2021中考数学必刷题 (44)

合集下载

2021年江苏省徐州市中考数学考前必刷真题试卷附解析

2021年江苏省徐州市中考数学考前必刷真题试卷附解析

2021年江苏省徐州市中考数学考前必刷真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,AC是⊙O的直径,∠BAC=20°,P是弧AB的中点,则∠PAB=()A.35°B.40°C.60°D.70°2.有一个高大的五棱柱形建筑物,人站在地面上,不可能同时看到的是()A.2个侧面B. 3个侧面C. 1个侧面D. 4个侧面D3.如图,AB、AC 分别是⊙O的直径和切线,BC 交⊙O于D.AB=8,AC=6,那么 CD 的长为()A.3 B.4 C.9 D.3.64.AB是⊙O的弦,OC⊥AB于C,再以O为圆心,OC为半径作圆,称作小⊙O,点P是AB 上异于A、B、C的任意一点,则点 P的位置是()A.在大⊙O上B.在大⊙O的外部C.在小⊙O的内部D.在小⊙O外在大⊙O内5.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于()A.-1 B.0 C.1 D.26.下列图形:①线段;②角;③数字7;④圆;⑤等腰三角形;⑥直角三角形.其中轴对称图形是()A.①②③④B.①③④⑤⑥C.①②④⑤D.①②⑤7.已知:如图,∠A0B的两边 0A、0B均为平面反光镜,∠A0B=40.在0B上有一点P,从P 点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是()A.60°B.80°C.100 °D.120°8.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?设原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+B .12012045x x -=+C .12012045x x -=-D .12012045x x -=- 9.从1到9这9个自然数中任取一个,是2的倍数的概率是( ) A .93 B . 94 C . 95 D .110.下列计算正确的是( )A .23(31)3a a a a --=--B .222()a b a b -=-C .2(23)(23)94a a a ---=-D .235()a a = 11.如图,长度为12cm 的线段AB 的中点为M C ,点将线段MB 分成:1:2MC CB =,则线段AC 的长度为( )A .2cmB .8cmC .6cmD .4cm12.某市按以下标准收取水费:用小不超过20吨,按每吨1.2元收费,超过20吨,则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( )A .20元B .24元C .30元D .36元13.一个多边形内角和是1080,则这个多边形是( ) A .六边形 B .七边形C .八边形D .九边形 二、填空题14.双曲线y=8x与直线y=2x 的交点坐标为 . 15.如图,弦AB 的长等于⊙O 的半径,点C 在弧AmB 上,则∠C 的度数为______.16.方程2220x x --=的二次项系数是 ,一次项系数是 ,常数项是 .17.某汽车每小时耗油6 kg ,该车在行驶t(h)后耗去了Q(kg)油,即Q=6t ,其中常量是 ,变量是 .18.已知反比例函数52m y x-=的图象上的两点A (x l ,y 1 ), B ( x 2 , y 2),当120x x <<时,有21y y >,则 m 的取值范围是 . 19.一个六棱柱的底面边长都是3 cm ,一条侧棱的长为5 cm ,那么它的所有棱长度之和为 cm ,侧面积为 cm 2.20. 已知AD 是△ABC 的中线,如果△ABC 的面积是18cm 2,则△ADC 的面积是 cm 2.21.某商店销售一批色拉油,若按每瓶 40 元出售,则相对于进价来说,每瓶可获利 25%,这种色拉油每瓶的进价是 元.22.如图所示,∠1=∠2,∠ABC=∠DCB ,AC ,BD 相交于O ,请将下列说明AB=DC 的理由的过程补充完整.解:∵∠ABC=∠DCB ,∠l=∠2(已知),∴∠ABC 一∠l=∠DCB 一∠2,即∠DBC= .在△ABC 和△DCB 中,= ( ),= ( ),= ( ),∴ ≌ ( ),∴AB=DC( ).三、解答题23.如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面(BD )刚好接触,20AB CD ==cm ,200BD =cm ,且AB CD ,与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?24.已知点P (2,2)在反比例函数xk y =(0≠k )的图象上. A C B D(1)当3x时,求y的值;-=(2)当31<<x时,求y的取值范围.25.甲、乙两战士各打靶5次,命中环数如下:甲:5,9,8,10,8;乙:6,10,5,10,9.求:(1)两战士平均每枪分别命多少环?(2)你认为哪一个战士发挥比较稳定.26.如图,AB⊥BC 于B,∠1=55°,∠2= 35°,直线a、b平行吗?请说明理由.27.写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).28.如图所示为由6个面积为1的小正方形组成的矩形,点A,B,C,D,E,F,G是小正方形的顶点,以这7个点中的任意三个点为顶点,可组成多少个面积为1的三角形?请写出所有满足条件的三角形.29.现有一条直径为l2 cm 的圆柱形铅柱,若要铸造12个直径为l2 cm 的铅球,应截取多长的铅柱(损耗不计)?(球的体积公式343R π,R 为球半径)30.将2627-,206207-,20062007-按从小到大的顺序排列起来. 200620626200720727-<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.3.D4.D5.C6.C7.B8.B9.B10.C11.B12.C13.C二、填空题14.(2,4),(-2,-4)15.30° •16.2,-1,-217.6;Q 、t18.25m 19. 66,9020.921.3222.∠ACB ,∠ACB ,∠DBC ,已证,∠ABC ,∠DCB ,已知,BC ,CB ,公共边,△ABC ,△DCB ,AAS ,全等三角形对应边相等三、解答题23.解:过圆心O 作OE ⊥AC,垂足为D ,连结AO.设圆O 的半径为R,在Rt △AOE 中,AE=2AC =2BD =100, OE=R —AB=R —20.∵AE 2+OE 2=OA 2 ,∴1002+( R —20)2=R 2解得R=260cm .这个圆弧形门的最高点离地面的高度为2R=520cm答:这个圆弧形门的最高点离地面的高度为520cm . 24.解 (1)∵点P (2,2)在反比例函数x k y =的图象上,∴22k =.即4=k . ∴反比例函数的解析式为x y 4=. ∴当3-=x 时,34-=y . (2)∵当1=x 时,4=y ;当3=x 时,34=y , 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y . 25. (1)8x x ==乙甲环;(2)甲发挥稳定26.a ∥b ,理由略27.)2)(2(42-+=-n n m m mn (答案不唯一) . 28.共l4个三角形,具体表示略29.96cm30.200620626200720727-<-<-。

2021中考数学必刷题 (4)

2021中考数学必刷题 (4)

数学题库04一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.(3分)下列说法中正确的是()A.的算术平方根是±4B.12是144的平方根C.的平方根是±5D.a2的算术平方根是a2.(3分)下列计算正确的是()A.3x﹣x=3B.a3÷a4=C.(x﹣1)2=x2﹣2x+1D.(﹣2a2)3=﹣6a63.(3分)已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+54.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm25.(3分)若x2+2(m﹣3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m 的值为()A.﹣4B.16C.4或16D.﹣4或﹣16 6.(3分)下列命题中是真命题的是()A.确定性事件发生的概率为1B.平分弦的直径垂直于弦C.正多边形都是轴对称图形D.两边及其一边的对角对应相等的两个三角形全等7.(3分)如图,从一块直径为2的圆形铁皮上剪出一个圆心角为90°的扇形CAB,且点C,A,B都在⊙O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是()A.B.C.D.8.(3分)若整数a使关于x的分式方程﹣2=有整数解,则符合条件的所有a之和为()A.7B.11C.12D.169.(3分)若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=510.(3分)如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于F,连ED,EC,有以下结论:①△ADE≌△BCE②CE⊥AB③BD=2EF④S△BDE=S△ACE其中正确的是()A.①②③B.②④C.①③D.①③④二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)某物体质量为325000克,用科学记数法表示为克.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)若函数y=(k﹣2)x是关于x的二次函数,则k=.14.(3分)若+=2,则分式的值为.15.(4分)如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.16.(4分)如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=米,背水坡CD的坡度i=1:(i为DF与FC 的比值),则背水坡CD的坡长为米.17.(4分)如图,长方形ABCD的长为8,宽为5,E是AB的中点,点F在BC上,若△DEF的面积为16,则△DCF的面积为.18.(4分)如图,在平面直角坐标系中,直线l1:y=x+1与x轴交于点A,与y轴交于点B,以x轴为对称轴作直线y=x+1的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1、△A3B3B2、…、△A n B n B n﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1、四边形A3B3C3B2…、四边形A n B n∁n B n﹣1的周长分别是l1、l2、l3、…、l n,则l n为(用含有n的代数式表示)三、解答题(本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(7分)(1)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°(2)先化简,再求值:+(+1)÷,然后从﹣≤x≤的范围内选取一个合适的整数作为x的值代入求值.20.(8分)“金山银山,不如绿水青山”.鄂尔多斯市某旗区不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:(1)扇形统计图中松树所对的圆心角为度,并补全条形统计图.(2)该旗区今年共种树32万棵,成活了约多少棵?(3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用A,B,C,D表示)21.(8分)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.22.(9分)牧民巴特尔在生产和销售某种奶食品时,采取客户先网上订购,然后由巴特尔付费选择甲或乙快递公司送货上门的销售方式,甲快递公司运送2千克,乙快递公司运送3千克共需运费42元:甲快递公司运送5千克,乙快递公司运送4千克共需运费70元.(1)求甲、乙两个快递公司每千克的运费各是多少元?(2)假设巴特尔生产的奶食品当日可以全部出售,且选择运费低的快递公司运送,若该产品每千克的生产成本y1元(不含快递运费),销售价y2元与生产量x千克之间的函数关系式为:y1=,y2=﹣6x+120(0<x<13),则巴特尔每天生产量为多少千克时获得利润最大?最大利润为多少元?23.(8分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.24.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.25.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.参考答案一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.【分析】直接利用算术平方根以及平方根的定义分别分析得出答案.【解答】解:A、=4,4的算术平方根是2,故此选项错误;B、12是144的平方根,正确;C、=5,5的平方根是±,故此选项错误;D、a2的算术平方根是|a|,故此选项错误.故选:B.【点评】此题主要考查了算术平方根以及平方根的定义,正确把握相关定义是解题关键.2.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x,故A错误;(C)原式=x2﹣2x+1,故C错误;(D)原式=﹣8a6,故D错误;故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=x2+3向左平移2个单位所得直线的解析式为:y=(x+2)2+3;故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.5.【分析】利用完全平方公式,以及多项式乘以多项式法则确定出m与n的值,代入原式计算即可求出值.【解答】解:∵x2+2(m﹣3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x的一次项,∴m﹣3=±1,n+2=0,解得:m=4,n=﹣2,此时原式=16;m=2,n=﹣2,此时原式=4,则原式=4或16,故选:C.【点评】此题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.6.【分析】根据概率的求法、垂径定理、轴对称图形的概念和三角形确定的判定定理进行判断即可.【解答】解:确定性事件发生的概率为1或0,故A错误;平分弦(不是直径)的直径垂直于弦,故B错误;正多边形都是轴对称图形,故C正确;两边及其一边的对角对应相等的两个三角形不一定全等,故D错误,故选:C.【点评】本题考查的是命题的真假判断,掌握概率的求法、垂径定理、轴对称图形的概念和三角形确定的判定定理是解题的关键.7.【分析】连接BC,如图,利用圆周角定理得到BC为⊙O的直径,则AB=AC=,设该圆锥底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,BC=2,∴AB=AC=,设该圆锥底面圆的半径为r,∴2πr=,解得r=,即该圆锥底面圆的半径为.故选:D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.8.【分析】根据分式方程的解为整数解,即可得出a=﹣1,1,2,4,7,据此计算即可.【解答】解:解分式方程﹣2=,得:x=,∵分式方程的解为整数,且x≠2,∴a=﹣1,1,4,7.故符合条件的所有a之和为:﹣1+1+4+7=11.故选:B.【点评】本题考查了分式方程的解,注意分式方程中的解要满足分母不为0的情况.9.【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.10.【分析】只要证明△ADE≌△BCE,△KAE≌△DBE,EF是△ACK的中位线即可一一判断;【解答】解:如图延长CE交AD于K,交AB于H.设AD交BE于O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD,∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确,∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°,∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC不垂直AB,故②错误,∵∠AEB=∠HED,∴∠AEK=∠BED,∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK,∵△DCK是等腰直角三角形,DE平分∠CDK,∴EC=EK,∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确,∵EK=EC,∴S△AKE=S△AEC,∵△KAE≈△DBE,∴S△KAE=S△BDE,∴S△BDE=S△AEC,故④正确.故选:D.【点评】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.【分析】根据二次函数的定义列出不等式求解即可.【解答】解:由y=(k﹣2)x是关于x的二次函数,得,解得k=﹣3,故答案为:﹣3.【点评】本题考查二次函数的定义,二次函数的次数是二,系数不等于零是解题关键.14.【分析】已知等式整理得到关系式,代入原式计算即可求出值.【解答】解:已知等式整理得:=2,即x+y=2xy,则原式===﹣11.故答案为:﹣11【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.15.【分析】根据线段中点的定义得到AD=3,根据角平分线的定义得到∠BAG=∠EAF,根据相似三角形的性质即可得到结论.【解答】证明:∵AB=6,D是边AB的中点,∴AD=3,∵AG是∠BAC的平分线,∴∠BAG=∠EAF,∵∠ADE=∠C,∴△ADF∽△ACG;∴==,故答案为:.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.16.【分析】由题意可得四边形AEFD是矩形,由AB的坡角α=45°,得出AE的长,利用背水坡CD的坡度i=1:(i为DF与FC的比值)得出∠C的度数,即可求解.【解答】解:∵迎水坡AB的坡角α=45°,坡长AB=米,∴AE=6×sin45°=6(m),∵背水坡CD的坡度i=1:(i为DF与FC的比值),∴tan∠C==,∴∠C=30°,则DC=2DF=2AE=12m,故答案为:12.【点评】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.17.【分析】设BF=x,则CF=5﹣x,则可以表示出△ADE,△EBF,△DCF的面积,因为矩形ABCD的面积可求,列出方程求出x,即可求出CF的长,再根据面积可求结果.【解答】解:设BF=x,则CF=5﹣x,△DCF的面积=DC•CF=×8(5﹣x)=20﹣4x.△BEF的面积=×4x=2x.△DAE的面积=×5×4=10.∵△DEF的面积=16又∵□ABCD的面积=AD•AB=40.∴40=16+10+2x+20﹣4x∴x=3,∴CF=5﹣3=2,∴△DCF的面积为:×2×8=8.故答案为:8.【点评】本题考查了三角形的面积;解题的关键是根据矩形的性质,三角形的面积等性质进行解答.18.【分析】依据直线l1:y=x+1,可得∠BAO=30°,进而得出∠AA1O=30°,AO=A1O=,C1O=A1B1=,分别求得四边形A1B1C1O、四边形A2B2C2B1、四边形A3B3C3B2的周长,根据规律可得四边形A n B n∁n B n﹣1的周长.【解答】解:由直线l1:y=x+1,可得A(﹣,0),B(0,1),∴AO=,BO=1,∴∠BAO=30°,又∵∠A1OB1=60°,∴∠AA1O=30°,∴AO=A1O=,由轴对称图形可得,C1O=A1B1=,∴四边形A1B1C1O的周长l1为4;同理可得,AB1=A2B1=2,四边形A2B2C2B1的周长l2为8,AB2=A3B2=4,四边形A3B3C3B2的周长l3为16,以此类推,A n B n∁n B n﹣1的周长l n为,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,等边三角形的判定与性质以及等腰三角形的性质的运用,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.)19.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:(1)原式=2+1﹣9﹣4×=2﹣8﹣2=﹣8;(2)原式=+•=﹣+=,∵﹣≤x≤,∴所以x可取﹣2,﹣1,0,1由于当x取﹣1、0、1时,分式的分母为0,所以x只能取﹣2.当x=﹣2时,原式=8.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【解答】解:(1)扇形统计图中松树所对的圆心角为360°×(1﹣20%﹣15%﹣25%)=144°,杨树的棵数=4000×25%×97%=970(棵),补全条形统计图如图所示,故答案为:144;(2)320000××100%=300000(棵),答:成活了约300000棵;(3)所有等可能的情况有12种,其中恰好选到成活率较高的两类树苗有2种,∴恰好选到成活率较高的两类树苗的概率==.【点评】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.21.【分析】(1)连接OD,由等腰三角形的性质证出∠A=∠ODB,得出OD∥AC,证出DF⊥OD,即可得出结论;(2)证明△OBD是等边三角形,由等边三角形的性质得出∠BOD=60°,求出∠G=30°,由直角三角形的性质得出OG=2OD=2×6=12,由勾股定理得出DG=6,阴影部分的面积=△ODG的面积﹣扇形OBD的面积,即可得出答案.【解答】(1)证明:连接OD,如图所示:∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD=60°,∵DF⊥OD,∴∠ODG=90°,∴∠G=30°,∴DG=OD=6,∴阴影部分的面积=△ODG的面积﹣扇形OBD的面积=×6×6﹣=18﹣6π.【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定,勾股定理、直角三角形的性质、等边三角形的判定与性质,是一道综合题,难度中等.22.【分析】(1)设甲快递公司每千克的运费各是x元,乙快递公司每千克的运费是y元,根据题意列方程组即可得到结论;(2)设产量为xkg时,获得的利润为W元,①当0<x<8时,②当8≤x<13时,根据二次函数的性质即可得到结论.【解答】解:(1)设甲快递公司每千克的运费各是x元,乙快递公司每千克的运费是y 元,根据题意得,,解得:,答:甲快递公司每千克的运费是6元,乙快递公司每千克的运费是10元;(2)设产量为xkg时,获得的利润为W元,①当0<x<8时,W=x(﹣6x+120+2x﹣58)﹣6x=﹣4x2+56x=﹣4(x﹣7)2+196,∴当x=7时,W的值最大,最大值为196;②当8≤x<13时,W=x(﹣6x+120﹣42)﹣6x=﹣6(x﹣6)2+216,(不合题意,舍去),当x=8时,W的值最大,最大值为192;∴巴特尔每天生产量为7千克时获得利润最大,最大利润为196元.【点评】本题考查了待定系数法求函数解析式及二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.23.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A 的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.【点评】本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m表示出个点的坐标是关键.24.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN 的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.25.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a 即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当P A=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=P A时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.。

2021年浙江省绍兴市中考数学考前必刷真题试卷附解析

2021年浙江省绍兴市中考数学考前必刷真题试卷附解析

2021年浙江省绍兴市中考数学考前必刷真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在□ABCD 中,过点A 的直线与BC 相交于点 E ,与 DC 的延长线相交于点F ,若 43BE EC =,则CF DF 等于( ) A .43 B .34 C .47 D .372.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm ,•母线长50cm ,则制成一顶这样的纸帽所需纸面积至少为( )A .250πcm 2B .500πcm 2C .750πcm 2D .100πcm 2 3.下列图形中,不是中心对称图形的是( ) A . 等边三角形B . 正方形C . 矩形D . 菱形 4.如图,在□ABCD 中,∠B=100°,延长AD 至点F ,延长CD 至点E ,连结EF ,则∠E+∠F 等于( )A .100°B .80°C .50°D .40 °5.在频数分布直方图中,每个小长形的高度等于( )A .组距B .组数C .每小组的频率D .每小组的频数6.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( )A .与原图形关于x 轴对称B .与原图形关于k 轴对称C .与原图形关于原点对称D .向x 轴的负方向平移了一个单位 7.下列不等式组无解的是( )A .1020x x -<⎧⎨+<⎩B .1020x x -<⎧⎨+>⎩C .1020x x ->⎧⎨+<⎩D .1020x x ->⎧⎨+>⎩ 8.下列计算结果正确的是( )A .(mn )6÷(mn )3=mn 3B .(x+y )6÷(x+y )2·(x+y )3=x+yC .x 10÷x 10=0D .(m-2n )3÷(-m+2n )3=-1 9.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( )A .△OCDB .△OABC .△OAFD .△OEF10.如图所示,△ABC和△A′B′C′关于直线l对称,那么下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠A′B′C′;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上.A.4个B.3个C.2个D.1个11.下列说法中不正确的是()A.在同一平面内,若OA⊥OB,OB⊥OC垂足为0,则A、0、C在同一直线上B.直线外一点P与直线l上各点连结的线段中,最短的线段长为2 cm,则点P到直线l的距离为2 cmC.过点M画MN⊥l,则MN就是垂线段D.测量跳远成绩时,一定要使皮尺与起跳线垂直12.我们知道,32+和32-互为相反数,现有A、B、C、D 四个同学分别提出有关相反数的语句,正确的说法是()A.符号相反的两个数B.互为相反数的两个数肯定是一正、一负C.32-的相反数可以用3()2--表示D.因为32+的相反数是32-,所有有理数的相反数小于它本身二、填空题13.两圆有多种位置关系,图中不存在的位置关系是.14.对120个数据进行整理并绘制成频数分布表,各组的频数之和等于,各组的频率之和等于.15.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2 m,其侧面图如图所示,则购买地毯至少需要元.16.已知 A ,B 的坐标分别为(-2,0),(4,0),点P 在直线2y x =+上,如果△ABP 为等腰三角形,这样的 P 点共有 个.17.严驰同学在杭州市动物园的大门口看到这个动物园的平面示意图如图所示,试借助刻度尺、量角器解决下列问题: (1)表演厅在大门的北偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m . (2)虎山在大门的南偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(3)猴山在大熊猫馆南偏 约 度的方向上,到大熊猫馆的图上距离约为cm ,实际距离为 m .18.请举出一个主视图和俯视图相同,但是左视图不同的几何体: .19.被减式为232x xy -,差式为2243x xy y -+,则减式为 .20.若(a+2)2+│b-3│=0,则ba =________.21. 在数-6,7. 2,0,13+,35-,+7 中,正数有 ,负数有 . 三、解答题22.小明和小乐做摸球游戏,一只不透明的口袋里放有 3 个红球和 5 个绿球,每个球除颜色外都相同,每次摸球前都将袋中的球充分搅匀,从中任意摸出一个球,记录颜色后再放回,若是红球,小明得 3 分,若是绿球,小乐得 2 分,游戏结束时得分多者获胜.你认为这个游戏对双方公平吗?若你认为公平,请说明理由;若你认为不公平,也请说明理由,并修改规则,使该游戏对双方公平.23.如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ;(2)判断△ABC 与△DEF 是否相似,并证明你的结论.24.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE 是平行四边形.25.如图,△ABC 的顶点坐标分别为 A(3,6)、 B(1,3)、C(4,2). 若将 △ABC 绕点 C 顺时针旋转90°,得到A B C ''∆,在图中画出A B C ''∆,并分别求出A B C ''∆的顶点A '、B '的坐标.26.已知一个长方形ABCD ,长为6,宽为4.(1)如图①建立直角坐标系,求A 、B 、C 、D 四点的坐标.(2)如图②建立直角坐标系,求A 、B 、C 、D 四点的坐标.图①图②27.在如图的网格上,找出4个格点(小方格的顶点),使每一个格点与A、B两点构造等腰三角形,并画出这4个等腰三角形.28.如图所示,把一张长为 b、宽为 a 的长方形纸板的四个角剪去,剪去的部分都是边长为 x 的小正方形,然后做成无盖纸盒. 请你用三种方法求出盒子的表面积(阴影部分面积).29.检验括号中的数是否为方程的解?(1)3x-4=8(x=3,x=4)(2)1372y+=(y=8,y=4)30.如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点叫格点,以格点为顶点分别接下列要求画图形.(1)画一个面积为 4 的三角形(在图①中画一个即可).(2)画一个面积为 8 的正方形(在图②中画一个即可).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.B5.D6.B7.C8.D9.C10.B11.CC二、填空题13.内切14.120,115.480°16.417.(1)西,79,2,200;(2)西,76,4.4,440;(3)东,70,1.3,130 18.答案不唯一,如横放的圆柱19.223x xy y---20.-821.7.2,13+,+7;-6,35-三、解答题22.(1)不公平;(2)()3 8P=摸出红球,()58 P=摸出绿球∵小明平均每次得分39388⨯=(分)小乐平均每次得分55284⨯=(分)∵9584<,∴游戏不公平.可修改为:①口袋里只放 2 个红球和 3 个绿球;或②摸出红球小明得 5 分,摸出绿球小乐得3分.(1)∠ABC= 135 °, BC=22 ;(2)能判断△ABC 与△DEF 相似(或△ABC ∽△DEF )这是因为∠ABC =∠DEF = 135 ° ,2==EF BC DE AB ,∴△ABC ∽△DEF. 24.证明:∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD ,又∵AE=CF ,∴OE=OF ,∴四边形BFDE 是平行四边形.25.图略,A ′(8,3)、B ′(5,5)26.(1)A(6,4),B(0,4),C(0,O),D(6,0);(2)A(3,2),B(一3,2),C(-3,-2),D(3,-2) 27.略28.方法一:24ab x -; 方法二:2(2)2(2)4a b x x a x ab x -+-=-,方法三:2(2)2(2)4b a x x b x ab x -+-=-29.(1)x=4 是方程的解,x=3不是 (2)y=8是方程的解,y=4不是30.略。

2021中考数学必刷题 (432)

2021中考数学必刷题 (432)

2021中考数学必刷题432一、填空题(每小题2分,共24分)1.(2.00分)因式分解:x2y﹣y=.2.(2.00分)已知圆锥的底面直径为6,母线长为4,则它的侧面积等于.3.(2.00分)化简:(x+5)2﹣x2=.4.(2.00分)温家宝总理强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是.5.(2.00分)使分式有意义的x的取值范围是.6.(2.00分)一个多边形的每一个外角都是36°,则这个多边形的边数是.7.(2.00分)一组数据﹣1,x,0,5,3,﹣2的平均数是1,则这组数据的中位数是.8.(2.00分)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm2.9.(2.00分)如图,在Rt△ABC中,∠C=90°,CD是AB边上的中线,且CD=5,则△ABC的中位线EF的长是.10.(2.00分)如图,∠1=∠2,添加一个条件使得△ADE∽△ACB.11.(2.00分)若点P(x,y)在平面直角坐标系xOy中第四象限内的一点,且满足2x﹣y=4,x+y=m,则m的取值范围是.12.(2.00分)如图,抛物线C1:y=x2+2x﹣3的顶点为P,将该抛物线绕点A(a,0)(a>0)旋转180°后得到的抛物线C2,抛物线C2的顶点为Q,与x轴的交点是B、C,点B在点C的右侧.若∠PQB=90°,则a=.二、选择题(每小题3分,共15分)13.(3.00分)下列图形中,不是三棱柱的表面展开图是()A.B.C.D.14.(3.00分)学校买来钢笔若干枝,可以平均分给(x﹣1)名同学,也可分给(x﹣2)名同学(x为正整数).用代数式表示钢笔的数量不可能的是()A.x2+3x+2B.3(x﹣1)(x﹣2)C.x2﹣3x+2D.x3﹣3x2+2x15.(3.00分)已知x2﹣3x+1=0,则的值是()A.B.2C.D.316.(3.00分)如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)17.(3.00分)抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B 到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A.m≤2或m≥3B.m≤3或m≥4C.2<m<3D.3<m<4三、解答题(本题共11小题,共81分)18.(8.00分)(1)计算:(﹣2)3+2sin30°+|﹣3|.(2)化简:÷(x+1).19.(10.00分)(1)解分式方程:.(2)解不等式组:,并把它的解集在数轴上表示出来.20.(6.00分)如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE是平行四边形.21.(6.00分)为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B 级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)扇形图中∠α的度数是,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),比如:等级为A的同学体育得分为90分,…,依此类推.该市九年级共有学生21000名,如果全部参加这次体育测试,则测试等级为D的共有人;该市九年级学生体育平均成绩为分.22.(6.00分)有一类随机事件概率的计算方法:设试验结果落在某个区域S中的每一点的机会均等,用A表示事件“试验结果落在S中的一个小区域M中”,那么事件A发生的概率P(A)=.有一块边长为30cm的正方形ABCD 飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.求下列事件发生的概率:(1)在飞镖游戏板上画有半径为5cm的一个圆(如图1),求飞镖落在圆内的概率;(2)飞镖在游戏板上的落点记为点O,求△OAB为钝角三角形的概率.23.(6.00分)已知一次函数的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,3).(1)求这个一次函数的解析式;(2)过点B的另外一条直线l与x轴交于点C(c,0),若点A、B、C构成面积不大于6的三角形,求C的取值范围.24.(6.00分)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B 测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)25.(6.00分)如图,点A,B在反比例函数y=(k>0)的图象上,且点A,B 的横坐标分别为a和2a(a>0).过点A作x轴的垂线,垂足为C,连接OA,△AOC的面积为2.(1)求反比例函数表达式;(2)求△AOB的面积;(3)点P,Q在这个双曲线位于第三象限的一支上,点P的横坐标为﹣2.若△POQ与△AOB的面积相等,写出Q点的坐标.26.(7.00分)如图,在▱ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.(1)求证:AD=CE;(2)判断直线BC与⊙O的位置关系,并说明理由;(3)若BC=3,DE=6,求BE的长.27.(9.00分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3与x轴交于点A (﹣2,0)和点B,与y轴交于点C,该抛物线的对称轴直线x=1与x轴相交于M.(1)求抛物线的解析式;(2)动点P从点A出发沿线段AB以每秒3个单位长度的速度向点B运动,同时动点Q从点B出发沿线段BC以每秒2个单位长度的速度向点C运动,其中一个点到达终点时,另一个点也停止运动.设运动时间为t(秒),当以B、P、Q 为顶点的三角形与△BCM相似时,求t的值;(3)设点E在抛物线上,点F在对称轴上,在(2)的条件下,当点运动停止时,是否存在点E、F,使得以B、Q、E、F为顶点的四边形是平行四边形?如果存在写出点E的坐标;如果不存在,请说明理由.28.(11.00分)【阅读】如图(1),点P(x,y)在平面直角坐标系中,过点P 作PA⊥x轴,垂足为A,将点P绕垂足A顺时针旋转角α(0°<α<90°)得到对应点P′,我们称点P到点P′的运动为倾斜α运动.例如:点P(0,2)倾斜30°运动后的对应点为P′(1,).图形E在平面直角坐标系中,图形E上的所有点都作倾斜α运动后得到图形E',这样的运动称为图形E的倾斜α运动.【理解】(1)点Q(1,2)倾斜60°运动后的对应点Q'的坐标为;(2)如图(2),平行于x轴的线段MN倾斜α运动后得到对应线段M′N′,M′N′与MN平行且相等吗?说明理由.应用:(1)如图(3),正方形AOBC倾斜α运动后,其各边中点E,F,G,H的对应点E′,F′,G′,H′构成的四边形是什么特殊四边形:;(2)如图(4),已知点A(0,4),B(2,0),C(3,2),将△ABC倾斜α运动后能不能得到Rt△A′B′C′,且∠A′C′B′为直角?其中点A′,B′,C′为点A,B,C的对应点.若能,请写出cosα的值,若不能,请说明理由.参考公式:(sinα)2+(cosα)2=1(0°<α<90°)参考答案与试题解析一、填空题(每小题2分,共24分)1.【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式y,再利用平方差进行二次分解即可.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】此题主要考查了提公因式法和公式法分解因式,关键是掌握提取公因式后利用平方差公式进行二次分解,注意分解要彻底.2.【考点】MP:圆锥的计算.【分析】根据圆锥侧面积=底面周长×母线长计算.【解答】解:圆锥的侧面面积=×6π×4=12π.故本题答案为:12π.【点评】此题考查了圆锥的计算,比较简单,直接运用公式,要注意记准公式.3.【考点】4I:整式的混合运算.【分析】直接利用平方差公式将原式变形,进而整理得出即可.【解答】解:(x+5)2﹣x2=(x+5+x)(x+5﹣x)=10x+25.故答案为:10x+25.【点评】此题主要考查了整式的混合运算,正确利用平方差公式求出是解题关键.4.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:36000000=3.6×107.故答案为:3.6×107.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【考点】62:分式有意义的条件.【分析】分式有意义的条件是分母不为0.【解答】解:若分式有意义,则x+3≠0,解得:x≠﹣3.故答案为x≠﹣3.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.6.【考点】L3:多边形内角与外角.【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.7.【考点】W1:算术平均数;W4:中位数.【分析】先根据平均数的定义求出x的值,然后根据中位数的定义求解.【解答】解:由题意可知,(﹣1+0+5+x+3﹣2)÷6=1,x=﹣1,这组数据从小到大排列﹣2,﹣1,0,1,3,5,∴中位数是0.5.故答案为0.5.【点评】本题为统计题,考查平均数与中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.8.【考点】L8:菱形的性质.【分析】由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).故答案为:3.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线乘积的一半.9.【考点】KP:直角三角形斜边上的中线;KX:三角形中位线定理.【分析】根据直角三角形斜边上的中线等于斜边的一半的性质求出AB的长,再根据三角形的中位线平行于第三边并且等于第三边的一半即可求出EF的长.【解答】解:∵∠C=90°,CD是AB边上的中线,∴AB=2CD=2×5=10,∵EF是△ABC的中位线,∴EF=AB=×10=5.故答案为:5.【点评】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.10.【考点】S8:相似三角形的判定.【分析】由∠1=∠2可得∠DAE=∠CAB.只需还有一对角对应相等或夹边对应成比例即可使得△ADE∽△ACB.【解答】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠CAB.当∠D=∠C或∠E=∠B或=时,△ADE∽△ACB.【点评】此题考查了相似三角形的判定,属基础题,比较简单.但需注意对应关系.11.【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】首先解2x﹣y=4,x+y=m,组成的方程组,求得x,y的值,然后根据点P(x,y)在平面直角坐标系xOy中第四象限内的一点,即x>0,y<0,即可得到关于m的不等式组,从而求解.【解答】解:根据题意得:,解得:,根据题意得:,解得:﹣4<m<2.故答案是:﹣4<m<2.【点评】本题主要考查了不等式组的解法,正确解关于x、y的方程组求得x,y 的值,得到关于m的不等式组是关键.12.【考点】H6:二次函数图象与几何变换.【分析】先求出抛物线C1的顶点P的坐标及与x轴的交点坐标,再根据旋转的性质求出抛物线C2的顶点Q的坐标和B点坐标,由于∠PQB=90°,然后根据勾股定理列方程求解.【解答】解:如图所示,∵y=x2+2x﹣3=(x+1)2﹣4,∴P(﹣1,﹣4),∴PD=2,令y=0,则x2+2x﹣3=0,解得:x=﹣3或x=1,∴D(﹣3,0),∵A(a,0),∴AD=a+3,AB=a+3,∵△APD≌△AQB,∴∠AQB=∠APD=90°,BQ=PD=2,∴AP2=AD2﹣PD2=a2+6a﹣11=AQ2,在Rt△ABQ中,AQ2=AB2﹣BQ2,∴4+(1+a)2=(a+3)2﹣(2)2,解得:a=7,故答案为:7.【点评】本题考查了二次函数图象与几何变换,难度较大,求出旋转后的抛物线C2的顶点坐标是解题的关键,也是本题的难点.二、选择题(每小题3分,共15分)13.【考点】I6:几何体的展开图.【分析】利用棱柱及其表面展开图的特点解题.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选:D.【点评】棱柱表面展开图中,上、下两底面应在侧面展开图长方形的两侧.14.【考点】4B:多项式乘多项式.【分析】根据题意列出算式,利用多项式乘以多项式法则计算,即可做出判断.【解答】解:根据题意得:(x﹣1)(x﹣2)=x2﹣3x+2,则钢笔的数量不可能的是x2+3x+2,故选:A.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.15.【考点】6D:分式的化简求值.【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选:A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.【考点】D5:坐标与图形性质;M9:确定圆的条件.【分析】根据题意可知点P的横坐标为4,设点P的坐标为(4,y),根据PA=PC 列出关于y的方程,解方程得到答案.【解答】解:∵⊙P经过点A、B、C,∴点P在线段AB的垂直平分线上,∴点P的横坐标为4,设点P的坐标为(4,y),作PE⊥OB于E,PF⊥OC与F,由题意得,=,解得,y=,故选:C.【点评】本题考查的是确定圆的条件,解题的关键是理解经过不在同一直线上的三点作圆,圆心是过任意两点的线段的垂直平分线的交点.17.【考点】H3:二次函数的性质.【分析】把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=﹣,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d≤1,所以,解得或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=,所以或,即可解答.【解答】解:把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,∴16a+4b=1,∴4a+b=,∵对称轴x=﹣,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d ≤1,∴∴,∴||≤1,∴或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m2(2a+b)+3=m2(2a+﹣4a)+3=m﹣4a=m,a=,∴或,∴m≤3或m≥4.故选:B.【点评】本题考查了二次函数的性质,解决本题的关键是根据点B到抛物线对称轴的距离记为d,满足0<d≤1,得到.三、解答题(本题共11小题,共81分)18.【考点】2C:实数的运算;6C:分式的混合运算;T5:特殊角的三角函数值.【分析】(1)先计算乘方、代入三角函数值、计算绝对值,再依次计算乘法和加减可得;(2)先将分子、分母因式分解、除法转化为乘法,再约分,继而计算减法即可得.【解答】解:(1)原式=﹣8+2×+3=﹣8+1+3=﹣4;(2)原式=﹣•=﹣==1.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及实数的运算法则.19.【考点】B3:解分式方程;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】(1)观察可得最简公分母是x+1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(2)根据一元一次不等式组的解法求出不等式组的解集,再在数轴上表示出来即可.【解答】解:(1)方程两边同乘x+1,得:x(x+1)﹣2=2x,整理得:x2﹣x﹣2=0解得:x1=2,x2=﹣1.经检验:当x=2时,x+1≠0,当x=﹣1时,x+1=0,∴x=2是原方程的解.(2),解得:,∴不等式组的解集:﹣2<x≤1,【点评】本题考查了分式方程和解不等式组,解决本题的关键是把分式方程转化为整式方程解析解答.20.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定;PB:翻折变换(折叠问题).【分析】(1)直接利用等腰三角形的性质结合全等三角形的判定与性质得出即可;(2)利用翻折变换的性质得出∠DBG=∠DBF,再利用平行线的判定方法得出CE ∥BG,进而求出四边形BGCE是平行四边形.【解答】证明:(1)如图1,∵OB=OC,∴∠ACE=∠DBF,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS);(2)如图2,∵∠ACE=∠DBF,∠DBG=∠DBF,∴∠ACE=∠DBG,∴CE∥BG,∵CE=BF,BG=BF,∴CE=BG,∴四边形BGCE是平行四边形.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的判定等知识,得出CE∥BG是解题关键.21.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)根据B级的频数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数;(3)求出四个等级的百分比,求出测试等级为D的总人数,运用加权平均数的求法求出九年级学生体育平均成绩.【解答】解:(1)160÷40%=400;(2)120÷400×360°=108°;(3)40÷400×21000=2100,90×30%+75×40%+65×20%+55×10%=75.5.故答案为:(1)400;(2)108°;(3)2100;75.5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.22.【考点】X5:几何概率.【分析】(1)分别计算半径为5cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;(2)根据题意及结合图形可得:当点O落在以AB为直径的半圆内△OAB为钝角三角形,然后计算以AB为直径的半圆的面积,然后用半圆的面积除以正方形的面积即可求△OAB为钝角三角形的概率.【解答】解:(1)∵半径为5cm的圆的面积=π•52=25πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)===;(2)如图可得:当点O落在以AB为直径的半圆内△OAB为钝角三角形.•π•152=,∵S半圆=∴P(△OAB为钝角三角形)==.【点评】本题考查的知识点是几何概型的意义,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.23.【考点】FF:两条直线相交或平行问题.【分析】(1)利用待定系数法求一次函数解析式;(2)根据三角形面积公式得到•3•|c+2|≤6,然后解绝对值不等式即可.【解答】解:设一次函数解析式为y=kx+b,把A(﹣2,0)、B(0,3)代入得,解得,所以一次函数解析式为y=x+3;(2)根据题意得•3•|c+2|≤6,即|c+2|≤4,所以﹣6≤c≤2且c≠﹣2.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.也考查了待定系数法求一次函数解析式.注意c≠﹣2.24.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)过点P作PD⊥AB于点D,设PD=xkm,先解Rt△PBD,用含x的代数式表示BD,再解Rt△PAD,用含x的代数式表示AD,然后根据BD+AD=AB,列出关于x的方程,解方程即可;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF=AB=1km,再解Rt△BCF,得出BC=BF=km.【解答】解:(1)如图,过点P作PD⊥AB于点D.设PD=xkm.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=xkm.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=xkm.∵BD+AD=AB,∴x+x=2,x=﹣1,∴点P到海岸线l的距离为(﹣1)km;(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=1km.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC=BF=km,∴点C与点B之间的距离为km.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.25.【考点】G5:反比例函数系数k 的几何意义;G8:反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数比例系数k 的几何意义可得S △AOC =k=2,依此求出k 的值,即可得到反比例函数表达式;(2)作BD ⊥x 轴于点D ,则S △AOC =S △BOD =×4=2.由点A ,B 在反比例函数y=的图象上,且点A ,B 的横坐标分别为a 和2a (a >0),求出A (a ,),B (2a ,),然后根据S △AOB =S 梯形ABDC +S △AOC ﹣S △BOD =S 梯形ABDC =(BD +AC )•CD ,代入数值计算即可;(3)先求出P (﹣2,﹣2),设Q 点的坐标为(m ,).再作PM ⊥x 轴于点M ,QN ⊥x 轴于点N ,由(2)知S △POQ =S 梯形PMNQ =3,那么(2﹣)×|m +2|=3.然后分①m <﹣2;②m >﹣2两种情况进行讨论即可求解.【解答】解:(1)∵点A 在反比例函数y=(k >0)的图象上,过点A 作x 轴的垂线,垂足为C ,△AOC 的面积为2,∴k=2,∴k=4,∴反比例函数表达式为y=;(2)如图,作BD ⊥x 轴于点D ,则S △AOC =S △BOD =×4=2.∵点A ,B 在反比例函数y=的图象上,且点A ,B 的横坐标分别为a 和2a (a >0),∴A (a ,),B (2a ,),∴S △AOB =S 梯形ABDC +S △AOC ﹣S △BOD=S 梯形ABDC =(BD +AC )•CD =(+)×(2a ﹣a )=3;(3)∵点P 在反比例函数y=的图象上,点P 的横坐标为﹣2,∴y==﹣2,即P (﹣2,﹣2).设Q 点的坐标为(m ,).如图,作PM ⊥x 轴于点M ,QN ⊥x 轴于点N ,由(2)知S △POQ =S 梯形PMNQ =3,所以(2﹣)×|m +2|=3,①如果m <﹣2,那么(2﹣)×(﹣m ﹣2)=3,化简整理得,m 2+3m ﹣4=0,解得m 1=﹣4,m 2=1(不合题意舍去),所以Q 点坐标为(﹣4,﹣1);②如果m >﹣2,那么(2﹣)×(m +2)=3,化简整理得,m 2﹣3m ﹣4=0,解得m 1=﹣1,m 2=4(不合题意舍去),所以Q 点坐标为(﹣1,﹣4);综上所述,Q 点坐标为(﹣1,﹣4),(﹣4,﹣1).故答案为(﹣1,﹣4),(﹣4,﹣1).【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数与一次函数的交点问题,三角形的面积等知识,难度适中.利用数形结合、分类讨论是解题的关键.26.【考点】L5:平行四边形的性质;MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)由平行四边形的性质得出∠AED=∠EDC,证出=,即可得出AD=CE;(2)作直径CF,连接EF,则∠EFC=∠EDC,证出∠EFC=∠BCE,再由CF是⊙O 的直径,得出∠FEC=90°,得出∠BCF=90°,即可得出结论;(3)证明△BCE∽△EDC,得出对应边成比例,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠EDC.∴=,∴AD=CE;(2)解:直线BC与⊙O相切,理由如下:如图所示:作直径CF,连接EF.则∠EFC=∠EDC,∵∠BCE=∠CDE,∴∠EFC=∠BCE.∵CF是⊙O的直径,∴∠FEC=90°,∴∠EFC+∠FCE=90°,∴∠BCE+∠FCE=90°∴∠BCF=90°.∴OC⊥CB.∴直线BC与⊙O相切;(3)解:∵四边形ABCD是平行四边形,∴AD=BC,AB∥CD,由(1)得:AD=CE,∴BC=CE,∵AB∥CD,∴∠BEC=∠DCE.又∵∠BCE=∠CDE,∴△BCE∽△EDC,∴=,∵BC=3∴CE=3,即=,解得,BE=.【点评】本题考查了切线的判定、平行四边形的性质、圆周角定理以及相似三角形的判定与性质;熟练掌握切线的判定方法,并能进行有关推理计算是解决问题的关键.27.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求得即可;(2)根据解析式求得B、C的坐标,求得OB=4,OC=3,进而求得BM=3,BC=5,得出BP=6﹣3t,BQ=2t,若△BPQ∽△BCM,则=,解得t=;若△BQP ∽△BCM,则=,解得t=;(3)利用待定系数法求得直线BC的解析式,根据题意求得BQ=4,根据三角形相似求得Q(,﹣),当BQ是平行四边形的边时,E的横坐标为或﹣,代入抛物线的解析式为y=,当BQ是平行四边形的对角线时,E的横坐标为,代入抛物线的解析式为y=﹣;所以E的坐标为(,)或(﹣,)或(,﹣).【解答】解:(1)根据题意得,解得:∴抛物线的解析式为y=x2﹣x﹣3;(2)由y=x2﹣x﹣3可知B(4,0),C(0﹣3),∴OB=4,OC=3,∴BM=3,BC=5,∴BP=6﹣3t,BQ=2t若△BPQ∽△BCM,则=,得=,解得t=;若△BQP∽△BCM,则=,得=,解得t=;(3)∵B(4,0),C(0﹣3),∴直线BC解析式:y=x﹣3,当t=2时,P到达终点B,BQ=4,作QN⊥AB于N,∴△BQN∽△BCO,∴=,即=,∴QN=,∴Q的纵坐标为﹣,代入y=x﹣3,得x=,∴Q(,﹣),当BQ是平行四边形的边时,∵对称轴直线x=1,∵Q的对称轴的距离为,∴E的横坐标为+1=或﹣+1=﹣,代入抛物线的解析式为y=,∴E1(,),E2(﹣,),当BQ是平行四边形的对角线时,∵B点到对称轴的距离为3,∴E的横坐标为3+=,代入抛物线的解析式为y=﹣;∴,综上,在(2)的条件下,当点运动停止时,存在点E、F,使得以B、Q、E、F 为顶点的四边形是平行四边形,此时E的坐标为(,)或(﹣,)或(,﹣).【点评】本题是二次函数的综合题,考查了待定系数法求解析式,三角形相似的判定和性质,平行四边形的性质等,根据题意画出图形是解题的关键.28.【考点】RB:几何变换综合题.【分析】(1)根据旋转得出△QAQ'是等边三角形,解答即可;(2)根据旋转的性质得出构成的四边形是平行四边形,证明即可;应用:(1)根据旋转得出构成的四边形是矩形;(2)根据旋转的性质和三角函数解答即可.【解答】解:(1)∵点Q(1,2)倾斜60°运动后的对应点Q',过Q'作Q'E⊥OA,如图1,∴AQ'=AQ,∠QAQ'=60°,∴△QAQ'是等边三角形,∴Q'E==1,AE=Q'E=,∴Q'的纵坐标是1,横坐标是1+,故答案为:;(2)因为平行于x轴的线段MN倾斜α运动后得到对应线段M′N′,如图2,所以可得M′N′与MN平行且相等,∵MN与x轴构成的四边形是矩形,∴M′N′与x轴构成的四边形是平行四边形,∴M′N′与MN平行且相等;应用:(1)正方形AOBC倾斜α运动后,其各边中点E,F,G,H的对应点E′,F′,G′,H′构成的四边形是矩形;故答案为:矩形;(2)设AB的中点为D,D点坐标为(1,2),则CD∥x轴,且CD=2,D点对应点D'为A'B'中点,且C'D'=2,而,则A'B'=4=OA',易得,∴.【点评】此题主要考查了几何变换综合题,关键是根据旋转的性质,掌握旋转后对应线段相等分析.。

必刷卷04-2021年中考数学考前信息必刷卷(河北专用)(原卷版)

必刷卷04-2021年中考数学考前信息必刷卷(河北专用)(原卷版)

绝密★启用前2021年中考数学考前信息必刷卷第四模拟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径在0.00000008米﹣0.00000012米,将0.00000012用科学记数法表示为a×10n的形式,则n为()A.﹣8B.﹣7C.7D.83.张燕同学按如图所示方法用量角器测量∠AOB的大小,她发现OB边恰好经过80°的刻度线末端.你认为∠AOB的大小应该为()A.80°B.40°C.100°D.50°4.若等式﹣2□(﹣2)=4成立,则“□”内的运算符号是()A.+B.﹣C.×D.÷5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.6.2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④7.将一个三角形和一个矩形按照如图的方式扩大,使他们的对应边之间的距离均为1,得到新的三角形和矩形,下列说法正确的是()A.新三角形与原三角形相似B.新矩形与原矩形相似C.新三角形与原三角形、新矩形与原矩形都相似D.都不相似8.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.9.在菱形ABCD中,E,F分别为BC,CD上的点,且CE=CF,连接AE,EF,AF.有以下结论:①△ABE≌△ADF;②若AE⊥BC,,则∠B=60°;③若连接BF和AC,则S=S△ECA;△BEF④若BE:EC=a:1,则.其中正确的结论为()A.①③B.①②③C.①②④D.①②③④10.如图,小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,则∠ABC等于()A.130°B.120°C.110°D.100°11.如图,对角线AC将正方形ABCD分成两个等腰三角形,点E,F将对角线AC三等分,且AC=15,点P在正方形的边上,则满足PE+PF=5的点P的个数是()A.0B.4C.8D.1612.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()302sin60°22﹣3﹣2﹣sin45°0|﹣5|623()﹣14()﹣1 A.5B.6C.7D.813.已知=3,则代数式的值是()A.B.C.D.14.某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):分组一二三四五六七104﹣145145﹣150150﹣155155﹣160160﹣165165﹣170170﹣175人数612264根据以上信息可知,样本的中位数落在()A.第二组B.第三组C.第四组D.第五组15.抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致是()A.B.C.D.16.正△ABC与正六边形DEFGH的边长相等,初始如图所示,将三角形绕点I顺时针旋转使得AC与CD 重合,再将三角形绕点D顺时针旋转使得AB与DE重合,…,按这样的方式将△ABC旋转2015次后,△ABC中与正六边形DEFGHI重合的边是()A.AB B.BC C.AC D.无法确定二、填空题(本大题共3小题,共12分。

2021中考数学必刷题 (433)

2021中考数学必刷题 (433)

2021中考数学必刷题433一、选择题(每小题3分,共30分)1.(3.00分)下列四个数中,绝对值最小的数是()A.﹣2B.0C.1D.72.(3.00分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×10133.(3.00分)如图,立体图形的俯视图是()A.B.C.D.4.(3.00分)下列调查中,最适宜采用全面调查方式的是()A.对三门峡全市初中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对三门峡全市初中学生视力情况的调查5.(3.00分)在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.106.(3.00分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°7.(3.00分)关于x的一元二次方程有实数根,则实数a满足()A.B.C.a≤且a≠3D.8.(3.00分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6B.8C.10D.8或109.(3.00分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°10.(3.00分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3.00分)因式分解:9a3b﹣ab=.12.(3.00分)如图,BD是菱形ABCD的对角线,AE⊥BC于点E,交BD于点F,且E为BC的中点,则cos∠BFE的值是.13.(3.00分)如图,抛物线y=ax2﹣4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,则a的值为.14.(3.00分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数是.15.(3.00分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB 为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为.三、解答题(本大题共8个题,共75分)16.(8.00分)先化简:(2x﹣)÷,然后从﹣2≤x≤2中选择一个适当的整数作为x的值代入求值.17.(9.00分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.18.(9.00分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC 边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形OEDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).19.(9.00分)一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).20.(9.00分)如图,在同一直角坐标系中,直线y=x+4与y=﹣3x﹣3相交于A点,分别与x轴交于B、C两点.(1)求△ABC的面积;(2)P、Q分别为直线y=x+4与y=﹣3x﹣3上的点,且P、Q关于原点对称,求P点的坐标.21.(10.00分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.22.(10.00分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;(3)若BF=3,请直接写出此时AE的长.23.(11.00分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.【考点】15:绝对值;18:有理数大小比较.【分析】根据绝对值具有非负性可得绝对值最小的数是0.【解答】解:绝对值最小的数是0,故选:B.【点评】此题主要考查了绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】U2:简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:如图所示的立体图形的俯视图是C.故选:C.【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.4.【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对三门峡全市初中学生每天学习所用时间的调查,适合抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,适合抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,适合全面调查,故此选项正确;D、对三门峡全市初中学生视力情况的调查,适合抽样调查,故此选项错误.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【考点】M5:圆周角定理.【分析】连接CD,根据圆周角定理得到CD为圆的直径,根据勾股定理计算即可.【解答】解:连接CD,∵∠AOB=90°,∴CD为圆的直径,CD=≈12,故选:C.【点评】本题考查的是圆周角定理和勾股定理的应用,掌握90°的圆周角所对的弦是直径是解题的关键.6.【考点】L5:平行四边形的性质;PB:翻折变换(折叠问题).【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故选:B.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.7.【考点】A1:一元二次方程的定义;AA:根的判别式.【分析】讨论:当a﹣3=0,原方程变形为一元一次方程,有一个实数根;当a ﹣3≠0,△=(﹣)2﹣4×(a﹣3)×1≥0,然后综合这两种情况即可.【解答】解:当a﹣3=0,方程变形为﹣x+1=0,此方程为一元一次方程,有一个实数根;当a﹣3≠0,△=(﹣)2﹣4×(a﹣3)×1≥0,解得a≤且a≠3.所以a的取值范围为a≤且a≠3.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8.【考点】A3:一元二次方程的解;K6:三角形三边关系;KH:等腰三角形的性质.【分析】先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.9.【考点】KH:等腰三角形的性质;R2:旋转的性质.【分析】分两种情况进行讨论:OE在∠BOD内部,OE'在∠BOD外部,分别根据全等三角形的性质以及角的和差关系进行计算,即可得到∠BOE的度数.【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE'在∠BOD外部时,则由OD=OC,∠DOE'=∠COB,OB=OE可得,△ODE'≌△OCB,故DE'=CB,此时∠BOE'=45°﹣15°+15°=45°;故选:B.【点评】本题主要考查了旋转的性质,解题时注意:对应点到旋转中心的距离相等,旋转前、后的图形全等.10.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x ≤4),图象为:故选:A.【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式.二、填空题(每小题3分,共15分)11.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【考点】L8:菱形的性质;T7:解直角三角形.【分析】直接利用菱形的性质结合线段垂直平分线的性质得出AB=BC=AC,进而得出∠BFE=60°,即可得出答案.【解答】解:∵E为BC的中点,AE⊥BC,∴AB=AC,∵四边形ABCD是菱形,∴AB=BC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∠BAE=30°,∴∠BFE=60°,∴cos∠BFE=.故答案为.【点评】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出△ABC是等边三角形是解题关键.13.【考点】HA:抛物线与x轴的交点.【分析】根据抛物线的对称性易求对称轴x===1,则易求a=2.【解答】解:∵如图,抛物线y=ax2+4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,∴该抛物线的对称轴x===1,即=1,解得,a=2.故答案是:2.【点评】本题考查了抛物线与x轴的交点.此题利用抛物线的对称性、对称轴的定义来求a的值.14.【考点】V8:频数(率)分布直方图;W5:众数.【分析】读懂统计图,利用众数的定义即可得出答案.【解答】解:一名射击运动员连续打靶8次,其中有3次为8环,所以数据的众数是8,故答案为:8.【点评】本题主要考查了众数,解题的关键是读懂统计图,准确的获取信息.15.【考点】I2:点、线、面、体;M2:垂径定理;MO:扇形面积的计算.【分析】连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出AF=BF,进而可得出DE=CE=3,再根据圆环的面积公式结合勾股定理即可得出CD 边扫过的面积.【解答】解:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,如图所示.∵PE⊥CD,AB∥CD,∴PF⊥AB.又∵AB为⊙P的弦,∴AF=BF,∴DE=CE=CD=AB=3,∴CD边扫过的面积为π(PD2﹣PE2)=π•DE2=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.三、解答题(本大题共8个题,共75分)16.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣2≤x≤2中选择一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:(2x﹣)÷===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出的百分比,乘以3000即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【解答】解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,∴中位数为50;(2)根据题意得:3000×(1﹣25%)=2250人,则该校帮助父母做家务的学生大约有2250人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.【考点】MR:圆的综合题.【分析】(1)根据已知条件即可得到结论;(2)根据角平分线的性质得到DE=DF,有AD是⊙O的直径,得到∠DEA=90°,由三角形的内角和得到∠EDA=60°,推出△OED是等边三角形,得到ED=OE,根据菱形的判定定理即可得到结论;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF由最小值,连接OE,OF,过O作OH⊥EF于H,解直角三角形即可得到结论.【解答】解:(1)∵∠BAC=60°,∴∠EOF=120°,∵OE=OF,∴=;(2)当AD平分∠BAC时,四边形OEDF是菱形,理由:∵AD平分∠BAC,∴DE=DF,∠BAD=30°,∵AD是⊙O的直径,∴∠DEA=90°,∴∠EDA=60°,∵OE=OD,∴△OED是等边三角形,即ED=OE,∴OE=OF=DE=DF,∴四边形OEDF是菱形;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF有最小值,如图,过O作OH⊥EF于H,在Rt△ADB中,∵∠ABC=45°,AB=10,∴AD=BD=10,即此时,⊙O的直径为10,∵∠EOH=∠EOH=∠BAC=60°,∴EH=OE•sin∠EOH=5×=,由垂径定理可得EF=2EH=5.线段EF的最小值为5,故答案为:5.【点评】本题考查了菱形的判定,垂径定理,圆周角定理,解直角三角形,关键是根据运动变化,找出满足条件的最小圆.19.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)由题意知∠QPB=60°、∠PQB=60°,从而得△BPQ是等边三角形,据此可得答案;(2)由(1)知PQ=BQ=900m,从而得AQ==600,根据∠AQB=180°﹣60°﹣30°=90°知AB==300.【解答】解:(1)相等,由图知∠QPB=60°、∠PQB=60°,∴△BPQ是等边三角形,∴BQ=PQ;(2)由(1)知PQ=BQ=900m,在Rt△APQ中,AQ===600,又∵∠AQB=180°﹣60°﹣30°=90°,∴在Rt△AQB中,AB===300(m),答:A、B间的距离为300m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.20.【考点】FF:两条直线相交或平行问题;R6:关于原点对称的点的坐标.【分析】(1)先依据一次函数解析式,求得点B,C的坐标,再根据解方程组,求得点A的坐标,即可得到△ABC的面积;(2)根据P在直线y=x+4上,即可设P(m,m+4),再根据P、Q关于原点成中心对称,可得Q(﹣m,﹣m﹣4).最后根据点Q在直线y=﹣3x﹣3上,可得﹣m﹣4=3m﹣3,进而得到m的值.【解答】解:(1)令y=x+4中y=0,则x=﹣4,∴B(﹣4,0);令y=﹣3x﹣3中y=0,则x=﹣1,∴C(﹣1,0);解方程组,得,∴A(﹣,).∴S=×[﹣1﹣(﹣4)]×=.△ABC(2)∵点P在直线y=x+4上,∴设P(m,m+4),∵P、Q关于原点成中心对称,∴Q(﹣m,﹣m﹣4).∵点Q在直线y=﹣3x﹣3上,∴﹣m﹣4=3m﹣3,解得:m=﹣,∴m+4=,∴点P的坐标为(﹣,).【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式,解题的关键是掌握关于原点对称的点的坐标特征.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).21.【考点】B7:分式方程的应用;CE:一元一次不等式组的应用;FH:一次函数的应用.【分析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.【解答】解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【点评】此题考查了一次函数的应用,分式方程的应用,以及一元一次不等式组的应用,弄清题意是解本题的关键.22.【考点】LO:四边形综合题.【分析】(1)作FH⊥AB于H,由AAS证明△EFH≌△CED,得出FH=CD=4,AH=AD=4,求出BH=AB+AH=8,由勾股定理即可得出答案;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,则FM=AH,AM=FH,①同(1)得:△EFH≌△CED,得出FH=DE=3,EH=CD=4即可;②求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同(1)得::△EFH≌△CED,得出FH=DE=4+AE,EH=CD=4,得出FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得出方程,解方程即可;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同理得AE的长.【解答】解:(1)作FH⊥AB于H,如图1所示:则∠FHE=90°,∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=4,EF=CE,∠ADC=∠DAH=∠BAD=∠CEF=90°,∴∠FEH=∠CED,在△EFH和△CED中,,∴△EFH≌△CED(AAS),∴FH=CD=4,AH=AD=4,∴BH=AB+AH=8,∴BF===4;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF===;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD于点H,交BC延长线于K.如图3所示:同(1)得::△EFH≌△CED,∴FH=DE=AE﹣4,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(3)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+或2﹣(舍去).③当点E在AD上时,可得:(8﹣AE)2+(4+AE)2=90,解得AE=5或﹣1,5>4不符合题意.综上所述:AE的长为1或2+.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.23.【考点】HF :二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P (m ,m 2+2m +1),表示出PE=﹣m 2﹣3m ,再用S 四边形AECP =S △AEC +S△APC =AC ×PE ,建立函数关系式,求出极值即可;(3)先判断出PF=CF ,再得到∠PCA=∠EAC ,以C 、P 、Q 为顶点的三角形与△ABC 相似,分两种情况计算即可.【解答】解:(1)∵点A (0,1).B (﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x 2+2x +1,(2)∵AC ∥x 轴,A (0,1)∴x 2+2x +1=1,∴x 1=﹣6,x 2=0,∴点C 的坐标(﹣6,1),∵点A (0,1).B (﹣9,10),∴直线AB 的解析式为y=﹣x +1,设点P (m ,m 2+2m +1)∴E (m ,﹣m +1)∴PE=﹣m +1﹣(m 2+2m +1)=﹣m 2﹣3m ,∵AC ⊥EP ,AC=6,∴S 四边形AECP=S △AEC +S △APC=AC ×EF +AC ×PF=AC ×(EF +PF )=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣);(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4或t=﹣8(不符合题意,舍)∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3或t=﹣15(不符合题意,舍)∴Q(3,1)【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.。

2021年中考数学必刷卷(湖北)

2021年中考数学必刷卷(湖北)
②数形结合,求得界点:
当y=0时,求得方程﹣2x2﹣4x=0的解为__________;
③借助图象,写出解集:
由图象可得不等式﹣2x2﹣4x≥0的解集为__________.
〔2〕利用〔1〕中求不等式解集的方法步骤,求不等式x2﹣2x+1<4的解集.
①构造函数,画出图象;
②数形结合,求得界点;
③借助图象,写出解集.
21.同庆中学为丰富学生的校园生活,准备参军跃体育用品商店一次性购置假设干个足球和篮球〔每个足球的价格相同,每个篮球的价格相同〕,假设购置3个足球和2个篮球共需310元,购置2个足球和5个篮球共需500元.
〔1〕购置一个足球、一个篮球各需多少元?
〔2〕根据同庆中学的实际情况,需参军跃体育用品商店一次性购置足球和篮球共96个,要求购置足球和篮球的总费用不超过5720元,这所中学最多可以购置多少个篮球?
A.9.3×105B.93×106C.9.3×107D.0.93×108
2.从三个不同方向看一个几何体,得到的平面图形如下图,那么这个几何体是〔 〕
A.圆柱B.圆锥C.棱锥D.球
3.从﹣1,0, ,﹣,π, 中任意抽取一个数.以下事件发生的概率最大的是〔 〕
A.抽取正数B.抽取非负数C.抽取无理数D.抽取分数
对于任意矩形ABCD,下面四个结论中:
①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.
所有正确结论的序号是.
三、解答题〔本大题共有9个小题,共72分.请在指定区域作答,解析时应写出文字说明、证明过程或演算步骤〕
4.某校规定学生的学期体育成绩由三局部组成:体育课外活动占学期成绩的20%,理论测试占20%,体育技能测试占60%,一名同学上述三项成绩依次为90分,95分,85分,那么该同学这学期的体育成绩为〔 〕

2021中考数学必刷题 (202)

2021中考数学必刷题 (202)

(Ⅰ)解不等式①,得

(Ⅱ)解不等式②,得

(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不均每天体育锻炼时间”的情况,某地区教育部门随机
调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解
答下列问题:
(I)本次接受随机抽样调查的中学生人数为
点 E.
(I)如图①,点 P 在线段 OA 上,若∠OBQ=15°,求∠AQE 的大小; (Ⅱ)如图②,点 P 在 OA 的延长线上,若∠OBQ=65°,求∠AQE 的大小. 22.(10 分)如图,一枚运载火箭从距雷达站 C 处 5km 的地面 O 处发射,当火 箭到达点 A,B 时,在雷达站 C 处测得点 A,B 的仰角分别为 34°,45°,其中点 O, A,B 在同一条直线上.求 AC 和 AB 的长(结果保留小数点后一位)(参考数据: sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
A.
B.
C.
D.
4.(3 分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧 130 000
000kg 的煤所产生的能量.把 130 000 000kg 用科学记数法可表示为( )
A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg
5.(3 分)如图是一个由 5 个相同的正方体组成的立体图形,它的俯视图是( )
,图①中 m 的值是

(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据统计数据,估计该地区 250000 名中学生中,每天在校体育锻炼时间
大于等于 1.5h 的人数.
21.(10 分)已知 OA,OB 是⊙O 的半径,且 OA⊥OB,垂足为 O,P 是射线 OA

必刷卷01-2021年中考数学考前信息必刷卷【浙江杭州专用】(解析版)

必刷卷01-2021年中考数学考前信息必刷卷【浙江杭州专用】(解析版)

绝密★启用前2021年中考数学考前信息必刷卷【浙江杭州专用】必刷卷01注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图案中是中心对称图形但不是轴对称图形的是()A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解析】A 、是中心对称图形,也是轴对称图形,不符合题意; B 、不是中心对称图形,是轴对称图形,不符合题意; C 、是中心对称图形,不是轴对称图形,符合题意; D 、不是轴对称图形,也不是中心对称图形,不符合题意. 故选:C .2.下列四个数,表示无理数的是( ) A .tan45°B .πC .13D .√16【分析】无限不循环小数叫做无理数,根据无理数的定义逐个排除即可. 【解析】A 、tan45°=1不是无理数,故本选项不符合题意; B 、π是无限不循环小数,是无理数,符合题意; C 、13不是无理数,故本选项不符合题意;D 、√16=4,不是无理数,故本选项不符合题意. 故选:B .3.下列运算正确的是( ) A .3a 2﹣2a 2=a 2 B .﹣(2a )2=﹣2a 2 C .(a ﹣b )2=a 2﹣b 2D .﹣2(a ﹣1)=﹣2a +1【分析】根据合并同类项法则、单项式的乘方、完全平方公式和单项式乘多项式法则逐一计算可得. 【解析】A .3a 2﹣2a 2=a 2,此选项计算正确; B .﹣(2a )2=﹣4a 2,此选项计算错误; C .(a ﹣b )2=a 2﹣2ab +b 2,此选项计算错误; D .﹣2(a ﹣1)=﹣2a +2,此选项计算错误; 故选:A .4.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠BCD +∠ABC =180°(两直线平行,同旁内角互补) C .∵AD ∥BC ,∴∠BAD +∠D =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AD ∥BC (同位角相等,两直线平行)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解析】A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行),正确; B .∵AB ∥CD ,∴∠BCD +∠ABC =180°(两直线平行,同旁内角互补),正确; C .∵AD ∥BC ,∴∠BCD +∠D =180°(两直线平行,同旁内角互补),故C 选项错误; D .∵∠DAM =∠CBM ,∴AD ∥BC (同位角相等,两直线平行),正确; 故选:C .5.永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是( )日期 星期一 星期二 星期三 星期四 星期五 星期六 星期天 体温(℃) 36.236.2 36.536.336.236.436.3 A .36.3和36.2B .36.2和36.3C .36.2和36.2D .36.2和36.1【分析】根据众数和中位数的定义求解可得.【解析】将这组数据重新排列为36.2、36.2、36.2、36.3、36.3、36.4、36.5, 所以这组数据的众数为36.2,中位数为36.3, 故选:B .6.圆锥的主视图是边长为4的等边三角形,其侧面展开图的面积为( ) A .4πB .13πC .8πD .23π【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解析】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4, 所以这个几何体的侧面展开图的面积=12×4π×4=8π.故选:C .7.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB =√3,AC =2,BD =4,则AE 的长为( ) A .√32B .32C .√217D .2√217【分析】由勾股定理的逆定理可判定△BAO 是直角三角形,所以平行四边形ABCD 的面积即可求出. 【解析】∵AC =2,BD =4,四边形ABCD 是平行四边形, ∴AO =12AC =1,BO =12BD =2, ∵AB =√3, ∴AB 2+AO 2=BO 2, ∴∠BAC =90°,∵在Rt △BAC 中,BC =√AB 2+AC 2=√(√3)2+22=√7,S △BAC =12×AB ×AC =12×BC ×AE , ∴√3×2=√7AE , ∴AE =2√217, 故选:D .8.如图,AB ∥CD ∥MN ,点M ,N 分别在线段AD ,BC 上,AC 与MN 交于点E ,则( ) A .DM AE=CE AMB .AM CN=BN DMC .DCME=AB END .AEAM=CE DM【分析】根据平行线分线段成比例定理,利用ME ∥CD 得到DM AM=CE AE,则利用比例的性质可判断D 选项正确.【解析】∵ME ∥CD , ∴DM AM =CE AE, ∴AE AM=CE DM.故选:D .9.如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,DF ⊥AB 交AC 于点G ,反比例函数y =√3x (x >0)经过线段DC 的中点E ,若BD =4,则AG 的长为( )A .4√33B .√3+2C .2√3+1D .3√32+1【分析】过E 作y 轴和x 的垂线EM ,EN ,证明四边形MENO 是矩形,设E (b ,a ),根据反比例函数图象上点的坐标特点可得ab =√3,进而可计算出CO 长,根据三角函数可得∠DCO =30°,再根据菱形的性质可得∠DAB =∠DCB =2∠DCO =60°,∠1=30°,AO =CO =2√3,然后利用勾股定理计算出DG 长,进而可得AG 长.【解析】过E 作y 轴和x 的垂线EM ,EN , 设E (b ,a ), ∵反比例函数y =√3x(x >0)经过点E ,∴ab =√3,∵四边形ABCD 是菱形, ∴BD ⊥AC ,DO =12BD =2, ∵EN ⊥x ,EM ⊥y , ∴四边形MENO 是矩形, ∴ME ∥x ,EN ∥y , ∵E 为CD 的中点, ∴DO •CO =4√3, ∴CO =2√3, ∴tan ∠DCO =DO CO =√33. ∴∠DCO =30°, ∵四边形ABCD 是菱形,∴∠DAB =∠DCB =2∠DCO =60°,∠1=30°,AO =CO =2√3, ∵DF ⊥AB , ∴∠2=30°, ∴DG =AG ,设DG =r ,则AG =r ,GO =2√3−r , ∵AD =AB ,∠DAB =60°, ∴△ABD 是等边三角形, ∴∠ADB =60°,∴∠3=30°,在Rt△DOG中,DG2=GO2+DO2,∴r2=(2√3−r)2+22,解得:r=4√3 3,∴AG=4√3 3.故选:A.10.已知二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N(x2,﹣1),若MN的长不小于2,则a的取值范围是()A.a≥13B.0<a≤13C.−13≤a<0D.a≤−13【分析】由于抛物线所经过的M、N两点的纵坐标为﹣1,说明抛物线与直线y=﹣1有两个交点,则x1,x2是方程ax2+2ax+3a﹣2=﹣1有两个不相等的根,由根与系数的关系求得|x1﹣x2|便为MN的长度,再根据MN的长不小于2,列出a的不等式求得a的取值范围,再结合方程根的判别式与解的情况的关系求得a的取值范围,便可得出最后结果.【解析】令y=﹣1,得y=ax2+2ax+3a﹣2=﹣1,化简得,ax2+2ax+3a﹣1=0,∵二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N(x2,﹣1),∴△=4a2﹣12a2+4a=﹣8a2+4a>0,∴0<a<1 2,∵ax2+2ax+3a﹣1=0,∴x1+x2=﹣2,x1x2=3a−1 a,∴(x1−x2)2=(x1+x2)2−4x1x2=4−8a a,即MN=√4−8a a,∵MN的长不小于2,∴√4−8aa≥2,∴a≤1 3,∵0<a<1 2,∴0<a≤1 3,故选:B.二、填空题:本题共6小题,每小题4分,共24分。

2021年江苏省中考数学考前必刷真题试卷附解析

2021年江苏省中考数学考前必刷真题试卷附解析

2021年江苏省中考数学考前必刷真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. Rt△ABC中,∠C=900,a、b、c分别为∠A、∠B、∠C的对边,则有()A.b=atanA B.b=csinA C.a=ccosB D.c=asinA2.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有()A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=213.如图,直角坐标系中,△ABC的三个顶点都在小正方形的顶点上,则△ABC的面积为()A.3 5 B.3 5 +5 C. 5 D.54.如图1所示,将长为20cm,宽为2cm的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为()A.34 cm2B.36 cm2C.38 cm2D.40 cm25.顺次连结菱形的各边中点所得到的四边形是()A.平行四边形 B.菱形 C.矩形 D.正方形6.下列各点在函数y=1-2x的图象上的是()A.(2.5,-l)B.(0,34)C.(0,12)D.(1,-l)7.下面四个图形中,经过折叠能围成如图所示的立方体纸盒的是()A. B. C.D.8.如图AB=AC,DE⊥AB,DF⊥AC,AD⊥BC,则图中的全等三角形有()A.1对B.2对C.3对D.4对9.如图,AB∥CD,∠1=110°, ∠ECD =70°,∠E 等于()A.30°B. 40°C. 50°D. 60°10.用科学记数法表示的数1.2×103,则这个数的原数是( ) A . 1200B .120C .12D .1200011.下列各组量中具有相反意义的量是( ) A .向东行 4km 与向南行4 km B .队伍前进与队伍后退 C .6 个小人与 5 个大人 D .增长3%与减少2%二、填空题12. 二次函数2(0)y ax bx c a =++≠的部分对应值如下表, 则不等式20ax bx c ++>的解集为 .13.sin60°= ,sin70°= , sin50°= , 并把它们用“<”号连结 .14.在半径为 1 的圆中,长度等于2的弦所对的圆心角是 .15.将50个数据分成5组列出频数分布表,其中第一组的频数6,•第二组与第五组的频数和为20,那么第三组与第四组的频数和为__ ____.16.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程0102=+-m x x 的两根,则m 的值是 .17.一元二次方程2(1)5x -=的根是 .18.如图.根据图中的程序,当输入3时,输出的结果y = .19.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是 .x -3 -2 -1 0 1 2 3 4 y6-4-6-6-4620.两位同学在解方程组时,甲同学由278ax bycx y+=⎧⎨-=⎩正确地解出32xy=⎧⎨=-⎩,乙同学因把c写错而得解22xy=-⎧⎨=⎩,那么a= ,b= ,c= .21.如图,在△ABC 中,AB 的垂直平分线交 AC 于 D,如果AC= 7 cm,BC=4 cm,则△BDC 的周长为 cm.22.某段铁路长 392 km,某客运车的行车速度每小时比原来增加 40 km,使得行完这段铁路所需时间短了 1 小时. 如果设该列车提速前的速度为每小时 x(km),那么为求x所列出的方程为.23.合并同类项22224-25x xy x y x-+= .三、解答题24.如图,在半径等于5㎝的圆0内有长为53㎝的弦 AB,求此弦所对的圆周角的度数.25.如图,AB 是⊙O的弦,直径 CD⊥AB,垂足为 P,如果AB = 8,PD = 2,试求⊙O的半径R.26.如图所示,已知AB∥EF.求∠B+∠C+∠D+∠E的度数.27.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图,三个汉字可以分别看成是轴对称图形.(1)请再写出2个类似轴对称图形的汉字;(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜. 你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并对构成的汉字进行说明.28.在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩. 下面是购买门票时,小明与他爸爸的对话:爸爸:大人门票35元,学生门票半价优惠,我们共有 12人,共需350元.小明:爸爸,等一下,让我算一算. 换一种方式买票是否可以更省钱.问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.29.50 名学生搬桌椅,两人抬一张桌子,一人拿两把椅子,怎样分配人数,才能使一次搬运 的桌椅配套?(提示:1 张桌子配 1 把椅子)30.如图,某市有一块长为(3a b +)m ,宽为(2a b +)m 的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少m 2?并求出当3a =,2b =时的绿化面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.B5.C6.D7.B8.C9.B10.A11.D二、填空题 12. x<—2 或 x>313.2,0.9397,0. 7660, sin50°< sin60°< sin70° 14.90°15.2416.16或2517.1x =.219.42x y =-⎧⎨=-⎩20. 4,5,-221.1122.392392140x x -=+23. 2224x xy +三、解答题 24.连结 AO 、BO ,过0作 OC ⊥AB ,交 AB 于C ,∵OC ⊥AB 且平分AB ,∴,△AOC 为直角三角形,∴∠AOC= 60° ,∵∠AOC=∠BOC,∴∠AOB= 120° , ∴AB 所对圆周角为 60°或 120°.25.设⊙O的半径为R,则AO=R,OP=R- 2 ,AP=12AB=4,得22(2)16R R=-+,∴R= 5.答:⊙O的半径为5.26.540°27.(1)如:田、日等(2)这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表法)土口木土(土,土)(土,口)(土,木)口(口,土)(口,口)(口,木)木(木,土)(木,口)(木,木)(树状图法)总共有 9种结果,每种结果出现的可能性相同,其中能组成上下结构的汉字的结果有 4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏” .所以P(小敏获胜)= 49, P(小慧获胜)= 59.∵P(小敏获胜)<P(小慧获胜),∴游戏对小慧有利.28.(1)成人8人,学生4人 (2)买团体票需252元,即买团体票省钱29.设x 人搬桌子,y 人搬椅子,则5022x y x y +=⎧⎪⎨=⎪⎩,∴4010x y =⎧⎨=⎩30.(253a ab +)m 2;当3a =,2b =时,25363a ab +=m 2。

2021年江苏省扬州市中考数学必刷模拟试卷附解析

2021年江苏省扬州市中考数学必刷模拟试卷附解析

2021年江苏省扬州市中考数学必刷模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,小芳和爸爸正在散步,爸爸身高1.8m ,他在地面上的影长为2.1m .若小芳比爸爸矮0.3m ,则她的影长为( ) A .1.3mB .1.65mC .1.75mD .1.8m2.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。

市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ) A .31 B .32 C .61 D .91 3.sin55°与 cos35°之间的关系( ) A .0sin55cos35o <B .00sin 55cos5>C .00sin55cos351+=D .sin55cos35o o = 4.如图,AC 、BC 是两个半圆的直径,∠ACP=30°,若AB=10㎝,则PQ 的值为( )A .5㎝B .35C .6D .8㎝5.已知样本10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么在频数分布表中,频率为0.2的组是( ) A .5.5~11.5 B .7.5~9.5C .9.5~11.5D .11.5~13.56.如图,在△ABC 中,∠1是△ABC 的一个外角,D 是AC 上一点,连结BD ,下列判断角的大小关系错误的是( ) A .∠l>∠2B .∠l>∠5C .∠l>∠3D .∠5>∠47.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表:颜色 黑色 棕色 白色 红色 销售量(双)60501015( )1QPA .平均数B .众数C .中位数D .方差8.下列事件中为必然事件的是( ) A .掷一枚均匀的骰子的点数是 6 B .掷一枚均匀的骰子的点数是奇数 C .掷一枚均匀的骰子的点数是偶数 D .掷一枚均匀的骰子的点数小于 7 9.若方程233mx x -=+的解满足10x -=,则m 的值是( ) A .-6 B . -8 C .-6或-12 D .任何数 10.用科学记数法表示430000是( )A .43×104B . 4.3×l05C .4.3×104D .4.3×106二、填空题11.如图,AC 是⊙O 的直径,60ACB ∠=,连接AB ,过AB ,两点分别作⊙O 的切线,两切线交于点P .若已知⊙O 的半径为1,则PAB △的周长为 .12.如图所示,P 为⊙O 外一点,PB 切⊙O 于B ,连结 PO 交⊙O 于A ,已知 OA=12OP ,OB= 5cm ,则PB= cm .13.小颖为了了解家里的用电量,在5月初连续8天同一时刻观察家里电表显示的数字,记 录如下: 日期(号)1 2 3 4 5 6 7 8 电表显示的数字(千瓦时) 117120124129135138142145月份的总用电量是 千瓦时.解答题14.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm 至165cm 之间的学生大约有 人.15.已知△ABC 的三边长分别是8 cm ,10 cm ,6 cm ,则△ABC 的面积是 cm 2.16.如图,在△ABC. 中,AB=AC=13 cm,AB的垂直平分线交AB边于点D,交AC边于点E,若△EBG的周长为 21 cm,则BC= cm.17.某网站开展“北京2008年奥运会中国队能获多少枚金牌”的网络调查,共有100000人参加此次活动,现要从中抽取100名“积极参与奖”,那么参加此活动的小华能获奖的概率是__________.18.在大小相同的10个信封里,其中有1个信封装有一张三角形纸片,有2个信封各装有一张正方形纸片,其余的信封各装有一张圆形纸片,你从中选出1个信封,取出的信封中装有形纸片的可能性最大.19.如图,在△ABC中,∠BAC=45O,现将△ABC绕点A旋转30O至△ADE的位置.则∠DAC= .20.在有理数中,倒数是它本身的数有,平方等于它本身的数有,立方等于它本身的数有,绝对值等于它本身的数有.21.按数的排列规律填空:0, -1 , 1, 0, -2 , 2, 0 , -3, 3…,-2005 , ,,.三、解答题22.一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:请结合图表完成下列问题:(1)表中的a=;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第组;(4)若八年级学生一分钟跳绳次数(x)达标要求是:120x<不合格;120140x<≤为合格;≤为良;160x<140160x≥为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:.23.用反证法证明命题“三角形中最多有一个角是直角或钝角”时,应假设.24.阅读理解题:(1)如图,在△ABC中,AD是BC边上的中线,且AD=12 BC.求证:∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.25.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球实验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.⑴估计从袋中任意摸出一个球,恰好是红球的概率是多少?⑵请你估计袋中红球接近多少个?26.仔细观察下图,认真阅读对话.根据对话内容,试求出饼干的标价是多少?27.如果想剪出如图所示的图案,你怎样剪?设法使剪的次数尽可能少.28.如图所示,△ABC ≌△ADE ,试说明BE=CD 的理由.29.求代数式的值.(1)2222113(21)()422xy x y xy x y +--+,其中x =-1,y =2. (2) 3x 2y -[2x 2y -(2xyz-x 2z)-4x 2z]-xyz ,其中 x=-2,y=-3,z=1.30.用科学记数法表示下列各数: (1)5320; (2)80700; (3)8000000; (4)600700000.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.B5.D6.D7.B8.D9.C10.B二、填空题11.12..12414.30015.2416.817.1000118. 圆19.15°20.1±,0和 1,0 和1±,非负数21.2005,0,-2006三、解答题 22.⑴ 12;⑵略;⑶中位数落在第3组;⑷只要是合理建议都可以.23.三角形中至少有两个角不小于90°24.(1)略;(2)若三角形一边上的中线等于这边的一半,则这个三角形是直角三角形25.(1)20×400=8000,∴摸到红球的频率为75.080006000=. ∵试验次数很大,∴频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是0.75. (2)设袋中红球有x 个,根据题意得:75.05=+x x,解得 x=15,经检验x=15是原方程的解,∴估计袋中红球接近15个.26.8元27.由于该图是轴对称图形,所以先把纸对折,然后沿折痕把对称轴的一侧图画上,再进行剪28.略29.(1)22111142xy x y -+-= (2)2236x y xyz x z ++=30.(1)5320=5.32×103 (2)80700 = 8.07×104 (3) 8000000 = 8×106 (4)600700000= 6.007 ×108。

2021中考数学必刷题 (446)

2021中考数学必刷题 (446)
(2)已知 x、y 满足方程组 ①求 x2+4y2 的值; ②求 的值. 25.今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分 改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考 前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部 分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远; C、50 米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统 计图,请你根据统计图解答下列问题:
正六面体一次,向上一面的数字是 2 的倍数或 3 的倍数的概率是

16.(3.00 分)将点(1,5)向下平移 2 个单位后,所得点的坐标为

17.(3.00 分)计算(3x+9)(6x+8)=

18.(3.00 分)对于任意不相等的两个实数 a,b.定义运算※如下:a※b= ,
如 3※2= = ,那么 8※4=
到小依次排列的是( )
A.a<b<c<d B.d<a<c<b C.b<a<d<c D.c<a<d<b
5.(3.00 分)不等式组
的整数解共有( )
A.3 个 B.4 个 C.5 个 D.6 个
6.(3.00 分)关于 x 的不等式组
的解集为 x>1,则 a 的取值范围是( )
A.a≥1 B.a>1 C.a≤1 D.a<1 7.(3.00 分)如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若 ∠B=70°,则∠EDC 的大小为( )
EF=3,AF=5,那么正方形 ABCD 的面积等于

三、解答题(共 6 小题;共 57 分) 22.计算:(﹣ )0﹣|﹣3|+(﹣1)2015+( )﹣1.

2021中考数学必刷题 (441)

2021中考数学必刷题 (441)

2021中考数学必刷题441一、选择题(每小题4分,共40分)1.(4.00分)计算:1﹣(﹣)=()A.B.﹣C.D.﹣2.(4.00分)下列运算正确的是()A.a•a3=a3B.2(a﹣b)=2a﹣b C.(a3)2=a5D.a2﹣2a2=﹣a2 3.(4.00分)用3个完全相同的小正方体组成如图所示的几何体,则它的俯视图是()A.B.C.D.4.(4.00分)一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是()A.B.C.D.5.(4.00分)直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)6.(4.00分)在正方形、矩形、菱形、平行四边形、等腰梯形中,其中中心对称图形的个数是()A.2B.3C.4D.57.(4.00分)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm8.(4.00分)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm9.(4.00分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20B.﹣=20C.﹣=20D.+=2010.(4.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b >0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2B.3C.4D.5二、填空题(每小题4分,共24分)11.(4.00分)因式分解:x2﹣6x+9=.12.(4.00分)x是绝对值最小的有理数,y是最小的正整数,z是最大的负整数,则x+y+z=.13.(4.00分)把96000用科学记数法表示为.14.(4.00分)一个n边形的内角和为1080°,则n=.15.(4.00分)某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为:6、8、7、7、8、9,这组数据的中位数是.16.(4.00分)在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.三、解答题(共86分)17.(8.00分)先化简,再求值:÷(2+),其中a=.18.(8.00分)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.19.(10.00分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(10.00分)如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B 两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出y1>y2时自变量x的取值范围.21.(12.00分)如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.22.(12.00分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径R=3,求的值.23.(12.00分)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB 经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.24.(14.00分)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题4分,共40分)1.【考点】1A:有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.2.【考点】35:合并同类项;36:去括号与添括号;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、幂的乘方和同类项进行计算.【解答】解:A、a•a3=a4,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a3)2=a6,错误;D、a2﹣2a2=﹣a2,正确;故选:D.【点评】此题考查同底数幂的乘法、幂的乘方和同类项,关键是根据法则进行计算.3.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从上边看的到的视图,可得答案.【解答】解:从上边看左边一个小正方形,右边一个小正方形,故B符合题意;故选:B.【点评】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.4.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,从中随机摸出一个,则摸到红球的概率是=.故选:A.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.【考点】F8:一次函数图象上点的坐标特征.【分析】令x=0,求出y的值,即可求出与y轴的交点坐标.【解答】解:当x=0时,y=﹣4,则函数与y轴的交点为(0,﹣4).故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要知道,y轴上的点的横坐标为0.6.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析.【解答】解:正方形、矩形、菱形、平行四边形是中心对称图形,共4个,故选:C.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.【考点】KQ:勾股定理;M2:垂径定理.【分析】连接OA,先利用垂径定理得出AC的长,再由勾股定理得出OC的长即可解答.【解答】解:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=AB=×6=3cm,∵⊙O的半径为5cm,∴OC===4cm,故选:B.【点评】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理的应用是解题的关键.8.【考点】KG:线段垂直平分线的性质.【分析】首先根据MN是线段AB的垂直平分线,可得AN=BN,然后根据△BCN 的周长是7cm,以及AN+NC=AC,求出BC的长为多少即可.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.【点评】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.9.【考点】B6:由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.10.【考点】H4:二次函数图象与系数的关系.【分析】由抛物线开口向下得到a<0,由对称轴在x=1的右侧得到﹣>1,于是利用不等式的性质得到2a+b>0;由a<0,对称轴在y轴的右侧,a与b异号,得到b>0,抛物线与y轴的交点在x轴的下方得到c<0,于是abc>0;抛物线与x轴有两个交点,所以△=b2﹣4ac>0;由x=1时,y>0,可得a+b+c>0;由x=﹣2时,y<0,可得4a﹣2b+c<0.【解答】解:①∵抛物线开口向下,∴a<0,∵对称轴x=﹣>1,∴2a+b>0,故①正确;②∵a<0,﹣>0,∴b>0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴abc>0,故②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④∵x=1时,y>0,∴a+b+c>0,故④错误;⑤∵x=﹣2时,y<0,∴4a﹣2b+c<0,故⑤正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0)的图象,当a>0,开口向上,a<0,开口向下;对称轴为直线x=﹣,a 与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c<0,抛物线与y轴的交点在x轴的下方;当△=b2﹣4ac>0,抛物线与x轴有两个交点.二、填空题(每小题4分,共24分)11.【考点】54:因式分解﹣运用公式法.【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.12.【考点】15:绝对值;19:有理数的加法.【分析】直接利用绝对值的性质以及正整数、负整数的定义得出x,y,z的值进而得出答案.【解答】解:∵x是绝对值最小的有理数,y是最小的正整数,z是最大的负整数,∴x=0,y=1,z=﹣1,则x+y+z=0+1﹣1=0.故答案为:0.【点评】此题主要考查了有理数的加法,正确把握相关定义得出x,y,z的值是解题关键.13.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:把96000用科学记数法表示为9.6×104.故答案为:9.6×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【考点】L3:多边形内角与外角.【分析】直接根据内角和公式(n﹣2)•180°计算即可求解.【解答】解:(n﹣2)•180°=1080°,解得n=8.【点评】主要考查了多边形的内角和公式.多边形内角和公式:(n﹣2)•180°.15.【考点】W4:中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6、7、7、8、8、9,则中位数为:=7.5.故答案为:7.5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.【考点】MN:弧长的计算.【分析】根据弧长公式L=进行求解.【解答】解:L==π.故答案为:π.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式L=.三、解答题(共86分)17.【考点】6D:分式的化简求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=÷(+)=÷=•=,当a=时,原式==﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.【考点】8A:一元一次方程的应用;CE:一元一次不等式组的应用.【分析】(1)设该超市购进甲商品x件,则购进乙商品(80﹣x)件,根据恰好用去1600元,求出x的值,即可得到结果;(2)设该超市购进甲商品x件,乙商品(80﹣x)件,根据两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元列出不等式组,求出不等式组的解集确定出x的值,即可设计相应的进货方案,并找出使该超市利润最大的方案.【解答】解:(1)设该超市购进甲商品x件,则购进乙商品(80﹣x)件,根据题意得:10x+30(80﹣x)=1600,解得:x=40,80﹣x=40,则购进甲、乙两种商品各40件;(2)设该超市购进甲商品x件,乙商品(80﹣x)件,由题意得:,解得:38≤x≤40,∵x为非负整数,∴x=38,39,40,相应地y=42,41,40,进而利润分别为5×38+10×42=190+420=610,5×39+10×41=195+410=605,5×40+10×40=200+400=600,则该超市利润最大的方案是购进甲商品38件,乙商品42件.【点评】此题考查了一元一次不等式组的应用,以及一元一次方程的应用,找出题中的等量关系及不等式关系是解本题的关键.19.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出的百分比,乘以3000即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【解答】解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,∴中位数为50;(2)根据题意得:3000×(1﹣25%)=2250人,则该校帮助父母做家务的学生大约有2250人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点D 的坐标代入y 2=利用待定系数法即可求得反比例函数的解析式,作DE ⊥x 轴于E ,根据题意求得A 的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得C 的坐标,然后根据S △COD =S △AOC +S △AOD 即可求得△COD 的面积;(3)根据图象即可求得.【解答】解:∵点D (2,﹣3)在反比例函数y 2=的图象上,∴k 2=2×(﹣3)=﹣6,∴y 2=﹣;作DE ⊥x 轴于E ,∵D (2,﹣3),点B 是线段AD 的中点,∴A (﹣2,0),∵A (﹣2,0),D (2,﹣3)在y 1=k 1x +b 的图象上,∴,解得k 1=﹣,b=﹣,∴y 1=﹣x ﹣;(2)由,解得,,∴C (﹣4,),∴S △COD =S △AOC +S △AOD =×+×2×3=;(3)当x <﹣4或0<x <2时,y 1>y 2.【点评】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得A 点的坐标是解题的关键.21.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间;(2)过C作CD⊥OA,垂足为D,设相会处为点E.求出OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,则DE=90﹣3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2,即(30)2+(90﹣3v)2=602,解方程求出v=20或40,进而求出相遇处与港口O的距离.【解答】解:(1)∵∠CBO=60°,∠COB=30°,∴∠BCO=90°.在Rt△BCO中,∵OB=120,∴BC=OB=60,∴快艇从港口B到小岛C的时间为:60÷60=1(小时);(2)过C作CD⊥OA,垂足为D,设相会处为点E.则OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,∴DE=90﹣3v.∵CE=60,CD2+DE2=CE2,∴(30)2+(90﹣3v)2=602,∴v=20或40,∴当v=20km/h时,OE=3×20=60km,当v=40km/h时,OE=3×40=120km.【点评】此题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,勾股定理等知识,理解方向角的定义,得出∠BCO=90°是解题的关键,本题难易程度适中.22.【考点】M5:圆周角定理;ME:切线的判定与性质;S9:相似三角形的判定与性质.【分析】(1)连接OD,则∠ODF=∠C,由EF=ED可得出∠FDE=∠DFB,由对顶角相等结合∠C+∠CFO=90°,即可得出∠ODF+∠FDE=∠ODE=90°,进而可得出DE 是⊙O的切线;(2)由OA=OD,∠A=∠ADO,由等角的余角相等可得出∠BDE=∠A,结合公共角∠AED=∠DEB,可得出△ADE∽△DEB,再利用相似三角形的性质可求出的值.【解答】(1)证明:连接OD,如图所示.∵OD=OC,∴∠ODF=∠C.∵OC⊥AB,∴∠C+∠CFO=90°.又∵∠CFO=∠DFB,EF=ED,∴∠FDE=∠DFB,∴∠ODF+∠FDE=∠ODE=90°.∴DE是⊙O的切线;(2)解:∵OA=OD,∴∠A=∠ADO.∵AB为直径,∴∠ADO+∠ODB=90°.∵∠ODB+∠BDE=90°,∴∠ADO=∠BDE=∠A.又∵∠AED=∠DEB,∴△ADE∽△DEB,∴==.∵OF:OB=1:3,⊙O的半径R=3,∴OF=1,BF=2.设BE=x,则=,解得:x=2,∴==.【点评】本题考查了相似三角形的判定与性质、等腰三角形的性质、切线的判定与性质以及余角,解题的关键是:(1)通过角的计算找出∠ODF+∠FDE=∠ODE=90°;(2)利用相似三角形的判定定理找出△ADE∽△DEB,23.【考点】LO:四边形综合题.【分析】(1)延长CD交x轴于M,延长BA交x轴于N,则CM⊥x轴,BN⊥x 轴,AD∥x轴,BN∥DM,由矩形的性质得出和勾股定理求出BD,BO=15,由平行线得出△ABD∽△NBO,得出比例式,求出BN、NO,得出OM、DN、PN,即可得出点D、P的坐标;(2)当点P在边AB上时,BP=6﹣t,由三角形的面积公式得出S=BP•AD;②当点P在边BC上时,BP=t﹣6,同理得出S=BP•AB;即可得出结果;(3)设点D(﹣t,t);分两种情况:①当点P在边AB上时,P(﹣t﹣8,t),由和时;分别求出t的值;②当点P在边BC上时,P(﹣14+t,t+6);由和时,分别求出t的值即可.【解答】解:(1)延长CD交x轴于M,延长BA交x轴于N,如图1所示:则CM⊥x轴,BN⊥x轴,AD∥x轴,BN∥DM,∵四边形ABCD是矩形,∴∠BAD=90°,CD=AB=6,BC=AD=8,∴BD==10,当t=5时,OD=5,∴BO=15,∵AD∥NO,∴△ABD∽△NBO,∴,即,∴BN=9,NO=12,∴OM=12﹣8=4,DM=9﹣6=3,PN=9﹣1=8,∴D(﹣4,3),P(﹣12,8);(2)如图2所示:当点P在边AB上时,BP=6﹣t,∴S=BP•AD=(6﹣t)×8=﹣4t+24;②当点P在边BC上时,BP=t﹣6,∴S=BP•AB=(t﹣6)×6=3t﹣18;综上所述:S=;(3)设点D(﹣t,t);①当点P在边AB上时,P(﹣t﹣8,t),若时,,解得:t=6;若时,,解得:t=20(不合题意,舍去);②当点P在边BC上时,P(﹣14+t,t+6),若时,,解得:t=6;若时,,解得:t=(不合题意,舍去);综上所述:当t=6时,△PEO与△BCD相似.【点评】本题是四边形综合题目,考查了矩形的性质、勾股定理、相似三角形的判定与性质、三角形面积的计算等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,由三角形相似得出比例式才能得出结果.24.【考点】HF :二次函数综合题.【分析】(1)把A (﹣1,0)、B (3,0)两点代入y=﹣x 2+bx +c 即可求出抛物线的解析式,(2)设D (t ,﹣t 2+2t +3),过点D 作DH ⊥x 轴,根据S △BCD =S 梯形OCDH +S △BDH ﹣S △BOC =﹣t 2+t ,即可求出D 点坐标及△BCD 面积的最大值,(3)设过点P 与BC 平行的直线与抛物线的交点为Q ,根据直线BC 的解析式为y=﹣x +3,过点P 与BC 平行的直线为y=﹣x +5,得Q 的坐标为(2,3),根据PM 的解析式为:x=1,直线BC 的解析式为y=﹣x +3,得M 的坐标为(1,2),设PM 与x 轴交于点E ,求出过点E 与BC 平行的直线为y=﹣x +1,根据得点Q 的坐标为(,﹣),(,﹣).【解答】解:(1)由得,则抛物线的解析式为y=﹣x 2+2x +3,(2)设D (t ,﹣t 2+2t +3),过点D 作DH ⊥x 轴,则S △BCD =S 梯形OCDH +S △BDH ﹣S △BOC =(﹣t 2+2t +3+3)t +(3﹣t )(﹣t 2+2t +3)﹣×3×3=﹣t 2+t ,∵﹣<0,∴当t=﹣=时,D 点坐标是(,),△BCD 面积的最大值是;(3)设过点P 与BC 平行的直线与抛物线的交点为Q ,∵P 点的坐标为(1,4),直线BC 的解析式为y=﹣x +3,∴过点P 与BC 平行的直线为y=﹣x +5,由得Q 的坐标为(2,3),∵PM 的解析式为x=1,直线BC 的解析式为y=﹣x +3,∴M 的坐标为(1,2),设PM与x轴交于点E,∵PM=EM=2,∴过点E与BC平行的直线为y=﹣x+1,由得或,∴点Q的坐标为(,﹣),(,﹣),∴使得△QMB与△PMB的面积相等的点Q的坐标为(2,3),(,﹣),(,﹣).【点评】此题考查了二次函数综合,用到的知识点是二次函数的图象与性质、三角形梯形的面积、直线与抛物线的交点,关键是作出辅助线,求出符合条件的所有点的坐标.。

2021年江苏省扬州市中考数学考前必刷真题试卷附解析

2021年江苏省扬州市中考数学考前必刷真题试卷附解析

2021年江苏省扬州市中考数学考前必刷真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,下列各组图形是相似形的是()A.①③④B.①②③C.②③④D.①②④2.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y23.如图所示,直线a,b被直线c所截,现给出下面四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判定a∥b的条件的序号是()A.①②B.①③C.①④D.③④4.一次函数y=kx+b中,k<0,b>0.那么它的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.一个几何体的三视图如下图所示,则这个几何体应该是()A.B. C. D.6.在等腰直角三角形ABC中,AB=AC=2, D为腰AB的中点,过点D作DE⊥AB交BC边于点E,则BE等于()A. 1 B 2C2D.27.如图,0A⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD乙:∠BOCC+∠AOD=180°丙:∠AOB+∠COD=90°丁:图中小于平角的角有5个其中正确的结论有( )A .1个B .2个C .3个D .4个8.若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( )A .10B .-10C .6D .-6二、填空题9.两圆的半径分别为3和5,当这两圆相交时,圆心距d 的取值范围是 . 10.直角梯形两腰长之比为1:2,则它的锐角是 .11.“平行四边形的对角相等”的逆命题是 .12.在△ABC 和△DEF 中,①AB=DE ;②BC=EF ;③AC=DF ;④∠A=∠D .从这四个条件中选取三个条件能判定△ABC ≌△DEF 的方法共有 种.解答题13.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______°.14.已知函数21x y x =+,当x=-2时,对应的函数值为 . 15.严驰同学在杭州市动物园的大门口看到这个动物园的平面示意图如图所示,试借助刻度尺、量角器解决下列问题:(1)表演厅在大门的北偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(2)虎山在大门的南偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(3)猴山在大熊猫馆南偏 约 度的方向上,到大熊猫馆的图上距离约为cm ,实际距离为 m .16.如图,随机闭合开关123S S S ,,中的两个, 能够让灯泡发光的概率为 .17.如图,在长方形 ABCD中,AB=3,BC=7,则AB,CD 间的距离是.18.用适当的数或整式填空,使所得的结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形得到的.(1)如果6x=5x+8,那么6x- = 8.根据:.(2)如果-4x=12,那么x= .根据: .(3)如果2y=1.5,那么6y= .根据: .(4)如果x+7=y+7,那么x= .根据: .19.“两直线平行,同位角相等”的逆命题是 .三、解答题20.已知⊙O1和⊙O2相交于A、B两点,过A的直线交两圆于C、D两点,过B的直线交两圆于E、F两点,连接DF、CE;(1)证明DF//DF;(2)若G为CD的中点,求证CE=DF.21.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.22. 分解因式:(1)32228126a b ab c a b -+-;(2)3()9()a x y y x -+-;(3)2(23)23m n m n --+;(4)416mn m -23.有8张卡片,每张卡片上分别写有不同的从1到8的一个自然数.从中任意抽出一张卡片,请计算下列事件发生的概率:(1)卡片上的数是偶数;(2)卡片上的数是3的倍数.24.已知△ABC 的三边长分别是 a ,b ,c ,试利用因式分解说明式子2222b a ac c -+-的符号.25.如图,在矩形ABCD 中,AC 、BD 相交于点O .(1)过点B 作AC 的平行线与过点C 作BD 的平行线相交于点E ;(2)先观察线段OB 、BE 、EC 、C0的大小,并测量验证你的观察结果;(3)你能说出四边形COBE 是哪种形状的图形吗?26.请根据几何图形举出生活中的对应实例27.陈聪到希望书店帮同学们买书,售货员告诉他:如果用 20 元钱办理“希望书店会员卡”,将享受八折优惠.(1)请问在这次买书过程中,陈聪在什么情况下,办会员卡与不办会员卡一样?(2)当陈聪买总标价为 200 元的书时,怎么做合算,能省多少钱?28.检验括号中的数是否为方程的解?(1)3x-4=8(x=3,x=4)(2)1372y+=(y=8,y=4)29.用分式表示下列各式的商,并约分:(1)23312(8)a b a b÷-;(2)22(21)(1)m m m-+÷-30.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过..她的头顶,请结合图像,写出t 的取值范围 .·AO B DEF x y【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.C5.D6.C7.B8.D二、填空题9.<<10.d2830°11.对角相等的四边形是平行四边形12.213.6014.415.(1)西,79,2,200;(2)西,76,4.4,440;(3)东,70,1.3,13016.2317. 7.18.略19.同位角相等,两直线平行三、解答题20.(1)∵∠C=∠ABC ,∠ABF=∠ADF ,∴∠C=∠ADF ,∴DF//DF .(2)证△GCE ≌△GDF ,可得CE =DF .21.(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠. ∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°. 又 ∵ AD ⊥BC ,CE ⊥AN ,∴ ADC CEA ∠=∠=90°,∴ 四边形ADCE 为矩形.(2)例如,当AD =12BC 时,四边形ADCE 是正方形. 证明:∵ AB =AC ,AD ⊥BC 于D .∴ DC =12BC .又 AD =12BC ,∴ DC =AD . 由(1)四边形ADCE 为矩形,∴ 矩形ADCE 是正方形.22.(1)222(463)ab a b b c a --+ (2)3()(3)x y a -- (3)(23)(231)m n m n ---(4) 2(41)(21)(21)m n n n ++- 23.(1)21=P ;(2)41=P . 24.正号25.(1)图略 (2)0B=BE=EC=CO (3)菱形26.略27.(1)买标价共计100 元的书时,办不办会员卡花钱都一样.(2)买标价为 200 元的书时,办会员卡合算,能省 20 元.28.(1)x=4 是方程的解,x=3不是 (2)y=8是方程的解,y=4不是29. (1)232b a -;(2)11m m -+ 30.解:(1)由题意得点E (1,1.4), B(6,0.9), 代入y=ax 2+bx+0.9得0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩ , 解得 0.10.6a b =-⎧⎨=⎩. ∴所求的抛物线的解析式是y=-0.1x 2+0.6x+0.9.(2)把x=3代入y=-0.1x 2+0.6x+0.9得y=-0.1×32+0.6×3+0.9=1.8,∴小华的身高是1.8米.(3)1<t <5.。

2021年江苏省盐城市中考数学考前必刷真题试卷附解析

2021年江苏省盐城市中考数学考前必刷真题试卷附解析

2021年江苏省盐城市中考数学考前必刷真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,是由一些相同的小正方形构成的几何体的三视图.这几个几何体中相同的小正方体的个数有( ) A .4 个B .5 个C .6 个D .7 个由6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A .主视图的面积最大 B .左视图的面积最大. C .俯视图的面积最大 D .三个视图的面积一样大3. 如图,以□ABCD 的一边AB 为直径作⊙O ,若⊙O 过点C ,且∠AOC=700,则∠A 等于( ) A . 1450B . 1400C . 1350D . 12004.已知点A (1,y 1),B ( 2-2) , C (- 2, y 3),在函数212(1)2y x =+-的图象上,则 y l 、y 2、y 3 的大小关系是( ) A .123y y y >> B .132y y y >> C .32l y y y >> D . 213y y y >>5.如果要使一个平行四边形成为正方形,那么需要增加的条件是( )A .对角互补B .对角相等C .对角线互相垂直D .对角线互相垂直且相等6.关于x 的一元二次方程21(1)420m m x x ++++=的解为( ) A .11x =,21x =- B .121x x == C .121x x ==- D .无解7. 方程2850x x -+=的左边配成完全平方后所得的方程是( )A .2(6)11x -=B .2(4)11x -=C .2(4)21x -=D .以上答案都不对8.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( )A.个体B.总体 C .样本容量 D .总体的一个样本 9.如图,对任意的五角星, 结论错误的是( ) A .∠1=∠C+∠E B .∠2=∠A+∠DC .∠A+∠B+∠C+∠D+∠E=360°D .∠A+∠B+∠C+∠D+∠E=180°10.在①(2)(2)a b b a -+;②(34)(43)a b b a -+--;③2(2)(22)x y x y +-;④()()a b b a --的计算中,能利用平方差公式计算的有( ) A .1 个 B .2 个 C .3 个 D . 4 个 11.若 x ,y 是正整数,且5222x y ⋅=,则x ,y 的值有( ) A .4 对B .3 对C .2 对D .1 对12.如图,阴影部分的面积是( ) A .112xy B .132xy C .6xyD .3xy13.下列判断,正确的个数有( )①如果两个数相等,那么这两个数的绝对值一定相等; ②如果两个数不相等,那么这两个数的绝对值一定不相等; ③如果两个数的绝对值相等,那么这两个数一定相等; ④如果两个数的绝对值不相等,那么这两个数一定不相等. A .1 个B . 2 个C .3 个D .4 个二、填空题14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则a :b :c= .15.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”).16.在Rt △ABC 中,∠C=90°,∠A=41°,则∠B= .17.如果质量抽测时得出任抽一件西服成品为合格品的概率为 0. 9,那么销售 1200 件 西服时约需多准备 件合格品,以供顾客调换.三、解答题18.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23y=x 3x 15-++的一部分,如图. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.19.某商场在销售中发现“好好”牌服装平均每天可以销售20件,每件盈利40元.为了迎接“五∙ 一”国际劳动节,商场决定采取适当的降价措施,经市场调查发现:如果每件服装每降价2元,那么平均每天就可以多售出4件,要想平均每天在这种服装上盈利1200元,那么每件服装应降价多少元?如果商场要扩大销售量,尽可能地减少库存,每件服装应降价多少元?20.根据下列命题,画出图形,并写出“已知”,“求证”(不必证明). (1)三条边对应相等的两个三角形全等; (2)垂直于同一条直线的两条直线平行.ABC人 梯21.解方程:2212-=.x6x=-222.如图①、图②所示,是由几个小立方体组成的两个几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这两个几何体的主视图及左视图.23.画出如图所示立体图形的三视图.24.有一个骰子,在它的各个面上分别标上数字1、2、3、4、5、6,掷过三次,每次看到的结果如图所示,数字l、2、3、4、5、6的对面分别标的是什么数字?25.阅读下列解法,并回答问题:如图,∠1 = 75°,∠2 = 105°,说明 AB∥CD,以下几种说明方法正确吗?如果正确,请说出利用了平行线的哪一种判定方法,如果不正确,请给予纠正.解法1:∵∠1 +∠3 = 180°,∠1 = 75°,∴∠3= l05°,又∵∠2=105°,∴∠2 =∠3,∴.AB∥CD.解法2:∵∠2+∠4 = 180°,∠2 = 105°,∴∠4= 75°,又∵∠1= 75°,∴∠1 = ∠4,∴AB∥CD.解法 3:∵∠ 2 =∠5,∠2= 105°,∴∠5 =105°,又∵∠1 = 75°,∴∠1 +∠5 =180°,∴.AB∥CD.26.先化简,再求值:223(2)()()a b ab b b a b a b--÷-+-,其中112a b==-,.27.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据如图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?共计145元共计280元28.如图,AC=AE,AB=AD,∠1=∠2.请说明下列结论成立的理由:(1) △ABC≌△ADE;(2)BC=DE.29.如图所示,已知线段a,b和∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.30.现在规定两数a、b通过“⊕”运算得到3ab,如 2⊕5=3×2×5=30.(1)求 5⊕(13)的值;(2)不论x是什么数,总有a⊕x= x,则a 的值是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.B5.D6.C7.B8.C9.C10.B11.AA13.B二、填空题 14.1 215.众数16.49°17.120三、解答题 18.解:(1)23y=x 3x 15-++=23519x 524⎛⎫ ⎪⎝⎭--+,∵305-< ∴函数的最大值是194.答:演员弹跳的最大高度是194米.(2)当x =4时,23y=43415⨯⨯-++=3.4=BC ,所以这次表演成功.19.设每件服装应降价x 元,则(40-x )(20+x2 ×4)=1200,解得x 1=10,x 2=20 为尽可能地减少库存,每件服装应降价20元20.略21.x =. 略23.24.1的对面是5,2的对面是4,3的对面是625.解法都是正确的,解法l 利用了同位角相等来判定两直线平行,解法2得用了内错角相等来判定两直线平行,解法3利用了同旁内角互补来证明两直线平行26.解:原式22222()a ab b a b =----22222a ab b a b =---+ 2ab =-. 将112a b ==-,代入上式得,原式12(1)2=-⨯⨯-1=. 27.125元和10元.28.(1)∠1=∠2,则∠CAB=∠EAD ,ΔABC ≌ΔADE (SAS );(2)ΔABC ≌ΔADE ,则BC=DE29.略30.(1)-5 (2)13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档