UP教育2016年上学期高一数学集合与函数的概念测试卷

合集下载

集合与函数概念单元测试题经典(含答案)

集合与函数概念单元测试题经典(含答案)

第一章集合与函数概念测试题一:选择题1、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈2、图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B3、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B = ( )A .{(,)1,2}x y x y ==B .{13}x x ≤≤C .{13}x x -≤≤D .∅4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ⊆,则实数a 的值是( )A .0B .12±C .0或12±D .0或125、已知集合{1,2,3,}A a =,2{3,}B a =,则使得Φ=B A C U )(成立的a 的值的个数为( ) A .2 B .3 C .4 D .56、设A 、B 为两个非空集合,定义{(,),}A B a b a A b B ⊕=∈∈,若{1,23}A =,{2,3,4}B =,则A B⊕中的元素个数为 A .3 B .7 C .9 D .127、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( )A .x =60tB .x =60t +5C .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t8、已知g (x )=1-2x, f [g (x )]=)0(122≠-x xx ,则f (21)等于 ( ) A .1B .3C .15D .309、函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数10、设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则( )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 二、填空题11、设集合A={23≤≤-x x },B={x 1122-≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12、已知x ∈[0,1],则函数y =x x --+12的值域是 . 13、设函数xy 111+=的定义域为___________________;值域为_____________________________.14、设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足,22(25)(21)f a a f a a -+-<++求实数a 的取值范围_______________。

高一数学集合与函数的概念试题答案及解析

高一数学集合与函数的概念试题答案及解析

高一数学集合与函数的概念试题答案及解析1.已知定义域为的函数是奇函数,(1)求的值;(2)若对任意的,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】(1)函数是奇函数,所以,然后在定义域内任取两个数值代入计算即可,一般取0和1即可(2)在定义域上为减函数,由(1)得函数还是奇函数,所以)等价于,,然后根据开口向上二次函数恒大于零即可求得结果.试题解析:(1)是定义在的奇函数所以令,,令,,所以解得:(2)经检验,当,时,为奇函数.所以因为是奇函数所以所以在上单调减所以即在上恒成立所以所以即的取值范围是点睛:考察函数的奇偶性,根据函数奇偶性可以在定义域内任取两个数值代入表达式建立等式即可求得题中参数的值,对于解不等式,要知道代入原方程,只会使式子变复杂并且还是不会解不等式,因此就要学会借助于单调性和奇偶性转化为只需比较括号内表达式的大小即可,从而轻松解决问题.2.集合A={1,2,3,4},B⊊A,且1∈A∩B,4∉A∩B,则满足上述条件的集合B的个数是()A.1B.2C.4D.8【答案】C【解析】利用已知条件确定B中的元素,以及确定B中可能的元素,即可推出集合B的个数.解:集合A={1,2,3,4},B⊊A且1∈A∩B,4∉A∩B,所以B={1};B={1,2};B={1,3};B={1,2,3}.则满足上述条件的集合B的个数是4.故选C.点评:本题考查元素与集合关系的判断,考查计算能力.3.集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a,b,c}的不同分拆种数为多少?【答案】27种【解析】考虑集合A1为空集,有一个元素,2个元素,和集合A相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;总之,共27种拆法.解:当A1=φ时,A2=A,此时只有1种分拆;当A1为单元素集时,A2=∁AA1或A,此时A1有三种情况,故拆法为6种;当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;综上,共27种拆法.点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.4.函数的定义域为,且对其内任意实数均有:,则在上是A.增函数B.减函数C.奇函数D.偶函数【答案】B【解析】当时,则即当时,则即所以函数在上是减函数。

高中数学必修一第一章《集合与函数概念》单元测试题(含答案)

高中数学必修一第一章《集合与函数概念》单元测试题(含答案)

⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。

高一数学集合与函数的概念试题答案及解析

高一数学集合与函数的概念试题答案及解析

高一数学集合与函数的概念试题答案及解析1. 下列命题正确的是( ) A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断;解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确; 故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.2. 集合A={1,2,3,4},B ⊊A ,且1∈A∩B ,4∉A∩B ,则满足上述条件的集合B 的个数是( ) A .1 B .2 C .4 D .8【答案】C【解析】利用已知条件确定B 中的元素,以及确定B 中可能的元素,即可推出集合B 的个数. 解:集合A={1,2,3,4},B ⊊A 且1∈A∩B ,4∉A∩B , 所以B={1};B={1,2};B={1,3};B={1,2,3}. 则满足上述条件的集合B 的个数是4. 故选C .点评:本题考查元素与集合关系的判断,考查计算能力.3. 设全集U={2,4,3﹣x},M={2,x 2﹣x+2},∁U M={1},求x . 【答案】x=2.【解析】法1:由M 的补集,得到元素1属于全集U 列出关于x 的方程,求出方程的解得到x 的值即可;法2:根据M 为U 的子集及补集的定义,得到x 2﹣x+2=4,求出方程的解得到x 的值,经检验即可得到结果.解:法1:根据题意得:3﹣x=1, 解得:x=2;法2:根据题意得:x 2﹣x+2=4,即(x ﹣2)(x+1)=0, 解得:x=2或﹣1,当x=﹣1时,3﹣x=4,根据集合元素的互异性,得到x=﹣1不合题意, 则x=2.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.4. 已知集合P={x|x 2+x ﹣6=0},M={x|mx ﹣1=0},若M ⊊P ,求实数m 的取值范围. 【答案】{0,,﹣}.【解析】由题设得P={﹣3,2},根据M ⊆P ,根据集合中元素个数集合B 分类讨论,P=∅或{2}或{﹣3},由此求解实数m 的取值范围.解:对于P :由x 2+x ﹣6=0得,x=﹣3或x=2,即P={﹣3,2},∵M⊊P,∴M是P的真子集,则M=∅或{2}或{﹣3},当M=∅时,mx﹣1=0无解,则m=0;当M={2}时,2m﹣1=0,解得m=;当M={﹣3}时,3m﹣1=0,解得m=﹣,综上得,实数m的取值范围是:{0,,﹣}.点评:本题考查了集合的包含关系,用列举法求出已知集合的子集,以及二次方程的解法等,体现了分类讨论思想.5.在“①高一数学课本中的难题;②所有的正三角形;③方程的实数解”中,能够表示成集合的是A.②B.③C.②③D.①②③【答案】C【解析】①不满足集合元素的确定性,②③能构成集合,③为.故选C.【考点】集合的含义.6.已知函数=,若=3,则的值是_________.【答案】【解析】由已知得:f(x)=3,解得:;故应填入:.【考点】分段函数.7.已知集合,,且,则的值为()A.1B.—1C.1或—1D.1或—1或0【答案】D【解析】因为,所以,当m=0时,符合要求;当时,,所以,综上,可知m=1或-1或0.8.设集合,则()A.B.C.D.【答案】B【解析】表示大于的有理数构成的集合,因此成立【考点】集合表示方法及常用数集9.已知定义在区间上的函数,其中常数.(1)若函数分别在区间上单调,试求的取值范围;(2)当时,方程有四个不相等的实根.①证明:;②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.【答案】(1) (2)见解析,【解析】(1)结合对勾函数的特征,即可知,从而求出参数范围;(2)当时,方程即为或,由韦达定理可证明 .结合函数图像及其单调性,分类讨论分别在四个单调区间内去求解,最后求并集即可.试题解析:(1)设∵∴函数分别在区间上单调且要使函数分别在区间上单调则只需(2)①当时,或即或∵为方程的四个不相等的实根∴由根与系数的关系得②如图,可知,在、、、均为单调函数(Ⅰ)当时,在上单调递减则两式相除整理得∵∴上式不成立即无解,无取值 10分(Ⅱ)当时,在上单调递增则即在有两个不等实根而令则作在的图像可知,12分(Ⅲ)当时,在上单调递减则两式相除整理得∴∴∴由得则关于的函数是单调的,而应有两个不同的解∴此种情况无解(Ⅳ)当时,同(Ⅰ)可以解得无取值综上,的取值范围为【考点】•由单调性求参数范围;‚含参数的值域问题.【方法点睛】•由单调性求参数范围常用的方法是,先求出函数的单调区间(含有参数),题目中给出的单调区间应是所求区间的子集,从而把问题转化为由集合关系求参数范围问题.‚含参数的值域问题,不论是求值域还是把值域作为已知条件的,都按照求值域的步骤运算,当遇到困难时,要注意对参数的分类讨论.10.函数f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函数,则a的范围是()A.a≥5B.a≥3C.a≤3D.a≤-5【答案】A【解析】二次函数对称轴为,在(-∞,4)上是增函数【考点】二次函数单调性11.若集合A={x||x|≤1,x∈R},B={y|y=,x∈R},则A∩B=( )A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.Φ【答案】C【解析】【考点】集合交集运算12.已知函数为二次函数,不等式的解集是,且在区间上的最大值为12.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【答案】(1)(2)【解析】(1)由题意先设函数的解析式,再由条件解其中的未知数,可得二次函数解析式;(2)由(1)知函数的解析式,可得函数的对称轴为,再讨论对称轴是在区间上,还是在区间外,分别得的表达式.试题解析:(1)是二次函数,且的解集是可设2分在区间上的最大值是由已知,得5分. 6分(2)由(1)知,开口向上,对称轴为, 8分①当,即时,在上是单调递减,所以; 10分②当时,在上是单调递减,所以; 12分③当,即时,在对称轴处取得最小值,所以. 14分【考点】1、二次函数的解析式的求法;2、二次函数的性质.13.(2012•广东模拟)如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[﹣7,﹣3]上是()A.增函数且最小值为﹣5B.增函数且最大值为﹣5C.减函数且最小值为﹣5D.减函数且最大值为﹣5【答案】B【解析】由于奇函数的图象关于原点对称,故它在对称区间上的单调性不变,如果奇函数在区间上是增函数且最大值为,那么在区间上必是增函数,且最小值为,故选A.【考点】函数的奇偶性与单调性的应用.14.设f(x)的定义域为[0,2],则函数f(x2)的定义域是___________【答案】【解析】略15.(12分)若是定义在上的增函数,且对一切,满足. (1)求的值;(2)若,解不等式【答案】⑴⑵【解析】(1)令x=y=1,即可求得f(1)的值;(2)依题意(f(6)=-1),可求得f(36)=-2,从而f(x+5)-f()<-2⇔f[(x+3)x]<f(36),利用f(x)是定义在(0,+∞)上的减函数可得到关于x的不等式组,解之即可试题解析:(1)在f()=f(x)-f(y)中,令x=y=1,则有f(1)=f(1)-f(1),∴f(1)=0.(2)∵f(6)=1,∴f(x+3)-f()<2=f(6)+f(6),∴f(3x+9)-f(6)<f(6),即f()<f(6).∵f(x)是(0,+∞)上的增函数,∴解得-3<x<9.即不等式的解集为(-3,9).【考点】抽象函数及其应用;函数单调性的性质16.下列命题:①集合的子集个数有16个;②定义在上的奇函数必满足;③既不是奇函数又不是偶函数;④偶函数的图像一定与轴相交;⑤在上是减函数。

高一数学必修1集合与函数概念单元测试题.doc

高一数学必修1集合与函数概念单元测试题.doc

D. M= {x I x<-l, 或一 1<兀<(), 或 x>()=, N= {ylyHO}
6. 已知 A 、B 两地相距 150 千米,某人开汽车以 60 千米 / 小时的速度从 A 地到达 B 地, B 地停留 1 小时后再以 50 T 米/ 小时的速度返冋 A 地,把汽车离开 A 地的距离 x 表示 为时
C. { ax2+bx+c=O la, b, cGR} D. { ax2-^-bx+c=O I d, b, cWR,且 aHO}
2. 图中阴影部分所表示的集合是 (
)
A.BA [Cu(AUC)]
B.(AUB) U(BUC)
3. 设集合 P 二{ 立方后等于白身的数 }, 那么集合 P 的真子集个数是
16. (12 分) 集合 A={(x,y)*2 + inx — y + 2 = 0 } ,集合 B={(x,y) 卜一 y+ 1 = 0,且 05 兀 52}, 又 AC/H0, 求实数 m 的取值范围 .
17. (12 分) 已知砂
2 xe ( 一 8,1) 心 1,+8) '求两的值
18. (12 分) 如图,用长为 1 的铁丝弯成卜 - 部为矩形,上部为半圆形的框 架,
A. 3
B. 4
C. 7
4. 设 P 二{ 质数 } , Q= { 偶数 }, 贝 1JPPQ等于
A. C.(AUC ) n( CuB)
B. 2
C. {2}
D. [Cu(ACC)] UB
D. 8 D. N
1 f(x)= 』x_2 + J1 —兀启意义 ;
2 函数是其定义域到值域的映射; 3 函数 y=2x(xwN) 的图象是一直线 ;

高一数学集合与函数概念试题答案及解析

高一数学集合与函数概念试题答案及解析

高一数学集合与函数概念试题答案及解析1.如图所示,是全集,是的子集,则阴影部分所表示的集合是()A.A∩B B.B∩A C.D.A∩B【答案】B【解析】根据韦恩图可知,阴影部分所表示的集合是B∩ A.【考点】本小题主要考查集合关系的判断.点评:判断集合的关系可以借助韦恩图进行.2.(本小题12分)已知函数的定义域为集合A,的值域为B.(1)若,求A∩B(2) 若=R,求实数的取值范围。

【答案】(1)A∩B=(2)【解析】依题意,整理得,,(1)当时,,所以A∩B=. ……6分(2)分析易知,要使,需要解得. ……12分【考点】本小题主要考查函数的定义域、值域的求法和集合的运算,考查学生的运算求解能力. 点评:函数的定义域、值域必须写成集合或区间的形式,进行集合的运算时,一般要借助数轴进行.3.下列函数中是偶函数的是()()A.B.C.D.【答案】A【解析】因为选项A是偶函数,选项B,定义域不关于原点对称,不是偶函数,选项C中,是奇函数,选项D,非奇非偶函数。

选A.4.(本小题满分12分)已知函数(∈R).(1)画出当=2时的函数的图象;(2)若函数在R上具有单调性,求的取值范围.【答案】(1);(2)。

【解析】本试题主要是考查了分段函数的图像以及函数单调性的运用。

(1)先分析当时,然后利用描点连线,作图。

(2)因为函数在R上具有单调性,则每段都有单调性,且在分段点处函数值满足不等式关系,得到结论。

(1)当时图象如右图所示(2)由已知可得①当函数在R上单调递增时,由可得②当函数在R上单调递减时,由可得综上可知,的取值范围是5.(12分)设.(1)若在上的最大值是,求的值;(2)若对于任意,总存在,使得成立,求的取值范围;【答案】(1);(2)【解析】本试题主要是考查了二次函数的最值问题,以及函数与方程思想的综合运用(1)因为在(0,1)上的最大值,可知函数的解析式中a的值。

时,,所以时不符题意舍去时,最小值为,其中,而得到结论。

高一数学必修1《集合与函数概念》测试卷(含答案)

高一数学必修1《集合与函数概念》测试卷(含答案)

高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。

高一数学集合与函数概念测试卷

高一数学集合与函数概念测试卷

高一数学集合与函数概念测试卷一、选择题 1 下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集 A 0个 B 1个 C 2个 D 3个2 若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A 1 B 1- C 1或1- D 1或1-或03 若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( ) A M N M = B M N N = C M N M = D M N =∅4 方程组⎩⎨⎧=-=+9122y x y x 的解集是( ) A ()5,4 B ()4,5- C (){}4,5- D (){}4,5-5 下列式子中,正确的是( ) A R R ∈+B {}Z x x x Z ∈≤⊇-,0|C 空集是任何集合的真子集D {}φφ∈6 下列表述中错误的是( ) A 若A B A B A =⊆ 则, B 若B A B B A ⊆=,则C )(B A A )(B AD ()()()B C A C B A C U U U =7. 下列函数中,在(0,2)上为增函数的是( )A. 1y x =-+B. yC. 245y x x =-+D. 2y x=8. 设()1f x x x =--,则1()2f f ⎡⎤⎢⎥⎣⎦等于( ) A. 12- B.0 C. 12D.1 二、填空题 9 若2(1)f x x +=,则()______f x =10 设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或则___________,__________==b a 11 某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人12 若{}{}21,4,,1,A x B x ==且A B B = ,则x 13 已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 ; 若至少有一个元素,则a 的取值范围 三、解答题 15 设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈, 如果A B B = ,求实数a 的取值范围16集合{}22|190A x x ax a =-+-={}2|560B x x x =-+=,{}2|280C x x x =+-=,满足,A B φ≠ ,,A C φ= 求实数a 的值17 已知2()1f x x x =++, (1) 求[]()f f x 的解析式;参考答案一、选择题1. A (1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同,(3)361,0.5242=-=,有重复的元素,应该是3个元素,(4)本集合还包括坐标轴 2 D 当0m =时,,B φ=满足A B A = ,即0m =;当0m ≠时,1,B m ⎧⎫=⎨⎬⎩⎭ 而A B A = ,∴11111m m=-=-或,或;∴1,10m =-或; 3 A {}N =(0,0),N M ⊆; 4 D 1594x y x x y y +==⎧⎧⎨⎨-==-⎩⎩得,该方程组有一组解(5,4)-,解集为{}(5,4)-; 5 D 选项A 应改为R R +⊆,选项B 应改为""⊆,选项C 可加上“非空”,或去掉“真”,选项D 中的{}φ里面的确有个元素“φ”,而并非空集; 6 C 当A B =时,A B A A B ==7. A,C,D 在(0,2)上单调递减,故只有B 正确8. D 因为111()10222f =--= ,所以1()2f f ⎡⎤⎢⎥⎣⎦=(0)1f = 二、填空题 9 (1)令1t x =+,则1x t =-,则22()(1)21f t t t t =-=-+,则2()21f x x x =-+(12≤,1,2x y ==满足1y x =+,(2 1.4 2.2 3.6=+=,2 3.7=,或27=2(27=(3)左边{}1,1=-,右边{}1,0,1=- 10 4,3==b a {}{}()|34|U U A C C A x x x a x b ==≤≤=≤≤ 11 26 全班分4类人:设既爱好体育又爱好音乐的人数为x 人;仅爱好体育 的人数为43x -人;仅爱好音乐的人数为34x -人;既不爱好体育又不爱好音乐的 人数为4人 ∴4334455x x x -+-++=,∴x =12 2,2,0-或 由A B B B A =⊆ 得,则224x x x ==或,且1x ≠13 9|,08a a a ⎧⎫≥=⎨⎬⎩⎭或,9|8a a ⎧⎫≤⎨⎬⎩⎭ 当A 中仅有一个元素时,0a =,或980a ∆=-=;当A 中有0个元素时,980a ∆=-<;当A 中有两个元素时,980a ∆=->;三、解答题 15 解:由A B B B A =⊆ 得,而{}4,0A =-,224(1)4(1)88a a a ∆=+--=+当880a ∆=+<,即1a <-时,B φ=,符合B A ⊆;当880a ∆=+=,即1a =-时,{}0B =,符合B A ⊆;当880a ∆=+>,即1a >-时,B 中有两个元素,而B A ⊆{}4,0=-;∴{}4,0B =-得1a =∴11a a =≤-或 16 解: {}2,3B =,{}4,2C =-,而A B φ≠ ,则2,3至少有一个元素在A 中,又A C φ= ,∴2A ∉,3A ∈,即293190a a -+-=,得52a =-或而5a A B ==时,与A C φ= 矛盾,∴2a =- 17 解:(1)[][]2()()()1f f x f x f x =++=222(1)(1)1x x x x ++++++ =4322433x x x x ++++ (2) 证明:2111()()()1222f x x x -+=-++-++ =211142x x x +--++=234x + 2111()()()1222f x x x --=--+--+ =211142x x x ++--+=234x + 故11()()22f x f x -+=--。

高一数学第一章集合与函数概念单元检测试题(带答案解析)

高一数学第一章集合与函数概念单元检测试题(带答案解析)

高一数学第一章集合与函数概念单元检测试题(带答案解析)为使大众课后实时稳固知识,查字典数学网特整理了聚集与函数概念单位检测试题,请练习。

一、选择题1.已知全集U={0,1,2}且 UA={2},则聚集A的真子集共有( ).A.3个B.4个C.5个D.6个2.设聚集A={x|1A.{a|aB.{a|aC.{a|aD.{a|a2}3.A={x|x2+x-6=0},B={x|mx+1=0},且,则的取值聚集是( ).A. B. C. D.4.设I为全集,聚集M,N,P都是其子集,则图中的阴影部分表示的聚集为( ).A.M P)B.M (P IN)C.P ( IN IM )D.(M (M P)5.设全集U={(x,y)| xR,yR},聚集M= ,P={(x,y)|yx+1},那么 U(MP)即是( ).A. B.{(2,3)}C.(2,3)D.{(x,y)| y=x+1}6.下列四组中的f(x),g(x),表示同一个函数的是( ).A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)= -1C.f (x)=x2,g(x)=( )4D.f(x)=x3,g(x)=7.函数f(x)= -x的图象关于( ).A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称8.函数f(x)=11+x2(xR)的值域是( ).A.(0,1)B.(0,1]C.[0,1)D.[0,1]9.已知f(x)在R上是奇函数,f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( ).A.-2B.2C.-98D.9810.定义在区间(-,+)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+)的图象与f(x)的图象重合.设a0,给出下列不等式:①f(b)-f(-a)g(a)-g(-b);②f(b)-f(-a)③f(a)-f(-b)g(b)-g(-a);④f(a)-f(-b)此中成立的是( ).A.①与④B.②与③C.①与③D.②与④二、填空题11.函数的定义域是 .12.若f( x)=ax+b(a0),且f(f(x))=4x+1,则f(3)= .13.已知函数f(x)=ax+2a-1在区间[0,1]上的值恒正,则实数a的取值范畴是 .14.已知I={不大于15的正奇数},聚集MN={5,15},( IM)( IN)={3,13},M ( IN)={1,7},则M= ,N= .15.已知聚集A={x|-27},B={x|m+116.设f(x)是R上的奇函数,且当x[0,+)时,f(x)=x(1+x3),那么当x(-,0]时,f(x)= .三、解答题17.已知A={x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={x |x2+2x-8=0},且 (AB),AC= ,求的值.18.设A是实数集,满足若aA,则 A,a1且1 A.(1)若2A,则A中至少还有几个元素?求出这几个元素.(2)A能否为单位素聚集?请说明理由.(3)若aA,证明:1- A.19.求函数f(x)=2x2-2ax+3在区间[-1,1]上的最小值.20.已知定义域为R的函数f( x)= 是奇函数.(1)求a,b的值;(2)若对恣意的tR,不等式f(t2-2t)+f(2t2-k)0恒成立,求k的取值范畴.参考答案一、选择题1.A剖析:条件 UA={2}决定了聚集A={0,1},所以A的真子集有,{0},{1},故正确选项为A.2.D剖析:在数轴上画出聚集A,B的示意图,极易否定A,B.当a=2时,2 B,故不满足条件A B,所以,正确选项为D.3.C剖析:据条件AB=A,得B A,而A={-3,2},所以B只可能是聚集,{-3},{2},所以,的取值聚集是C.4.B剖析:阴影部分在聚集N外,可否 A,D,阴影部分在聚集M 内,可否C,所以,正确选项为B.5.B剖析:聚集M是由直线y=x+1上除去点(2,3)之后,别的点组成的聚集.集合P是坐标平面上不在直线y=x+1上的点组成的聚集,那么M P便是坐标平面上除去点(2,3)外的所有点组成的聚集.由此 U(M P)便是点(2,3)的聚集,即 U(M P)={(2,3)}.故正确选项为B.6.D剖析:鉴别联合函数的标准是两函数的定义域与对应干系相同,选项A,B,C中,两函数的定义域不同,正确选项为D.7.C剖析:函数f(x)显然是奇函数,所以不难确定正确选项为C.取特殊值不难否定别的选项.如取x=1,-1,函数值不等,故否A;点(1,0)在函数图象上,而点(0,1)不在图象上,否选项D,点(0,-1)也不在图象上,否选项B.8.B剖析:当x=0时,分母最小,函数值最大为1,所以否定选项A,C;当x的绝对值取值越大时,函数值越小,但永远大于0,所以否定选项D.故正确选项为B.9.A剖析:利用条件f(x+4)=f(x)可得,f(7)=f(3+4)=f(3)=f(-1+4)=f(-1),再根据f(x)在R上是奇函数得,f(7)=-f(1)=-212=-2,故正确选项为A.10.C剖析:由为奇函数图像关于原点对称,偶函数图象关于y轴对称,函数f(x),g(x)在区间[0,+)上图象重合且均为增函数,据此我们可以勾画两函数的草图,进而显见①与③正确.故正确选项为C.二、填空题11.参考答案:{x| x1}.剖析:由x-10且x0,得函数定义域是{x|x1}.12.参考答案: .剖析:由f(f(x))=af(x)+b=a2x+ab+b=4x+1,所以a2=4,ab+b=1(a0),解得a=2,b= ,所以f(x)=2x+ ,于是f(3)= .13.参考答案: .剖析:a=0时不满足条件,所以a0.(1)当a0时,只需f(0)=2a-1(2)当a0时,只需f(1)=3a-10.综上得实数a的取值范畴是 .14.参考答案:{1,5,7,15},{5,9,11,15}.剖析:根据条件I={1,3,5,7,9,11,13,15},MN={5,15},M( IN)= {1,7},得聚集M={1,5,7,15},再根据条件( IM)( IN)={3,13},得N={5,9,11,15}.15.参考答案:(2,4].剖析:据题意得-22m-17,转化为不等式组,解得m的取值范畴是(2,4].16.参考答案:x(1-x3).剖析:∵任取x(-,0],有-x[0,+),f(-x)=-x[1+(-x)3]=-x(1-x3),∵ f(x)是奇函数, f(-x)=-f(x).f(x)=-f(-x)=x(1-x3),即当x(-,0]时,f(x)的表达式为f(x)=x(1-x3).三、解答题17.参考答案:∵B={x|x2-5x+6=0}={2,3},C={x|x2+2x-8=0}={-4,2},由AC= 知,-4 ,2由 (AB)知,3A.32-3a+a2-19=0,解得a=5或a=-2.当a=5时,A={x|x2-5x+6=0}=B,与AC= 矛盾.当a=-2时,经查验,相符题意.18.参考答案:(1)∵ 2A,= =-1= =2A.因此,A中至少还有两个元素:-1和 .(2)要是A为单位素聚集,则a= ,整理得a2-a+1=0,该方程无实数解,故在实数范畴内,A不可能是单位素集. (3)证明: aA A A A,即1- A.19.参考答案: f(x)=2 +3- .(1)当 -1,即a-2时,f(x)的最小值为f(-1)=5+2a;(2)当-11,即-22时,f(x)的最小值为 =3- ;(3)当 1,即a2时,f(x)的最小值为f(1)=5-2a.综上可知,f(x)的最小值为20.参考答案:(1)∵函数f(x)为R上的奇函数,f(0)=0,即 =0,解得b=1,a-2,从而有f(x)= .又由f(1)=-f (-1)知 =- ,解得a=2.(2)先讨论函数f(x)= =- + 的增减性.任取x1,x2R,且x1 ∵指数函数2x为增函数,0, f(x2)函数f(x)= 是定义域R上的减函数.由f(t2-2t)+f(2t2-k)0得f(t2-2t)-f(2t2-k),f(t2-2t)由( )式得k3t2-2t.又3t2-2t=3(t- )2- - ,只需k- ,即得k的取值范畴是 . 聚集与函数概念单位检测试题的所有内容希望大众可以完全掌握,成绩进步。

集合与函数概念单元测试题经典(含答案)

集合与函数概念单元测试题经典(含答案)

Equation Chapter 1 Section 1【1】第一章集合与函数概念测试题 一:选择题 1、下列集合中与集合{21,}x x k k N +=+∈不相等的是( )A .{23,}x x k k N =+∈B .{41,}x x k k N +=±∈C .{21,}x x k k N =+∈D .{23,3,}x x k k k Z =-≥∈2、图中阴影部分所表示的集合是()A.B∩[CU(A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(CUB)D.[C U(A∩C)]∪B3、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B =( )A .{(,)1,2}x y x y ==B .{13}x x ≤≤C .{13}x x -≤≤D .∅4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ⊆,则实数a 的值是( )A .0B .12±C .0或12±D .0或125、已知集合{1,2,3,}A a =,2{3,}B a =,则使得Φ=B A C U )(成立的a 的值的个数为( )A .2B .3C .4D .56、设A 、B 为两个非空集合,定义{(,),}A B a b a A b B ⊕=∈∈,若{1,2,3}A =,{2,3,4}B =,则A B ⊕中的元素个数为 ( )A .3B .7C .9D .127、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( )A .x=60tB .x=60t+50C .x=⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x=⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 8、已知g(x)=1-2x,f[g(x)]=)0(122≠-x x x ,则f(21)等于( ) A .1B .3C .15D .309、函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数10、设函数f (x)是(-∞,+∞)上的减函数,又若a ∈R ,则( )A .f(a)>f(2a)B .f(a2)<f(a)C .f(a2+a)<f(a)D .f(a2+1)<f(a)二、填空题11、设集合A={23≤≤-x x },B={x 1122-≤≤-k x k },且A ⊇B ,则实数k 的取值范围是.12、已知x ∈[0,1],则函数y=x x --+12的值域是.13、设函数x y 111+=的定义域为___________________;值域为_____________________________.14、设f(x)是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足, 22(25)(21)f a a f a a -+-<++求实数a 的取值范围_______________。

高一上学期数学《集合与函数概念》单元检测卷(A)含答案解析

高一上学期数学《集合与函数概念》单元检测卷(A)含答案解析

第一章集合与函数概念单元检测卷(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合A 中的元素x 满足-5≤x ≤5,且x ∈N *,则必有()A .-1∈AB .0∈AC.3∈AD .1∈A2.下列各组集合中,表示同一集合的是()A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={3,2},N ={(3,2)}3.设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有()A .0个B .1个C .2个D .3个4.已知集合A ={x |-1≤x <3},B ={x |2<x ≤5},则A ∪B =()A .{x |2<x <3}B .{x |-1≤x ≤5}C .{x |-1<x <5}D .{x |-1<x ≤5}5.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则()A .a =3,b =2B .a =2,b =3C .a =-3,b =-2D .a =-2,b =-36.已知1(x 1)2x 52f -=-,且f (a )=6,则a 等于()A.74B .74-C.43D .43-7.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)8.若函数y =f (x )的定义域是[0,2020],则函数(x 1)(x)1f g x +=-的定义域是()A .[-1,2019]B .[-1,1)∪(1,2019]C .[0,2020]D .[-1,1)∪(1,2020]9.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为()A .mnB .m +nC .n -mD .m -n10.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13B.13C.12D .-1211.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于()A .-1B .1C .6D .1212.已知函数f (x )=x 2x -1,g (x )=x 2,则下列结论正确的是()A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列三个命题:①集合N 中最小的数是1;②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2.其中正确命题的个数是_________14.已知函数f (x ),g (x )分别由下表给出x 123f (x )211x 123g (x )321(1)f [g (1)]=__________;(2)若g [f (x )]=2,则x =__________.15.若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a 等于________16.已知具有性质:()1f f x x ⎛⎫=-⎪⎝⎭的函数,我们称为满足“倒负”变换的函数,下列函数:①f(x)=x-1x;②f(x)=x+1x;,01(x)0,11,1x xf xxx⎧⎪<<⎪==⎨⎪⎪->⎩③,其中满足“倒负”变换的函数是______三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|-1<x<3},B={x|-m<x<m},若B⊆A,求m 的取值范围.18.(本小题满分12分)已知集合A={1,2},B={x|x2+mx+1=0,x∈R},若B⊆A,求实数m的取值范围.19.(本小题满分12分)已知集合A={x|6x+1≥1,x∈R},B={x|x2-2x-m<0},(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|-1<x<4},求实数m的值.20.(本小题满分12分)已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.21.(本小题满分12分)已知函数f(x)=x2-ax+1,(1)求f(x)在[0,1]上的最大值;(2)当a=1时,求f(x)在闭区间[t,t+1](t∈R)上的最小值.22.(本小题满分12分)已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.(1)求证:f(x)是偶函数;(2)求证:f(x)在(0,+∞)上是增函数.第一章集合与函数概念单元检测卷(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合A中的元素x满足-5≤x≤5,且x∈N*,则必有()A.-1∈A B.0∈A C.3∈A D.1∈A【答案】:D【解析】:-5≤x≤5,且x∈N*,所以x=1,2,所以1∈A.2.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={3,2},N={(3,2)}【答案】:B【解析】:由于集合中的元素具有无序性,故{3,2}={2,3}.3.设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N 的函数关系的有()A.0个B.1个C.2个D.3个【答案】:B【解析】:①错,x=2时,在N中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x=2时,对应元素y=3∉N,不满足任意性.④错,x=1时,在N中有两个元素与之对应,不满足唯一性.故选:B4.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B=()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5}D.{x|-1<x≤5}【答案】:B【解析】:∵集合A={x|-1≤x<3},B={x|2<x≤5},∴A∪B={x|-1≤x≤5},故选B.5.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则()A .a =3,b =2B .a =2,b =3C .a =-3,b =-2D .a =-2,b =-3【答案】:B【解析】:∵A ∩B ={(2,5)},∴5=2a +1,5=2+b ,解得a =2,b =3,故选B .6.已知1(x 1)2x 52f -=-,且f (a )=6,则a 等于()A.74B .-74C.43D .-43【答案】:A【解析】:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.7.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)【答案】:A【解析】:因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数.所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2).8.若函数y =f (x )的定义域是[0,2020],则函数(x 1)(x)1f g x +=-的定义域是()A .[-1,2019]B .[-1,1)∪(1,2019]C .[0,2020]D .[-1,1)∪(1,2020]【答案】:B【解析】:使函数f (x +1)有意义,则0≤x +1≤2020,解得-1≤x ≤2019,故函数f (x +1)的定义域为[-1,2019].所以函数g (x )有意义的条件是1201910x x -≤≤⎧⎨-≠⎩解得-1≤x <1或1<x ≤2019.故函数g (x )的定义域为[-1,1)∪(1,2019].9.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为()A .mnB .m +nC .n -mD .m -n【答案】:D【解析】:因为(∁U A )∪(∁U B )中有n 个元素,如图中阴影部分所示,又U =A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.10.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13B.13C.12D .-12【答案】:B【解析】:∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.11.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于()A .-1B .1C .6D .12【答案】:C【解析】:由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.12.已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是()A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数【答案】:A【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0}.因为f (-x )+g (-x )=-x 2-x -1+-x 2=-x ·2x 1-2x -x 2=x1-2x -x 1-2x-x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列三个命题:①集合N 中最小的数是1;②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2.其中正确命题的个数是_________【答案】:0【解析】:根据自然数的特点,显然①③不正确.②中若a =32,则-a ∉N 且a ∉N ,显然②不正确.14.已知函数f (x ),g (x )分别由下表给出x 123f (x )211x 123g (x )321(1)f [g (1)]=__________;(2)若g [f (x )]=2,则x =__________.【答案】:(1)1(2)1【解析】:(1)由表知g (1)=3,∴f [g (1)]=f (3)=1;(2)由表知g (2)=2,又g [f (x )]=2,得f (x )=2,再由表知x =1.15.若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a 等于________【答案】:0或98.【解析】:若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.16.已知具有性质:()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x;,01(x)0,11,1x x f x x x⎧⎪<<⎪==⎨⎪⎪->⎩③,其中满足“倒负”变换的函数是______【答案】:①③【解析】:对于①,f (x )=x -1x ,1f x ⎛⎫ ⎪⎝⎭=1x-x =-f (x ),满足题意;对于②,1f x ⎛⎫⎪⎝⎭=1x +x =f (x ),不满足题意;对于③,11,01110,11,1x x f x x x x ⎧<<⎪⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪->⎪⎩,即1,110,1,01x x f x x x x ⎧>⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-<<⎪⎩故1f x ⎛⎫ ⎪⎝⎭=-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,求m 的取值范围.解:当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |-1<x <3}.若B ⊆A ,在数轴上标出两集合,如图,所以13m m m m -≥-⎧⎪≤⎨⎪-<⎩,所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].18.(本小题满分12分)已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则Δ=m 2-4<0,解得-2<m <2;②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意;③若2∈B ,则22+2m +1=0,解得m =-52,此时B =12,2⎧⎫⎨⎬⎩⎭,不合题意.综上所述,实数m 的取值范围为[-2,2).19.(本小题满分12分)已知集合A ={x |6x +1≥1,x ∈R},B ={x |x 2-2x -m <0},(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:由6x +1≥1,得x -5x +1≤0.∴-1<x ≤5,∴A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.20.(本小题满分12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知122113m mm m ->⎧⎪≤⎨⎪-≥⎩,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时:需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).21.(本小题满分12分)已知函数f (x )=x 2-ax +1,(1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R )上的最小值.解:(1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2>12,即a >1时,f (x )的最大值为f (0)=1.(2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12.①当t ≥12时,f (x )在[t ,t +1]上是增函数,∴f (x )min =f (t )=t 2-t +1;②当t +1≤12,即t ≤-12时,f (x )在上是减函数,∴f (x )min =f (t +1)=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在1,2t ⎡⎤⎢⎥⎣⎦上单调递减,在1,12t ⎡⎤+⎢⎥⎣⎦上单调递增,所以f (x )min =12f ⎛⎫⎪⎝⎭=34.22.(本小题满分12分)已知函数f (x )的定义域为{x |x ∈R ,且x ≠0},对定义域内的任意x 1、x 2,都有f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求证:f (x )是偶函数;(2)求证:f (x )在(0,+∞)上是增函数.证明:(1)因对定义域内的任意x 1、x 2都有f (x 1·x 2)=f (x 1)+f (x 2),令x =x 1,x 2=-1,则有f (-x )=f (x )+f (-1).高中高中又令x1=x2=-1,得2f(-1)=f(1)再令x1=x2=1,得f(1)=0,从而f(-1)=0于是有f(-x)=f(x),所以f(x)是偶函数.(2)设0<x1<x2,则f(x1)-f(x2)=f(x1)-f(x1·x2x1)=f(x1)-[f(x1)+f(x2x1)]=-f(x2x1),由于0<x1<x2,所以x2x1>1,从而f(x2x1)>0,故f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(0,+∞)上是增函数.。

高一年级数学必修1集合与函数测试题及答案

高一年级数学必修1集合与函数测试题及答案

2016届高一年级数学第2次测试--集合与函数部分一、选择题:(每个5分,共45分)1、如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U)B 等于( )(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1 2.设函数y=1+x 的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .φB .NC .[1,+∞)D .M3.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M B. M ∪N=UC .M )(=M N C u D. N N M C u = )(4.已知集合A ={x ||x -1|<2},B ={x ||x -1|>1},则A ∩B 等于 ( )A .{x |-1<x <3}B .{x |x <0或x >3}C .{x |-1<x <0}D .{x |-1<x <0或2<x <3} 5.下列各组函数中,表示同一函数的是 ( ) A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==6.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)))1(f f f (( ( )A .1+πB .0C .πD .1- 7.已知函数f (x +1)=x +1,则函数f (x )的解析式为 ( )A .f (x )=x 2B .f (x )=x 2+1(x ≥1) C .f (x )=x 2-2x +2(x ≥1) D .f (x )=x 2-2x (x ≥1)8.函数x xx y +=的图象是( )ABCD9.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 ( )A .3(,]2-∞B .3(,]2-∞-C .3(,)2+∞D .33(,]22-O yx OyxO yxOyx-11 1-1 -1 -1 11二、填空题(每个5分,共10分)10.已知函数=)(x f21,0221,0+≤-+>x x x x ,若17)(=x f ,则x =11. 已知:两个函数()f x 和()g x 的定义域和值域都是{1,23},,其定义如下表: x 1 2 3x 1 2 3x 1 2 3 f(x)231g(x)132g[f(x)]填写后面表格,其三个数依次为:三、解答题(每个15分,共45分)12:已知函数()3212=++-f x x x(1)求函数的定义域 (2)求f(-1),f(0)的值(3)当a 满足定义域时,求f(2a+1)+f(a-1)中a 的取值范围13.已知函数解析式为 ()24,02,042,4+≤⎧⎪=-<≤⎨⎪-+>⎩x x f x x x x x x(1)计算()()()5f f f 的值?(2)画出函数的图像(不要求列表但关键点和趋势要对) (3)求函数f(x)的值域,并写出()13-≤≤f x 的区间14.设U R =,2{|3100}A x x x =-->,{|121}B x a x a =+≤≤-,且U B C A ⊆,求实数a 的取值范围.。

高一数学必修1《集合与函数概念》测试卷(含答案)

高一数学必修1《集合与函数概念》测试卷(含答案)

第一章《集合与函数概念》测试卷(一)考试时间:120分钟满分:150分一.选择题.(本大题共12小题,每小题5分,共60分) 1.下列叙述正确的是( )A.函数的值域就是其定义中的数集BB.函数()y f x =的图像与直线x m =至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果{}1A x x =>-,则下列结论正确的是() A.0A ⊆ B.{}0A ⊆ C.{}0A ∈ D.A ∅∈3.设()(21)f x a x b =-+在R 上是减函数,则有( ) A.12a ≥B.12a ≤C.12a >D.12a < 4.定义在R 上的偶函数()f x ,对任意1x ,2x ∈[)0,+∞12()x x ≠,有1212()()0f x f x x x -<-,则有()A.(3)(2)(1)f f f <-<B.(1)(2)(3)f f f <-<C.(2)(1)(3)f f f -<<D.(3)(1)(2)f f f <<-5.若奇函数()f x 在区间[]1,3上为增函数,且有最小值0,则它在区间[]3,1--上() A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设:f x x →是集合A 到集合B 的映射,若{}2,0,2A =-,则A B 等于()A.{}0B.{}2C.{}0,2D.{}2,0-7.定义两种运算:a b ab ⊕=,22a b a b ⊗=+,则函数3()33xf x x ⊕=⊗-为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数 8.若函数()f x 是定义域在R 上的偶函数,在(),0-∞上是减函数,且(2)0f -=,则使()0f x <的x 的取值范围为() A.()2,2- B.()()2,00,2- C.()(),22,-∞-+∞ D.(][),22,-∞-+∞9.函数()xf x x x=+的图像是( ) 10.设()f x 是定义域在R 上的奇函数,(2)()f x f x +=-,当01x <≤时,()f x x =,则(7.5)f 的值为( )A. -0.5B. 0.5C. -5.5D.7.511.已知2(21)1f x x -+=+,且(21)f x -+的定义域为[)2,1-,则()f x 的解析式为( )A.)51(,452141)(2≤<--+=x x x x f B.)51(,452141)(2≤<-+-=x x x x f C.21153()(0)4242f x x x x =+-<≤, D.21153()(0)4242f x x x x =-+<≤,12.已知函数()f x 是定义在R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是( )A.0B.12C.1D.52二.填空题.(本大题共4小题,每小题5分,共20分)13.已知1()x f x +=()f x 的定义域为.14.设函数(1)()()x x a f x x++=为奇函数,则a 的值为.15.设22,1(),12x x f x x x +≤-⎧=⎨-<<⎩,若()f x =3,则x 的值为.16.关于函数()()1(),,00,f x x x x=-∈-∞+∞,有下列四个结论:○1()f x 的值域为R ; ○2()f x 是定义域上的增函数; ○3对任意的()(),00,x ∈-∞+∞,都有()()0f x f x -+=成立;○4()f x 与20()x x g x x x=-表示同一个函数.把你认为正确的结论的序号填写到横线上.三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)17.设函数()f x 是定义域在R 上的奇函数,当0x >时,2()331f x x x =-+-,求()f x 在R 上的解析式. 18.已知集合{}{}13,22A x x B x m x m -≤≤=-≤≤+=. (1)若{}03AB x x =≤≤,求实数m 的值(2)若R A C B ⊆,求实数m 的取值范围.19.二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求a 的取值范围.20.某商场国庆节期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾(1)试写出y x 关于的函数解析式; (2)若30y =,求此人购物实际所付金额. 21.已知函数2()2(1)f x x a x a =+-+. (1)当1a =-时,求()f x 在[]3,3-上的值域; (2)求()f x 在区间[]3,3-上的最小值. 22.已知2()1ax b f x x +=+是定义域在()1,1-上的奇函数,且12()25f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并证明你的结论; (3)解不等式(22)()0f t f t -+<.第一章《集合与函数概念》答案解析一.选择题.(本大题共12小题,每小题5分,共60分) CBDAD CAADA BA 二.填空题.(本大题共4小题,每小题5分,共20分) 13.[)()()1,11,22,-+∞或者{}11,2x x x x ≥-≠≠且14. -1 16.①③三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)2222217.0,0()3()3()1331()()()331()(0)0331,0()0,0331,0x x f x x x x x f x f x f x x x f x R f x x x f x x x x x <->∴-=--+--=---∴=--=++∴=⎧++<⎪∴==⎨⎪-+->⎩解:设则是奇函数又是上的奇函数{}()()2018.(1)2232.(2),2,2232153,35,U U m m m m B C B x x m x m A C Bm m m m m -=⎧⇒=⎨+≥⎩∴≠∅=<->+⊆∴->+<-><-∴-∞-+∞解:由题意得: 的值为 由题意知:则或或 得到或 的取值范围为22219.(1)(0)(2)3()1()1()(1)1(0)(0)132()2(1)1,()243211(2)02112f f f x x f x f x a x a f a a f x x f x x x a a a a a a ==∴=∴=-+>=+==∴=-+=-+<+⎧⇒<<⎨<<+⎩∴解: 二次函数的对称轴为 又有最小值 设 由得 即 由题意得: 的取值范围102⎛⎫⎪⎝⎭为, 0,080020.(1):(800)5%,800130025(1300)10%,1300(2)305005%2525(1300)10%30,135013503013201320x y x x x x x x ≤≤⎧⎪=-⨯<≤⎨⎪+-⨯>⎩>⨯=∴+-⨯==∴-=∴解:由题意得 解得 此人购物实际所付金额为元.[](][][]2min 21.(1)1()41()2()-3,22,3()=(2)5(3)20,(3)4()3,3-5,20(2)()113,4a f x x x f x x f x f x f f f f x f x x a a a =-=--∴=∴∴=--==-∴-=--<->解:当时, 的对称轴为 在上单调递减,在上单调递增 / 又在上的值域为 的对称轴为 ①当即时 [][](][]min 2min()-33()=(3)155313,24()-3,11,3()=(1)3113,2()-33f x f x f a a a f x a a f x f a a a a a f x f ∴-=--≤-≤-≤≤--∴-=-+--><-∴ 在,上单调递增 / ②当即时在上单调递减,在上单调递增/ ③当即时 在,上单调递减 min 2min ()=(3)7+37+3,2()=31,24155,4x f a a a f x a a a a a =<-⎧⎪-+--≤≤⎨⎪->⎩/ 综上所述,/()()22212121222.(1)()1,1(0)0()112()2522,115()12()1(2)()-1,1,(1,1),,()()f x f baxf x x f aa xf x x f x x x x x x f x f x -∴==∴=+=∴==+∴=+∈-<-=解:是上的奇函数又 解得 在上单调递增.证明:任意取且则()1212122222121212221212121212()(1)11(1)(1)110,10,10,10()()0,()()()-1,1(3)(22)()0x x x x x x x x x x x x x x x x x f x f x f x f x f x f t f t ---=++++-<<<∴-<->+>+>∴-<<∴-+<∴即 在上单调递增. ()()(22)()()1,1()()(22)()(2)()1,122121221,2311f t f t f x f t f t f t f t f x t tt t t -<--∴-=-∴-<---<-⎧⎪∴-<-<<<⎨⎪-<-<⎩ 易知是上的奇函数 又由知是上的增函数 解得。

高一数学必修一集合与函数的概念单元测试题附答案解析

高一数学必修一集合与函数的概念单元测试题附答案解析

高一数学必修一 集合与函数的概念单元测试 附答案解析(时间:120分钟 满分:150分)一、选择题(本大题共12个小题.每小题5分.共60分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.设集合M ={x |x 2+2x =0.x ∈R }.N ={x |x 2-2x =0.x ∈R }.则M ∪N =( ) A .{0} B .{0,2} C .{-2,0} D .{-2,0,2}2.设f :x →|x |是集合A 到集合B 的映射.若A ={-2,0,2}.则A ∩B =( ) A .{0} B .{2} C .{0,2} D .{-2,0}3.f (x )是定义在R 上的奇函数.f (-3)=2.则下列各点在函数f (x )图象上的是( ) A .(3.-2) B .(3,2) C .(-3.-2) D .(2.-3)4.已知集合A ={0,1,2}.则集合B ={x -y |x ∈A .y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .95.若函数f (x )满足f (3x +2)=9x +8.则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -46.设f (x )=⎩⎨⎧x +3 x >10,f x +5 x ≤10,则f (5)的值为( )A .16B .18C .21D .247.设T ={(x .y )|ax +y -3=0}.S ={(x .y )|x -y -b =0}.若S ∩T ={(2,1)}.则a .b 的值为( )A .a =1.b =-1B .a =-1.b =1C .a =1.b =1D .a =-1.b =-18.已知函数f (x )的定义域为(-1,0).则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0) D.⎝ ⎛⎭⎪⎫12,19.已知A ={0,1}.B ={-1,0,1}.f 是从A 到B 映射的对应关系.则满足f (0)>f (1)的映射有( ) A .3个 B .4个 C .5个D .6个10.定义在R 上的偶函数f (x )满足:对任意的x 1.x 2∈(-∞.0](x 1≠x 2).有(x 2-x 1)[f (x 2)-f (x 1)]>0.则当n ∈N *时.有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n ) 11.函数f (x )是定义在R 上的奇函数.下列说法:①f (0)=0; ②若f (x )在[0.+∞)上有最小值为-1.则f (x )在(-∞.0]上有最大值为1;③若f (x )在[1.+∞)上为增函数.则f (x )在(-∞.-1]上为减函数;④若x >0时.f (x )=x 2-2x .则x <0时.f (x )=-x 2-2x .其中正确说法的个数是( )A .1个B .2个C .3个D .4个12.f (x )满足对任意的实数a .b 都有f (a +b )=f (a )·f (b )且f (1)=2.则f 2f 1+f 4f 3+f 6f 5+…+f 2014f 2013=( )A .1006B .2014C .2012D .1007二、填空题(本大题共4小题.每小题5分.共20分.把答案填在题中横线上)13.函数y =x +1x 的定义域为________.14.f (x )=⎩⎨⎧x 2+1x ≤0,-2x x >0,若f (x )=10.则x =________.15.若函数f (x )=(x +a )(bx +2a )(常数a .b ∈R )是偶函数.且它的值域为(-∞.4].则该函数的解析式f (x )=________.16.在一定范围内.某种产品的购买量y 吨与单价x 元之间满足一次函数关系.如果购买1000吨.每吨为800元.购买2000吨.每吨为700元.那么客户购买400吨.单价应该是________元.三、解答题(本大题共6小题.共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |2≤x ≤8}.B ={x |1<x <6}.C ={x |x >a }.U =R . (1)求A ∪B .(∁U A )∩B ;(2)若A ∩C ≠∅.求a 的取值范围.18.(本小题满分12分)设函数f (x )=1+x 21-x 2.(1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f ⎝ ⎛⎭⎪⎫1x +f (x )=0.19.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数.当x ≥0时.f (x )=x 2-2x . (1)求当x <0时.f (x )的解析式;(2)作出函数f (x )的图象.并指出其单调区间.20.(本小题满分12分)已知函数f (x )=2x +1x +1. (1)判断函数在区间[1.+∞)上的单调性.并用定义证明你的结论. (2)求该函数在区间[1,4]上的最大值与最小值.21.(本小题满分12分)已知函数f (x )的定义域为(0.+∞).且f (x )为增函数.f (x ·y )=f (x )+f (y ).(1)求证:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y );(2)若f(3)=1.且f(a)>f(a-1)+2.求a的取值范围.22.(本小题满分12分)某商场经销一批进价为每件30元的商品.在市场试销中发现.此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30404550y 6030150(1)在所给的坐标图纸中.根据表中提供的数据.描出实数对(x.y)的对应点.并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元.根据上述关系.写出P关于x的函数关系式.并指出销售单价x为多少元时.才能获得最大日销售利润?1.解析 M ={x |x (x +2)=0..x ∈R }={0.-2}.N ={x |x (x -2)=0.x ∈R }={0,2}.所以M ∪N ={-2,0,2}.答案 D2. 解析 依题意.得B ={0,2}.∴A ∩B ={0,2}.答案 C3. 解析 ∵f (x )是奇函数.∴f (-3)=-f (3).又f (-3)=2.∴f (3)=-2.∴点(3.-2)在函数f (x )的图象上.答案 A4. 解析 逐个列举可得.x =0.y =0,1,2时.x -y =0.-1.-2;x =1.y =0,1,2时.x -y =1,0.-1;x =2.y =0,1,2时.x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2.-1,0,1,2.共5个.答案 C5. 解析 ∵f (3x +2)=9x +8=3(3x +2)+2.∴f (x )=3x +2.答案 B6. 解析 f (5)=f (5+5)=f (10)=f (15)=15+3=18.答案 B7. 解析 依题意可得方程组⎩⎨⎧2a +1-3=0,2-1-b =0,⇒⎩⎨⎧a =1,b =1.答案 C8. 解析 由-1<2x +1<0.解得-1<x <-12.故函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12.答案 B9. 解析 当f (0)=1时.f (1)的值为0或-1都能满足f (0)>f (1);当f (0)=0时.只有f (1)=-1满足f (0)>f (1);当f (0)=-1时.没有f (1)的值满足f (0)>f (1).故有3个.答案 A10.解析 由题设知.f (x )在(-∞.0]上是增函数.又f (x )为偶函数.∴f (x )在[0.+∞)上为减函数. ∴f (n +1)<f (n )<f (n -1). 又f (-n )=f (n ).∴f (n +1)<f (-n )<f (n -1). 答案 C11. 解析 ①f (0)=0正确;②也正确;③不正确.奇函数在对称区间上具有相同的单调性;④正确. 答案 C12. 解析 因为对任意的实数a .b 都有f (a +b )=f (a )·f (b )且f (1)=2.由f (2)=f (1)·f (1).得f (2)f (1)=f (1)=2. 由f (4)=f (3)·f (1).得f (4)f (3)=f (1)=2. ……由f (2014)=f (2013)·f (1). 得f (2014)f (2013)=f (1)=2.∴f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)=1007×2=2014. 答案 B13. 解析 由⎩⎨⎧x +1≥1,x ≠0得函数的定义域为{x |x ≥-1.且x ≠0}.答案 {x |x ≥-1.且x ≠0}14. 解析 当x ≤0时.x 2+1=10.∴x 2=9.∴x =-3.当x >0时.-2x =10.x =-5(不合题意.舍去). ∴x =-3. 答案 -315. 解析 f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2为偶函数.则2a +ab =0.∴a =0.或b =-2.又f (x )的值域为(-∞.4].∴a ≠0.b =-2.∴2a 2=4. ∴f (x )=-2x 2+4. 答案 -2x 2+416. 解析 设一次函数y =ax +b (a ≠0).把⎩⎨⎧x =800,y =1000,和⎩⎨⎧x =700,y =2000,代入求得⎩⎨⎧a =-10,b =9000.∴y =-10x +9000.于是当y =400时.x =860.答案 86017. 解 (1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2.或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅.∴a <8.18. 解 (1)由解析式知.函数应满足1-x 2≠0.即x ≠±1.∴函数f (x )的定义域为{x ∈R |x ≠±1}. (2)由(1)知定义域关于原点对称. f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ).∴f (x )为偶函数.(3)证明:∵f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1.f (x )=1+x 21-x 2.∴f ⎝ ⎛⎭⎪⎫1x +f (x )=x 2+1x 2-1+1+x 21-x 2=x 2+1x 2-1-x 2+1x 2-1=0. 19. 解 (1)当x <0时.-x >0.∴f (-x )=(-x )2-2(-x )=x 2+2x . 又f (x )是定义在R 上的偶函数. ∴f (-x )=f (x ). ∴当x <0时.f (x )=x 2+2x .(2)由(1)知.f (x )=⎩⎨⎧x 2-2x (x ≥0),x 2+2x (x <0).作出f (x )的图象如图所示:由图得函数f (x )的递减区间是(-∞.-1].[0,1].f (x )的递增区间是[-1,0].[1.+∞).20. 解 (1)函数f (x )在[1.+∞)上是增函数.证明如下:任取x 1.x 2∈[1.+∞).且x 1<x 2.f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1). ∵x 1-x 2<0.(x 1+1)(x 2+1)>0. 所以f (x 1)-f (x 2)<0.即f (x 1)<f (x 2). 所以函数f (x )在[1.+∞)上是增函数.(2)由(1)知函数f (x )在[1,4]上是增函数.最大值f (4)=95.最小值f (1)=32.21. 解 (1)证明:∵f (x )=f ⎝ ⎛⎭⎪⎫xy·y =f ⎝ ⎛⎭⎪⎫x y +f (y ).(y ≠0)∴f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).(2)∵f (3)=1.∴f (9)=f (3·3)=f (3)+f (3)=2. ∴f (a )>f (a -1)+2=f (a -1)+f (9)=f [9(a -1)].又f (x )在定义域(0.+∞)上为增函数.∴⎩⎨⎧a >0,a -1>0,a >9(a -1),∴1<a <98.22. 解 (1)由题表作出(30,60).(40,30).(45,15).(50,0)的对应点.它们近似地分布在一条直线上.如图所示.设它们共线于直线y =kx +b .则⎩⎨⎧50k +b =0,45k +b =15,⇒⎩⎨⎧k =-3,b =150.∴y =-3x +150(0≤x ≤50.且x ∈N *).经检验(30,60).(40,30)也在此直线上. ∴所求函数解析式为y =-3x +150(0≤x ≤50.且x ∈N *).(2)依题意P =y (x -30)=(-3x +150)(x -30)=-3(x -40)2+300.∴当x =40时.P 有最大值300.故销售单价为40元时.才能获得最大日销售利润.。

高一数学必修一 第一章《集合与函数概念》综合测试题(含答案)

高一数学必修一 第一章《集合与函数概念》综合测试题(含答案)

第一章 集合与函数概念综合测试题一、选择题 1.函数y =)1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞2.已知集合A 到B 的映射f :x→y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A .2B .6C .5D .8 3.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤ 4.函数1)2(++=x k y 在实数集上是减函数,则k 的范围是( )A .2-≥kB .2-≤kC .2->kD .2-<k5.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则U (C )A B =( )A .∅B .{ 0,3,6}C . {2,1,5,8}D .{0,2,3,6} 6.下列各组函数中,表示同一函数的是( )A .,xy x y x ==B .1,112-=+⨯-=x y x x yC.,y x y ==D .2)(|,|x y x y ==7.下列函数是奇函数的是( )A .21x y = B .322+=x y C .x y = D .)1,1(,2-∈=x x y 8.若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值09.设集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )10.已知f (x )=20x π⎧⎪⎨⎪⎩000x x x >=<,则f [ f (-3)]等于 ( )A .0B .πC .π2D .9二.填空题11. 已知2(1)f x x-=,则()f x = .14. 已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f = .12. 函数26y x x =-的减区间是 .13.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π-的大小关系是三、解答题14.设{}{}(),1,05,U U R A x x B x x C A B ==≥=<<求和()U AC B .15.求下列函数的定义域 (1)21)(--=x x x f (2)221)(-++=x x x f16.{}(){}a B B A a x a x x B x x x A 求若集合==-+++==+= 0112,04222的取值范围。

集合与函数概念单元测试卷及答案解析

集合与函数概念单元测试卷及答案解析

高一上学期数学单元测试卷集合与函数概念考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分)1. 已知集合{}2,1,0=A ,{}3,2=B ,则集合=B A 【 】 (A ){}3,2,1 (B ){}3,2,1,0 (C ){}2 (D ){}3,1,02. 已知{}12+==x y x M ,{}12+==x y y N ,则=N M 【 】 (A )[)+∞,1 (B )∅ (C )()1,∞- (D )R3. 下列函数中,既是偶函数又在区间()+∞,0上是增函数的是【 】 (A )x y = (B )x y -=3 (C )xy 1=(D )42+-=x y 4. 已知函数()()()⎩⎨⎧>---≤+=0,210,1x x f x f x x x f ,则()3f 的值等于【 】(A )2- (B )1- (C )1 (D )2 5. 下列说法正确的个数是【 】 ①空集是任何集合的真子集;②函数()x f 的值域是[]2,2-,则函数()1+x f 的值域是[]1,3-; ③既是奇函数又是偶函数的函数有无数多个; ④若B B A = ,则A B A = 。

(A )0 (B )1 (C )2 (D )36. 若函数()x f 是偶函数,其定义域为()+∞∞-,,且在(]0,∞-上是增函数,则⎪⎭⎫⎝⎛41f 与⎪⎭⎫ ⎝⎛+-212a a f 的大小关系是【 】(A )>⎪⎭⎫ ⎝⎛41f ⎪⎭⎫ ⎝⎛+-212a a f (B )<⎪⎭⎫ ⎝⎛41f ⎪⎭⎫ ⎝⎛+-212a a f(C )⎪⎭⎫ ⎝⎛41f ≥⎪⎭⎫ ⎝⎛+-212a a f (D )⎪⎭⎫ ⎝⎛41f ≤⎪⎭⎫ ⎝⎛+-212a a f7. 已知定义域为R 的函数()x f 满足()()13+=-x f x f ,当x ≥2时,()x f 单调递减,且()a f ≥()0f ,则实数a 的取值范围是【 】(A )[)+∞,2 (B )[]4,0(C )()0,∞- (D )()[)+∞∞-,40,8. 已知()x f 是定义在[]b b +-1,2上的偶函数,且在[]0,2b -上为增函数,则()1-x f ≤()x f 2的解集为【 】(A )⎥⎦⎤⎢⎣⎡-32,1 (B )⎥⎦⎤⎢⎣⎡-31,1 (C )[]1,1- (D )⎥⎦⎤⎢⎣⎡1,319. 函数()x x x f ++=12的值域是【 】(A )[)+∞,0 (B )(]0,∞- (C )⎪⎭⎫⎢⎣⎡+∞-,21 (D )[)+∞,110. 若函数()1+x f 的定义域为[]15,1-,则函数()()12-=x x f x g 的定义域是【 】(A )[]4,1 (B )(]4,1 (C )[]14,1 (D )(]14,111. 已知函数()x f 的定义域是()+∞,0,且满足()()()y f x f xy f +=,121=⎪⎭⎫⎝⎛f ,如果对于y x <<0,都有()()y f x f >,那么不等式()()x f x f -+-3≥2-的解集为【 】(A )[)0,4- (B )[)0,1- (C )(]0,∞- (D )[]4,1- 12. 已知函数()12++=mx mx x f 的定义域是一切实数,则m 的取值范围是【 】 (A )(]4,0 (B )[]1,0 (C )[)+∞,4 (D )[]4,0第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知()x x x f21-=-,则函数()x f 的解析式为____________.14. 设P 、Q 为两个非空实数集合,P 中含有0 , 2 , 5三个元素,Q 中含有1 , 2 , 6三个元素,定义集合Q P +中的元素是b a +,其中Q b P a ∈∈,,则Q P +中元素的个数是_________. 15. 已知函数()ax x x f -=22的单调递减区间是(]1,∞-,则()x f 在[]3,0上的最大值为_________.16. 已知函数()⎩⎨⎧<+-≥=3,63,92x x x x x f ,则不等式()()4322-<-x f x x f 的解集是_________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}84<≤=x x A ,{}105<<=x x B ,{}a x x C >=. (1)求B A ,(C R A )B ; (2)若∅≠C A ,求a 的取值范围.18.(本题满分12分) 已知函数()211x mx x f ++=是R 上的偶函数. (1)求实数m 的值;(2)判断并用定义法证明函数()x f y =在()0,∞-上的单调性.19.(本题满分12分)已知函数()x f 是定义在R 上的偶函数,且当x ≤0时,()x x x f 22+=.现已画出函数()x f 在y 轴左侧的图象,如图所示,请根据图象:(1)写出函数()x f (∈x R )的增区间; (2)写出函数()x f (∈x R )的解析式;(3)若函数()()22+-=ax x f x g ([]2,1∈x ),求函数()x g 的最小值.20.(本题满分12分)已知函数()122+=x x x f .(1)证明:函数()x f 是偶函数;(2)记()()()()2017321f f f f A ++++= ,()⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=2017131211f f f f B ,求B A +的值;(3)若实数21,x x 满足()()121>+x f x f ,求证:121>x x .21.(本题满分12分)已知函数()x f 对任意的实数n m ,都有()()()1-+=+n f m f n m f ,且当0>x 时,有()1>x f . (1)求()0f ;(2)求证:()x f 在R 上为增函数;(3)若()21=f ,且关于x 的不等式()()322<-+-x x f ax f 对任意的[)+∞∈,1x 恒成立,求实数a 的取值范围.22.(本题满分12分) 已知函数()21x bax x f ++=是定义在()1,1-上的奇函数,且5221=⎪⎭⎫ ⎝⎛f . (1)确定函数()x f 的解析式;(2)用定义法证明()x f 在()1,1-上是增函数; (3)解不等式()()01<+-t f t f .高一上学期数学单元测试卷 集合与函数概念 解 析 版考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分)1. 已知集合{}2,1,0=A ,{}3,2=B ,则集合=B A 【 】 (A ){}3,2,1 (B ){}3,2,1,0 (C ){}2 (D ){}3,1,0 答案 【 B 】解析 本题考查并集的定义:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作B A .根据并集的定义,∵{}2,1,0=A ,{}3,2=B ,∴=B A {}3,2,1,0. 2. 已知{}12+==x y x M ,{}12+==x y y N ,则=N M 【 】 (A )[)+∞,1 (B )∅ (C )()1,∞- (D )R 答案 【 A 】解析 用描述法表示集合时,注意区分数集和点集,区分的关键在于代表元素.本题中,集合M 表示的是使函数12+=x y 有意义的自变量x 的集合,即函数12+=x y 的定义域;集合N 表示的是函数12+=x y 的函数值的集合,即函数12+=x y 的值域.由以上分析,{}=+==12x y x M R ,{}{}112≥=+==y y x y y N ,所以=N M [)+∞,1. 3. 下列函数中,既是偶函数又在区间()+∞,0上是增函数的是【 】 (A )x y = (B )x y -=3(C )xy 1=(D )42+-=x y 答案 【 A 】解析 在确定函数的奇偶性时,根据“定义域优先”的原则,先确定函数的定义域,看函数的定义域是否关于原点对称.对于(A ),函数x y =的定义域为R ,关于原点对称,为偶函数,且在[)+∞,0上为增函数; 对于(B ),函数x y -=3的定义域为R ,关于原点对称,但不具有奇偶性,且在R 上为减函数,所以函数x y -=3在()+∞,0上是减函数; 对于(C ),函数xy 1=的定义域为()()+∞∞-,00, ,关于原点对称,为奇函数,且在区间()+∞,0上是减函数;对于(D ),函数42+-=x y 的定义域为R ,关于原点对称,为偶函数,且在区间()+∞,0上为减函数.4. 已知函数()()()⎩⎨⎧>---≤+=0,210,1x x f x f x x x f ,则()3f 的值等于【 】(A )2- (B )1- (C )1 (D )2 答案 【 B 】解析 在分段函数的前提下,已知自变量的值,求对应的函数值,方法是代入求值,但要确定自变量的值在分段函数哪一段的区间上,然后代入相应的解析式求值.∵()()()⎩⎨⎧>---≤+=0,210,1x x f x f x x x f ,∴()()()123f f f -=.∵()()()()11012-=-=f f f f ∴()()()11113-=--=f f f . 5. 下列说法正确的个数是【 】 ①空集是任何集合的真子集;②函数()x f 的值域是[]2,2-,则函数()1+x f 的值域是[]1,3-; ③既是奇函数又是偶函数的函数有无数多个; ④若B B A = ,则A B A = 。

高一数学 集合与函数概念测试卷

高一数学 集合与函数概念测试卷

高一数学 集合与函数概念测试卷一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内。

每小题5分,共40分)1.用列举法将集合(){}{}{}1212,|,,,x y x y ∈∈可以表示为(C )A .{}{}{}{}{}11122122,,,,,,,B 。

{}12, C .()()()(){}11122122,,,,,,,D 。

(){}12,2. 图中阴影部分所表示的集合是(A )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B3.设M={}21|,y y x x R =+∈,N={}1|,y y x x R =+∈,则MN 等于(D ) A .()(){}0112,,, B (){}01, C.(){}12, D ()1,+∞4.函数123()f x x x =-+-的定义域是(C ) A.[)23, B.()3,+∞C [)()233,,+∞ D.()()233,,+∞5.设M={}02|x x ≤≤,N={}02|y y ≤≤,给出下列四个图形,其中能表示集合M 到集合N 的函数关系的有(C )A.0个 B 。

1个C 。

2个 D 。

3个6.下列四个结论:(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的个数是 ( A ) A .1 B .2 C .3 D .47.已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为 (B)A .-1B .0C .1D .28.设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则( D )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )二、填空题:(请把答案填在题中横线上,每小题5分,共20分)9.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值X 围是112{}k k -≤≤. 10.已知函数20(0)()(0),{[(1)]}1(0)x f x x f f f x x π>⎧⎪=-=-=⎨⎪+<⎩则π- 11.()()(1)(1)f x g x f x f x =+--若函数的定义域为[0,2],则函数的定义域为 12.设函数()()()xa x x x f ++=1为奇函数,则实数=a -1。

集合与函数概念单元测试题(答案)

集合与函数概念单元测试题(答案)

第一章 《集合与函数概念》单元测试题(纯属个人做法,如有不正确的请纠正)姓名: 饭团 班别: 学号:一、选择题:每小题4分,共40分1、在“①高一数学课本中的难题;②所有的正三角形; ③方程220x +=的实数解”中,能够表示成集合的是( A )(A )② (B )③ (C )②③ (D )①②③ 2、若{{}|0,|12A x x B x x =<<=≤<,则A B ⋃= ( D )(A ){}|0x x ≤ (B ){}|2x x ≥ (C){0x ≤≤(D ){}|02x x <<3、若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B ⋂= ( C )(A ){}1,2 (B ){}0,1 (C ){}0,3 (D ){}34、在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为( A )(A ))1,3(-(B ))3,1((C ))3,1(--(D ))1,3(5、下列各组函数)()(x g x f 与的图象相同的是( D )(A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f ==(D )⎩⎨⎧-==x x x g x x f )(|,|)( )0()0(<≥x x 6、是定义在上的增函数,则不等式的解集是( D )(A)(0 ,+∞) (B)(0 , 2) (C) (2 ,+∞) (D) (2 ,716) 7、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( C ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值08、如图所示,阴影部分的面积S 是h 的函数()H h ≤≤0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UP 教育2016年上学期高一数学集合与函数的概念测试卷
(必修1 第一章 1.集合与函数的概念)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.答卷前请考生将 自己的班级、姓名等信息填写在本试卷相应位置. 2.考试时间:120分钟,满分:150分.
3.考试结束后,将试卷交回.
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,
只有一项是符合题目要求的.
(1)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-
2x =0,x ∈R },则M ∪N =( )
A .{0}
B .{0,2}
C .{-2,0}
D .{-2,0,2}
(2)设f :x →|x |是集合A 到集合B 的映射,若A ={-2,0,2},则A ∩B =( )
A .{0}
B .{2}
C .{0,2}
D .{-2,0}
(3)f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点在函数f (x )图象上的是( )
A .(3,-2)
B .(3,2)
C .(-3,-2)
D .(2,-3)
(4)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )
A .1
B .3
C .5
D .9
(5)若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )
A .f (x )=9x +8
B .f (x )=3x +2
C .f (x )=-3x -4
(6)设⎩⎨
⎧≤+>+=)
10()5()10(3
)(x x f x x x f ,则f (5)的值为( )
A .16
B .18
C .21
D .24
(7)设T ={(x ,y )|ax +y -3=0},S ={(x ,y )|x -y -b =0},若S ∩T ={(2,1)},则a ,b 的值为( )
A .a =1,b =-1
B .a =-1,b =1
C .a =1,b =1
D .a =-1,b =-1
(8)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )
A .(-1,1) B.),(2
1
1-- C .(-1,0) D.),(12
1
(9)已知A ={0,1},B ={-1,0,1},f 是从A 到B 映射的对应关系,则满足f (0)>f (1)的映射有( )
A .3个
B .4个
C .5个
D .6个
(10)定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)[f (x 2)-f (x 1)]>0,则当n ∈N *时,有( )
A .f (-n )<f (n -1)<f (n +1)
B .f (n -1)<f (-n )<f (n +1)
C .f (n +1)<f (-n )<f (n -1)
D .f (n +1)<f (n -1)<f (-n )
(11)函数f (x )是定义在R 上的奇函数,下列说法:
①f (0)=0; ②若f (x )在[0,+∞)上有最小值为-1,则f (x )在(-∞,0]上有最大值为1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确说法的个数是( )
A .1个
B .2个
C .3个
D .4个
(12)f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则
=++++)2013
()2014()5()6()3()4()1()2(f f f f f f f f ( ) A .1006 B .2014 C .2012
D .1007
第II 卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分,共20分. (13)函数x
x y 1
+=
的定义域为________. (14)⎩⎨
⎧>-≤+=)
0(2)
0(1
)(2x x
x x x f 若f (x )=10,则x =________.
(15)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.
(16)在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .
(1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.
(18)(本小题满分12分)设函数2
2
11)(x
x x f -+=. (1)求f (x )的定义域;(2)判断f (x )的奇偶性;(3)求证:0)(1=+⎪⎭
⎫ ⎝⎛x f x f .
(19)(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x .
(1)求当x <0时,f (x )的解析式;
(2)作出函数f (x )的图象,并指出其单调区间.
(20)(本小题满分12分)已知函数f (x )=
1
1
2++x x , (1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论. (2)求该函数在区间[1,4]上的最大值与最小值.
(21)(本小题满分12分)已知函数f (x )的定义域为(0,+∞),且f (x )为增函数,f (x ·y )=f (x )+f (y ).(1)求证:)()(y f x f y x f -=⎪⎪⎭

⎝⎛;
(2)若f (3)=1,且f (a )>f (a -1)+2,求a 的取值范围.
(22)(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:
(1)(x,y)的对应点,并确定y 与x的一个函数关系式.
(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?。

相关文档
最新文档