y≤a
21+1= 2-1.故选D.]
14
3.若方程5-x2 k+k-y23=1表示椭圆,则k的取值范围是_______.
(3,4)∪(4,5)
5-k>0,
[由已知得k-3>0, 5-k≠k-3.
解得3<k<5且k≠4.]
15
4.已知椭圆的一个焦点为F(1,0),离心率为12,则椭圆的标准
方程为________.
8
3.椭圆的一个焦点、中心和短轴的一个端点构成直角三角形, 其中 a 是斜边长,a2=b2+c2.

人教版高三数学一轮复习课件:椭圆的定义与标准方程(共32张PPT)

人教版高三数学一轮复习课件:椭圆的定义与标准方程(共32张PPT)

a c x a y a a c
2 2 2 2 2
a b c O
F2
b x a y a b
2 2 2 2
2 2
b2 x 2 a 2 y2 a 2 b2
1ab0 ax22 by22
2 2
F1
x
x y 2 1a b 0 2 a b
<1>不推导,你能写出另一种椭圆的标准方程吗? <2>如何由方程,判断出焦点落在x轴上,还是y轴 上? y y
复习提问
动手画一个圆并回忆圆的定义,思考哪些
量变了?哪些量没变? 圆的定义: 平面上到定点的距离等
于定长的点的集合叫圆.
创设情景,导入新课
动手实验,亲身体会
要想知道椭圆是什么条件 的点的轨迹,我们首先要会画 椭圆。请同学们小组合作画一 个椭圆,或者用火腿肠切出一 个椭圆。
教学过程
情景导入
插入视频和学 生上传的图片
2、答对一空得其分值,答错扣一半分值
3、答题时间1分钟
抢答:每空2分
x2 y 2 1. 2 2 1, 则a= 5 ,b= 3 ; 5 3 x2 y2 2. 1 则a= 3 ,b= 6 ; 9 6
3.下列方程哪些表示椭圆?
x2 y2 (1) 1 16 16
x2 y2 ( 2) 1 25 16
y
点拨:怎样建系可以 y 使方程尽可能简 单?
M
M
O F2
F2 xx x
O
x F1
x
方案一
方案二
y
设P (x, y)是椭圆上任意一点,
椭圆的焦距|F1F2|=2c(c>0),
P ( x , y)

椭圆高考复习课件ppt

椭圆高考复习课件ppt

\leqslant
a$和$-b
\leqslant y \leqslant b$

椭圆的离心率
椭圆的焦距与长轴长度的
比叫做椭圆的离心率,记
作$e$,即$e
=
\frac{c}{a}$,其中$c$是
椭圆的焦距。
椭圆的参数方程
椭圆的参数方程
以焦点为极点,以长轴端点为极轴建立极坐 标系,则椭圆的极坐标方程为$\rho = \frac{2b^{2}}{1 - e^{2}\cos^{2}\theta}$ 。其中$\rho$为极径,$\theta$为极角。
详细描述
例题3:已知椭圆焦点 在x轴上,中心在原点 ,长轴长为4,短轴长 为2,并且一条切线方 程为y=x+1,求椭圆的 标准方程。
解答
根据椭圆的切线方程和 极坐标方程,可得到原 点为极点,极轴为x轴 ,进而求出椭圆的标准 方程。
谢谢
THANKS
践操作能力。
注重实际应用,培养综合素质
强化应用意识
在复习过程中要强化应用意识,引导考生将所学知识应用 到实际生活中,提高知识的实际应用能力。
提高应试技巧
在复习过程中要注重提高应试技巧,包括答题技巧、时间 分配、心态调整等方面,帮助考生在考试中更加从容应对 。
培养综合素质
在复习过程中要注重培养考生的综合素质,包括语言表达 、思维逻辑、人际交往、心理素质等方面,为未来的学习 和生活打下坚实的基础。
椭圆的参数方程与直角坐 标系下的方程转换
将$\rho = \fr乘$\rho$, 可得$\rho^{2} = \frac{2b^{2}\rho^{2}}{1 - e^{2}\cos^{2}\theta}$,再将其展开得到 $\rho^{2} = (1 - e^{2})x^{2} + y^{2}$,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回导航
第八章 解析几何
椭圆定义的应用技巧 (1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及 弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.
第1轮 ·数学
返回导航
第八章 解析几何
考点二 椭圆的标准方程
自主 完成
考向1:利用椭圆定义求椭圆的标准方程
4.(2019·山东聊城模拟)曲线C1:2x52 +y92=1与曲线C2:25x-2 k+9-y2 k=1(k<9)的
A.长轴长相等
B.短轴长相等
(D )
C.离心率相等
D.焦距相等
解析
因为c
2 1
=25-9=16,c
2 2
=(25-k)-(9-k)=16,所以c1=c2,所以两个曲
线的焦距相等.
第1轮 ·数学
x2 a2

y2 b2
=1(a>b>0)的左、右顶点分别为A1,
A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为 ( A )
A.
6 3
B.
3 3
C.
2 3
D.13
第1轮 ·数学
返回导航
第八章 解析几何
解析 由题意知以A1A2为直径的圆的圆心为(0,0),半径为a. 又直线bx-ay+2ab=0与圆相切,
__-__a____≤y≤__a____
对称轴:___坐__标__轴___,对称中心:___(0_,_0_)____
返回导航
第八章 解析几何
标准方程
ax22+by22=1(a>b>0)
bx22+ay22=1(a>b>0)
顶点
A1___(_-__a_,0_)___,A2___(_a_,0_)___, A1__(0_,__-__a_)___,A2_(_0_,__a_)___, B1__(_0_,__-__b_)__,B2__(_0_,__b_)__ B1__(_-__b_,0_)____,B2__(_b_,0_)____
第1轮 ·数学
返回导航
第八章 解析几何
2.(2019·山东潍坊检测)已知椭圆G的中心为坐标原点O,点F,B分别为椭圆G
的右焦点和短轴端点.点O到直线BF的距离为 3 ,过F垂直于椭圆长轴的弦长为2,
则椭圆G的方程是 A.x42+y22=1 C.1x62 +y42=1
B.y42+x22=1 D.1y62 +x42=1
A.4
B.8
C.4或8
D.12
(C )
解析 当焦点在x轴上时,10-m>m-2>0, 10-m-(m-2)=4,∴m=4. 当焦点在y轴上时,m-2>10-m>0,m-2-(10- m)=4,∴m=8. ∴m=4或8.
第1轮 ·数学
返回导航
第八章 解析几何
2.(P42A组T5改编)过点A(3,-2)且与椭圆x92+y42=1有相同焦点的椭圆的方程为
A.1x52 +1y02 =1 C.1x02 +1y52 =1
B.2x52 +2y02 =1 D.2x02 +1y52 =1
(A )
解析 由题意知c2=5,可设椭圆方程为λ+x25+yλ2=1(λ>0),则λ+9 5+4λ=1,解得
λ=10或λ=-2(舍去),∴所求椭圆的方程为1x52 +1y02 =1.
第八章 解析几何
第五节 椭 圆
第八章 解析几何
1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用. 2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离 心率). 3.理解数形结合思想. 4.了解椭圆的简单应用.
第1轮 ·数学
返回导航
第八章 解析几何
课前回扣·双基落实
(3)S△PF1F2=
1 2
|PF1||PF2|·sin
θ,当|y0|=b,即P为短轴端点时,S△PF1F2取最大
值,为bc.
(4)焦点三角形的周长为2(a+c).
第1轮 ·数学
返回导航
第八章 解析几何
VS
题组 教材改编⇔最新模拟
1.(P68A组T3改编)椭圆10x-2 m+m-y2 2=1的焦距为4,则m等于
第1轮 ·数学
返回导航
第八章 解析几何
考点三 椭圆的几何性质
多维 探究
椭圆几何性质的内容很丰富,因此在高考中对椭圆几何性质的考查也非常广 泛,但离心率及其范围却是每年高考的热点,应用平面几何知识往往是解决此类问 题的关键.
第1轮 ·数学
返回导航
第八章 解析几何
考向1:求椭圆的离心率
(2017·全国卷Ⅲ)已知椭圆C:
(C )
解析
设椭圆方程为
x2 a2

y2 b2
=1(a>b>0),由已知可得
bc a

3

2b2 a
=2及a2=b2+
c2,知a=4,b=2.
第1轮 ·数学
返回导航
第八章 解析几何
求椭圆标准方程的两种方法 (1)定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置写出椭圆方程. (2)待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求 出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设 椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).
∴圆心到直线的距离d= a22a+b b2=a,解得a= 3b,
∴ba=
1, 3
∴e=ac= a2a-b2= 1-ba2= 1- 132= 36.
第1轮 ·数学
返回导航
第八章 解析几何
求椭圆离心率的方法 (1)直接求出a,c的值,利用离心率公式直接求解. (2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含 有e的方程(或不等式)求解.
第1轮 ·数学
返回导航
第八章 解析几何
3.(2019·山东日照月考)方程kx2+4y2=4k表示焦点在x轴上的椭圆,则实数k的
取值范围是
(D)
A.k>4
B.k=4
C.k<4
D.0<k<4
解析 椭圆的标准方程为x42+yk2=1,焦点在x轴上,所以 0<k<4.
第1轮 ·数学
返回导航
第八章 解析几何
已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1
相内切,和圆C2相外切,则动圆圆心M的轨迹方程为
A.6x42 -4y82 =1
B.4x82 +6y42 =1
(D )
C.4x82 -6y42 =1
D.6x42 +4y82 =1
第1轮 ·数学
返回导航
第八章 解析几何
返回导航
第八章 解析几何
第五节 椭 圆 第一课时 椭圆的概念及其性质
第八章 解析几何
课堂互动·考点突破
考点一 椭圆的定义及应用
自主 完成
1.(2019·山东邹城模拟)已知△ABC的顶点B,C在椭圆
x2 3
+y2=1上,顶点A是椭
圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是
(C )
第1轮 ·数学
返回导航
第八章 解析几何
考向2:由椭圆的性质求参数的值或范围
(1)(2019·甘肃兰州模拟)已知椭圆mx2+4y2=1的离心率为 22,则实数m等

(D )
A.2 C.2或6
B.2或83 D.2或8
第1轮 ·数学
返回导航
第八章 解析几何
解析 显然m>0且m≠4,当0<m<4时,椭圆长轴在x轴上,则
第1轮 ·数学
返回导航
第八章 解析几何
3.(2019·内蒙古呼和浩特月考)已知F是椭圆5x2+9y2=45的左焦点,P是此椭 圆 上 的 动 点 , A(1,1) 是 一 定 点 , 则 |PA| + |PF| 的 最 大 值 为 ___6_+___2___ , 最 小 值 为 __6_-___2____.
第1轮 ·数学
返回导航
第八章 解析几何
2.若F1,F2是椭圆
x2 9

y2 7
=1的两个焦点,A为椭圆上一点,且∠AF1F2=45°,
则△AF1F2的面积为
(C )
A. 7
B.74
C.72
D.7 2 5
第1轮 ·数学
返回导航
第八章 解析几何
解析 由题意得a=3,b= 7,c= 2, ∴|F1F2|=2 2,|AF1|+|AF2|=6. ∵|AF2|2=|AF1|2+|F1F2|2-2|AF1|·|F1F2|cos 45° =|AF1|2-4|AF1|+8, ∴(6-|AF1|)2=|AF1|2-4|AF1|+8.解得|AF1|=72. ∴△AF1F2的面积S=12×72×2 2× 22=72.
返回导航
第八章 解析几何
3.与椭圆定义有关的结论
以椭圆
x2 a2

y2 b2
=1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点
的△PF1F2中,若∠F1PF2=θ,则(1)|PF1|+|PF2|=2a. (2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ.
m1 -14 = 1
2 2
,解
m
得m=2;当m>4时,椭圆长轴在y轴上,则
14-m1 = 1
22,解得m=8.
4
第1轮 ·数学
返回导航
第八章 解析几何
相关文档
最新文档