实验三 图像的空间域滤波

合集下载

实验三 图像的空域滤波

实验三 图像的空域滤波
subplot(3,3,3), imshow(I2), title('¸ß˹ÔëÉùÖÐÖµÂ˲¨ºóͼÏñ');
subplot(3,3,4), imshow(I3,[ ]), title('¸ß˹ÔëÉù¾ùÖµÂ˲¨ºóͼÏñ');
subplot(3,3,5), imshow(K), title('¼Ó½·ÑÎÔëÉùͼÏñ');
subplot(1,3,3), imshow(I2, [ ]), title('均值滤波后图像');
模版尺寸为[10,10],对加有高斯噪声的图像进行均值滤波
I=imread('pout.tif');
J=imnoise(I,'gaussian', 0.02);
h=fspecial('average', 10);
2、分别采用不同大小的模板对加有噪声的图像进行均值滤波,用一个图像处理对话框显示原图像、加有噪声的图像及均值滤滤波,用一个图像处理对话框显示原图像、加有噪声的图像及中值滤波的图像。比较结果。
4、采用大小相同的模板对加有噪声的图像分别进行均值滤波和中值滤波,用一个图像处理对话框显示原图像、加有噪声的图像、均值滤波的图像及中值滤波的图像。比较结果。
J=imnoise(I,'gaussian', 0.02);
h=fspecial('average', 3);
I2=filter2(h, J);
subplot(1,3,1), imshow(I), title('原图像');
subplot(1,3,2), imshow(J), title('加高斯噪音后的图像');

图像的空域滤波操作方法

图像的空域滤波操作方法

图像的空域滤波操作方法
图像的空域滤波操作包括以下几种方法:
1. 均值滤波:将图像中每个像素点的值替换为其周围像素点的平均值。

2. 中值滤波:将图像中每个像素点的值替换为其周围像素点的中值。

可以有效地去除椒盐噪声。

3. 高斯滤波:使用高斯核函数对图像进行卷积操作,以平滑图像并减少噪声。

4. 锐化滤波:使用拉普拉斯滤波器对图像进行卷积操作,以增强图像的边缘和细节。

5. Sobel滤波:使用Sobel算子对图像进行卷积操作,以检测图像中的边缘。

6. Prewitt滤波:使用Prewitt算子对图像进行卷积操作,以检测图像中的边缘。

7. Roberts滤波:使用Roberts算子对图像进行卷积操作,以检测图像中的边缘。

8. Laplacian滤波:使用Laplacian算子对图像进行卷积操作,以增强图像的边缘和细节。

这些滤波操作可根据具体的图像处理需求选择使用,并可以通过调整滤波器的大小和参数来实现不同的效果。

实验三 空间滤波

实验三 空间滤波

实验三空间滤波实验目的通过本次实验,实现以下几个目标:1.理解空间滤波的含义;2.熟悉MATLAB中的各种滤波函数;3.掌握MATLAB中实现空间滤波的方法。

实验内容一、MATLAB实现空间滤波的方法在MATLAB中两种方法来实现空间滤波,一种是使用MATLAB中提供的滤波函数,另一种是直接对数据进行操作。

1、滤波函数filter2J=filter2(myfilt1,noisy)其中,noisy为图像,myfilt1为滤波器,J为滤波后的图像。

通过改变滤波器掩模,可实现平滑滤波和锐化滤波。

例一:b=imread('Fig3.35(a).jpg ');c=[0.111 0.111 0.1110.111 0.112 0.1110.111 0.111 0.111];d= filter2 (c,b);imshow(b,[0,255]);figure(2),imshow(d,[0,255]);上面的例子按步骤实现了:(1)读入实验图像;(2)定义均值滤波器;(3)均值滤波并显示均值滤波后的图像。

2、中值滤波函数medfilt2J=medfilt2(noisy,[hood,hood])其中,noisy为带噪图像,hood为滤波器尺寸,J为滤波后的图像,用中值滤波可去除椒盐噪声,达到平滑图像的目的。

例二:b=imread('Fig3.35(a).jpg ');d=medfilt2(b,[5, 5]); %[5, 5]为滤波模板的规格3、直接对数据进行操作使用for循环直接对数据进行操作,很直观,便于理解,可实现各种形式的滤波。

注意直接操作时要考虑边缘的处理。

例三:下面的代码实现了均值滤波a= imread('Fig3.35(a).jpg '); % Fig3.35(a).jpg为灰度图b=double(a);c=b;xy=imfinfo('Fig3.35(a).jpg ');x=xy.Width;y=xy.Height;for j=3:x-2,for i=3:y-2,c(i,j)=(b(i+1,j)+b(i,j+1)+b(i-1,j)+b(i,j-1)+b(i,j))/5; %在四邻域内平均endendimshow(c,[0 255],'notruesize');二、空间平滑滤波1.平滑线性滤波器使用不同尺寸的均值滤波器,例如3x3、5x5、9x9等等,对课本中96页的图像Fig3.35(a)进行处理并显示处理后的图像,仔细观察并与课本中的结果进行比较。

空间滤波实验观察报告

空间滤波实验观察报告

空间滤波实验观察报告实验目的:通过进行空间滤波实验,观察和分析不同滤波器对图像的处理效果和特点。

实验原理:空间滤波是基于图像中像素点周围的领域信息进行像素值改变的一种图像处理方法。

在本实验中,我们将使用一些常见的空间滤波器,如均值滤波器、中值滤波器和高斯滤波器。

实验步骤:1. 实验准备- 载入待处理的图像,确保图像格式正确。

- 选择合适的滤波器,如均值滤波器、中值滤波器和高斯滤波器。

2. 均值滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的平均值。

- 观察处理后的图像,注意边缘和细节的变化。

3. 中值滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的中值。

- 观察处理后的图像,注意对椒盐噪声和悬浮粒子等噪声的去除效果。

4. 高斯滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的加权平均值。

- 观察处理后的图像,注意平滑程度和对边缘的影响。

5. 记录观察结果- 针对每个滤波器,观察处理后的图像,记录并比较其效果和特点。

- 注意观察图像的细节变化、噪声去除效果和平滑程度等。

实验结果与分析:经过实验观察和比较,我们得出以下结论:- 均值滤波器对图像进行平滑处理,可以去除高频噪声,但会导致细节部分的模糊。

- 中值滤波器能够很好地去除椒盐噪声和其他离群像素,对图像的平滑效果也较好,但在某些情况下可能会对细节造成损失。

- 高斯滤波器在平滑图像的同时,对边缘的保留效果较好,能够更好地抑制高频噪声,但在一些情况下可能会导致图像的细节模糊。

综上所述,在不同的应用场景下,选择合适的空间滤波器可以实现对图像的不同处理需求。

根据实际需求,可以灵活选择对应的滤波器。

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。

通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。

下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。

通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。

2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。

我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。

3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。

通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。

4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。

通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。

5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。

通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。

6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。

通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。

7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。

通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。

8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。

图像增强—空域滤波实验报告

图像增强—空域滤波实验报告

图像增强—空域滤波实验报告篇一:5.图像增强—空域滤波 - 数字图像处理实验报告计算机与信息工程学院验证性实验报告一、实验目的进一步了解MatLab软件/语言,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。

了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。

二、实验要求(1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。

(2)利用MATLAB软件实现空域滤波的程序:I=imread('electric.tif');J = imnoise(I,'gauss',0.02); %添加高斯噪声 J = imnoise(I,'salt & pepper',0.02); %添加椒盐噪声ave1=fspecial('average',3); %产生3×3的均值模版ave2=fspecial('average',5); %产生5×5的均值模版 K = filter2(ave1,J)/255; %均值滤波3×3 L = filter2(ave2,J)/255; %均值滤波5×5 M = medfilt2(J,[3 3]);%中值滤波3×3模板 N = medfilt2(J,[4 4]); %中值滤波4×4模板 imshow(I);figure,imshow(J); figure,imshow(K); figure,imshow(L); figure,imshow(M); figure,imshow(N);三、实验设备与软件(1) IBM-PC计算机系统(2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) (3) 实验所需要的图片四、实验内容与步骤a) 调入并显示原始图像Sample2-1.jpg 。

空间域滤波器(实验报告)

空间域滤波器(实验报告)

数字图像处理作业——空间域滤波器摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。

本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。

平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。

本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。

使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。

不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。

b5E2RGbCAP1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。

p1EanqFDPw实验原理分析:空域滤波是直接对图像的数据做空间变换达到滤波的目的。

它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。

如果输出像素是输入像素邻域像素的线性组合则称为线性滤波<例如最常见的均值滤波和高斯滤波),否则为非线性滤波<中值滤波、边缘保持滤波等)。

DXDiTa9E3d空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。

RTCrpUDGiT 模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于<n-1)/2个像素处,单处理后的图像比原始图像稍小。

实验三数字图像地空间域滤波

实验三数字图像地空间域滤波

实验三、四数字图像的空间域滤波和频域滤波1.实验目的1.掌握图像滤波的基本定义及目的。

2.理解空间域滤波的基本原理及方法。

3.掌握进行图像的空域滤波的方法。

4.掌握傅立叶变换及逆变换的基本原理方法。

5.理解频域滤波的基本原理及方法。

6.掌握进行图像的频域滤波的方法。

2.实验基本原理1.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。

空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。

空域滤波一般分为线性滤波和非线性滤波两类。

线性滤波器的设计常基于对傅立叶变换的分析,非线性空域滤波器则一般直接对领域进行操作。

各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。

平滑可用低通来实现,平滑的目的可分为两类:一类是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。

锐化可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。

结合这两种分类方法,可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。

2.平滑滤波器1)线性平滑滤波器线性低通平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3×3的模板来说,最简单的是取所有系数为1,为了保持输出图像任然在原来图像的灰度值范围内,模板与象素邻域的乘积都要除以9。

MATLAB 提供了fspecial 函数生成滤波时所用的模板,并提供filter2 函数用指定的滤波器模板对图像进行运算。

数字图像处理实验 图像空间滤波

数字图像处理实验  图像空间滤波

数字图像处理实验报告实验三图像空间滤波1、实验目的图像的空间滤波能够实现对图像锐化、亮度增强等操作,通过此功能能够得到所需图像,进行观察各种滤波器的区别与使用范围。

2、实验步骤(1).通过如下污染一幅图像的方式创建一组带噪声的图像:•a加入高斯噪声 b加入椒盐噪声•使用如下技术:•创建2个平滑线形滤波器并分别对上述加噪图像实现线性滤波,比较其优劣, 并写入实验报告:•[ 1 1 1 [ 1 2 1• 1 1 1 2 4 2• 1 1 1 ] 1 2 1 ](2).实现中值滤波对上述加噪图像的处理结果,总结中值滤波和均值滤波各适合用于处理的噪声类型,并写入实验报告。

(3).对一幅模糊的图像使用两种锐化空间滤波器进行增强,并比较效果。

3、实验源码(1)加入高斯噪声makeI=imnoise(W,'gaussian',0,0.005);figure,imshow(makeI);imwrite(makeI,'3-1-gaussian.jpg')(2)加入椒盐噪声makeI=imnoise(W,'salt & pepper',0.01);figure,imshow(makeI);imwrite(makeI,'3-1-salt.jpg')(3)创建两个平滑线性滤波器h=[1 1 1;1 1 1; 1 1 1]a.高斯噪声的图像I=imread('3-1-gaussian.jpg')K=rgb2gray(I)imshow(i)h=[1 1 1;1 1 1;1 1 1]I2 = filter2(h,K);imshow(I2,[]), colorbarb.椒盐噪声的图像W=imread('3-1-salt.jpg')T=rgb2gray(W)I2 = filter2(h,T);imshow(I2,[]), colorbarh=[1 2 1;2 4 2;1 2 1]a.高斯噪声的图像h=[1 2 1;2 4 2;1 2 1]I2 = filter2(h,i);imshow(I2,[]), colorbarb.椒盐噪声的图像I2 = filter2(h,T);imshow(I2,[]), colorbar实现中值滤波(椒盐),观察处理结果可知适于处理椒盐噪声R=imread('3-1-salt.jpg')T=rgb2gray(R)makeI=medfilt2(T,'symmetric');figure,imshow(makeI);实现中值滤波(高斯)R=imread('3-1-gaussian.jpg')T=rgb2gray(R)makeI=medfilt2(T,'symmetric');figure,imshow(makeI);4、实验截图原图加入高斯噪声后如下图:加入椒盐噪声后如下图:A.高斯噪声的图像处理如下:B .椒盐噪声的图像处理如下:平滑线性滤波器h=[1 2 1;2 4 2;1 2 1] A .对高斯噪声图像的处理如下:B.对椒盐噪声图像的处理如下:对已加入椒盐噪声的图像的处理如下:对已加入高斯噪声图像的处理如下:5、实验小结通过本次实验的观察:(1)、中值滤波更适于处理含有椒盐噪声的图像,噪声有明显的消除。

实验三图像的平滑与锐化

实验三图像的平滑与锐化

实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。

二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。

统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。

另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。

假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。

为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。

1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。

设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。

除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。

这个假设大体上反映了许多图像的结构特征。

∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。

可用模块反映领域平均算法的特征。

对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。

模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。

(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。

它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。

在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。

数字图像处理实验三图像滤波实验(模板运算)

数字图像处理实验三图像滤波实验(模板运算)

实验三图像滤波实验(模板运算)一.实验目的:模板运算是空间域图象增强的方法,也叫模板卷积。

(1)平滑:平滑的目的是模糊和消除噪声。

平滑是用低通滤波器来完成,在空域中全是正值。

(2)锐化:锐化的目的是增强被模糊的细节。

锐化是用高通滤波器来完成,在空域中,接近原点处为正,在远离原点处为负。

二.实验内容:(1)利用线性空间滤波(均值滤波)对一幅图象进行平滑,验证模板尺寸和滤波参数对图象的模糊效果的影响。

(2)利用非线性空间滤波器(中值滤波)对一幅噪声图象(椒盐噪声)进行平滑去噪,同时检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×3中值滤波器)对噪声的滤波效果。

(3)利用线性空间滤波器,对灰度图象分别利用二阶标准Laplacian算子和对角线Laplacian算子对其进行锐化操作,增强图像边缘,验证检测效果。

三.实验原理:1.用31×31均值滤波模板,并分别采用参数boundary_options默认值和‘replicate’对图像test_pattern进行平滑处理;用3×3,5×5,7×7均值滤波模板对图像lena平滑处理,观察不同参数、不同模板尺寸对滤波效果的影响。

1.线性空间滤波函数imfilter来实现线性空间滤波,语法为:g = imfilter(f, w, filtering_mode, boundary_options, size_options)其中,f是输入图像,w为滤波模板,g为滤波结果,filtering_mode用于指定在滤波过程中是使用相关运算(‘corr’)还是卷积运算(‘conv’),相关就是按模板在图像上逐步移动运算的过程,卷积则是先将模板旋转180度,再在图像上逐步移动的过程,显然,若模板中心对称,则相关和卷积运算是相同操作,默认为相关运算;boundary_options用于处理边界充零问题,默认为赋零,若该参数为’replicate’表示输出图像边界通过复制原图像边界的值来扩展;size_options可以是’full’或’same’,默认为’same’,表示输出图像与输入图像的大小相同。

实验三 图像的空间域滤波

实验三 图像的空间域滤波

1 A=imread('E:\pic\1.jpg');I=rgb2gray(A);subplot(1,3,1);imshow(I);title('原图');J=imnoise(I,'salt & pepper',0.05);subplot(1,3,2);imshow(J); title('加入椒盐噪声图象');K=imnoise(I,'gaussian',0.01,0.02);subplot(1,3,3);imshow(K);title('加入高斯噪声图象');2 A=imread('E:\pic\1.jpg');I=rgb2gray(A);Subplot(2,2,1);Imshow(I);title('原图');H=fspecial('motion',20,45);MotionBlur=imfilter(I,H,'replicate');Subplot(2,2,2);Imshow(MotionBlur);title('MotionBlur image'); H=fspecial('disk',10);blurred=imfilter(I,H,'replicate');Subplot(2,2,3);Imshow(blurred);title('Blurred image');H=fspecial('unsharp',0.5);Sharpened=imfilter(I,H,'replicate');Subplot(2,2,4);Imshow(Sharpened);title('sharpened image');3 A=imread('E:\pic\1.jpg');I=rgb2gray(A);J=imnoise(I,'salt & pepper',0.05);Subplot(2,2,1);imshow(J);title('加入椒盐噪声图象'); H=fspecial('motion',20,45);MotionBlur=imfilter(J,H,'replicate');Subplot(2,2,2);Imshow(MotionBlur);title('replicate');MotionBlur=imfilter(J,H,'symmetric');Subplot(2,2,3);Imshow(MotionBlur);title('symmetric');MotionBlur=imfilter(J,H,'circular');Subplot(2,2,4);Imshow(MotionBlur);title('circular');4A=imread('E:\pic\1.jpg');I=rgb2gray(A);J=imnoise(I,'salt & pepper',0.05);Aver=J;H=fspecial('average');for i =1:10Aver=imfilter(Aver,H,'replicate');endSubplot(1,3,1);imshow(J);title('加有椒盐噪声的图象'); Subplot(1,3,2);imshow(Aver);title('10次均值滤波图象¨'); for i = 1:10Aver=imfilter(Aver,H,'replicate');endSubplot(1,3,3);imshow(Aver);title('20次均值滤波图象');5 A=imread('E:\pic\1.jpg');I=rgb2gray(A);J=imnoise(I,'salt & pepper',0.05);Subplot(1,3,1);imshow(J);title('加有椒盐噪声的图象'); H=fspecial('average');Aver=imfilter(J,H,'replicate');Subplot(1,3,2);imshow(Aver);title('均值滤波后的图象'); Med=medfilt2(J);Subplot(1,3,3);imshow(Med);title('中值滤波后的图象');6 A=imread('E:\pic\1.jpg');f=rgb2gray(A);Subplot(1,2,1);imshow(f);title('原图');w=(1/16)*[1 2 1;2 4 2;1 2 1];f=im2double(f);g=imfilter(f,w,'replicate');Subplot(1,2,2);imshow(g);title('平滑滤波后的图象');1 A=imread('E:\pic\1.jpg');f=rgb2gray(A);w8=[1 1 1;1 -8 1;1 1 1];f=im2double(f);g8=f-imfilter(f,w8,'replicate');figure;Subplot(1,2,1);imshow(f);title('原图');Subplot(1,2,2);imshow(g8);title(' 用拉普拉斯算子滤波后的图象');2function w=genlaplacian(n)w=ones(n);x=ceil(n)/2;w(x,x)=-1*(n*n-1);3 A=imread('E:\pic\1.jpg');f=rgb2gray(A);w5=genlaplacian(5);f=im2double(f);g5=f-imfilter(f,w5,'replicate');w9=genlaplacian(9);g9=f-imfilter(f,w9,'replicate');w15=genlaplacian(15);g15=f-imfilter(f,w15,'replicate');w25=genlaplacian(25);g25=f-imfilter(f,w25,'replicate'); figure(1);imshow(f);title('原图');figure(2);Subplot(2,2,1);Imshow(g5);title('5x5的锐化增强图象'); Subplot(2,2,2);Imshow(g9);title('9x9的锐化增强图象'); Subplot(2,2,3);Imshow(g15);title('15x15的锐化增强图象'); Subplot(2,2,4);Imshow(g25);title('25x25的锐化增强图象');4 A=imread('E:\pic\1.jpg'); B=rgb2gray(A);I=double(B);[Gx,Gy]=gradient(I);G=sqrt(Gx.*Gx+Gy.*Gy);J1=G;Subplot(2,2,1);Imshow(J1,map);J2=I;K=find(G>=7);J2(K)=G(K);Subplot(2,2,2);Imshow(J2,map);J3=I;K=find(G>=7);J3(K)=255;Subplot(2,2,3);Imshow(J3,map);J4=I;K=find(G<=7);J4(K)=255;Subplot(2,2,4);Imshow(J4,map);5 I=imread('E:\pic\1.jpg');B=rgb2gray(I);A=double(B);domain=[ 1 1 1 1 1;1 1 1 1 1;1 1 -24 1 1;1 1 1 1 1;1 1 1 1 1 ];K=conv2(A,domain,'same');figureSubplot(1,2,1);imshow(B);title('原图');Subplot(1,2,2);imshow(K);title('锐化滤波后图象');。

数字图像处理实验报告之数字图像的空间域滤波

数字图像处理实验报告之数字图像的空间域滤波

数字图像处理实验报告学院:班级:学号:时间:2012.11.29实验三:数字图像的空间域滤波——锐化滤波1.实验目的1.掌握图像滤波的基本定义及目的。

2.理解空间域滤波的基本原理及方法。

3.掌握进行图像的空域滤波的方法。

2.实验基本原理1.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。

空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。

空域滤波一般分为线性滤波和非线性滤波两类。

线性滤波器的设计常基于对傅立叶变换的分析,非线性空域滤波器则一般直接对领域进行操作。

各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。

平滑可用低通来实现,平滑的目的可分为两类:一类是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。

锐化可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。

结合这两种分类方法,可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。

2.锐化滤波器图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,需要利用图像锐化技术,使图像的边缘变得清晰。

1)线性锐化滤波器线性高通滤波器是最常用的线性锐化滤波器。

这种滤波器的中心系数都是正的,而周围的系数都是负的,所有的系数之和为0。

对3×3 的模板来说,典型的系数取值为:[-1 -1 -1;-1 8 -1;-1 -1 -1]事实上这是拉普拉斯算子。

数字图像处理空间域滤波实验报告

数字图像处理空间域滤波实验报告

一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空间域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。

4.掌握傅立叶变换及逆变换的基本原理方法;5.理解频域滤波的基本原理及方法;6.掌握进行图像的频域滤波的方法。

二.实验结果与分析1.平滑空间滤波:a)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中;(提示:imnoise)b)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示;(提示:fspecial、imfilter或filter2)c)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像采用不同的填充方式,效果略有不同。

d)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像;(提示:利用fspecial 函数的’average’类型生成均值滤波器)e)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

(提示:medfilt2)中值滤波后的图像比均值滤波后的图像更加平滑。

f)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;滤波后图像变得平滑。

2.锐化空间滤波a)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w =[ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波;观察原图与拉普拉斯掩模滤波后的图像,滤波后的图像不再那么平滑,使图像产生锐化效果。

b)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]本函数见文件夹下genlaplacian.m文件。

遥感图像处理实验报告_图像的频率域滤波处理

遥感图像处理实验报告_图像的频率域滤波处理

遥感图像处理实验报告(2013 —2014 学年第1学期)实验名称:图像的频率域滤波处理实验时间:实验地点:指导教师:专业班级:姓名:学号:一:实验目的1:掌握滤波器在程序语言中的定义算法2:理解图像的频率域与空间域之间的区别与联系3:在频率域对图像进行处理,达到平滑(低通滤波)与锐化(高通滤波)的目的二:实验内容1:在Matlab中定义滤波器2:对图像进行频率域处理3:对频率域的处理结果,结合第3次实验(空间域处理)结果进行对比,给出评价三:实验代码及Matlab使用心得(注释中)%清屏,清除工作空间,关闭所有绘图窗口clc;clear all;close all;%读取图像,并建立一个窗口,显示原始图像I = imread('C:\Users\浮生\Desktop\大三\Matlab\data\lena.png', 'png')figure(1)imshow(I)title('原始图像')%图像傅立叶变换%fft(X)函数的作用是,返回矩阵X的【二维离散傅立叶变换】结果%fft()函数采用快速傅立叶变换算法,运算结果的行列数与被变换矩阵的规格相同F = fft2(I);%fftshift()函数的功能则是把FFT的DC分量移动到频谱矩阵的中心%在直观上,就是把低频信息移到矩阵中心,便于直观观看图像的频谱F = fftshift(F);%由于FFT的运算结果的数值跨幅过大%直接显示的话只能看到一个小亮点%为了显示的直观,我们需要自行定义灰度显示幅度%在本例中,我们定义显示幅度为0-50000figure(2);imshow(abs(real(F)), [0 50000]);title('频率域图像')%%%%%%定义滤波器之前的准备工作%%%%%[m n] = size(I);%读取图像的规格p = m/2;%定义两个计数器p和qq = n/2;%用以控制滤波器的遍历过程image = zeros(m,n);%%%%%%截止频率为50的理想低通滤波器%%%%%%%低通滤波器,即让频率高于阈值的信号值为0,而在阈值之下的所有信号保持原样%反映在图像操作中,将去除高频信息,达到平滑的效果lowpass_50 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 50%什么也不做;elselowpass_50(u, v) = 0;endendend%显示频率域图像figure(3);imshow(abs(real(lowpass_50)), [0 50000]);title('频率域图像截止频率为50的理想低通滤波器');%傅立叶逆运算反算图像image = ifftshift(lowpass_50);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(4);imshow(image, []);title('处理结果截止频率为50的理想低通滤波器')%%%%%%截止频率为100的理想低通滤波器%%%%%%lowpass_100 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 100%什么也不做;elselowpass_100(u, v) = 0;endendend%显示频率域图像figure(5);imshow(abs(real(lowpass_100)), [0 50000]);title('频率域图像截止频率为100的理想低通滤波器'); %傅立叶逆运算反算图像image = ifftshift(lowpass_100);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(6);imshow(image, []);title('处理结果截止频率为100的理想低通滤波器')%%%%%%截止频率为50的理想高通滤波器%%%%%% highpass_50 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 50highpass_50(u, v) = 0;else%什么也不做;endendend%显示频率域图像figure(7);imshow(abs(real(highpass_50)), [0 50000]);title('频率域图像截止频率为50的理想高通滤波器');%傅立叶逆运算反算图像image = ifftshift(highpass_50);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(8);imshow(image, []);title('处理结果截止频率为50的理想高通滤波器')%%%%%%截止频率为100的理想高通滤波器%%%%%% highpass_100 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 100highpass_100(u, v) = 0;else%什么也不做;endendend%显示频率域图像figure(9);imshow(abs(real(highpass_100)), [0 50000]);title('频率域图像截止频率为100的理想高通滤波器');%傅立叶逆运算反算图像image = ifftshift(highpass_100);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(10);imshow(image, []);title('处理结果截止频率为100的理想高通滤波器')%%%%%%截止频率为50的巴特沃斯低通滤波器%%%%%% for u = 1:m,for v = 1:nD=sqrt((u-p)^2 + (v-q)^2);Butterworth(u,v)=1/(1+D/50)^(2*2);endend%显示频率域图像figure(11);imshow(abs(real(Butterworth)), []);title('频率域图像截止频率为50的巴特沃斯低通滤波器'); %傅立叶逆运算反算图像image = F.*Butterworth;image = ifftshift(image);image = abs(ifft2(image));%显示处理结果图像figure(12);imshow(image, []);title('处理结果截止频率为50的巴特沃斯低通滤波器')%%%%%%截止频率为50的高斯低通滤波器%%%%%%for u=1:m,for v=1:nD=sqrt((u-p)^2 + (v-q)^2);Gaussian(u,v)=exp(-D^2/(2*50^2));endend%显示频率域图像figure(13);imshow(abs(real(Gaussian)), []);title('频率域图像截止频率为50的高斯低通滤波器'); %傅立叶逆运算反算图像image = F.*Gaussian;image = ifftshift(image);image = abs(ifft2(image));%显示处理结果图像figure(14);imshow(image, []);title('处理结果截止频率为50的高斯低通滤波器');四:实验结果(仅列一例)五:实验心得1:相较空域滤波,频率域滤波的算法复杂度更高。

opencv实验-空域滤波

opencv实验-空域滤波

利用5*5尺寸的均值模板平滑灰度图像实验结果如图:利用9*9尺寸的均值模板平滑灰度图像实验结果如图:2、完成实验,利用高斯模板实现平滑灰度图像处理。

实验代码如下:IplImage* Gaussian_smooth_cx(IplImage* src, int nub){IplImage* dst = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, src->nChannels);cvSmooth(src, dst, CV_GAUSSIAN, nub);return dst;}其中nub选择空间滤波模板的大小利用3*3尺寸的高斯模板平滑灰度图像实验结果如图:利用5*5尺寸的高斯模板平滑灰度图像实验结果如图:利用9*9尺寸的高斯模板平滑灰度图像实验结果如图:3、完成实验,利用Laplacian、Robert、Sobel模板实现锐化灰度图像。

利用Laplacian模板锐化灰度图像核心代码如下:IplImage* Laplacian_cx(IplImage* src){IplImage* dst = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, src->nChannels);cvLaplace(src, dst);return dst;}实验结果如图:利用Robert模板实现锐化灰度图像核心代码如下:IplImage* Robert_cx(IplImage* src){float a[] = {-1, 0,0, 1};CvMat kernel = cvMat( 2, 2, CV_32F, a);IplImage* dst = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, src->nChannels);cvFilter2D(src,dst,&kernel);return dst;}实验结果如图:利用Sobel模板实现锐化灰度图像核心代码如下:IplImage* Sobel_cx(IplImage* src){IplImage* dst = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, src->nChannels);cvSobel(src,dst,1,0);return dst;}实验结果如图:4、完成实验,利用高提升滤波算法实现增强灰度图像。

实验三图像滤波

实验三图像滤波

实验三 图像滤波实验一、实验目的1.熟练掌握空域滤波中常用滤波器的原理;2.理解邻域平均、中值滤波降噪法等的图像增强原理;3.加深对图像增强的认识,巩固所学图像增强理论知识和相关算法;4.利用MATLAB 程进行图像滤波,观察增强效果。

二、实验原理以图像平滑为例:图像平滑方法是一种实用的图像处理技术,能减弱或消除图像中的高频率分量,但不影响低频率分量。

因为高频率分量主要对应图像中的区域边缘等灰度值较大变化较快的部分,平滑滤波将这些分量滤去可减少局部灰度起伏,使图像变得比较平滑。

实际应用中,平滑滤波还可用于消除突发噪声,或者在提取较大目标前去除过小的细节或将目标内的小间断连接起来。

1. 邻域平均法用窗口像素的平均值取代中心像素原来的灰度值。

邻域的选取通常有4-邻域和8-邻域。

∑∈=A y x y x f L j i g ),(),(1),( 2. 中值滤波与加权平均方式的平滑滤波不同,中值滤波是抑制噪声的非线性处理方法。

对于给定的n 个数值{a1,a2,…,an},将它们按大小有序排列。

当n 为奇数时,位于中间位置的那个数值称为这n 各数值的中值。

当n 为偶数时,位于中间位置的两个数值的平均值称为这n 个数值的中值。

中值滤波,就是图像中滤波后的某像素输出值等于该像素邻域中各像素灰度的中值。

三、实验内容与步骤:按下面要求编写程序并运行对peppers.bmp 图像添加零均值“高斯”噪声,用3×3或9×9滑动平均模板进行降噪处理,观察平均降噪图像的效果。

1.对peppers.bmp 图像添加零均值“高斯”噪声程序代码如下:I=imread('d:\peppers.bmp');J=imnoise(I,'gaussian',0,0.02);subplot(1,2,1);imshow(I);title('原图');subplot(1,2,2);imshow(J);title('加噪处理后的图');运行结果如下:2.用3×3滑动平均模板进行降噪处理,观察平均降噪图像的效果程序代码如下:I=imread('d:\peppers.bmp');J=imnoise(I,'gaussian',0,0.02);[H,W]=size(J);M=double(J);M1=M;for j=2:H-1for k=2:W-1M1(j,k)=[M(j-1,k-1)+M(j-1,k)+M(j-1,k+1)+M(j,k-1)+M(j,k)+M(j,k+1)+M(j+1,k-1) +M(j+1,k)+M(j+1,k+1)]/9;end;end;subplot(1,3,1);imshow(I);title('原图');subplot(1,3,2);imshow(J);title('加噪处理');subplot(1,3,3);imshow(uint8(M1),[]);title('3*3邻域平均降噪处理');运行结果如下:3.对peppers.bmp图像添加“椒盐”噪声,分别采用5×5的矩形、圆形及十字形窗口进行中值滤波处理,观察处理结果。

空间滤波实验报告

空间滤波实验报告

空间滤波实验报告空间滤波实验报告引言:空间滤波是数字图像处理中常用的一种方法,它通过对图像像素进行加权平均或其他操作,以改善图像的质量和增强特定的图像细节。

在本次实验中,我们将探索几种常见的空间滤波技术,并评估它们在不同图像上的效果。

一、均值滤波均值滤波是一种简单的空间滤波方法,它通过计算像素周围邻域的平均值来平滑图像。

在本次实验中,我们选择了一张包含噪声的图像进行均值滤波处理。

结果显示,均值滤波能够有效地减少噪声,但同时也会导致图像的细节模糊化。

这是因为均值滤波是一种线性滤波方法,它对所有像素都施加相同的权重,无法区分图像中的边缘和纹理。

二、中值滤波中值滤波是一种非线性滤波方法,它通过将像素周围邻域的像素值排序并选取中间值来进行滤波。

与均值滤波相比,中值滤波能够更好地保留图像的细节信息。

在实验中,我们使用了一张包含椒盐噪声的图像进行中值滤波处理。

结果显示,中值滤波能够有效去除椒盐噪声,同时也能够保持图像的细节纹理。

这是因为中值滤波对于噪声像素有较好的鲁棒性,能够准确地估计图像中的真实像素值。

三、高斯滤波高斯滤波是一种基于高斯函数的空间滤波方法,它通过对像素周围邻域的像素值进行加权平均来平滑图像。

与均值滤波不同的是,高斯滤波对于不同像素位置的权重是不同的,它能够更好地保持图像的细节和边缘。

在实验中,我们对一张包含高斯噪声的图像进行了高斯滤波处理。

结果显示,高斯滤波能够有效地降低噪声水平,同时也能够保持图像的细节纹理。

这是因为高斯滤波能够根据像素周围邻域的像素值分布来调整权重,从而更好地平衡了图像的平滑度和细节保留。

四、边缘检测除了平滑图像,空间滤波还可以用于边缘检测。

边缘检测是一种常用的图像处理任务,它能够准确地提取图像中的边缘信息。

在实验中,我们使用了一张包含边缘的图像进行了边缘检测实验。

通过应用一种基于梯度的空间滤波算子,我们成功地提取出了图像中的边缘信息。

结果显示,边缘检测能够有效地突出图像中的边缘,但同时也会引入一定的噪声。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 A=imread('E:\pic\1.jpg');
I=rgb2gray(A);
subplot(1,3,1);
imshow(I);title('原图');
J=imnoise(I,'salt & pepper',0.05);
subplot(1,3,2);
imshow(J); title('加入椒盐噪声图象');
K=imnoise(I,'gaussian',0.01,0.02);
subplot(1,3,3);
imshow(K);title('加入高斯噪声图象');
2 A=imread('E:\pic\1.jpg');
I=rgb2gray(A);
Subplot(2,2,1);
Imshow(I);title('原图');
H=fspecial('motion',20,45);
MotionBlur=imfilter(I,H,'replicate');
Subplot(2,2,2);
Imshow(MotionBlur);title('MotionBlur image'); H=fspecial('disk',10);
blurred=imfilter(I,H,'replicate');
Subplot(2,2,3);
Imshow(blurred);title('Blurred image');
H=fspecial('unsharp',0.5);
Sharpened=imfilter(I,H,'replicate');
Subplot(2,2,4);
Imshow(Sharpened);title('sharpened image');
3 A=imread('E:\pic\1.jpg');
I=rgb2gray(A);
J=imnoise(I,'salt & pepper',0.05);
Subplot(2,2,1);imshow(J);title('加入椒盐噪声图象'); H=fspecial('motion',20,45);
MotionBlur=imfilter(J,H,'replicate');
Subplot(2,2,2);
Imshow(MotionBlur);title('replicate');
MotionBlur=imfilter(J,H,'symmetric');
Subplot(2,2,3);
Imshow(MotionBlur);title('symmetric');
MotionBlur=imfilter(J,H,'circular');
Subplot(2,2,4);
Imshow(MotionBlur);title('circular');
4
A=imread('E:\pic\1.jpg');
I=rgb2gray(A);
J=imnoise(I,'salt & pepper',0.05);
Aver=J;
H=fspecial('average');
for i =1:10
Aver=imfilter(Aver,H,'replicate');
end
Subplot(1,3,1);imshow(J);title('加有椒盐噪声的图象'); Subplot(1,3,2);imshow(Aver);title('10次均值滤波图象¨'); for i = 1:10
Aver=imfilter(Aver,H,'replicate');
end
Subplot(1,3,3);imshow(Aver);title('20次均值滤波图象');
5 A=imread('E:\pic\1.jpg');
I=rgb2gray(A);
J=imnoise(I,'salt & pepper',0.05);
Subplot(1,3,1);imshow(J);title('加有椒盐噪声的图象'); H=fspecial('average');
Aver=imfilter(J,H,'replicate');
Subplot(1,3,2);imshow(Aver);title('均值滤波后的图象'); Med=medfilt2(J);
Subplot(1,3,3);imshow(Med);title('中值滤波后的图象');
6 A=imread('E:\pic\1.jpg');
f=rgb2gray(A);
Subplot(1,2,1);imshow(f);title('原图');
w=(1/16)*[1 2 1;2 4 2;1 2 1];
f=im2double(f);
g=imfilter(f,w,'replicate');
Subplot(1,2,2);imshow(g);title('平滑滤波后的图象');
1 A=imread('E:\pic\1.jpg');
f=rgb2gray(A);
w8=[1 1 1;1 -8 1;1 1 1];
f=im2double(f);
g8=f-imfilter(f,w8,'replicate');
figure;
Subplot(1,2,1);imshow(f);title('原图');
Subplot(1,2,2);imshow(g8);title(' 用拉普拉斯算子滤波后的图象');
2
function w=genlaplacian(n)
w=ones(n);
x=ceil(n)/2;
w(x,x)=-1*(n*n-1);
3 A=imread('E:\pic\1.jpg');
f=rgb2gray(A);
w5=genlaplacian(5);
f=im2double(f);
g5=f-imfilter(f,w5,'replicate');
w9=genlaplacian(9);
g9=f-imfilter(f,w9,'replicate');
w15=genlaplacian(15);
g15=f-imfilter(f,w15,'replicate');
w25=genlaplacian(25);
g25=f-imfilter(f,w25,'replicate'); figure(1);imshow(f);title('原图');
figure(2);
Subplot(2,2,1);
Imshow(g5);title('5x5的锐化增强图象'); Subplot(2,2,2);
Imshow(g9);title('9x9的锐化增强图象'); Subplot(2,2,3);
Imshow(g15);title('15x15的锐化增强图象'); Subplot(2,2,4);
Imshow(g25);title('25x25的锐化增强图象');
4 A=imread('E:\pic\1.jpg'); B=rgb2gray(A);
I=double(B);
[Gx,Gy]=gradient(I);
G=sqrt(Gx.*Gx+Gy.*Gy);
J1=G;
Subplot(2,2,1);
Imshow(J1,map);
J2=I;
K=find(G>=7);
J2(K)=G(K);
Subplot(2,2,2);
Imshow(J2,map);
J3=I;
K=find(G>=7);
J3(K)=255;
Subplot(2,2,3);
Imshow(J3,map);
J4=I;
K=find(G<=7);
J4(K)=255;
Subplot(2,2,4);
Imshow(J4,map);
5 I=imread('E:\pic\1.jpg');
B=rgb2gray(I);
A=double(B);
domain=[ 1 1 1 1 1;
1 1 1 1 1;
1 1 -24 1 1;
1 1 1 1 1;
1 1 1 1 1 ];
K=conv2(A,domain,'same');
figure
Subplot(1,2,1);imshow(B);title('原图');
Subplot(1,2,2);imshow(K);title('锐化滤波后图象');。

相关文档
最新文档