六年级下册人教版数学圆柱的体积ppt

合集下载

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知

人教版数学六年级下册 圆柱的体积课件(44张PPT)

人教版数学六年级下册  圆柱的体积课件(44张PPT)

=3.14×16×25
=1256(cm^3)
=1256(ml)
答:瓶子的容积是1256ml。
解:减少的表面积是两个底面面积 底面面积:25.12÷2=12.56(cm3)
底面半径为:
12.56÷3.14÷2=2(cm)
原圆柱的体积:
3.14×22×(20÷2)=125.6(cm3)
答:原来每个圆柱的体积为125.6cm3 。
答:这个圆柱的表面积是301.44cm2;体积是401.92cm3.
例7. 一个圆柱体底面周长和高相等。如果高缩短 2厘米,表面积就减少6.28平方厘米, 这个圆柱 体的体积是多少?
减少的6.28平方厘米 表面积是哪一块呢?
24cm
6.28平方厘米
C=6.28÷ 2=3.14(厘米) r=3.14÷ 3.14÷ 2=0.5(厘米) V=0.52× 3.14× 3.14=2.4649(立方厘米) 答:这个圆柱体的体积是2.4649立方厘米。
502.4 ml>498ml
答:能装下这袋奶。
例2. 若圆柱体的侧面展开后是一个边长为12.56分米正方形,求
这个圆柱的体积。
边长
r=12.56÷ 3.14÷ 2=2(分米12.)56厘米 S底=22× 3.14=12.56(平方分米) V=12.56× 12.56=157.7536(立方分米)
12.56分米
12.56 分米
答:这个圆柱的体积是157.7536立方分米。 “侧面展开 图是正方形”说明 什么呢?
例3.一个圆柱形粮囤,从里面量底面半径是2.5米,高是2米。如 果每立方米稻谷约重545千克,这个粮囤装的稻谷大约有多少千 克?
粮屯体积: 3.14×2.52×2 =3.14×6.25×2 =39.25(m2)

《圆柱的认识以及体积》(课件)-2021-2022学年数学六年级下册

《圆柱的认识以及体积》(课件)-2021-2022学年数学六年级下册

4.压路机前轮直径是1.6m,长2m,它转动一周,压路 的面积是多少平方米?
求圆柱侧面积
3.14×1.6×2=10.048(m2)
答:压路的面积是10.048平方米。
5.制作一个底面直径20cm,长50cm的圆柱形通风管,至少 要用多少平方厘米的铁皮?
求圆柱侧面积
3.14×20×50=3140(cm2) 答:至少要用3140平方厘米的铁皮。
S=πr 2
r
πr
S=πr ×r =πr 2
把圆柱的底面平均分的份数越多,切拼成的立体图形 越接近长方体。
思考: ①拼成的长方体的底面积与原来圆柱的底面积有什 么关系?为什么? ②拼成的长方体的高与原来圆柱的高有什么关系? 为什么? ③拼成的长方体的体积与原来圆柱的体积有什么关 系?为什么?
)里画



3. 转动长方形ABCD,生成右面的两个圆柱。说说
它们分别是以长方形的哪条边为轴旋转而成的,底面半 径和高分别是多少。
A
D
1cm
B 2cm C
(1)
(2)
那长方形ABCD如果以AD边为轴旋转,会形 成哪个圆柱呢?请你动手试一试。
答:长方形ABCD如果以AD边为轴旋转,会形成(2)号圆柱。 底面半径是1cm,高是2cm。
?cm S侧:18.84×10=188.4(cm2)
18.84cm 10cm r:18.84÷3.14÷2=3(cm) S底:3.14×32×2=56.52(cm2)
S表:188.4+56.52=244.92(cm2)
1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么 粉刷树干的面积是指树的( B )。
有一个棱长为10厘米的正方体木块,把它削成一个最 大的圆柱体,应削多少体积的木头?

人教版六年级数学下册第一单元圆柱的体积

人教版六年级数学下册第一单元圆柱的体积

练习:1、一个圆柱的侧面积是125.6平方厘米, 半径是8厘米,求它的体积。
2、一个圆柱形水池底面直径8米,池深2米, 如果在水池的底面和四周涂上水泥,涂水泥的 面积有多少平方米?水池最多能盛水多少立方 米?
3、把一个底半径为5厘米的圆柱铁块放入一个 底半径10厘米,高14厘米的容器里,水面上升 了3厘米,求这个圆柱铁块的高。
5 :4
体积
5 :4
【例3】把一块长31.4厘米、宽20厘米、 高4厘米的长方体钢材熔化成底面半径是4 厘米的圆柱,圆柱的高是多少厘米?
3.14 20 4 5(厘米) 3.14 4 4
练习:一个圆柱的底面周长是25.12厘米, 高10厘米,把它装满水后,再倒入一个长 10厘米、宽8厘米的长方体容器中,水面 高多少厘米?
5厘米
20厘米
3、一个酒精瓶,它的瓶身呈圆柱形(不包括 瓶颈),如下图.已知它的容积为26.4π立方 厘米.当瓶子正放时,瓶内的酒精的液面高为 6厘米.瓶子倒放时,空余部分的高为2厘 米.问:瓶内酒精的体积是多少立方厘米?
2厘米
6厘米
【例7】在一只底面半径为10厘米的圆柱形玻璃容器中,水 深8厘米,要在容器中放入长10厘米、宽3.14厘米,高15厘 米的一块铁块。 (1)如果把铁块横放在水中水面上升多少厘米? (2)如果把铁块竖放在水中,水面上升多少厘米?
1、一个圆柱体的木头,底面 直径24厘米,高1米,锯下 25厘米长的一段后,表面积 减少多少平方厘米?
2、一个圆柱体木块的底面周长 是25.12厘米,竖着沿直径从中 间切开,表面积增加了32平方厘 米,求其中半个圆柱体的表面积?
1、一个圆柱体,如果它的高增 加1厘米,它的侧面积就增加 50.24平方厘米,这个圆柱体的 底面半径是多少?

六年级下册数学圆柱的体积

六年级下册数学圆柱的体积

圆柱的体积☆☆知识讲解:知识点一:圆柱体积的意义和计算公式1.圆柱体积的意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。

2.圆柱体积公式的推导:圆柱的体积=长方体的体积=长方体的底面积×长方体的高=圆柱的底面积×圆柱的高如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,可以得到圆柱的体积计算公式为:h r Sh V 2π==知识点二:圆柱的体积计算公式的应用知识应用1:已知圆柱的底面积和高,求圆柱的体积。

点击例题:一根圆柱形钢材,底面积是402cm ,高是m ,它的体积是多少知识应用2:已知圆柱的底面半径和高,求圆柱的体积。

点击例题:一个圆柱形罐头盒的底面半径是5cm ,高是18cm 。

体积是多少知识应用3:已知圆柱的底面直径和高,求圆柱的体积。

点击例题:一个圆柱形水桶,从里面量底面直径是4分米,高是5分米,这个水桶的容积是多少(得数保留整立方分米)可装水多少千克(1立方分米水重1千克)知识应用4:已知圆柱的底面周长和高,求圆柱的体积。

点击例题:一个圆柱形水泥柱,底面周长是米,高是3米,这根水泥柱的体积是多少立方米知识应用5:已知圆柱的体积和高(或底面积),也可以求出圆柱的底面积(或高)。

点击例题:在地面挖一个圆柱形水池,底面周长米,要使池内存水1570立方米,水池至少要挖多深过关精练:一个圆柱形容器的底面直径为4分米,现在往容器里倒入升的水,水深多少分米☆☆思维拓展:点拨方法1:如果把一个正方体的木料加工成一个最大的圆柱体,这个圆柱体的高就等于正方体的棱长,这个圆柱体的底面直径也就等于正方体的棱长。

点击例题:有一块正方体的木料,它的棱长是3分米,把这块木料加工成一个最大的圆柱体(如图),这个圆柱体的体积是多少过关精练:点拨方法2:将物体浸没在容器里,物体的体积等于升高的那部分液体的体积;如果物体没有完全浸没在液体中,则浸没在液体中的那部分体积等于升高的液体的体积。

小学六年级数学下册教学课件《圆柱的体积(2)》

小学六年级数学下册教学课件《圆柱的体积(2)》

2.一个圆柱形的水池,从里面量底面半径是5m,深 是3.2m。这个水池能蓄水多少吨? (1m3的水重1t。)
【教材P25 做一做 第2题】
V =πr2h 3.14×52×3.2=251.2(m3) 答:这个水池能蓄水251.2吨。
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
探索新知
下图中的杯子能不能装下2袋这样的牛奶? (数据是从杯子里面测量得到的。)
容积的计算方 法与体积的计
算方法相同
要先计算出杯子的容积。
杯子的底面积:3.14×(8÷2)2
=3.14×42
=3.14×16
=50.24 (cm2) 杯子的容积: 50.24×10
=502.4 (cm3)
=502.4 (mL) 牛奶的体积:240×2=480(mL)
2÷2=1(m) 3.14×12×3=9.42(m3) 9.42 m3=9420 dm3=9420L 9420 ÷350≈26(辆)
三、一个水龙头的内直径是1.6cm,打开水龙 头后水的流速是30厘米/秒,一个容积是5L的 水桶,80秒能装满水吗?
5 L=5000 mL
3.14×
1.6 2
×2 30×80=4823.04(cm3)
所用钢材的体积就是用大圆柱的体积减 去中空的小圆柱的体积。
大圆柱的体积:3.14×(10÷2)2×80=6280(cm3) 小圆柱的体积:3.14×(8÷2)2×80=4019.2(cm3) 钢材的体积:6280-4019.2=2260.8(cm3)
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
想象一下1秒流出的水是什么形状的。 求50秒流出的水的体积就是求什么?

人教版数学六年级下册 利用圆柱的体积求不规则物体的体积

人教版数学六年级下册     利用圆柱的体积求不规则物体的体积


8cm
从题目中你获
得了哪些条件?
10cm
杯子是圆柱形 牛奶体积
小组讨论
1. 怎样判断杯子能不能装下2袋这样的 牛奶? 2.在小组内说一说如何计算杯子的容积, 计算容积时需要注意什么?
6 下图中的杯子能不能装下2袋这样的牛奶? (数据是从杯子里面测量得到的。)
比较杯子容积和(2袋)
8cm
牛奶体积的大小。
度是18cm
所求问题
这个瓶子的 容积是多少
阅读与理解
这个瓶子不是一个 完整的圆柱,无法 直接计算容积。
能不能转化成 圆柱呢?
分析与解答
不管是正放还是倒置,瓶子 里的容积都是由水的体积和 无水部分的体积组成的。
倒置前后,水 和无水部分的 形状发生了变 化,但体积都 没有变。
7 cm 18 cm
等积
在五年级计算土豆的体积时, 也是用了转化的方法。
1 小明和妈妈出去游玩,带了一个圆柱形保温壶, 从
里面量底面直径是8 cm,高是15 cm。如果两人游玩
期间要喝1L水,带这壶水够喝吗? 比较保温壶的容
3.14×(8÷2)²×15
积和1 L的大小
=3.14×16×15
V圆柱 = π(d÷2)²h
=753.6 (cm³)
1.一个圆柱高4厘米,如果它的高增加1厘米,它的表面积就增 加50.24平方厘米,这个圆柱的底面半径是多少?体积是多少?
50.24平方厘米 底面周长
1厘米
底面半径:50.24÷1÷3.14÷2=8(厘米) 体积:3.14×8²×4=803.84(立方厘米) 答:这个圆柱的底面半径是8厘米,体积是803.84立方厘米。
10 cm
1.一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧后 倒置放平,无水部分高10 cm,内径是6 cm。小明喝 了多少水?

人教版六年级数学下册第三单元第11课《整理和复习》课件

人教版六年级数学下册第三单元第11课《整理和复习》课件
少立方分米?(结果保留一位小数) 24÷12=2(dm) 3.14×(2÷2)2×2×13≈2.1(dm3) 答:削成的圆锥的体积约是 2.1 dm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。

人教版六年级数学下册《圆柱的体积》课件

人教版六年级数学下册《圆柱的体积》课件
的值。 3. 求方程的解的过程叫解方程。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。

人教版六年级下册数学圆柱的体积

人教版六年级下册数学圆柱的体积

字母“V”表示( ),“S”表示

),“h”表示( ),那么,圆柱
体体积用字母表示为( )
圆柱体积=底面积×高
1.5米=150厘米 50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
练一练: 1、计算下面圆柱的体积。
8dm
2
4cm 2
练一练
求下面各圆柱的体积。
(1)底面积4.5平方米,高3米。 (2)底面半径是3厘米,高4厘米。 (3)底面圆的直径是6分米,高是2分米。 (4)底圆周长是12.56厘米,高3厘米。
圆柱的体积

计算下列各平面图形的面积(单位:厘米
3
4
4
6.2
4
5
04.8米
6.5
计算下列图形的表面积和体积 (单位:厘米)
12 8
10 4
8 88
米、1.5米的铁皮箱放在室内, 最少占地多少平方米?占空 间多少立方米?
做一节长1米,直径12厘 米的圆柱形烟囱至少要 用多少平方厘米的铁皮?
把一个圆柱体的侧面展开, 得到一个边长为6.28厘米 的正方形,求这个圆柱体 的体积是多少?
这个油桶最多能装汽油多少 千克?
如果一段圆柱形的木头,截成两段, 它的体积会有什么变化?
一根圆柱形钢材,底面半径是5厘米,
高是8厘米,把它截成两个体积相等
的圆柱,表面积比原来增加多少平方厘 米?
圆柱侧面展开得到一个长方形,长
方形的长等于圆柱的 ( 底面周长 ),宽等于圆柱的 ( 高 );当圆柱的底面周长和 ( 高 )相等时,侧面展开是一
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 圆柱体的体积= 底面积 ×高

六年级数学下册《圆柱的体积》

六年级数学下册《圆柱的体积》

一个圆柱体的侧面积是底面积的 4倍,它的底面半径是2米,这个 圆柱体的体积是多少?
一个圆柱体的侧面积和底面积相等 ,底面半径是4厘米,求这个圆柱 的体积是多少?
一个圆柱体的侧面积是50平方分米 ,底面半径是3分米,求这个圆柱 体的体积。
• 一个长6厘米,宽4厘米的长方形, 分别以它的长和宽为轴转动一周, 得到的两个圆柱,这两个圆柱的体 积是否相同?表面积是否相同?
有一根圆柱形的木料,如果沿着它 的底面直径切开,剖面正好是一个 正方形。如果这个圆柱的底面周长 是12.56分米,这根木料的体积是 多少立方分米?
• 将一块棱长是10㎝的正方体木块削 成一个最大的圆柱,圆柱的体积是 多少立方厘米?
在一个长、宽、高分别为6 ㎝、6㎝、8㎝的长方体内截 一个最大的圆柱,圆柱的体 积是多少立方厘米?
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
一个圆柱形水桶,从桶内量底面直径是3分 米,高是4分米,这个水桶的容积是多少升?
3分米 4分米
3 )2=7.065(dm2) (1)水桶的底面积:3.14×( 2 (2)水桶的容积: 7.065×4=28.26(L)
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
• 一根长30分米的圆柱形木料 ,锯成两段后,表面积比原 来增加了12平方分米。这根 木料原来的体积是多少立方 分米?
把一根长1.5的圆木截成两段后表 面积增加了48㎝²,这根圆木原来 的体积是多少?
• 一根圆柱形木料长8米,如果把它 沿着横截面截成4段,表面积就增 加了18.84㎡。这根圆柱形木料原 来的体积是多少立方米?
• 把一个土豆浸没到一个底面 直径是2分米的水桶中,水 面的高度由2分米上升到2.2 分米。这个土豆的体积是多 少立方分米?

数学六年级下册圆柱与圆锥3容积第1课时计算容积PPT

数学六年级下册圆柱与圆锥3容积第1课时计算容积PPT
【教材37页练一练第3题】
1米=10分米 V = πr2h = 32×10×3.14 =90×3.14=282.6( dm3 )
282.6dm3 =282.6L 282.6×0.74≈209(千克) 答:这个圆柱形油桶大约能装209千克汽油。
6. 一个圆柱形奶桶,它的底面内直径是40厘米,高是50厘米。
V = πr2h = 102×(25-10)×3.14 = 1500×3.14 = 4710(立方厘米)
4710立方厘米 = 4.71立方分米 = 4.71升 答:这个杯中有4.71升的水。
3. 轩轩家来了两位客人,妈妈冲了800 mL的果汁。如果倒在 底面直径为6 cm,高为12cm的玻璃杯中,轩轩和两位客人各 一杯,够吗?(壁厚忽略不计)
一个保温杯,从外面测量的尺寸如图所示。
(1)这个保温杯的体积是多少立方厘米? (2)已知保温杯壁的厚度是0.8厘米。这个保温杯能装 多少毫升的水?(得数保留整数)
当保温杯装满水时,水的体积就是这个保温杯的容积。
小组讨论
1. 求保温杯的容积与保温杯的体积相同吗?
外高度 18cm
2. 要求保温杯的容积需要知道什么?怎么求?
外高度 18cm
外直径7cm
内直径: 7-0.8×2=5.4(厘米)
内高度: 18-0.8×2=16.4(厘米)
容积: (5.4÷2)2×16.4×3.14 = 119.556×3.14 ≈ 375(立方厘米)体积单位 = 375(毫升) 容积单位
1立方厘米=1毫升
外高度 18cm 外直径7cm
计算容积和计算体积有什么相同点和不同点?
1升水有多少千克?
1000毫升=1000克 1升=1000毫升
容积:375毫升

圆柱体积PPT课件

圆柱体积PPT课件

r= d
2
S=∏r2 v=sh = ∏ r2 h
3.已知圆柱体的底面周长和高,怎样求体积 ?
r=c÷2∏
S=∏r2 v=sh = ∏ r2 h
一个圆柱,底面半径是2cm,高是5cm。 求它的体积?
r=2cm h=5cm S底=πr2 =2×2×3.14
=4×3.14 =12.56(cm2) V=Sh=5×12.56=62.8(cm3)
人教版小学六年级数学下册《圆柱的体积》
真 棒!
高 宽

棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
圆的面积公式推导过程:
圆的面积公式推导过程:
S=π r 2
rHale Waihona Puke πrS=πr ×r =π r 2
圆面积计算公式的推导过程
()

长方形
运用了什么数学思想?
一根圆柱形的钢材,底面积是50平方厘米, 高是2.1米。它的体积是多少?
2.1米=210厘米 50 ×210=10500(立方厘米) 答:它的体积是10500立方厘米。
50平方厘米=0.005平方米 0.005 ×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。
看图列式,并写出相应的公式。
答:圆柱的表面积是62.8平方厘米。
计算右图圆柱是体积。(单位:dm)
d=10dm h=4dm S底=π(d÷2)2
=(10÷2)2×3.14 =25×3.14 =78.5(dm2) V=Sh=4×78.5=314(dm3)
1·0 4
一个圆柱,底面周长是94.2m,高是 100m。求它的体积?

六年级下册数学课件3.1.3 圆柱的体积计算公式|人教新课标(秋) (共18张PPT)

六年级下册数学课件3.1.3 圆柱的体积计算公式|人教新课标(秋) (共18张PPT)
通过这节课的学习,你有什么收获?
这节课我们探究了圆柱的体积。先通过复习长 方体、正方体的体积公式引出新知,再自主推导, 动手操作,把圆柱转化为近似的长方体,找出近似 长方体和原圆柱各部分的相对应部分的关系,从而 推导出圆柱的体积公式为V=Sh。最后用所学知识解 决一些练习,巩固技能。
谢谢大家! 再见!
第3单元 圆柱与圆锥
1.圆柱
第3节 圆柱的体积
第1课时 圆柱的体积计算公式
一、创设情境,导入新课
请你说一说如何计算长方体、正方体的体积?
长方体体积=长×宽×高 正方体体积=边长×边长×边长
有什么现象发生?由这个发现你想到了什么?
你能用一句话说说什么是圆柱的体积吗?
圆柱的体积计算公式
二、自主探究,学习新知
Байду номын сангаас
它的高是4 cm。
(√ )
2.这是我们学校的一个花坛,测
得花坛内直径是4 m,花坛内填土高
度为0.5 m,这个花坛一共填土多少
立方米。
花坛底面积:3.14 ×
4 2
2
=12.56(m2)
填土体积:12.56×0.5=6.28(m3)
答:这个花坛一共填土6.28 m3 。
四、全课总结、自我评价
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

圆柱会不会也像长方体或正方体那样,有一个 计算体积的公式呢?
圆柱体积=底面积×高
你是怎么知道的?能说说你的想法吗?
我们以前的学习中有过哪些将未知图形转化 为已知图形的经历?
②长方体的底面积与原来圆柱的哪部分有关系?

人教版小学数学六年级下册《第三单元圆柱与圆锥:3.圆柱的体积》PPT1

人教版小学数学六年级下册《第三单元圆柱与圆锥:3.圆柱的体积》PPT1
169.56立方分米。
判断:
1、圆柱的体积比表面积大。( ) ×
2、等底等高的正方体、长方体和圆柱,它们的体积
都相等。( √ )
3、一个圆柱的底面半径扩大到原来的3倍,体积也
4、体积相等的两个圆柱不一定是等底等高。(√ )
扩到原来的3倍。( × )
判断:
5、高不变,圆柱体的底面积越大,它的体积就
人教版六年级数学下册第三单元
圆柱的体积练习课
知识回顾:
圆柱的体积公式是怎样推导出来的?
转化
长方体的体积= 底面积 × 高 圆柱的体积= V
底面积 S
圆柱体积计算公式是:
V
×
高 h
已知圆柱的底面积和高,怎样求圆柱的体积?
V=s×h
已知圆柱的体积和高,怎样求圆柱的底面积?
s=V÷h
已知圆柱的体积和底面积,怎样求圆柱的高?
越大。( √ )
6、圆柱体的高越长,它的体积越大。( × ) 7、圆柱体的底面直径和高可以相等。(√ )
巩固练习:
将一个棱长为6分米的正方 体钢材熔铸成底面半径为1 分米的圆柱体,这个圆柱有 多长?(得数保留整数)
思考:正方体与熔铸成的圆柱体体积有什么关系? 正方体的体积:6×6×6=216(dm3) 圆柱的长:216÷(3.14×1×1) =216÷3.14 ≈69(分米)
=18×3 =54(dm3)
答:它的体积是54dm3。
练一练:
把一个棱长6分米的正方体木块切削成一个体积最 大的圆柱体,这个圆柱的体积是多少立方分米?
d 2 思考:圆柱的直径和高 V ( ) h 2 是正方体的什么? =3.14×(6÷2)2×6 =3.14×32×6 3) =169.56 ( dm 答:这个圆柱的体积是

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

大?你有什么发现?
18

12
9
6
2 3 4 6
图1
以长方形的宽 图1
为底面周长:
图2
5π4>
36 π

27 π

18 π
图3
图4的体积最大。 图4
图2
图3
图4
π×(2÷π÷2)²×2=1π8(dm³)
π×(3÷π÷2)²×3= 2π7(dm³)
π×(4÷π÷2)²×4= 3π6(dm³)
π×(6÷π÷2)²×6= 5π4(dm³)
求高为12cm圆柱的体积。
(6÷2)2×3.14×12 =9×3.14×12 =339.12(cm3) =339.12(mL) 答:小红喝了339.12mL的水。
两个底面积相等的圆柱,一个高为4.5dm,体积为81dm3。 另一个高为3dm,它的体积是多少?
只要求出其中一 个圆柱的底面积, 也就得出了另一 个圆柱的底面积。
下面4个图形的面积都是36dm2(图中单位:dm)。
用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最
大?你有什么发现?
18
12
9
6
2 3 4 6
图1
图2
同一个长方形,以 长为底面周长比以 宽为底面周长卷成 的圆柱体积大。
1
图3
图4
侧面积相等的圆柱, 底面周长比高大得 越多,体积就越大。 否则就越小。
=3.14×400×10
20cm
20cm,高10cm。
=1256×10
=12560(cm³)
答:以宽为轴旋转一周,得到的圆柱的体积是12560cm³。
我国是一个水资源短缺、水旱灾害频繁的国家, 全国669座城市中有400座供水不足,110座严重缺 水。但是,在一些校园内经常会发现学生忘关水龙 头的现象,如果学校自来水管的内直径是2厘米, 水管内水的流速是每秒8分米。小军去水池洗手时, 忘记关掉水龙头,像这样5分钟会浪费多少升水?

小学数学六年级下册:1.圆柱第7课时解决问题-优质课件(图文并茂)

小学数学六年级下册:1.圆柱第7课时解决问题-优质课件(图文并茂)
六年级数学下册(RJ)
教学课件
第 3 单元
圆柱与圆锥
1. 圆 柱
第 7 课时 解 决 问 题
一、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧 倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积 是多少?
7
能不能转化成圆柱呢?
7cm
这个瓶子不是一个完整的 圆柱,无法直接计算容积。
2. 一个圆柱的高是5cm,若高增加2cm(如图 所示),圆柱的表面积就增加25.12cm2。原来圆柱 的体积是多少立方厘米? 25.12÷2÷3.14÷2=2(cm) 3.14×22×5=62.8(cm3) 答:原来圆柱的体积是62.8cm3。
三、课堂小结
正放时水的体积+倒放瓶子时空余部分的容积=瓶 子的容积;利用体积不变的特性,把不规则圆柱转化 成规则圆柱来计算。
81 ÷4.5 ×3 =18 ×3 =54(dm³)
答:它的体积是54dm³ 。
10. 一个圆柱形玻璃容器的底面直径是10cm,把一块完全浸 泡在这个容器的水中的铁块取出后,水面下降2cm。这块铁 块的体积是多少?
请你想一想,如何求这 块铁块的体积?
2 3.14×(10÷2) ×2 =3.14×5² ×2 =3.14×25×2 =78.5×2 =157(cm³ )
7. 学校要在教学区和操场之间修一道围墙,原计划用土35m³。 后来多开了一个厚度为25cm的月亮门,减少了土石的用量。 现在用了多少立方米的土石?
请你仔细想一想,要想知道 现在用多少立方米的土石? 就要先求什么? 35-3.14×(2÷2)×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³ )
4.一个圆柱的体积是80cm3,底面积是16cm。 它的高是多少厘米 分析:此题为已知圆柱体积和底面积求高,

六年级数学圆柱的体积 (1)

六年级数学圆柱的体积 (1)

体积:
3.14×2=6.28(立方米)
答:它的体积是6.28立方 米。

返回
如果要测量圆柱形 柱子的体积测量哪些 数据比较方便?
返回
返回
一、填空
1、圆柱体的体积等于( 底面积 ) 乘以( 高 ),用字母表示它的体 积是( V=Sh )。 2、一个圆柱体的底面积底面积是10平 方厘米,高是4厘米,体积是 ( 40立方厘米 )。
返回
二、填表。
底面积s (平方米) 高h (米) 圆柱体积 v (立方米)
15
40
3
45
4
160
返回
三、判断对错。
1、圆柱体体积与长方体体积相等。 ( ×)
2、长方体、正方体、圆柱体的体积 都可以用底面积乘高的方法来计算。 ( √ )
3、圆的面积公式是S= r π(

返回
2

练一练
圆柱的体积
看图说算式。 求圆柱的体积 (单位:厘米 ) 6
8 4 6
8
8 2 ( ) × π ×4 2
6 2 ( ) × π ×6 2
圆柱的体积
返回
长方体的体积
正方体的体积 =棱长×棱长×棱长
=长×宽×高
长方体(正方体)的体积=底面积×高
V=Sh
返回
圆的面积公式推导过程:
返回
圆的面积公式推导过程:
r πr
2 r S=π
S=πr×r=π r
2
返回
返回
返回
返回
返回
公式推导
圆柱的体积
分成的份数越多, 就越接近长方体。
返回
返回
四、求下面圆柱的体积。(只列式不计算。) 1、底面积24平方厘 米,高12厘米。 2、底面半径2厘 米,高5厘米。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱的体积 = 底面积× 高
V = Sh
例:一根圆柱形杯子,底 面直径8厘米,高是10厘 米。这个杯子能装不能 装下498ml的袋装牛奶?
求下面各圆柱的体积。
(1)底面积4.5平方米,高3米。
(2)底面圆的半径是3厘米,高4 厘米
(3)底面圆的直径是6分米,高是 8分米。
判断:
(1)圆柱体、长方体和正方体的 √ 体积都可以用底面积乘以高的方法 × 来计算。 √ ( )
√ (2)圆柱的底面积扩大3倍,体积 × 也扩大3倍 。 ( ) × (3)一个长方体与一个圆柱体,
一个圆柱的体积是25.12立 方分米,底面积是6.28平方分 米,求圆柱的高是多少分米?
25.12 6.28 =4(分米) 答:圆柱的高是4分米。
请大家继续学 习吧!再见!
圆柱的体积
复习: 求下面各圆的面积 : (1)r=1厘米 (2)d=4分米
3.14×12
3.14×(4÷2)2
3.14×(6.28÷3.14 ÷ 2)2
(3)C=6.28米
想一想:
在学习计算圆的 面积时,我们是怎样把 圆变成已学过的图形来 计算面积的
圆面积公式的推导.swf
讨论:
能不能把圆柱转 化成我们已经学过的 形体来求出它的体积 ?
相关文档
最新文档