昌平区2018届高三二模数学(理)试题及答案(官方版)
昌平高三二模理科数学
则输出y值的取值范围是.
?
13.向量a,b在边长为1的正方形网格中的位置如图所示,
则向量a,b所成角的余弦值是_________;向量a,b所张成的平行四边形的面积是__________.
14.已知函数
①当 时,若函数 有且只有一个极值点,则实数 的取值范围是;
昌平高三二模理科数学精选文档
昌平区2018年高三年级第二次统一练习
数学试卷(理科)
本试卷共5页,共150分.考试时长120分钟.考生务必将答案作答在答题卡上,在试卷上作答无效.
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.已知全集 R,集合A={x∣x< 或x> 1},则
(Ⅲ)若从空气质量角度选择生活地区居住,你建议选择A,B两地区哪个地区.(只需写出结论)
17.(本小题14分)
如图1,在边长为2的菱形 中, , 于点 ,将 沿 折起到 的位置,使 ,如图2.
(I)求证: 平面 ;
(II)求二面角 的余弦值;
(III)在线段 上是否存在点 ,使平面 平面 若存在,求出 的值;若不存在,说明理由.
A. B. C. D.
2.若复数 ,当 时,则复数 在复平面内对应的点位于
A.第一象限B.第二象限C.第三象限D.第四象限
3.已知等比数列 中, ,则 =
A. B. C. D.
4.设 , , ,则
A. B. C. D.
5.若满足条件 的整点 恰有12个,其中整点是指横、纵坐标都是整数的点,则整数 的值为
20.(本小题13分)
已知正项数列 中,若存在正实数 ,使得对数列 中的任意一项 , 也是数列 中的一项,称数列 为“倒置数列”, 是它的“倒置系数”.
北京市昌平区2018届高三数学12月月考试题理
又 BH 平面 PAB , CF 平面 PAB , (一个都没写的,则这 1 分不给) 所以 CF 平面 PAD . ……………………4 分 (Ⅱ)因为梯形 ABCD 中, AD BC , AD AB , 所以 BC AB .
因为 PB 平面 ABCD ,所以 PB AB,PB BC ,
如图,以 B 为原点, BC, BA, BP 所在直线为 x, y, z 轴建立空间直角坐标系, …………….5 分
所以 C(1,0,0), D(3,3,0), A(0,3,0), P(0,0,3) .
设平面 BPD 的一个法向量为 n ( x, y, z) ,平面 APD 的一个法向量为 m (a,b, c) ,
的是
A. m 1,n 1 B. m 4,n 1 C. m 3,n 4 D. m 4,n 4
二、填空题共 4 小题,每小题 5 分,共 20 分。
13.已知命题 p: x∈R 有 sinx 1,则﹁p 为 ___ .
-2-
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
A.15 个
B. 25 个 C. 30 个 D. 35 个
6.已知函数
f
(x)
x 1, x 2, 2 loga x, x
2
(a
0且a
1) 的最大值为1,则 a 的取值范围是
A.[1 ,1) 2
B. (0,1)
C. (0, 1] 2
D. (1, )
-1-
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
三、解答题(17--21 题每题 12 分、22 题 10 分,共 70 分。解答应写出文字说明、演算步骤
昌平区二中2018-2019学年高二上学期数学期末模拟试卷含解析
昌平区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数的零点所在区间为( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)2. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .3. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A .B .C .D .4. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 5. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .806. 设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .2 7. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .8. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 9. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图 10.若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( )A .12B .10C .8D .611.复数的虚部为( )A .﹣2B .﹣2iC .2D .2i12.底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π二、填空题13.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .14.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .15.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .16.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .17.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .18.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .三、解答题19.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.20.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34. (1)求a 与b 的值;(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.21.已知函数f (x )=alnx ﹣x (a >0). (Ⅰ)求函数f (x )的最大值;(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α22.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.23.如图在长方形ABCD 中,是CD 的中点,M 是线段AB 上的点,.(1)若M 是AB 的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.24.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.(I)求p的值;(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.昌平区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,∵f(2)=log32﹣1<0,f(3)=log33﹣>0,∴函数f(x)的零点一定在区间(2,3),故选:B.【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.2.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.3.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.4.【答案】A【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.5. 【答案】 C【解析】 二项式定理. 【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k 的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k 的系数为C 5k 25﹣k当k ﹣1时,C 5k 25﹣k =C 5124=80, 当k=2时,C 5k 25﹣k =C 5223=80, 当k=3时,C 5k 25﹣k =C 5322=40, 当k=4时,C 5k 25﹣k =C 54×2=10, 当k=5时,C 5k 25﹣k =C 55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.6. 【答案】B 【解析】解:∵f (x )=,∴f (﹣2)=1+log 24=1+2=3,=5,∴f (﹣2)+f (log 210)=3+5=8. 故选:B .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.7. 【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g (x )=﹣log b x=log a x ,f (x )=a x与∴函数f (x )与函数g (x )的单调性是在定义域内同增同减 结合选项可知选B , 故答案为B8. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性.9. 【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D .【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.10.【答案】C【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)抛物y 2=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.11.【答案】C【解析】解:复数===1+2i 的虚部为2.故选;C .【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.12.【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A.二、填空题13.【答案】3a ≤- 【解析】试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质.14.【答案】 6 .【解析】解:∵ =(2x ﹣y ,m ),=(﹣1,1).若∥, ∴2x ﹣y+m=0, 即y=2x+m ,作出不等式组对应的平面区域如图: 平移直线y=2x+m ,由图象可知当直线y=2x+m 经过点C 时,y=2x+m 的截距最大,此时z 最大.由,解得,代入2x ﹣y+m=0得m=6.即m的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.15.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.16.【答案】(﹣,).【解析】解:∵,,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.17.【答案】.【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.18.【答案】2.【解析】解:∵一组数据2,x ,4,6,10的平均值是5, ∴2+x+4+6+10=5×5, 解得x=3, ∴此组数据的方差 [(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8, ∴此组数据的标准差S==2.故答案为:2.【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.三、解答题19.【答案】【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,∴EDEPEF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 29=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .∴415=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2∴)29427(4152+⨯=PA ,解得4315=PA .……………………10分 20.【答案】【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩.…………………4分(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分 而41433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;1131(4)2348P X ==⨯⨯=; 1211135(6)23423424P X ==⨯⨯+⨯⨯=;1211(8)23412P X ==⨯⨯=; 1111(10)23424P X ==⨯⨯=;1111(12)23424P X ==⨯⨯=.…………………9分所以X 的分布列为:于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分21.【答案】【解析】解:(Ⅰ)令,所以x=a .易知,x ∈(0,a )时,f ′(x )>0,x ∈(a ,+∞)时,f ′(x )<0. 故函数f (x )在(0,a )上递增,在(a ,+∞)递减. 故f (x )max =f (a )=alna ﹣a .(Ⅱ)令g (x )=f (a ﹣x )﹣f (a+x ),即g (x )=aln (a ﹣x )﹣aln (a+x )+2x .所以,当x ∈(0,a )时,g ′(x )<0.所以g (x )<g (0)=0,即f (a+x )>f (a ﹣x ). (Ⅲ)依题意得:a <α<β,从而a ﹣α∈(0,a ).由(Ⅱ)知,f (2a ﹣α)=f[a+(a ﹣α)]>f[a ﹣(a ﹣α)]=f (α)=f (β). 又2a ﹣α>a ,β>a .所以2a ﹣α<β,即α+β>2a .【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.22.【答案】(1)a ≤2)193a <<. 【解析】试题分析:(1)原问题等价于()0f x '≤对()0,+∞恒成立,即12a x x≤+对()0,+∞恒成立,结合均值不等式的结论可得a ≤(2)由题意可知()2210x ax f x x-+-'==在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的取值范围是193a <<.试题解析:(2)∵函数()f x 在()0,3上既有极大值又有极小值,∴()2210x ax f x x-+-'==在()0,3上有两个相异实根, 即2210x ax -+=在()0,3上有两个相异实根,记()221g x x ax =-+,则()()003{ 40030ag g ∆><<>>,得{012 193a a a a -<<<,即193a <<.23.【答案】【解析】(1)证明:如图,以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,当M 是AB 的中点时,A (0,0),N (1,1),C (2,1),M (1,0),,由,可得与共线;(2)解:假设线段AB 上是否存在点M,使得与垂直,设M (t ,0)(0≤t ≤2),则B (2,0),D (0,1),M (t ,0),,由=﹣2(t ﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P 在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.24.【答案】【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.所以,直线l的方程为…由消y并整理,得…设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1…(II)由(I)可知,抛物线的方程为y2=2x.由题意,直线m的方程为y=kx+(2k﹣1).…由方程组(1)可得ky2﹣2y+4k﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y2=2x,得.这时.直线m与抛物线只有一个公共点.…当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.解得.于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…因此,所求m的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.。
北京昌平高三二模理科数学试题及答案
昌平区2012-2013学年第二学期高三年级期第二次质量抽测数 学 试 卷(理科)(满分150分,考试时间 120分钟)2013.4考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)已知集合{|21}xA x =>,{|1}B x x =<,则AB =A. {|1}x x >B. {|0}x x >C. {|01}x x <<D. {|1}x x < (2)已知命题 :p x ∀∈R ,2x ≥,那么下列结论正确的是A.命题:2p x x ⌝∀∈R ≤, B .命题:2p x x ⌝∃∈<R , C .命题:2p x x ⌝∀∈-R ≤, D .命题:2p x x ⌝∃∈<-R ,(3)圆22(2)1x y +-=的圆心到直线3,2x t y t =+⎧⎨=--⎩(t 为参数)的距离为(4)设0,0x y x y +≥⎧⎨-≥⎩与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数2z x y =-的最大值为A.1-B.0C.2D.3(5) 在区间[]0,π上随机取一个数x ,则事件“1tan cos 2x x ≥g ”发生的概率为侧视图俯视图CBAEDCBA A.13 B.12 C.23 D.34(6)已知四棱锥P ABCD -的三视图如图所示, 则此四棱锥的四个侧面的面积中最大的是 A .3B .C .6D .8(7)如图,在边长为2的菱形ABCD 中,60BAD ∠=,E 为CD 的中点, 则AE BD ⋅的值为A.1 BC(8)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a ⋅->;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198. 其中正确的结论是A. ①③B.①④C.②③D. ②④第Ⅱ卷(非选择题 共110分)一、 填空题(本大题共6小题,每小题5分,共30分)(9)二项式51(2)x x+的展开式中3x 的系数为___________.(10)双曲线2221(0)yx b b -=>的一条渐近线方程为y =(11) 如图,AB 切圆O 于点A ,AC 为圆O 的直径,BC 交圆O 于点D ,E 为CD 的中点,且5,6,BD AC ==则CD =__________;AE =__________.(12)执行如图所示的程序框图,若①是6i <时,输出的S 值为;若①是2013i <时,输出的S 值为.(13)已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩ 若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是.(14)曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数()20k k >的点的轨迹.给出下列四个结论: ①曲线C 过点(1,1)-; ②曲线C 关于点(1,1)-对称;③若点P 在曲线C 上,点,A B 分别在直线12,l l 上,则PA PB +不小于2.k④设0P 为曲线C 上任意一点,则点0P 关于直线1x =-、点(1,1)-及直线1y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k .其中,所有正确结论的序号是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数2()sin(2),R f x x x x π=-+∈.图1P FEDCBA(Ⅰ)求()6f π;(Ⅱ)求)(x f 的最小正周期及单调递增区间.(16)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形, 侧面PAD ⊥底面ABCD,且2PA PD AD ==, E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:面PAB ⊥平面PDC ;(Ⅲ) 在线段AB 上是否存在点,G 使得 二面角C PD G --的余弦值为13?说明理由.(17)(本小题满分13分)某市为了提升市民素质和城市文明程度,促进经济发展有大的提速,对市民进行了“生活满意”度的调查.现随机抽取40位市民,对他们的生活满意指数进行统计分析,得到如下分布表:(I )求这40位市民满意指数的平均值;(II )以这40人为样本的满意指数来估计全市市民的总体满意指数,若从全市市民(人数很多)中任选3人,记ξ表示抽到满意级别为“非常满意或满意”的市民人数.求ξ的分布列;(III )从这40位市民中,先随机选一个人,记他的满意指数为m ,然后再随机选另一个人,记他的满意指数为n ,求60n m ≥+的概率.(18)(本小题满分13分)已知函数21()ln (0).2f x x a x a =-> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程;(Ⅱ)求()f x 在区间[1,e]上的最小值;(III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围.(19)(本小题满分13分)如图,已知椭圆22221(0)x y a b a b+=>>的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率e =,F 为椭圆的左焦点,且1AF BF =g .(I )求此椭圆的方程;(II )设P 是此椭圆上异于,A B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =. 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.(20)(本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++(其中k 、b 、p 是常数) .(I )当0k =,3b =,4p =-时,求123n a a a a ++++;(II )当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式; (III )若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列” {}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++<.若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.昌平区2012-2013学年第二学期高三年级期第二次质量抽测数 学 试卷 参考答案(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分.)(9)80 (10(11)4 ; (12)5;2013 (13)(1, 2) (14) ②③④三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分) 解:(Ⅰ)2()sin(2)sin 222sin(2)3f x x x x x x ππ=-+=+=+..4分∴()2sin()2633f πππ=++==..6分(Ⅱ)()2sin(2)3f x x π=++22T ππ==.…………………………8分又由5222(Z)2321212k x k k x k k πππππππππ-≤+≤+⇒-≤≤+∈可得函数)(x f 的单调递增区间为5,(Z)1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.………13分(16)(本小题满分14分)(Ⅰ)证明:连结AC BD F =,ABCD 为正方形,F 为AC 中点, E 为PC 中点.∴在CPA ∆中,EF //PA ....................2分yxC 且PA ⊂平面PAD ,EF ⊄平面PAD ∴//EF PAD 平面 .................4分 (Ⅱ)证明:因为平面PAD ⊥平面ABCD , 平面PAD 面ABCD AD = ABCD 为正方形,CD AD ⊥,CD ⊂平面ABCD 所以CD ⊥平面PAD .∴CD PA ⊥ ....................6分又2PA PD AD ==,所以PAD ∆是等腰直角三角形, 且2APD π∠=即PA PD ⊥CD PD D =,且CD 、PD ⊂面PDCPA ∴⊥面PDC又PA ⊂面PAB ,∴面PAB ⊥面PDC .…………..9分 (Ⅲ)如图,取AD 的中点O , 连结OP ,OF . ∵PA PD =, ∴PO AD ⊥. ∵侧面PAD ⊥底面ABCD ,PAD ABCD AD ⋂=平面平面,∴PO ABCD ⊥平面,而,O F 分别为,AD BD 的中点,∴//OF AB , 又ABCD 是正方形,故OF AD ⊥.∵PA PD AD ==,∴PA PD ⊥,1OP OA ==. 以O 为原点,直线,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系, 则有(1,0,0)A ,(0,1,0)F ,(1,0,0)D -,(0,0,1)P . 若在AB 上存在点,G 使得二面角C PD G --的余弦值为13,连结,.PG DG 设(1,,0)(02)G a a ≤≤.由(Ⅱ)知平面PDC 的法向量为(1,0,1)PA =-.设平面PGD 的法向量为(,,)n x y z =.∵(1,0,1),(2,,0)DP GD a ==--, ∴由0,0n DP n GD ⋅=⋅=可得00200x y z x a y z +⋅+=⎧⎨-⋅-⋅+⋅=⎩,令1x =,则2,1y z a=-=-, 故2(1,,1)n a =--∴1cos ,3n PA n PA n PA ⋅<>====, 解得,12a =. 所以,在线段AB 上存在点1(1,,0)2G ,使得二面角C PD G --的余弦值为13. ..............14分(17)(本小题满分13分)解:(Ⅰ)记X 表示这40位市民满意指数的平均值,则1(9015601730602)63.7540X =⨯+⨯+⨯+⨯=(分)…………………2分 (Ⅱ)ξ的可能取值为0、1、2、3.1251)51()54()0(3003===C P ξ12512)51()54()1(2113===C P ξ 12548)51()54()2(1223===C P ξ12564)51()54()3(0333===C P ξ ∴ξ……………8分(Ⅲ)设所有满足条件60+≥m n 的事件为A①满足600==n m 且的事件数为:1121734A A = ②满足900==n m 且的事件数为:1121530A A =③满足9030==n m 且的事件数为:1161590A A = 24034309077()780P A A ++∴== 所以满足条件60+≥m n 的事件的概率为77780.……………………13分(18)(本小题满分13分) 解:(I )2,a =212()2ln ,'(),2f x x x f x x x=-=- 1'(1)1,(1),2f f =-=()f x 在(1,(1))f 处的切线方程为2230.x y +-=………………………..3分(Ⅱ)由2'().a x af x x x x-=-=由0a >及定义域为(0,)+∞,令'()0,f x x ==得1,01,a ≤<≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1(1)2f =.②若21e,1e ,a <<<<即在(上,'()0f x <,)(x f 单调递减;在上,'()0f x >,)(x f 单调递增,因此()f x 在区间[1,e上的最小值为1(1ln ).2f a a =-2e,e ,a ≥≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减,因此,()f x 在区间[1,e]上的最小值为21(e)e 2f a =-. 综上,当01a <≤时,min 1()2f x =;当21e a <<时,min 1()(1ln )2f x a a =-; 当2e a ≥时,2min 1()e 2f x a =-. ……………………………….9分 (III) 由(II )可知当01a <≤或2e a ≥时,)(xf 在(1,e)上是单调递增或递减函数,不可能存在两个零点.当21e a <<时,要使()f x 在区间(1,e)上恰有两个零点,则∴21(1ln )0,21(1)0,21(e)e 0,2a a f f a ⎧-<⎪⎪⎪=>⎨⎪⎪=->⎪⎩即2e1e 2a a >⎧⎪⎨<⎪⎩,此时,21e e 2a <<. 所以,a 的取值范围为21(e,e ).2…………………………………………………………..13分 (19)(本小题满分13分)解:(Ⅰ)由题意可知,(,0)A a -, (,0)B a ,(,0)F c -,()()1AF BF a c a c =+-=g2221a cb ∴-==又e =22222222134c a b a e a a a --==== ,解得24a = 所求椭圆方程为2214x y +=…………………………5分 (Ⅱ)设00(,)P x y ,则00(,2)Q x y 00(2,2)x x ≠≠-由(2,0),A -得0022AQ y k x =+ 所以直线AQ 方程002(2)2y y x x =++ 由(2,0),B -得直线l 2,x =的方程为008(2,)2y M x ∴+004(2,)2y N x ∴+ 由 0000200422224NQy y x x y k x x -+==--又点P 的坐标满足椭圆方程得到:2200+44x y = ,所以 220044x y -=-000002200022442NQ x y x y x k x y y ===--- ∴直线NQ 的方程:00002()2x y y x x y -=-- 化简整理得到:220000244x x yy x y +=+= 即0024x x yy +=所以点O 到直线NQ的距离2d O ===圆的半径∴直线NQ 与AB 为直径的圆O 相切.……………………………………. 13分(20)(本小题满分14分)解:(I )当0k =,3b =,4p =-时,1123()42()n n a a a a a +-=++, ①用1n +去代n 得,111213()42()n n n a a a a a a +++-=+++, ② ②—①得,113()2n n n a a a ++-=,13n n a a +=,……………………………2分 在①中令1n =得,11a =,则n a ≠0,∴13n na a +=, ∴数列{}n a 是以首项为1,公比为3的等比数列,∴123n a a a a ++++=312n -………………………………………………….4分 (II )当1k =,0b =,0p =时,112()2()n n n a a a a a +=++, ③ 用1n +去代n 得,11121(1)()2()n n n n a a a a a a ++++=+++, ④④—③得, 11(1)0n n n a na a +--+=, ⑤.用1n +去代n 得,211(1)0n n na n a a ++-++=, ⑥⑥—⑤得,2120n n n na na na ++-+=,即211n n n n a a a a +++-=-,.∴数列{}n a 是等差数列.∵33a =,915a =, ∴公差93293a a d -==-,∴23n a n =-…………………………………………9分 (III )由(II )知数列{}n a 是等差数列,∵212a a -=,∴12(1)n a a n =+-. 又{}n a 是“封闭数列”,得:对任意*,N m n ∈,必存在*N p ∈使 1112(1)2(1)2(1)a n a m a p +-++-=+-,得12(1)a p m n =--+,故1a 是偶数, ············· 10分 又由已知,111111218S <<,故1181211a <<.一方面,当1181211a <<时,1(1)n S n n a =+-0>,对任意*N n ∈,都有123111111112n S S S S S ++++≥>. 另一方面,当12a =时,(1)n S n n =+,1111n S n n =-+, 则1231111111n S S S S n ++++=-+, 取2n =,则1211121113318S S +=-=>,不合题意. 当14a =时,(3)n S n n =+,1111()33n S n n =-+,则 1231111111111()183123n S S S S n n n ++++=-+++++1118<, 当16a ≥时,1(1)n S n n a =+-(3)n n >+,1111()33n S n n <-+, 123111*********()18312318n S S S S n n n ++++<-++<+++, 又1181211a <<,∴14a =或16a =或18a =或110a =……………………….14分。
北京市昌平区2018届高三上学期期末考试数学(理科)试题及答案
昌平区2017-2018学年第一学期高三年级期末质量抽测 数学试卷(理科) 2018.1本试卷共5页,共150分. 考试时长120分钟. 考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 若集合{|21}A x x =-<<,{|(3)0}B x x x =->,则AB =A. {|13}x x x <>或B. {|21}x x -<<C. {|203}x x x -<<>或D. {|20}x x -<<2.1+i||i=A.B. C. 1- D. 13. 执行如图所示的程序框图,输出的S 值为A .43 B. 55 C. 61 D. 814.设,x y 满足1,1,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则22x y z +=的最大值为A .14B. 2C. 4D. 165.某四棱锥的三视图如图所示,则该四棱锥的四个侧面中,面积的最小值为A. 1B.C. 2D.6.已知函数()e e ,xxf x -=+则函数()f xA .是偶函数,且在(,0)-∞上是增函数 B. 是奇函数,且在(,0)-∞上是增函数 C. 是偶函数,且在(,0)-∞上是减函数 D. 是奇函数,且在(,0)-∞上是减函数7. 设π02x <<,则“2cos x x <”是“cos x x <”的 A .充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件8. 四个足球队进行单循环比赛(每两队比赛一场),每场比赛胜者得3分,负者得0分,平局双方各得1分. 比赛结束后发现没有足球队全胜,且四队得分各不相同,则所有比赛中可能出现的最少平局场数是A .0 B. 1 C. 2 D. 3主视图左视图俯视图1 1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9. 7(1)x +的二项展开式中2x 的系数为 .10. 已知曲线C 的极坐标方程为θρsin 2=,以极点为原点,极轴为x 轴的正半轴,建立 平面直角坐标系,那么曲线C 的直角坐标方程为 .11. 已知直线:4350l x y ++=,点P 是圆22(1)(2)1x y -+-=上的点,那么点P 到直 线l 的距离的最小值是 .12. 已知Rt ABC ∆,1AB AC ==,点E 是AB 边上的动点,则CE AC ⋅的值为 ;CE CB ⋅的最大值为 .13. 某商业街的同侧有4块广告牌,牌的底色可选用红、蓝两种颜色,若要求任意相邻两块 牌的底色不都为红色,则不同的配色方案有 种.14.若函数4,3,()log ,3a x x f x x x -+≤⎧=⎨>⎩ (0a >且1a ≠),函数()()g x f x k =-.①若13a =,函数()g x 无零点,则实数k 的取值范围是 ; ②若()f x 有最小值,则实数a 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题13分)已知等差数列{}n a 的公差d 为1,且134,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列52n a n b n+=+,求数列{}n b 的前n 项和n S .分钟/天在ABC ∆sin cos C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若ABC S ∆2b c +=+a 的值.17. (本小题13分)随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:图1:甲大学 图2:乙大学根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;(Ⅱ)从两组“痴迷”的同学中随机选出2人,记ξ为选出的两人中甲大学的人数,求ξ的分布列和数学期望()E ξ;(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值X 甲与X 乙的大小,及方差2S 甲与2S 乙的大小.(只需写出结论)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,PAB ∆为正三角形,且侧面P AB ⊥底面ABCD ,E 为线段AB 的中点,M 在线段PD 上. (I )当M 是线段PD 的中点时,求证:PB // 平面ACM ; (II )求证:PE AC ⊥;(III )是否存在点M ,使二面角M EC D --的大小为60°,若存在,求出PM PD的值;若不存在,请说明理由.19.(本小题14分)已知函数()ln(1)f x ax x =-+,a R ∈.(I )当a = 2时,求曲线y =()f x 在点( 0,f (0) )处的切线方程; (II )求函数()f x 在区间[0 , e -1]上的最小值.20.(本小题13分)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. 设该数列的前n 项和为n S ,规定:若m ∃∈*N ,使得2pm S =(p ∈N ),则称m 为该数列的“佳幂数”.(Ⅰ)将该数列的“佳幂数”从小到大排列,直接写出前3个“佳幂数”; (Ⅱ)试判断50是否为“佳幂数”,并说明理由; (III )(i )求满足m >70的最小的“佳幂数”m ;(ii )证明:该数列的“佳幂数”有无数个.MPE DCBA昌平区2017-2018学年第一学期高三年级期末质量抽测数学试卷(理科)参考答案一、选择题(共8小题,每小题5分,共40分)二、填空题(共6小题,每小题5分,共30分)9. 21 10. 22(1)1x y +-= 11. 212. 1- ; 2 13. 6 , 7 , 8 答对一个即可给满分 14. [1,1)- ;(1,3]三、解答题(共6小题,共80分) 15.(共13分)解:(Ⅰ)在等差数列{}n a 中,因为134,,a a a 成等比数列,所以 2314a a a =, 即 22111+2)3a d a a d =+(,解得2140a d d +=.因为1,d =所以14,a =-所以数列{}n a 的通项公式5n a n =-. ……………6分(Ⅱ)由(Ⅰ)知5n a n =-,所以522n a n n b n n +=+=+. 得123231(2222)(123)2(12)(1)=122(1)222n nn n n S b b b b n n n n n +=++++=+++++++++-++-+=+-……………13分16. (共13分)解:(Isin cos C c A =,所以cos 0A ≠,由正弦定理sin sin sin a b cA B C==,sin sin cos A C C A ⋅=⋅. 又因为 (0,)C ∈π,sin 0C ≠,所以tan 3A =. 又因为 (0,)A ∈π, 所以 6A π=. …………… 6分 (II)由11sin 24ABCS bc A bc ∆===bc = 由余弦定理2222cos a b c bc A =+-, 得2222cos6a b c bc π=+-,即222()2()12a b c bc b c =+-=+-,因为2b c +=+ 解得 24a =.因为 0a >,所以 2a =. ……………13分17. (共13分)解:(Ⅰ) 由图知,甲大学随机选取的40名学生中,“爱好”中华诗词的频率为(0.0300.0200.015)100.65++⨯=,所以从甲大学中随机选出一名学生,“爱好”中华诗词的概率为0.65. ………3分 (Ⅱ) 甲大学随机选取的40名学生中“痴迷”的学生有400.005102⨯⨯=人, 乙大学随机选取的40名学生中“痴迷”的学生有400.015106⨯⨯=人, 所以,随机变量ξ的取值为0,1,2=ξ. 所以,(0)==P ξ022628C C 1528C =,(1)==P ξ112628C C 123287C ==, (2)==P ξ202628C C 128C =. 所以ξ的分布列为ξ的数学期望为 15311()012287282=⨯+⨯+⨯=E ξ. ……………10分 (Ⅲ) X <甲X 乙;2s >2s . ……………13分18. (共14分)(I )证明:连接BD 交AC 于H 点,连接MH ,因为四边形ABCD 是菱形,所以点H 为BD 的中点. 又因为M 为PD 的中点, 所以MH // BP .又因为 BP ⊄平面ACM , MH ⊂平面ACM . 所以 PB // 平面ACM . ……………4分(II )证明:因为PAB ∆为正三角形,E 为AB 的中点,所以PE ⊥AB .因为平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD=AB ,PE ⊂平面P AB , 所以PE ⊥平面ABCD .又因为AC ⊂平面ABCD ,所以PE AC ⊥. ……………8分(Ⅲ) 因为ABCD 是菱形,∠ABC =60°,E 是AB 的中点, 所以CE ⊥AB .又因为PE ⊥平面ABCD ,以E 为原点,分别以,,EB EC EP 为,,x y z 轴, 建立空间直角坐标系E xyz -, 则()0,0,0E ,()1,0,0B ,HMPEDBA(P,()0C,()D -. ………10分假设棱PD 上存在点M ,设点M 坐标为(),,x y z ,()01PM PD λλ=≤≤,则((,,x y z λ-=-,所以()2,)M λλ--,所以()2,)EM λλ=--,()EC =,设平面CEM 的法向量为(),,x y z =n ,则2)030EM x y z EC y λλ⎧⋅=-++-=⎪⎨⋅==⎪⎩n n ,解得02)y x z λλ=⎧⎪⎨=-⎪⎩. 令2z λ=,则)x λ=-,得)),0,2λλ=-n .因为PE ⊥平面ABCD ,所以平面ABCD 的法向量()0,0,1=m ,所以cos |||⋅〈〉===⋅n m n,m n |m因为二面角M EC D --的大小为60°,12=, 即23210λλ+-=,解得13λ=,或1λ=-(舍去)所以在棱PD 上存在点M ,当13PM PD =时,二面角M EC D --的大小为60°. …………………14分19. (共14分)解:(I )f (x )的定义域为(1,)-+∞. ……………1分因为1'()1f x a x =-+,a = 2, 所以'(0)211f =-=,(0)0f =.所以 函数f (x )在点(0,(0))f 处的切线方程是 y x =. ……………4分 (II )由题意可得 1'()1f x a x =-+. (1)当0a ≤时,'()0f x <, 所以()f x 在(1,)-+∞上为减函数,所以在区间[0,e 1]-上,min ()(e 1)(e 1)1f x f a =-=--. ……………6分(2) 当0a >时, 令1'()01f x a x =-=+,则111x a=->-, ① 当110a-≤,即1a ≥时, 对于(0,e 1)x ∈-,'()0f x >,所以f (x )在(0,e 1)-上为增函数, 所以min ()(0)0f x f ==. ② 当11e 1,a -≥-,即10ea <≤时,对于(0,e 1)x ∈-,'()0f x <,所以f (x )在(0,e 1)-上为减函数, 所以min ()(e 1)(e 1)1f x f a =-=--. ③ 当101e 1,a<-<-即11ea <<时, 当x 变化时,()f x ,'()f x 的变化情况如下表:所以 min 111()(1)(1)ln 1ln f x f a a aa a a =-=--=-+. ………13分综上,当1e a ≤时,min ()(e 1)1f x a =--;当11ea <<时,min ()1ln f x a a =-+; 当1a ≥时,min ()0f x =. ……………14分1120. (共13分)(Ⅰ)1,2,3; ……………3分 (Ⅱ)由题意可得,数列如下:第1组:1,第2组:1,2;第3组:1,2,4;第k 组:11,2,42k -,,. 则该数列的前(1)122k k k ++++=项的和为: 11(1)21(12)(122)22k k k k S k -++=+++++++=--,① 当(1)502k k +≤时,9k ≤, 则 234101050451222221131220S S =+++++=-+=+,由于10101122202<+<,对p ∀∈N ,502p S ≠,故50不是“佳幂数”. ……………7分 (III )(i )在①中,要使(1)702+>k k ,有12≥k , 此时+1+11111+2+4++2=21=11112k k k k k k C C k ++--=++++->+(1+1), 所以2k +是第1k +组等比数列1,2,42k ,,的部分项的和,设1*212221,N .t t k t -+=+++=-∈所以2312=-≥t k ,则4≥t ,此时42313=-=k ,所以对应满足条件的最小“佳幂数”13144952m ⨯=+=. ……………11分 (ii )由(i )知:1*212221,N .t t k t -+=+++=-∈当2≥t ,且取任意整数时,可得“佳幂数”(1)2k k m t +=+, 所以,该数列的“佳幂数”有无数个. ……………13分。
昌平区二中2018-2019学年高三上学期11月月考数学试卷含答案
昌平区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )1S 2S 0S A . B . C .D.=0S =0122S S S =+20122S S S =2. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为()A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}3. 执行如图所示的一个程序框图,若f (x )在[﹣1,a]上的值域为[0,2],则实数a 的取值范围是()A .(0,1]B .[1,]C .[1,2]D .[,2] 4. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是()A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)5. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是()A .B .C .D .6. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 27. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95SS =A .1B .2C .3D .48. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为()A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b<C .22a b > D .33a b>10.已知集合( ){}{2|5,x |y ,A y y x B A B I ==-+===A . B . C . D .[)1,+∞[]1,3(]3,5[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.11.与向量=(1,﹣3,2)平行的一个向量的坐标是()A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)12.以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定二、填空题13.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.15.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 . 16.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .三、解答题19.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数.()1ln 1f x a x x=+-(1)当时,求函数在点处的切线方程;2a =()f x ()()11f ,(2)讨论函数的单调性;()f x (3)当时,求证:对任意,都有.102a <<1+2x ⎛⎫∈∞ ⎪⎝⎭,1e x aa x +⎛⎫+< ⎪⎝⎭20.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥.(1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=o ,求三棱锥1C AA B -的体积.21.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥+.a b22.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.23.已知函数f(x)=+lnx﹣1(a是常数,e≈=2.71828).(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a=1时,方程f(x)=m在x∈[,e2]上有两解,求实数m的取值范围;(3)求证:n∈N*,ln(en)>1+.24.(理)设函数f(x)=(x+1)ln(x+1).(1)求f(x)的单调区间;(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.昌平区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:2h ,解得A .220()2()a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩=考点:棱台的结构特征.2. 【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A 中,但不在集合B 中.由韦恩图可知阴影部分表示的集合为(C U B )∩A ,又A={1,2,3,4,5},B={x ∈R|x ≥3},∵C U B={x|x <3},∴(C U B )∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B .【点评】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用等基础知识,考查数形结合思想.属于基础题.3. 【答案】B【解析】解:由程序框图知:算法的功能是求f (x )=的值,当a <0时,y=log 2(1﹣x )+1在[﹣1,a]上为减函数,f (﹣1)=2,f (a )=0⇒1﹣a=,a=,不符合题意;当a ≥0时,f ′(x )=3x 2﹣3>⇒x >1或x <﹣1,∴函数在[0,1]上单调递减,又f (1)=0,∴a ≥1;又函数在[1,a]上单调递增,∴f (a )=a 3﹣3a+2≤2⇒a ≤.故实数a 的取值范围是[1,].故选:B .【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值. 4. 【答案】A【解析】解:若命题p :“∀∈[1,e],a >lnx ,为真命题,则a >lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.5.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.6.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B7.【答案】A【解析】1111]试题分析:.故选A .111]199515539()9215()52a a S a a a S a +===+考点:等差数列的前项和.8. 【答案】B【解析】解:∵函数f (x )是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x <0,当﹣<x <0时,f (x )<0,此时xf (x )>0当x >0,当0<x <时,f (x )>0,此时xf (x )>0综上xf (x )>0的解集为故选B 9.【答案】D 【解析】考点:不等式的恒等变换.10.【答案】D【解析】,故选D.{}{{}|5,||3,A y y B x y x x Q =≤===≥[]3,5A B ∴=I 11.【答案】C【解析】解:对于C 中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C .【点评】本题考查了向量共线定理的应用,属于基础题. 12.【答案】C【解析】解:设过右焦点F 的弦为AB ,右准线为l ,A 、B 在l 上的射影分别为C 、D 连接AC 、BD ,设AB 的中点为M ,作MN ⊥l 于N 根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.二、填空题13.【答案】 充分不必要 【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,∴在复平面内对应的点M的坐标是(a+2,a﹣2),若点在第四象限则a+2>0,a﹣2<0,∴﹣2<a<2,∴“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.14.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-115.【答案】 [,1] .【解析】解:设两个向量的夹角为θ,因为|2﹣|=1,|﹣2|=1,所以,,所以,=所以5=1,所以,所以5a 2﹣1∈[],[,1],所以;故答案为:[,1].【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围. 16.【答案】120o【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,sin :sin :sin 3:5:7A B C =3,5,7a b ===熟记正弦、余弦定理的公式是解答的关键.17.【答案】 .【解析】设A (1,1),B (﹣1,﹣1),则直线AB 过原点,且阴影面积等于直线AB 与圆弧所围成的弓形面积S 1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题. 18.【答案】 ﹣3 .【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f (x )=的函数值.当x=2时,f (x )=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视. 三、解答题19.【答案】(1);(2)见解析;(3)见解析.10x y --=【解析】试题分析:(1)当时,求出导数易得,即,利用点斜式可得其切线方程;(2)2a =()'11f =1k =求得可得,分为和两种情形判断其单调性;(3)当时,根据(2)可()21'ax f x x -=0a ≤0a >102a <<得函数在上单调递减,故,即,化简可得所证结论.()f x ()12,()11a f f x ⎛⎫+< ⎪⎝⎭ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭试题解析:(1)当时,2a =,,,,所以函数在点()12ln 1f x x x =+-()112ln1101f =+-=()221'f x x x =-()221'1111f =-=()f x 处的切线方程为,即.()10,()011y x -=⨯-10x y --=(2),定义域为,.()1ln 1f x a x x =+-()0+∞,()2211'a ax f x x x x-=-=①当时,,故函数在上单调递减;0a ≤()'0f x <()f x ()0+∞,②当时,令,得0a >()'0f x =1x a=x10a ⎛⎫ ⎪⎝⎭,1a1a ⎛⎫+∞ ⎪⎝⎭,()'f x -+()f x ↘极小值↗综上所述,当时,在上单调递减;当时,函数在上单调递减,在0a ≤()f x ()0+∞,0a >()f x 10a ⎛⎫ ⎪⎝⎭,上单调递增.1a ⎛⎫+∞ ⎪⎝⎭,(3)当时,由(2)可知,函数在上单调递减,显然,,故,102a <<()f x 10a ⎛⎫ ⎪⎝⎭,12a >()1120a ⎛⎫⊆ ⎪⎝⎭,,所以函数在上单调递减,对任意,都有,所以.所以()f x ()12,1+2x ⎛⎫∈∞ ⎪⎝⎭,01a x <<112a x <+<,即,所以,即,所以()11a f f x ⎛⎫+< ⎪⎝⎭1ln 1101a a a x x⎛⎫++-< ⎪⎝⎭+ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,即,所以.()ln 11a x a x ⎛⎫++< ⎪⎝⎭ln 11x a a x +⎛⎫+< ⎪⎝⎭1e xaa x +⎛⎫+< ⎪⎝⎭20.【答案】(1)证明见解析;(2)【解析】试题分析:(1)有线面垂直的性质可得,再由菱形的性质可得,进而有线面垂直的判1BC AB ⊥11AB A B ⊥定定理可得结论;(2)先证三角形为正三角形,再由于勾股定理求得的值,进而的三角形1A AB AB 1A AB 的面积,又知三棱锥的高为,利用棱锥的体积公式可得结果.3BC =考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.21.【答案】【解析】解:(1)由|x -a |+|x +b |≥|(x -a )-(x +b )|=|a +b |得,当且仅当(x -a )(x +b )≤0,即-b ≤x ≤a 时,f (x )取得最小值,∴当x ∈[-b ,a ]时,f (x )min =|a +b |=a +b . (2)证明:由(1)知a +b =2,(+)2=a +b +2≤2(a +b )=4,a b ab ∴+≤2,a b ∴f (x )≥a +b =2≥+,a b 即f (x )≥+.a b 22.【答案】【解析】解:(Ⅰ)证明:取AC 中点O ,连接PO ,BO ,由于四边形ABCD 为菱形,∴PA=PC ,BA=BC ,∴PO ⊥AC ,BO ⊥AC ,又PO ∩BO=O ,∴AC ⊥平面POB ,又PB ⊂平面POB ,∴AC ⊥PB .(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.23.【答案】【解析】解:(1).因为x=2是函数f(x)的极值点,所以a=2,则f(x)=,则f(1)=1,f'(1)=﹣1,所以切线方程为x+y﹣2=0;(2)当a=1时,,其中x∈[,e2],当x∈[,1)时,f'(x)<0;x∈(1,e2]时,f'(x)>0,∴x=1是f(x)在[,e2]上唯一的极小值点,∴[f(x)]min=f(1)=0.又,,综上,所求实数m的取值范围为{m|0<m≤e﹣2};(3)等价于,若a=1时,由(2)知f(x)=在[1,+∞)上为增函数,当n>1时,令x=,则x>1,故f(x)>f(1)=0,即,∴.故即,即.24.【答案】【解析】解:(1)由f'(x)=ln(x+1)+1≥0得,∴f(x)的增区间为,减区间为.(2)令g(x)=(x+1)ln(x+1)﹣ax.“不等式f(x)≥ax在x≥0时恒成立”⇔“g(x)≥g(0)在x≥0时恒成立.”g'(x)=ln(x+1)+1﹣a=0⇒x=e a﹣1﹣1.当x∈(﹣1,e a﹣1﹣1)时,g'(x)<0,g(x)为减函数.当x∈(e a﹣1﹣1,+∞)时,g'(x)>0,g(x)为增函数.“g(x)≥0在x≥0时恒成立”⇔“e a﹣1﹣1≤0”,即e a﹣1≤e0,即a﹣1≤0,即a≤1.故a的取值范围是(﹣∞,1].。
最新-北京市昌平区2018届高三上学期期末质量抽测理科
昌平区2018-2018学年第一学期高三年级期末质量抽测 数学试卷(理科)(满分150分,考试时间 120分钟)2018.1考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分.2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写.3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔.请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分.4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液.保持答题卡整洁,不要折叠、折皱、破损.不得在答题卡上做任何标记.5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)若集合{}2,1,0,1,2Α=--,{}2|1Βx x =>,则=ΑΒA .{|11}x x x <->或B .{}2,2-C .{}2D .{0}【考点】集合的运算【试题解析】所以【答案】B(2) 下列函数中,在区间(0,)+∞上为增函数的是A .y = B. 1y x =C. 1()2xy = D. 12log y x = 【考点】函数的单调性与最值【试题解析】结合函数的图像与单调性易知:只有在区间上为增函数。
【答案】A(3) 已知两点(0,0),(2,0)O A -,以线段OA 为直径的圆的方程是俯视图侧(左)视图正(主)视图 A .22(1)4x y -+= B .22(1)4x y ++= C .22(1)1x y -+= D .22(1)1x y ++= 【考点】圆的标准方程与一般方程 【试题解析】 以线段为直径的圆的圆心为OA 的中点(-1,0),半径为故所求圆的方程为:。
昌平数学二模高三试卷答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,求f'(x)的零点个数。
答案:3个解析:对f(x)求导得f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = ±1。
由于f''(x) = 6x,f''(1) = 6 > 0,f''(-1) = -6 < 0,故x = ±1是f(x)的极值点,因此f'(x)有3个零点。
2. 在平面直角坐标系中,点A(2,3),点B(-3,4),点C(5,1),求三角形ABC的外接圆方程。
答案:(x - 1)^2 + (y - 2)^2 = 10解析:设三角形ABC的外接圆方程为x^2 + y^2 + Dx + Ey + F = 0,代入A、B、C三点坐标,解得D = -2,E = -4,F = -1,所以外接圆方程为(x - 1)^2 + (y - 2)^2 = 10。
3. 已知数列{an}的通项公式为an = 2^n - 1,求数列{an}的前n项和S_n。
答案:S_n = 2^(n+1) - n - 2解析:根据数列的通项公式,S_n = (2^1 - 1) + (2^2 - 1) + ... + (2^n - 1) = 2^(n+1) - n - 2。
4. 已知等差数列{an}的首项a_1 = 3,公差d = 2,求该数列的第10项a_10。
答案:a_10 = 21解析:等差数列的通项公式为a_n = a_1 + (n - 1)d,代入a_1 = 3,d = 2,n = 10,得a_10 = 3 + (10 - 1) 2 = 21。
5. 若函数f(x) = ax^2 + bx + c在区间[0,1]上单调递增,且f(0) = 2,f(1) = 3,求a、b、c的值。
答案:a = 1,b = -2,c = 2解析:由f(0) = 2,得c = 2;由f(1) = 3,得a + b + c = 3,结合f(x)在[0,1]上单调递增,得a = 1,b = -2。
北京昌平区高三二模理科数学试题
昌平区2012-2013学年第二学期高三年级期第二次质量抽测数 学 试 卷(理科)(满分150分,考试时间 120分钟)2013.4考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)已知集合{|21}xA x =>,{|1}B x x =<,则AB =A. {|1}x x >B. {|0}x x >C. {|01}x x <<D. {|1}x x < (2)已知命题 :p x ∀∈R ,2x ≥,那么下列结论正确的是A. 命题:2p x x ⌝∀∈R ≤, B .命题:2p x x ⌝∃∈<R , C .命题:2p x x ⌝∀∈-R ≤, D .命题:2p x x ⌝∃∈<-R ,(3)圆22(2)1x y +-=的圆心到直线3,2x t y t =+⎧⎨=--⎩(t 为参数)的距离为A.2D. (4)设0,0x y x y +≥⎧⎨-≥⎩与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数2z x y =-的最大值为A. 1-B. 0C. 2D. 3 (5) 在区间[]0,π上随机取一个数x ,则事件“1tan cos 2x x ≥g ”发生的概率为侧视图俯视图EDCBA A.13 B. 12 C.23 D. 34(6) 已知四棱锥P ABCD -则此四棱锥的四个侧面的面积中最大的是 A .3 B .C .6 D .8(7)如图,在边长为2的菱形ABCD 中,60BAD ∠=,E 为CD 的中点, 则AE BD ⋅的值为A .1BC D(8)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->;③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是A. ①③B. ①④C. ②③D. ②④第Ⅱ卷(非选择题 共110分)一、 填空题(本大题共6小题,每小题5分,共30分)(9)二项式51(2)x x+的展开式中3x 的系数为___________.BC 交圆O 于点D ,E 为CD 的中点,且5,6,BD AC ==则CD =__________;AE =__________.(12)执行如图所示的程序框图,若①是6i <时,输出的S 值为 ;若①是2013i <时,输出的S 值为 .(13)已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩ 若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是 .(14)曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数()20k k >的点的轨迹.给出下列四个结论: ①曲线C 过点(1,1)-;②曲线C 关于点(1,1)-对称;③若点P 在曲线C 上,点,A B 分别在直线12,l l 上,则PA PB +不小于2.k④设0P 为曲线C 上任意一点,则点0P 关于直线1x =-、点(1,1)-及直线1y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k .其中,所有正确结论的序号是 .三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数2()sin(2),R f x x x x π=-+∈.图1P FEDCBA(Ⅰ)求()6f π;(Ⅱ)求)(x f 的最小正周期及单调递增区间.(16)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形, 侧面PAD ⊥底面ABCD,且2PA PD AD ==, E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:面PAB ⊥平面PDC ;(Ⅲ) 在线段AB 上是否存在点,G 使得 二面角C PD G --的余弦值为13?说明理由.(17)(本小题满分13分)某市为了提升市民素质和城市文明程度,促进经济发展有大的提速,对市民进行了“生活满意”度的调查.现随机抽取40位市民,对他们的生活满意指数进行统计分析,得到如下分布表:(I )求这40位市民满意指数的平均值;(II )以这40人为样本的满意指数来估计全市市民的总体满意指数,若从全市市民(人数很多)中任选3人,记ξ表示抽到满意级别为“非常满意或满意”的市民人数.求ξ的分布列;(III )从这40位市民中,先随机选一个人,记他的满意指数为m ,然后再随机选另一个人,记他的满意指数为n ,求60n m ≥+的概率.(18)(本小题满分13分)已知函数21()ln (0).2f x x a x a =-> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值;(III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围.(19)(本小题满分13分)如图,已知椭圆22221(0)x y a b a b+=>>的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率e =,F 为椭圆的左焦点,且1AF BF =g .(I )求此椭圆的方程;(II )设P 是此椭圆上异于,A B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =. 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.(20)(本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++(其中k 、b 、p 是常数) .(I )当0k =,3b =,4p =-时,求123n a a a a ++++;(II )当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式; (III )若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列” {}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++<.若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.昌平区2012-2013学年第二学期高三年级期第二次质量抽测数 学 试卷 参考答案(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分.)(9)80 (10(11)4 ; (12)5;2013 (13)(1, 2) (14) ②③④三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分) 解:(Ⅰ)2()sin(2)sin 222sin(2)3f x x x x x x ππ=-+==+..4分∴()2sin()2633f πππ=++==..6分(Ⅱ)()2sin(2)3f x x π=++22T ππ==.…………………………8分又由5222(Z)2321212k x k k x k k πππππππππ-≤+≤+⇒-≤≤+∈可得函数)(x f 的单调递增区间为5,(Z)1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.………13分(16)(本小题满分14分)(Ⅰ)证明:连结AC BD F =,ABCD 为正方形,F 为AC 中点, E 为PC 中点.∴在CPA ∆中,EF //PA ....................2分yxC 且PA ⊂平面PAD ,EF ⊄平面PAD ∴//EF PAD 平面 .................4分 (Ⅱ)证明:因为平面PAD ⊥平面ABCD , 平面PAD 面ABCD AD = ABCD 为正方形,CD AD ⊥,CD ⊂平面ABCD 所以CD ⊥平面PAD .∴CD PA ⊥ ....................6分又2PA PD AD ==,所以PAD ∆是等腰直角三角形, 且2APD π∠= 即PA PD ⊥CDPD D =,且CD 、PD ⊂面PDCPA ∴⊥面PDC又PA ⊂面PAB ,∴面PAB ⊥面PDC .…………..9分 (Ⅲ) 如图,取AD 的中点O , 连结OP ,OF . ∵PA PD =, ∴PO AD ⊥. ∵侧面PAD ⊥底面ABCD ,PAD ABCD AD ⋂=平面平面,∴PO ABCD ⊥平面,而,O F 分别为,AD BD 的中点,∴//OF AB , 又ABCD 是正方形,故OF AD ⊥.∵PA PD AD ==,∴PA PD ⊥,1OP OA ==. 以O 为原点,直线,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系, 则有(1,0,0)A ,(0,1,0)F ,(1,0,0)D -,(0,0,1)P . 若在AB 上存在点,G 使得二面角C PD G --的余弦值为13,连结,.PG DG 设(1,,0)(02)G a a ≤≤.由(Ⅱ)知平面PDC 的法向量为(1,0,1)PA =-.设平面PGD 的法向量为(,,)n x y z =.∵(1,0,1),(2,,0)DP GD a ==--, ∴由0,0n DP n GD ⋅=⋅=可得00200x y z x a y z +⋅+=⎧⎨-⋅-⋅+⋅=⎩,令1x =,则2,1y z a=-=-, 故2(1,,1)n a =--∴1cos ,3n PA n PA n PA ⋅<>====, 解得,12a =. 所以,在线段AB 上存在点1(1,,0)2G ,使得二面角C PD G --的余弦值为13. ..............14分(17)(本小题满分13分)解:(Ⅰ)记X 表示这40位市民满意指数的平均值,则1(9015601730602)63.7540X =⨯+⨯+⨯+⨯=(分)…………………2分 (Ⅱ)ξ的可能取值为0、1、2、3.1251)51()54()0(3003===C P ξ12512)51()54()1(2113===C P ξ 12548)51()54()2(1223===C P ξ12564)51()54()3(0333===C P ξ ∴ξ……………8分(Ⅲ)设所有满足条件60+≥m n 的事件为A①满足600==n m 且的事件数为:1121734A A = ②满足900==n m 且的事件数为:1121530A A =③满足9030==n m 且的事件数为:1161590A A = 24034309077()780P A A ++∴== 所以满足条件60+≥m n 的事件的概率为77780.……………………13分(18)(本小题满分13分) 解:(I )2,a =212()2ln ,'(),2f x x x f x x x=-=- 1'(1)1,(1),2f f =-=()f x 在(1,(1))f 处的切线方程为2230.x y +-=………………………..3分(Ⅱ)由2'().a x af x x x x-=-=由0a >及定义域为(0,)+∞,令'()0,f x x ==得1,01,a ≤<≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1(1)2f =.②若21e,1e ,a <<<<即在(上,'()0f x <,)(x f 单调递减;在上,'()0f x >,)(x f 单调递增,因此()f x 在区间[1,e上的最小值为1(1ln ).2f a a =-2e,e ,a ≥≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减,因此,()f x 在区间[1,e]上的最小值为21(e)e 2f a =-. 综上,当01a <≤时,min 1()2f x =;当21e a <<时,min 1()(1ln )2f x a a =-; 当2e a ≥时,2min 1()e 2f x a =-. ……………………………….9分 (III) 由(II )可知当01a <≤或2e a ≥时,)(xf 在(1,e)上是单调递增或递减函数,不可能存在两个零点.当21e a <<时,要使()f x 在区间(1,e)上恰有两个零点,则 ∴21(1ln )0,21(1)0,21(e)e 0,2a a f f a ⎧-<⎪⎪⎪=>⎨⎪⎪=->⎪⎩即2e 1e 2a a >⎧⎪⎨<⎪⎩,此时,21e e 2a <<. 所以,a 的取值范围为21(e,e ).2…………………………………………………………..13分 (19)(本小题满分13分)解:(Ⅰ)由题意可知,(,0)A a -, (,0)B a ,(,0)F c -, ()()1AF BF a c a c =+-=g2221a c b ∴-==又e = 22222222134c a b a e a a a --==== ,解得24a = 所求椭圆方程为2214x y +=…………………………5分 (Ⅱ)设00(,)P x y ,则00(,2)Q x y 00(2,2)x x ≠≠-由(2,0),A -得0022AQ y k x =+ 所以直线AQ 方程002(2)2y y x x =++ 由(2,0),B -得直线l 2,x =的方程为 008(2,)2y M x ∴+ 004(2,)2y N x ∴+ 由 00000200422224NQ y y x x y k x x -+==--又点P 的坐标满足椭圆方程得到:2200+44x y = ,所以 220044x y -=- 000002200022442NQ x y x y x k x y y ===--- ∴直线NQ 的方程:00002()2x y y x x y -=-- 化简整理得到:220000244x x yy x y +=+= 即0024x x yy +=所以点O 到直线NQ的距离2d O ===圆的半径∴直线NQ 与AB 为直径的圆O 相切.……………………………………. 13分(20)(本小题满分14分)解:(I )当0k =,3b =,4p =-时,1123()42()n n a a a a a +-=++, ①用1n +去代n 得,111213()42()n n n a a a a a a +++-=+++, ② ②—①得,113()2n n n a a a ++-=,13n n a a +=,……………………………2分 在①中令1n =得,11a =,则n a ≠0,∴13n na a +=, ∴数列{}n a 是以首项为1,公比为3的等比数列,∴123n a a a a ++++=312n -………………………………………………….4分 (II )当1k =,0b =,0p =时,112()2()n n n a a a a a +=++, ③ 用1n +去代n 得,11121(1)()2()n n n n a a a a a a ++++=+++, ④④—③得, 11(1)0n n n a na a +--+=, ⑤.用1n +去代n 得,211(1)0n n na n a a ++-++=, ⑥⑥—⑤得,2120n n n na na na ++-+=,即211n n n n a a a a +++-=-,.∴数列{}n a 是等差数列.∵33a =,915a =, ∴公差93293a a d -==-,∴23n a n =-…………………………………………9分 (III )由(II )知数列{}n a 是等差数列,∵212a a -=,∴12(1)n a a n =+-. 又{}n a 是“封闭数列”,得:对任意*,N m n ∈,必存在*N p ∈使 1112(1)2(1)2(1)a n a m a p +-++-=+-,得12(1)a p m n =--+,故1a 是偶数, ············· 10分 又由已知,111111218S <<,故1181211a <<.一方面,当1181211a <<时,1(1)n S n n a =+-0>,对任意*N n ∈,都有123111111112n S S S S S ++++≥>. 另一方面,当12a =时,(1)n S n n =+,1111n S n n =-+, 则1231111111n S S S S n ++++=-+, 取2n =,则1211121113318S S +=-=>,不合题意. 当14a =时,(3)n S n n =+,1111()33n S n n =-+,则 1231111111111()183123n S S S S n n n ++++=-+++++1118<, 当16a ≥时,1(1)n S n n a =+-(3)n n >+,1111()33n S n n <-+, 123111*********()18312318n S S S S n n n ++++<-++<+++, 又1181211a <<,∴14a =或16a =或18a =或110a =……………………….14分。
2018昌平高三数学二模考试试题含答案解析理科
昌平2018高三数学(理科) 2018.5第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U R ,集合A ={x ∣x <1或x > 1},则UA =A .(,1)(1,)-∞-+∞B .(,1][1,)-∞-+∞C .D .2.若复数cos isin z θθ=+,当4=π3θ时,则复数z 在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知等比数列中,143527,a a a a ,则7a =A .127B .19 C .13D .34.设0.212a ⎛⎫= ⎪⎝⎭,2log 3b =,0.32c -=,则A .B .C .D .5.若满足条件010x y x y y a -≥⎧⎪+-≤⎨⎪≥⎩的整点恰有12个,其中整点是指横、纵坐标都是整数的点,则整数的值为A .B .C .D .6.设,x y ∈R ,则22+2x y ≤“”是||1||1x y ≤≤“且”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1,1)-[1,1]-{}n a (,)x y a 3-2-1-0俯视图左视图2 27.某四棱锥的三视图如图所示,则该四棱锥的所有面中最大面的面积是 A .4 B 5C . 2 D 28.2011年7月执行的《中华人民共和国个人所得税法》规定:公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累进计算:全月应纳税所得额(含税级距)税率(%) 不超过1500元3 超过1500元至4500元的部分 10 超过4500元至9000元的部分20 ……某调研机构数据显示,纳税人希望将个税免征额从3500元上调至7000元.若个税免征额上调至7000元(其它不变),某人当月少交纳此项税款332元,则他的当月工资、薪金所得介于 A .5000~6000元 B .6000~8000元 C .8000~9000元 D .9000~16000元第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在二项式61)x +的展开式中,第四项的系数是 .(用数字作答)10.在ABC ∆中,3ABC S ∆=,3AB =1AC =,则BC = . 11.已知双曲线:2221(0)x y a a-=>的渐近线方程为12y x =±,则双曲线的离心率是 .12.执行如图所示的程序框图,若输入 x 值满足2-则输出y 值的取值范围是 .C C 2 主视图13.向量a ,b 在边长为1的正方形网格中的位置如图所示, 则向量a ,b 所成角的余弦值是_________;向量a ,b 所张成的平行四边形的面积是__________.14.已知函数()22,1ln 1.x ax x f x a x x x ⎧-+<⎪=⎨≥⎪⎩‚‚① 当1x <时,若函数()f x 有且只有一个极值点,则实数a 的取值范围是 ; ② 若函数()f x 的最大值为1,则a = .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分)已知函数()2sin()cos()3sin 244f x x x x =--+ππ. (I )求函数()f x 的最小正周期;(II )求函数()f x 在区间[0,]2π上的最值及相应的x 值.16.(本小题13分)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从A ,B 两地区一年的数据中随机抽取了相同20天的观测数据,得到A ,B 两地区的空气质量指数()如下图所示:AQI abB 地区(AQI)(201,248)(158,120)(153,145)(150,222)(120,115)(90,78)(97,144)(88,216)(60,42)(54,49)(53,65)(51,77)(40,77)(45,54)(40,38)(30,48)(29,30)(27,27)(25,25)(21,22)2502001501005025020015010050A 地区(AQI)O根据空气质量指数,将空气质量状况分为以下三个等级:空气质量指数空气质量状况优良 轻中度污染 重度污染(Ⅰ)试估计A 地区当年(365天)的空气质量状况“优良”的天数;(Ⅱ)假设两地区空气质量状况相互独立,记事件“A 地区空气质量等级优于B 地区空气质量等级”. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件的概率.(Ⅲ)若从空气质量角度选择生活地区居住,你建议选择A ,B 两地区哪个地区.(只需写出结论)17.(本小题14分)如图1,在边长为2的菱形中,,于点,将沿折起到的位置,使1A D BE ⊥,如图2.AQI (0,100)[100,200)[200,300)C :C ABCD 60BAD ∠=DE AB ⊥E ADE ∆DE 1A DE ∆CDA 1CD(I )求证:1A E ⊥平面BCDE ; (II )求二面角的余弦值;(III )在线段上是否存在点,使平面平面?若存在,求出的值;若不存在,说明理由.18.(本小题14分)已知椭圆经过点,且离心率为.(I )求椭圆E 的标准方程;(II )过右焦点F 的直线(与x 轴不重合)与椭圆交于两点,线段AB 的垂直平分线交y 轴于点(0,)M m ,求实数m 的取值范围.19.(本小题13分)已知函数2()e x f x ax ax x =+-,1a >.(I )若曲线()f x 在点(0,(0))f 处的切线方程为y x =,求a 的值; (II) 证明:当0x <时,函数()f x 存在唯一的极小值点为0x ,且0102x -<<.1E A D B --BD P 1A EP ⊥1A BD BPBD()2222:10x y E a b a b+=>>(0,1)2l ,A B20.(本小题13分)中的一项,称数列{}n a为“倒置数列”,p是它的“倒置系数”.x x 是“倒置系数”为p的“倒置数列”,求x和p的值;(I)若数列:1,4,9,(9)(II)若等比数列{}n a的项数是m,数列{}n a所有项之积是T,求证:数列{}n a是“倒置数列”,并用m和T表示它的“倒置系数”p;(III)是否存在各项均为整数的递增数列{}n a,使得它既是等差数列,又是“倒置数列”,如果存在,请写出一个满足条件的数列,如果不存在,请说明理由.数学试卷(理科)参考答案一、选择题(共8小题,每小题5分,共40分)二、填空题(共6小题,每小题5分,共30分)9.20 10.11112.[3,2]-13.45; 3 14.1a<;1-三、解答题(共6小题,共80分)15.(共13分)解:(I)π()sin(2)22f x x x=-+cos22x x=π2sin(2)6x=+所以()f x的最小正周期是π. -------------------8分(II)因为π2x≤≤, 所以02πx≤≤,所以ππ7π2666x≤≤+,当π6x=时,max()2f x=.当π2x=时,m()1in-f x=. --------------------13分16.(共13分)解:(Ⅰ)从A地区选出的20天中随机选出一天,这一天空气质量状况为“优良”的频率为,估计A地区当年(365天)的空气质量状况“优良”的频率为,A地区当年(365天)的空气质量状况“优良”的天数约为3650.75274⨯≈天. -----------4分(Ⅱ)记1A表示事件:“A地区空气质量等级为优良”;2A表示事件:“A地区空气质量等级为轻中度污染”;510.7520-=0.751B 表示事件:“B 地区空气质量等级为轻中度污染”; 2B 表示事件:“B 地区空气质量等级为重度污染”, 则1A 与1B 独立,2A 与2B 独立,1B 与2B 互斥,111222C A B A B A B =.所以111222()()P C P A B A B A B =111222()()()P A B P A B P A B =++111222()()()()()()P A P B P A P B P A P B =++.由所给数据得1A ,2A ,1B ,2B 发生的频率分别为,,,. 故13()4P A =,21()5P A =,11()5P B =,23()20P B =, 所以 --------------------10分(Ⅲ)从空气质量角度,建议选择A 地区居住 . --------------------13分17.(共14分)证明:(I )因为,所以.又因为,,所以平面. 因为平面, 所以. 又因为,,所以平面.--------------------5分 (II )因为平面,,所以以E 为原点,分别以EB ,ED ,EA 1为 x ,y ,z 轴,建立空间直角坐标系,则,,.所以,. 设平面的法向量,34151532031313()()0.2925.4520520P C =⨯++⨯=DE AB ⊥BE DE ⊥1BE A D ⊥1DE A D D =BE ⊥1A DE 1A E ⊂1A DE 1A E BE ⊥1A E DE ⊥BEDE E =1A E ⊥BCDE 1A E ⊥BCDE BE DE ⊥(1,0,0)B (0,3,0)D 1(0,0,1)A 1(1,0,1)BA =-(1,3,0)BD =-1A BD (,,)x y z =n A 1BCDExyz由,得令,得.因为平面,所以平面的法向量(1,0,0)EB =, 所以.因为所求二面角为锐角,所以二面角的余弦值为. -------------------10分 (III )假设在线段上存在一点,使得平面平面.设,,则. 所以.所以,. 设平面的法向量,由,得,令,得.因为平面平面, 所以,解得, 所以在线段上存在点,使得平面平面,且. --------------------14分18.(共14分)100BA x z BD x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩nn x z x =⎧⎪⎨=⎪⎩1y==n BE ⊥1A DE 1ADE 3cos ,77EB EB EB⋅===⋅n n n 1E A D B --7BD P 1A EP ⊥1A BD (,,)P x yz (01)BP BD λλ=≤≤(1,,)(x y z λ-=-(1,0)P λ-1(0,0,1)EA =(1,0)EP λ=-1A EP (,,)x y z =m 10(1)0EA z EP x y λ⎧⋅==⎪⎨⋅=-=⎪⎩m m 0(1)z x yλ=⎧⎪⎨-=⎪⎩x =,1,0)λ=-m 1A EP ⊥1A BD 310λλ⋅=+-=m n []10,14λ=∈BD P 1A EP ⊥1A BD 14BP BD =(Ⅰ)由题意,得, 解得1a b ⎧=⎪⎨=⎪⎩ 所以椭圆E 的标准方程是. -------------------5分(II )(1)当直线轴时,m = 0符合题意.(2)当直线与x 轴不垂直时,设直线的方程为, 由22(1)220y k x x y =-⎧⎨+-=⎩,得,由2222(4)8(12)(1)0k k k ∆=--+->,得k ∈R .设,,则2212122242(1)1212k k x x x x k k -+=⋅=++,. 所以121222(2)12k y y k x x k-+=+-=+, 所以线段AB 中点C 的坐标为.由题意可知,,故直线的方程为,令x = 0,212k y k =+,即212k m k =+当k > 0时,,得210=1122k m k kk<=≤++,当且仅当k ==”成立. 同理,当 k < 0时,210=11242k m k kk>=≥-++,当且仅当2k =-时“=”成立. 综上所述,实数m的取值范围为44⎡-⎢⎣⎦.--------------------14分19.(共13分)解:(I )因为2()e xf x ax ax x =+-,22212b c e a a b c =⎧⎪⎪==⎨⎪⎪=+⎩2212xy +=x AB ⊥AB AB ()1y k x =-()()2222124210kxk x k +-+-=()11,x y A ()22,x y B 2222,1212k k k k ⎛⎫- ⎪++⎝⎭0k ≠C M 222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭得()2e e x x f x ax a x '=+--,所以(0)1f a '=-.因为曲线在点(0,(0))f 处的切线方程为y x =,所以(0)11f a '=-=,即2a =. --------------------5分(II) 设()2e e x x h x ax a x =+--,则()22e e 2(2)e x x x h x a x a x '=--=-+. 因为0x <,所以22x +<,e 1x<.又因为1,a >所以 ()0h x '>,故()(21)e (1)x h x a x x =+-+在(,0)-∞上为增函数. 又因(0)10h a =->,1211()e 022h --=-<,由零点存在性定理,存在唯一的01(,0)2x ∈-,有0()0h x =.当0(,)x x ∈-∞时,()()0h x f x ='<,即()f x 在0(,)x -∞上为减函数, 当0(,0)x x ∈时,()()0h x f x ='>,即()f x 在0(,)x -∞上为增函数, 所以0x 为函数()f x 的极小值点. --------------------13分20.(共13分)故1,49x ==, 即36x p ==. --------------------3分12 31211)()()m m m m m m a a a a a a a --== --------------------9分 )假设存在这样的等差数列{}a 为“倒置数列”,设它的公差为n a <<< np a >>>为“倒置数列”,则正整数1,2,),--------------------13分。
2018届北京市昌平区高三(上)期末数学试卷(理科)(含答案)
2018届北京市昌平区高三(上)期末数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知全集U=R,集合A={x|x2>1},那么∁U A=()A.[﹣1,1] B.[1,+∞)C.(﹣∞,1] D.(﹣∞,﹣1]∪[1,+∞)2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=e x B.y=sinx C.D.y=x33.执行如图所示的程序框图,若输入的x值为1,则输出的k值为()A.3 B.4 C.5 D.64.设,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c5.一个几何体的三视图如图所示,则这个几何体的直观图为()A.B.C.D.6.已知函数的图象如图所示,则函数f(x)的解析式的值为()A.B.C.D.7.在焦距为2c的椭圆中,F1,F2是椭圆的两个焦点,则“b<c”是“椭圆M上至少存在一点P,使得PF1⊥PF2”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.若函数f(x)满足:集合A={f(n)|n∈N*}中至少存在三个不同的数构成等差数列,则称函数f(x)是等差源函数.判断下列函数:①y=log2x;②y=2x;③y=中,所有的等差源函数的序号是()A.①B.①② C.②③ D.①③二、填空题(本大题共6小题,每小题5分,共30分.)9.设 a∈R,若i(1+ai)=2+i,则a= .10.已知正项等比数列{a n}中,S n为其前n项和,a1=2,a2+a3=12,则S5= .11.若x,y满足则2x+y的最大值为.12.已知角α的终边过点P(3,4),则cos2α= .13.在矩形ABCD中,AB=2,BC=1,那么= ;若E为线段AC上的动点,则的取值范围是.14.设函数①若a=1,则f(x)的零点个数为;②若f(x)恰有1个零点,则实数a的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)已知△ABC是等边三角形,D在BC的延长线上,且CD=2,.(Ⅰ)求AB的长;(Ⅱ)求sin∠CAD的值.16.(13分)A、B两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(I)试估计B班的学生人数;(II)从A班和B班抽出的学生中,各随机选取一人,A班选出的人记为甲,B班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定:当甲的测试数据比乙的测试数据低时,记ξ=﹣1,当甲的测试数据与乙的测试数据相等时,记ξ=0,当甲的测试数据比乙的测试数据高时,记ξ=1.求随机变量ξ的分布列及期望.(III)再从A、B两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).17.(14分)如图1,四边形ABCD为正方形,延长DC至E,使得CE=2DC,将四边形ABCD 沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如图2.(I)求证:CE⊥平面A1BCD1;(II)求异面直线BD1与A1E所成角的大小;(III)求平面BCE与平面A1ED1所成锐二面角的余弦值.18.(13分)设函数f(x)=ln(1+ax)+bx,g(x)=f(x)﹣bx2.(Ⅰ)若a=1,b=﹣1,求函数f(x)的单调区间;(Ⅱ)若曲线y=g(x)在点(1,ln3)处的切线与直线11x﹣3y=0平行.(i)求a,b的值;(ii)求实数k(k≤3)的取值范围,使得g(x)>k(x2﹣x)对x∈(0,+∞)恒成立.19.(14分)椭圆C的焦点为F1(﹣,0),,且点在椭圆C 上.过点P(0,1)的动直线l与椭圆相交于A,B两点,点B关于y轴的对称点为点D(不同于点A).(I)求椭圆C的标准方程;(II)证明:直线AD恒过定点,并求出定点坐标.20.(13分)已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示图形边界上的整点(横、纵坐标都是整数的点)的集合,集合D={(6,0),(﹣6,0),(0,4),(0,﹣4),(4,﹣4),(﹣4,4),(2,﹣2),(﹣2,2)}.规定:(1)对于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)(2)对于任意的k∈N*,序列a k,b k满足:①a k∈Ω,b k∈D②a1=(0,0),a k=a k﹣1+b k﹣1,k≥2,k∈N*(Ⅰ)求a2(Ⅱ)证明:∀k∈N*,a k≠(5,0)(Ⅲ)若a k=(6,2),写出满足条件的k的最小值及相应的a1,a2,…,a k.2016-2017学年北京市昌平区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知全集U=R,集合A={x|x2>1},那么∁U A=()A.[﹣1,1] B.[1,+∞)C.(﹣∞,1] D.(﹣∞,﹣1]∪[1,+∞)【考点】补集及其运算.【分析】根据全集R及A,求出A的补集即可.【解答】解:全集U=R,集合A={x|x2>1}=(﹣∞,﹣1)∪(1,+∞),∁U A=[﹣1,1],故选:A【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=e x B.y=sinx C.D.y=x3【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据函数奇偶性和单调性的定义和性质进行判断即可.【解答】解:A.y=e x是非奇非偶函数,不满足条件.B.y=sinx是奇函数,在定义域上不是单调函数,不满足条件.C.是非奇非偶函数,不满足条件.D.y=x3是奇函数,定义域上单调递增,满足条件.故选:D【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.3.执行如图所示的程序框图,若输入的x值为1,则输出的k值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】根据程序框图进行模拟计算即可得到结论.【解答】解:若输入x=1.则第一次,x=1+5=6,不满足条件,x>23,k=1,第二次,x=6+5=11,不满足条件,x>23,k=2,第三次,x=11+5=16,不满足条件,x>23,k=3,第四次,x=16+5=21,不满足条件,x>23,k=4,第五次,x=21+5=26,满足条件,x>23,程序终止,输出k=4,故选:B【点评】本题主要考查程序框图的计算,根据查询进行模拟计算是解决本题的关键.4.设,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵e﹣2∈(0,),>1,ln2∈(,1),∴>ln2>e﹣2.∴a<c<b.故选:C.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.一个几何体的三视图如图所示,则这个几何体的直观图为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可得结论.【解答】解:由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可知B满足,故选B.【点评】本题考查三视图与直观图的转化,考查数形结合的数学思想,比较基础.6.已知函数的图象如图所示,则函数f(x)的解析式的值为()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据图象求出A,ω和φ,即可求函数f(x)的解析式;【解答】解:(1)由题设图象知,周期T=2×()=π,即.∵点(0,)在函数图象上,可得:2sin(2×0+φ)=,得:sinφ=,∵|φ|<,∴φ=.故函数f(x)的解析式为f(x)=2sin(2x+).故选B.【点评】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.7.在焦距为2c的椭圆中,F1,F2是椭圆的两个焦点,则“b<c”是“椭圆M上至少存在一点P,使得PF1⊥PF2”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】求出椭圆M上至少存在一点P,使得PF1⊥PF2的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:若椭圆M上至少存在一点P,使得PF1⊥PF2,则椭圆与半径R=c的圆满足条件.R≥b,即b≤c,则b<c”是“椭圆M上至少存在一点P,使得PF1⊥PF2”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,利用椭圆的性质是解决本题的关键.8.若函数f(x)满足:集合A={f(n)|n∈N*}中至少存在三个不同的数构成等差数列,则称函数f(x)是等差源函数.判断下列函数:①y=log2x;②y=2x;③y=中,所有的等差源函数的序号是()A.①B.①② C.②③ D.①③【考点】等差数列的通项公式.【分析】利用等差源函数的定义、等差数列的定义即可判断出结论.【解答】解:①∵log21,log22,log24构成等差数列,∴y=log2x是等差源函数;②y=2x不是等差源函数,因为若是,则2×2p=2m+2n,则2p+1=2m+2n,∴2p+1﹣n=2m﹣n+1,左边是偶数,右边是奇数,故y=2x+1不是等差源函数;③假设a,b,c>0,,则2a=b+c,因此只要满足:a,b,c>0,2a=b+c,则y=是等差源函数.综上可得:只有①③正确.故选:D.【点评】本题考查了等差源函数的定义、等差数列的定义,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分.)9.设 a∈R,若i(1+ai)=2+i,则a= ﹣2 .【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵i(1+ai)=2+i,∴i﹣a=i+2,∴﹣a=2,解得a=﹣2.故答案为:﹣2.【点评】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.10.已知正项等比数列{a n}中,S n为其前n项和,a1=2,a2+a3=12,则S5= 32 .【考点】等比数列的前n项和.【分析】根据等比数列的通项公式结合求和公式进行计算即可.【解答】解:设等比数列的公比为q,则q>0,由a1=2,a2+a3=12得2q+2q2=12,即q2+q﹣6=0得q=2或q=﹣3,(舍),则S5===62,故答案为:62.【点评】本题主要考查等比数列的应用,根据等比数列的通项公式和前n项和公式是解决本题的关键.11.若x,y满足则2x+y的最大值为 6 .【考点】简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大,而A(3,0),代入目标函数z=2x+y得z=3×2+0=6.即目标函数z=2x+y的最大值为6.故答案为:6.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.12.已知角α的终边过点P(3,4),则cos2α= .【考点】二倍角的余弦;任意角的三角函数的定义.【分析】先利用三角函数的定义,求出cosα,sinα的值,再利用二倍角的余弦公式,即可求得结论.【解答】解:由题意,∵角α的终边过点P(3,4),∴cosα=,sinα=∴cos2α=cos2α﹣sin2α==故答案为:【点评】本题重点考查三角函数的定义,考查二倍角的余弦公式,正确运用公式是解题的关键.13.在矩形ABCD中,AB=2,BC=1,那么= 4 ;若E为线段AC上的动点,则的取值范围是[﹣4,1] .【考点】平面向量数量积的运算.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,求得=•(﹣)=﹣4,求得•的范围,可得的取值范围.【解答】解:在矩形ABCD中,AB=2,BC=1,则cos∠CAB=,那么=AC•AB•cos∠CAB=•2•=4;若E为线段AC上的动点,则=•(﹣)=•﹣=﹣4;当点E和点A重合时,取得最小值为0,当点E和点C重合时,取得最大值为=5,故的取值范围是[﹣4,1],故答案为:4;[﹣4,1].【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于基础题.14.设函数①若a=1,则f(x)的零点个数为 2 ;②若f(x)恰有1个零点,则实数a的取值范围是(﹣∞,﹣3).【考点】分段函数的应用.【分析】把函数y=﹣(x+3)(x﹣1),y=2x﹣2的图象画在同一直角坐标系中.直线x=a在平移过程中,可得到函数f(x)与x轴的不同交点个数.【解答】解:把函数y=﹣(x+3)(x﹣1),y=2x﹣2的图象画在同一直角坐标系中.如图所示:直线x=a在平移过程中,可得到函数f(x)与x轴的不同交点个数,①若a=1,则f(x)的零点个数为:2②若f(x)恰有1个零点,则实数a的取值范围是:a<﹣3.故答案为:2,(﹣∞,﹣3)【点评】题主要考查函数的图象的交点以及数形结合方法,数形结合是数学解题中常用的思想方法,属于基础题.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)(2016秋•昌平区期末)已知△ABC是等边三角形,D在BC的延长线上,且CD=2,.(Ⅰ)求AB的长;(Ⅱ)求sin∠CAD的值.【考点】余弦定理.【分析】(Ⅰ)设AB=x.由△ABC是等边三角形,可求∠ABC的值,利用三角形面积公式可得x2+2x﹣24=0,进而解得AB的值.(Ⅱ)由余弦定理可求AD的值,进而利用正弦定理可求sin∠CAD的值.【解答】(本小题满分13分)解:(Ⅰ)设AB=x.因为△ABC是等边三角形,所以.因为,所以.即x2+2x﹣24=0.所以x=4,x=﹣6(舍).所以AB=4.…(Ⅱ)因为AD2=AB2+BD2﹣2AB•BDcos∠ABC,所以.所以.在△ACD中,因为,所以.…(13分)【点评】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了转化思想和数形结合思想,属于基础题.16.(13分)(2016秋•昌平区期末)A、B两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(I)试估计B班的学生人数;(II)从A班和B班抽出的学生中,各随机选取一人,A班选出的人记为甲,B班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定:当甲的测试数据比乙的测试数据低时,记ξ=﹣1,当甲的测试数据与乙的测试数据相等时,记ξ=0,当甲的测试数据比乙的测试数据高时,记ξ=1.求随机变量ξ的分布列及期望.(III)再从A、B两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).【考点】离散型随机变量及其分布列;茎叶图.【分析】(Ⅰ)由题意可知,抽出的13名学生中,来自B班的学生有7名.根据分层抽样方法,能求出B班的学生人数.(Ⅱ)由题意知ξ的可能取值为﹣1,0,1,分别求出相应的概率,由此能求出ξ的概率分布列及期望.(Ⅲ)利用数学期望的性质能求出μ1>μ0.【解答】(本小题满分13分)解:(Ⅰ)由题意可知,抽出的13名学生中,来自B班的学生有7名.根据分层抽样方法,B班的学生人数估计为(人).…(Ⅱ)由题意知ξ的可能取值为﹣1,0,1,,,,则ξ的概率分布列为:.…(11分)(Ⅲ)μ1>μ0.…(13分)【点评】本题考查分层抽样的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.17.(14分)(2016秋•昌平区期末)如图1,四边形ABCD为正方形,延长DC至E,使得CE=2DC,将四边形ABCD沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如图2.(I)求证:CE⊥平面A1BCD1;(II)求异面直线BD1与A1E所成角的大小;(III)求平面BCE与平面A1ED1所成锐二面角的余弦值.【考点】二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的判定.【分析】(Ⅰ)推导出CE⊥BC,CE⊥平面A1BCD1.(Ⅱ)法一:连接A1C.推导出A1C⊥BD1,CE⊥BD1,从而BD1⊥A1E.由此能求出异面直线BD1与A1E所成的角.法二:以C为坐标原点,建立空间直角坐标系,利用向量法能求出异面直线BD1与A1E所成的角.(Ⅲ)求出平面BCE的法向量和平面A1D1E的法向量,利用向量法能求出平面BCE与平面A1ED1所成的锐二面角的余弦值.【解答】(本小题满分14分)证明:(Ⅰ)因为平面A1BCD1⊥平面BCE,且平面A1BCD1∩平面BCE=BC,四边形ABCD为正方形,E在DC的延长线上,所以CE⊥BC.因为CE⊂平面BCE,所以CE⊥平面A1BCD1.…解:(Ⅱ)法一:连接A1C.因为A1BCD1是正方形,所以A1C⊥BD1.因为CE⊥平面A1BCD1,所以CE⊥BD1.因为A1C∩CE=C,所以BD1⊥平面A1CE.所以BD1⊥A1E.所以异面直线BD1与A1E所成的角是90°.…(9分)法二:以C为坐标原点,建立空间直角坐标系如图所示.设CD=1,则CE=2.则C(0,0,0),B(1,0,0),E(0,2,0),D1(0,0,1),A1(1,0,1).所以.因为,所以.所以异面直线BD1与A1E所成的角是90°.…(9分)(Ⅲ)因为CD1⊥平面BCE,所以平面BCE的法向量.设平面A1D1E的法向量.因为,所以,即.设y=1,则z=2.所以.因为所以平面BCE与平面A1ED1所成的锐二面角的余弦值为.…(14分)【点评】本题考查线面垂直的证明,考查异面直线所成角的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.(13分)(2016秋•昌平区期末)设函数f(x)=ln(1+ax)+bx,g(x)=f(x)﹣bx2.(Ⅰ)若a=1,b=﹣1,求函数f(x)的单调区间;(Ⅱ)若曲线y=g(x)在点(1,ln3)处的切线与直线11x﹣3y=0平行.(i)求a,b的值;(ii)求实数k(k≤3)的取值范围,使得g(x)>k(x2﹣x)对x∈(0,+∞)恒成立.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,通过解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)(i)求出g(x)的导数,得到关于a,b的方程组,解出即可;(ii)问题转化为g(x)﹣k(x2﹣x)>0对x∈(0,+∞)恒成立.令F(x)=g(x)﹣k (x2﹣x),求出函数的导数,通过讨论k的范围,求出函数的单调区间,从而确定k的范围即可.【解答】解:(Ⅰ)当a=1,b=﹣1时,f(x)=ln(1+x)﹣x,(x>﹣1),则.当f'(x)>0时,﹣1<x<0;当f'(x)<0时,x>0;所以f(x)的单调增区间为(﹣1,0),单调减区间为(0,+∞).…(Ⅱ)( i)因为g(x)=f(x)﹣bx2=ln(1+ax)+b(x﹣x2),所以.依题设有即解得.…(8分)( ii))所以.g(x)>k(x2﹣x)对x∈(0,+∞)恒成立,即g(x)﹣k(x2﹣x)>0对x∈(0,+∞)恒成立.令F(x)=g(x)﹣k(x2﹣x).则有.①当1≤k≤3时,当x∈(0,+∞)时,F'(x)>0,所以F(x)在(0,+∞)上单调递增.所以F(x)>F(0)=0,即当x∈(0,+∞)时,g(x)>k(x2﹣x);②当k<1时,当时,F'(x)<0,所以F(x)在上单调递减,故当时,F(x)<F(0)=0,即当x∈(0,+∞)时,g(x)>k(x2﹣x)不恒成立.综上,k∈[1,3].…(13分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.19.(14分)(2016秋•昌平区期末)椭圆C的焦点为F1(﹣,0),,且点在椭圆C上.过点P(0,1)的动直线l与椭圆相交于A,B两点,点B关于y轴的对称点为点D(不同于点A).(I)求椭圆C的标准方程;(II)证明:直线AD恒过定点,并求出定点坐标.【考点】椭圆的简单性质.【分析】(Ⅰ)法一:由题意可得关于a,b,c的方程组,解得即可,法二:直接根据椭圆的定义求出a的值,以及c的值,问题得以解决,(Ⅱ)法一:直线方程与椭圆方程联立方程组,根据韦达定理,以及利用判断出存在定点Q 满足条件,则Q(0,2),再根据斜率的即可判断A,D,Q三点共线.即直线AD恒过定点,定点坐标为Q(0,2).法二:直线方程与椭圆方程联立方程组,根据韦达定理,求出直线AD的方程,再判断过定点.【解答】解:( I)法一设椭圆C的标准方程为.由已知得,解得.所以椭圆C的方程为+=1.法二设椭圆c的标准方程为.由已知得,.所以a=2,b2=a2﹣c2=2.所以椭圆c的方程为为+=1.( II)法一当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.由得(2k2+1)x2+4kx﹣2=0.设A(x1,y1),B(x2,y2).则特殊地,当A为(2,0)时,k=﹣,所以2x2=﹣,x2=﹣,y2=,即B(﹣,)所以点B关于y轴的对称点D(,),则直线AD的方程为y=﹣x+2.又因为当直线l斜率不存时,直线AD的方程为x=0,如果存在定点Q满足条件,则Q(0,2).所以K QA===k﹣,K QB==﹣k+,又因为,所以K QA=K QB,即A,D,Q三点共线.即直线AD恒过定点,定点坐标为Q(0,2).法二( II)①当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.由,可得(1+2k2)x2+4kx﹣2=0.设A(x1,y1),B(x2,y2),则D(﹣x2,y2).所以因为,所以直线AD的方程为:.所以,=,=,=,=,=,=.因为当x=0,y=2,所以直线MD恒过(0,2)点.②当k不存在时,直线AD的方程为x=0,过定点(0,2).综上所述,直线AD恒过定点,定点坐标为(0,2).【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于中档题.20.(13分)(2016秋•昌平区期末)已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示图形边界上的整点(横、纵坐标都是整数的点)的集合,集合D={(6,0),(﹣6,0),(0,4),(0,﹣4),(4,﹣4),(﹣4,4),(2,﹣2),(﹣2,2)}.规定:(1)对于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)(2)对于任意的k∈N*,序列a k,b k满足:①a k∈Ω,b k∈D②a1=(0,0),a k=a k﹣1+b k﹣1,k≥2,k∈N*(Ⅰ)求a2(Ⅱ)证明:∀k∈N*,a k≠(5,0)(Ⅲ)若a k=(6,2),写出满足条件的k的最小值及相应的a1,a2,…,a k.【考点】数学归纳法.【分析】(Ⅰ)根据新定义即可求出a2=(6,0)或(0,4),(Ⅱ)利用反证法即可证明,(Ⅲ)由新定义可得k min=5,相应的a1,a2,…,a k.【解答】解:(Ⅰ)对于任意的b=(x2,y2)∈D,a1+b=(0,0)+(x2,y2)=(x2,y2)若(x2,y2)∈Ω,则(x2,y2)=(6,0),或(x2,y2)=(0,4),故a2=(6,0)或(0,4),(Ⅱ)证明:假设命题不成立,即∃k∈N*,使a k=(5,0)即∃b i∈D,i=1,2,…,k﹣1(k≥2),使a1+=a k,化简得=(5,0),所以存在m,n,p∈Z,且m+n+p=k﹣1,使6m+4n+2p=5.又因为6m+4n+2p=2(3m+2n+p)是偶数,而5是奇数,与6m+4n+2p=5矛盾,故假设不成立,即:∀k∈N*,a k≠(5,0),(Ⅲ)k min=5,a1=(0,0),a2=(0,4),a3=(4,0),a4=(4,4),a5=(6,2).【点评】本题考查了新定义的知识的应用,关键是读懂新定义,以及反证法,属于中档题.。
2018北京市昌平区二模数学试题(含答案)
收集数据
从八、九两个年级各随机抽取 20 名学生,进行了体质健康测试,测试成绩(百
分制)如下:
八年级
78 86
74
81
75
76
87
70
75
90
75 79
81
70
74
80
86
69
83
77
九年级
93 73
88
81
72
81
94
83
77
83
80 81
70
81
73
78Leabharlann 82807040
整理、描述数据
按如下分数段整理、描述这两组样本数据:
李老师说小丽的作法正确,请你写出她作图的依
据:
.
16. 如 图,在圆 O 的内 接四边形 ABCD 中,AB=3 ,AD=5,∠
BAD=60°,点 C 为弧 BD 的中点,则 AC 的长是
.
(第 16 题) 三、解答题(本题共 12 道小题,共 68 分,第 17-22 题每小题 5 分,第 23-26
其中两条纵向虚线上端的数值分别
是每个年级抽出的 40 名男生身高的 平均数,根据统计图提供的信息,
下列结论不合理的是( ) A.六年级 40 名男生身高的中位数 在第 153~158cm 组
(第 6 题)
B.可以估计该校九年级男生的平均身高比六年级的平均身高高出 18.6cm
C.九年级 40 名男生身高的中位数在第 168~173cm 组
度,小文同学做了如下的探索:根据物理学中光的反射
定律,利用一面镜子和一根皮尺,设计如下图所示的测 量方案:把一面很小的镜子放在合适的位置,刚好能在
昌平数学二模试卷高三答案
一、选择题1. 答案:A解析:由题意知,函数f(x) = ax^2 + bx + c在x = 1时取得最大值,因此对称轴x = -b/(2a) = 1,解得a = 1,b = -2,c = 1。
2. 答案:C解析:首先对数函数y = log_a(x)在x > 0时单调递增,排除B、D。
再由a^2 = 1,得a = 1或a = -1。
由指数函数y = a^x在a > 0时单调递增,排除A。
3. 答案:D解析:由题意知,点P的轨迹为圆,圆心为(0,0),半径为r。
因此,OP = r。
根据勾股定理,可得x^2 + y^2 = r^2。
4. 答案:B解析:由题意知,直线l的斜率为-1,因此直线l的方程为y = -x + b。
代入点(2,3)得b = 5,所以直线l的方程为y = -x + 5。
5. 答案:A解析:由题意知,等差数列{an}的公差为d,首项为a1。
根据等差数列的通项公式an = a1 + (n - 1)d,代入n = 1和n = 5得a1 = 2,d = 2。
因此,an = 2 + (n - 1) 2 = 2n。
二、填空题6. 答案:-1/2解析:由题意知,方程x^2 - 2ax + a^2 - 1 = 0的判别式Δ = 4a^2 -4(a^2 - 1) = 4 > 0,因此方程有两个实数根。
根据韦达定理,x1 + x2 = 2a,x1 x2 = a^2 - 1。
又因为x1 x2 = -1,代入得a^2 - 1 = -1,解得a = ±1。
由于x1 + x2 = 2a,代入a = -1得x1 + x2 = -2,因此x1 x2 = (x1 + x2)^2 - (x1 - x2)^2 = (-2)^2 - (x1 - x2)^2 = -1,解得(x1 - x2)^2 = 3,所以x1 - x2 = ±√3。
由于x1 x2 = -1,且x1 + x2 = -2,解得x1 = -1/2,x2 = -3/2。
2018年北京市昌平区高考数学二模试卷(理科)(解析版)
2018年北京市昌平区高考数学二模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x<﹣1或x>1},则∁U A=()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣∞,﹣1]∪[1,+∞)C.(﹣1,1)D.[﹣1,1]2.(5分)若复数z=cosθ+i sinθ,当时,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知等比数列{a n}中,a1=27,a4=a3a5,则a7=()A.B.C.D.34.(5分)设,b=log23,c=2﹣0.3,则()A.b>c>a B.a>b>c C.b>a>c D.a>c>b 5.(5分)若满足条件的整点(x,y)恰有12个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A.﹣3B.﹣2C.﹣1D.06.(5分)设x,y∈R,则“x2+y2≤2“是“|x|≤1且|y|≤1“的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,则该四棱锥的所有面中最大面的面积是()A.4B.C.2D.8.(5分)2011年7月执行的《中华人民共和国个人所得税法》规定:公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某调研机构数据显示,纳税人希望将个税免征额从3500元上调至7000元.若个税免征额上调至7000元(其它不变),某人当月少交纳此项税款332元,则他的当月工资、薪金所得介于()A.5000~6000元B.6000~8000元C.8000~9000元D.9000~16000元二、填空题共6小题,每小题5分,共30分.9.(5分)在二项式的展开式中,第四项的系数是.(用数字作答)10.(5分)在△ABC中,,,AC=1,则BC=.11.(5分)已知双曲线C:的渐近线方程为,则双曲线C的离心率是.12.(5分)执行如图所示的程序框图,若输入x值满足﹣2<x≤4,则输出y值的取值范围是.13.(5分)向量,在边长为1的正方形网格中的位置如图所示,则向量,所成角的余弦值是;向量,所张成的平行四边形的面积是.14.(5分)已知函数f(x)=①当x<1时,若函数f(x)有且只有一个极值点,则实数a的取值范围是;②若函数f(x)的最大值为1,则a=.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数.(I)求函数f(x)的最小正周期;(II)求函数f(x)在区间上的最值及相应的x值.16.(13分)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从A,B两地区一年的数据中随机抽取了相同20天的观测数据,得到A,B两地区的空气质量指数(AQI)如图所示:根据空气质量指数,将空气质量状况分为以下三个等级:(Ⅰ)试估计A地区当年(365天)的空气质量状况“优良”的天数;(Ⅱ)假设两地区空气质量状况相互独立,记事件C:“A地区空气质量等级优于B地区空气质量等级”.根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件C的概率.(Ⅲ)若从空气质量角度选择生活地区居住,你建议选择A,B两地区哪个地区.(只需写出结论)17.(14分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1D⊥BE,如图2.(I)求证:A1E⊥平面BCDE;(II)求二面角E﹣A1D﹣B的余弦值;(III)在线段BD上是否存在点P,使平面A1EP平面A1BP?若存在,求出的值;若不存在,说明理由.18.(14分)已知椭圆E:(a>b>0)的经过点(0,1),且离心率为.(I)求椭圆E的标准方程;(II)过右焦点F的直线l(与x轴不重合)与椭圆交于A,B两点,线段AB 的垂直平分线交y轴于点M(0,m),求实数m的取值范围.19.(13分)已知函数f(x)=ax2+ax﹣xe x,a>1.(I)若曲线f(x)在点(0,f(0))处的切线方程为y=x,求a的值;(II)证明:当x<0时,函数f(x)存在唯一的极小值点为x0,且.20.(13分)已知正项数列{a n}中,若存在正实数p,使得对数列{a n}中的任意一项a k,也是数列{a n}中的一项,称数列{a n}为“倒置数列”,p是它的“倒置系数”.(I)若数列:1,4,9,x(x>9)是“倒置系数”为p的“倒置数列”,求x 和p的值;(II)若等比数列{a n}的项数是m,数列{a n}所有项之积是T,求证:数列{a n}是“倒置数列”,并用m和T表示它的“倒置系数”p;(III)是否存在各项均为整数的递增数列{a n},使得它既是等差数列,又是“倒置数列”,如果存在,请写出一个满足条件的数列,如果不存在,请说明理由.2018年北京市昌平区高考数学二模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x<﹣1或x>1},则∁U A=()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣∞,﹣1]∪[1,+∞)C.(﹣1,1)D.[﹣1,1]【解答】解:∁U A=[﹣1,1].故选:D.2.(5分)若复数z=cosθ+i sinθ,当时,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:当时,复数z=cos+i sin=﹣﹣i,则复数z在复平面内对应的点位于第三象限.故选:C.3.(5分)已知等比数列{a n}中,a1=27,a4=a3a5,则a7=()A.B.C.D.3【解答】解:∵等比数列{a n}中,a1=27,a4=a3a5,∴27q3=27q2•27q4,解得q=,∴a7=27q6==.故选:A.4.(5分)设,b=log23,c=2﹣0.3,则()A.b>c>a B.a>b>c C.b>a>c D.a>c>b【解答】解:∵,且2﹣0.2<20=1,而b=log23>log22=1.∴b>a>c.故选:C.5.(5分)若满足条件的整点(x,y)恰有12个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A.﹣3B.﹣2C.﹣1D.0【解答】解:作出满足条件的平面区域,如图:要使整点(x,y)恰有12个,即为(0,0)、(1,0)、(﹣1,﹣1)、(0,﹣1),(1,﹣1)、(2,﹣1)、(﹣2,﹣2)、(﹣1,﹣2)、(0,﹣2),(1,﹣2)、(2,﹣2)、(3,﹣2).故整数a的值为﹣2.故选:B.6.(5分)设x,y∈R,则“x2+y2≤2“是“|x|≤1且|y|≤1“的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由|x|≤1且|y|≤1⇒x2+y2≤2,反之不成立,例如x=0,y=.∴x2+y2≤2“是“|x|≤1且|y|≤1“的必要不充分条件.故选:B.7.(5分)某四棱锥的三视图如图所示,则该四棱锥的所有面中最大面的面积是()A.4B.C.2D.【解答】解:由三视图可知几何体为四棱锥,作出直观图如图所示,其中底面ABCD是长方形,AB=2,AD=1,侧面P AB⊥底面ABCD,且∠P AB=90°,P A=2,=2×1=2,,,则S四边形ABCD,.∴该四棱锥的所有面中最大面的面积是.故选:B.8.(5分)2011年7月执行的《中华人民共和国个人所得税法》规定:公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某调研机构数据显示,纳税人希望将个税免征额从3500元上调至7000元.若个税免征额上调至7000元(其它不变),某人当月少交纳此项税款332元,则他的当月工资、薪金所得介于()A.5000~6000元B.6000~8000元C.8000~9000元D.9000~16000元【解答】解:设该人当月工资、薪金所得为x元,由题意得:1500×3%+3000×10%+(x﹣8000)×20%﹣(x﹣7000)×3%=332,整理,得:0.17x=1377,解得x=8100.故选:C.二、填空题共6小题,每小题5分,共30分.9.(5分)在二项式的展开式中,第四项的系数是20.(用数字作答)【解答】解:的展开式的第四项为,∴第四项的系数是C63=20.故答案为:20.10.(5分)在△ABC中,,,AC=1,则BC=1或.【解答】解:由题意可得:sin A=,化为sin A=,解得A=或.∴BC2=﹣2cos A,可得BC2=1或7,解得BC=1或.故答案为:1或.11.(5分)已知双曲线C:的渐近线方程为,则双曲线C的离心率是.【解答】解:根据题意,双曲线C:的渐近线方程为,则有=,即a=2,则双曲线的方程为﹣y2=1,其中a=2,b=1,则c==,则双曲线的离心率e==;故答案为:.12.(5分)执行如图所示的程序框图,若输入x值满足﹣2<x≤4,则输出y值的取值范围是[﹣3,2].【解答】解:根据输入x值满足﹣2<x≤4,故:利用函数的定义域,分成两部分:即:﹣2<x<2和2≤x≤4,当﹣2<x<2时,执行y=x2﹣3的关系式,故:﹣3≤y<1,当2≤x≤4时,执行y=log2x的关系式,故:1≤y≤2.综上所述:y∈[﹣3,2],故答案为:[﹣3,2]13.(5分)向量,在边长为1的正方形网格中的位置如图所示,则向量,所成角的余弦值是;向量,所张成的平行四边形的面积是3.【解答】解:如图所示,建立直角坐标系,不妨取=(2,1),=(1,2),则===.向量,所张成的平行四边形的面积S=••sin=×=5×=3.故答案分别为:,3.14.(5分)已知函数f(x)=①当x<1时,若函数f(x)有且只有一个极值点,则实数a的取值范围是a<1;②若函数f(x)的最大值为1,则a=±1.【解答】解:①x<1时,f(x)=﹣x2+2ax,f′(x)=﹣2x+2a=﹣2(x﹣a),由f′(x)=0,解得x=a.∵函数f(x)有且只有一个极值点,∴a<1.则实数a的取值范围是(﹣∞,1).②a=0时,f(x)=,此时f(x)max=0≠1,舍去.a<0时,x≥1时,f(x)=≤0.x<1时,f(x)=﹣(x﹣a)2+a2,x=a 时,函数f(x)取得最大值,f(a)=a2,令a2=1,a<0,解得a=﹣1.a>0时,x≥1时,f(x)=,f′(x)=,可得函数f(x)在[1,e)内单调递增,在(e,+∞)内单调递减.f(x)max=f(e)=.x<1时,f(x)=﹣(x﹣a)2+a2,x=a时,函数f(x)取得最大值,f(x)max =f(a)=a2,当,即a时,令a2=1,解得a=1.当a2,即0<a<时,令=1,解得a=e.舍去.综上可得:a=±1.故答案为:±1.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数.(I)求函数f(x)的最小正周期;(II)求函数f(x)在区间上的最值及相应的x值.【解答】解:(Ⅰ)==,∴f(x)的最小正周期是π;(Ⅱ)∵,∴0≤2x≤π,∴,当时,f(x)max=2.当时,f(x)min=﹣1.16.(13分)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从A,B两地区一年的数据中随机抽取了相同20天的观测数据,得到A,B两地区的空气质量指数(AQI)如图所示:根据空气质量指数,将空气质量状况分为以下三个等级:(Ⅰ)试估计A地区当年(365天)的空气质量状况“优良”的天数;(Ⅱ)假设两地区空气质量状况相互独立,记事件C:“A地区空气质量等级优于B地区空气质量等级”.根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件C的概率.(Ⅲ)若从空气质量角度选择生活地区居住,你建议选择A,B两地区哪个地区.(只需写出结论)【解答】(共13分)解:(Ⅰ)从A地区选出的20天中随机选出一天,这一天空气质量状况为“优良”的频率为1﹣=0.75,估计A地区当年(365天)的空气质量状况“优良”的频率为0.75,A地区当年(365天)的空气质量状况“优良”的天数约为365×0.75≈274天.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)记A1表示事件:“A地区空气质量等级为优良”,A2表示事件:“A地区空气质量等级为轻中度污染”,B1表示事件:“B地区空气质量等级为轻中度污染”,B2表示事件:“B地区空气质量等级为重度污染”,则A1与B1独立,A2与B2独立,B1与B2互斥,C=A1B1∪A1B2∪A2B2.所以P(C)=P(A1B1∪A1B2∪A2B2)=P(A1B1)+P(A1B2)+P(A2B2)=P (A1)P(B1)+P(A1)P(B2)+P(A2)P(B2).由所给数据得A1,A2,B1,B2发生的频率分别为,,,.故,,,,所以事件C的概率P(C)==0.2925.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(Ⅲ)从空气质量角度,建议选择A地区居住.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)17.(14分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1D⊥BE,如图2.(I)求证:A1E⊥平面BCDE;(II)求二面角E﹣A1D﹣B的余弦值;(III)在线段BD上是否存在点P,使平面A1EP平面A1BP?若存在,求出的值;若不存在,说明理由.【解答】(共14分)证明:(I)因为DE⊥AB,所以BE⊥DE.又因为BE⊥A1D,DE∩A1D=D,所以BE⊥平面A1DE.因为A1E⊂平面A1DE,所以A1E⊥BE.又因为A1E⊥DE,BE∩DE=E,所以A1E⊥平面BCDE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)解:(II)因为A1E⊥平面BCDE,BE⊥DE,所以以E为原点,分别以EB,ED,EA1为x,y,z轴,建立空间直角坐标系,则B(1,0,0),D(0,,0),A1(0,0,1).所以=(﹣1,0,1),=(﹣1,,0).设平面A1BD的法向量=(x,y,z),由,令y=1,得=().因为BE⊥平面A 1DE,所以平面A1DE的法向量,所以cos<,>===.因为所求二面角为锐角,所以二面角E﹣A1D﹣B的余弦值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(III)假设在线段BD上存在一点P,使得平面A1EP⊥平面A1BD.设P(x,y,z),=(0≤λ≤1),则(x﹣1,y,z)=λ(﹣1,,0).所以P(1﹣λ,,0).所以=(0,0,1),=(1﹣λ,,0).设平面A1EP的法向量=(x,y,z),由,得,令x=,得=().因为平面A1EP⊥平面A1BD,所以=3λ+λ﹣1=0,解得∈[0,1],所以在线段BD上存在点P,使得平面A1EP⊥平面A1BD,且=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)18.(14分)已知椭圆E:(a>b>0)的经过点(0,1),且离心率为.(I)求椭圆E的标准方程;(II)过右焦点F的直线l(与x轴不重合)与椭圆交于A,B两点,线段AB 的垂直平分线交y轴于点M(0,m),求实数m的取值范围.【解答】(共14分)解:(Ⅰ)由题意,得b=1,椭圆的离心率e===,解得.所以椭圆E的标准方程:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(II)(1)当直线AB⊥x轴时,m=0符合题意.(2)当直线AB与x轴不垂直时,设直线AB的方程为y=k(x﹣1),由,得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,由△=(﹣4k2)2﹣8(1+2k2)(k2﹣1)>0,得k∈R.设A(x1,y1),B(x2,y2),则.所以,所以线段AB中点C的坐标为(,﹣).由题意可知,k≠0,故直线MC的方程为y+=﹣(x﹣),令x=0,,即当k>0时,得,当且仅当时“=”成立.同理,当k<0时,,当且仅当时“=”成立.综上所述,实数m的取值范围为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)19.(13分)已知函数f(x)=ax2+ax﹣xe x,a>1.(I)若曲线f(x)在点(0,f(0))处的切线方程为y=x,求a的值;(II)证明:当x<0时,函数f(x)存在唯一的极小值点为x0,且.【解答】解:(I)因为f(x)=ax2+ax﹣xe x,得f′(x)=2ax+a﹣e x﹣xe x,所以f′(0)=a﹣1.因为曲线在点(0,f(0))处的切线方程为y=x,所以f′(0)=a﹣1=1,即a=2;(II)证明:设h(x)=2ax+a﹣e x﹣xe x,则h′(x)=2a﹣2e x﹣xe x=2a﹣(x+2)e x.因为x<0,所以x+2<2,e x<1.又因为a>1,所以h′(x)>0,故h(x)=a(2x+1)﹣e x(1+x)在(﹣∞,0)上为增函数.又因h(0)=a﹣1>0,h(﹣)=﹣e<0,由零点存在性定理,存在唯一的,有h(x0)=0.当x∈(﹣∞,x0)时,h(x)=f′(x)<0,即f(x)在(﹣∞,x0)上为减函数,当x∈(x0,0)时,h(x)=f′(x)>0,即f(x)在(﹣∞,x0)上为增函数,所以x0为函数f(x)的极小值点.20.(13分)已知正项数列{a n}中,若存在正实数p,使得对数列{a n}中的任意一项a k,也是数列{a n}中的一项,称数列{a n}为“倒置数列”,p是它的“倒置系数”.(I)若数列:1,4,9,x(x>9)是“倒置系数”为p的“倒置数列”,求x 和p的值;(II)若等比数列{a n}的项数是m,数列{a n}所有项之积是T,求证:数列{a n}是“倒置数列”,并用m和T表示它的“倒置系数”p;(III)是否存在各项均为整数的递增数列{a n},使得它既是等差数列,又是“倒置数列”,如果存在,请写出一个满足条件的数列,如果不存在,请说明理由.【解答】解:(I)因为数列:1,4,9,x(x>9)是“倒置系数”为p的“倒置数列”.所以也是该数列的项,且.故,即x=p=36.(II)因为数列{a n}是项数为m项的有穷正项等比数列,取p=a1•a m>0,对数列{a n}中的任意一项a i(1≤i≤m),也是数列{a n}中的一项,由“倒置数列”的定义可知,数列{a n}是“倒置数列”;又因为数列{a n}所有项之积是T,所以即.(III)假设存在这样的等差数列{a n}为“倒置数列”,设它的公差为d(d>0),“倒置系数”为p.因为数列{a n}为递增数列,所以a1<a2<a3<…<a n<…则又因为数列{a n}为“倒置数列”,则正整数也是数列{a n}中的一项(i=1,2,…),故数列{a n}必为有穷数列,不妨设项数为n项,则p=a i•a n+1(1≤i≤n﹣1)﹣i则a1a n=a2a n﹣1,得a1a n=(a1+d)(a n﹣d),即(n﹣2)d2=0由n≥3,故d=0,与d>0矛盾.所以,不存在满足条件的数列{a n},使得它既是等差数列,又是“倒置数列”.。
昌平区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
昌平区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知命题p :“∀x ∈R ,e x >0”,命题q :“∃x 0∈R ,x 0﹣2>x 02”,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(¬q )是真命题D .命题p ∨(¬q )是假命题2. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D .3. 若关于的不等式的解集为,则参数的取值范围为( )x 07|2||1|>-+-++m x x R m A .B .C .D .),4(+∞),4[+∞)4,(-∞]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.4. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >85. 若复数满足(为虚数单位),则复数的虚部为( )71i i z+=A .1 B . C .D .1-i-6. 下列四个命题中的真命题是()A .经过定点的直线都可以用方程表示()000,P x y ()00y y k x x -=-B .经过任意两个不同点、的直线都可以用方程()111,P x y ()222,P x y ()()()()121121y y x x x x y y --=--表示C .不经过原点的直线都可以用方程表示1x ya b+=D .经过定点的直线都可以用方程表示()0,A b y kx b =+7. 函数f(x )=﹣lnx 的零点个数为( )A .0B .1C .2D .38. 已知,若存在,使得,则的()(2)(0)x b g x ax a e a x =-->0(1,)x ∈+∞00()'()0g x g x +=b a取值范围是()A .B . C.D .(1,)-+∞(1,0)-(2,)-+∞(2,0)-9. 直线在平面外是指( )A .直线与平面没有公共点B .直线与平面相交C .直线与平面平行班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________D .直线与平面最多只有一个公共点10.()0﹣(1﹣0.5﹣2)÷的值为()A .﹣B .C .D .11.设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .12.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为()A .B .C .D .二、填空题13.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .14.已知点E 、F 分别在正方体的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .15.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.16.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .17.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.18.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .三、解答题19.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.20.已知函数f(x)=ax2+blnx在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.21.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.22.已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)﹣f(x2).(1)求f(1)的值;(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=﹣1,求f(x)在[3,25]上的最小值.23.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0.(1)求常数 a ,b 的值; (2)求f (x )在[﹣2,﹣]的最值.24.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围;(3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.昌平区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:命题p:“∀x∈R,e x>0”,是真命题,命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,即:+<0,显然是假命题,∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,故选:C.【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.2.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.3.【答案】A4.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值 5. 【答案】A 【解析】试题分析:,因为复数满足,所以,所以复数的42731,1i i i i i ==-∴==-Q 71i i z+=()1,1i i i i z i z +=-∴=-g 虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算.6. 【答案】B 【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111]7. 【答案】B【解析】解:函数f (x )=﹣lnx 的零点个数等价于函数y=与函数y=lnx 图象交点的个数,在同一坐标系中,作出它们的图象:由图象可知,函数图象有1个交点,即函数的零点个数为1故选B8. 【答案】A考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).9. 【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,∴直线在平面外,则直线与平面最多只有一个公共点.故选D . 10.【答案】D【解析】解:原式=1﹣(1﹣)÷=1﹣(1﹣)÷=1﹣(1﹣4)×=1﹣(﹣3)×=1+=.【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题. 11.【答案】D【解析】解:设|PF1|=t,∵|PF1|=|PQ|,∠F1PQ=60°,∴|PQ|=t,|F1Q|=t,由△F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,∴|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,∴椭圆的离心率为:e===.故选D.12.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C.【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题. 二、填空题13.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.14.【答案】【解析】延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为,所以为面AEF 与面ABC 所成的二面角的平面角。
北京市昌平区5月高三第二次统一练习数学理试题含答案
昌平区 高三年级第二次统一练习数学试卷(理科)(满分150分,考试时间 120分钟).5考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共40分)一、 选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.) (1)复数i 1i=- A .1i 22+ B . 1i 22-+ C .1i 22-- D .1i 22-(2) 已知双曲线22:1C mx ny -=的一个焦点为(5,0)F -,实轴长为6,则双曲线C 的渐近线方程为A .43y x =±B. 34y x =±C. 53y x =±D. 35y x =± (3) 若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为A .4 B. 1 C. 0 D. 12-(4)设,αβ是两个不同的平面,b 是直线且.b β⊂“b α⊥”是“αβ⊥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件E DCB AO(5)如图,过点A 和圆心O 的直线交O 于,B C 两点(AB AC <),AD 与O 切于点D ,DE AC ⊥于.E 35,AD =3AB =,则BE 的长度为A. 1B.2C. 2D. 5(6)执行如图所示的程序框图, 如果输出的S 值为3,则判断框 内应填入的判断条件为A. 2i <B. 3i < C .4i < D .5i <(7)已知函数f (x ) 是定义在[3,0)(0,3]-上的奇函数, 当(0,3]x ∈时,f (x ) 的图象如图所示,那么满足不等式()21x f x ≥- 的x 的取值范围是A.[3,2][2,3]--B. [3,2](0,1]-- C. [2,0)[1,3]- D. [1,0)(0,1]-否是0,1S i ==1i i =+开始2i S S =+2log (2)S S =+ 输出S结束俯视图11111DCBAe 2e 1BAO(8)将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星,如图所示.设正八角星的中心为O ,并且12,.OA e OB e == 若将点O 到正八角星16个顶点的向量,都写成为12,,R e e λμλμ+∈的形式,则λμ+的最大值为A 2 B. 2C. 12D. 22第Ⅱ卷(非选择题 共110分)二、 填空题(本大题共6小题,每小题5分,共30分)(9)已知n S 是等比数列}{n a (n *∈N )的前n 项和,若314S =,公比 2q =,则数列}{n a 的通项公式n a = .(10)在极坐标系中,O 为极点,点A 为直线:sin cos 2l ρθρθ=+上一点,则||OA 的最小值为________.(11) 如图,点D 是ABC ∆的边BC 上一点,7,2,1,45.AB AD BD ACB ︒==∠=那么ADB ∠=___________;AC =____________.(12) 某三棱锥的三视图如图所示,则该三棱 锥中最长棱的棱长为_________.(13)3月12日,第四届北京农业嘉年华在昌平拉开帷幕.活动设置了“三馆两园一带一谷”七大板块.“三馆”即农业馆、创意农业馆、智慧农业馆;“两园”即主题狂欢乐园、农事体验乐园;“一带”即草莓休闲体验带;“一谷”即延寿生态观光谷.某校学生准备去参观,由于时间有限,他们准备选择其中的“一馆一园一带一谷”进行参观,那么他们参观的不同路线最多有______种. (用数字作答)(14)已知数列{}n a 中,1(01),a a a =<≤*11,1,().3,(1),2n n n n n a a a n a a +->⎧⎪=∈⎨-+≤⎪⎩N ①若31,6a =则a =_________; ②记12...,n n S a a a =+++则2016S =____________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数()sin()(0,0,||)2f x A x A ωϕωϕπ=+>><的部分图象如图所示. (Ⅰ)写出函数()f x 的解析式及0x 的值; (Ⅱ)求函数()f x 在区间ππ[, ]44-上的最大值与最小值.(16)(本小题满分13分)为了解高一新生数学基础,甲、乙两校对高一新生进行了数学测试. 现从两校各随机抽取10名新生的成绩作为样本,他们的测试成绩的茎叶图如下:(I ) 比较甲、乙两校新生的数学测试样本成绩的平均值及方差的大小;(只需要写出结论) (II ) 如果将数学基础采用A 、B 、C 等级制,各等级对应的测试成绩标准如下表:(满分10060测试成绩 [85,100] [70,85) (60,70)基础等级ABC甲校 乙校5 1 9 1 1 24 3 3 8 4 77 4 3 2 7 7 88 6 5 7 8C 1B 1A 1F EDCBA假设每个新生的测试成绩互相.根据所给数据,以事件发生的频率作为相应事件发生的概率. 从甲、乙两校新生中各随机抽取一名新生,求甲校新生的数学基础等级高于乙校新生的数学基础等级的概率.(17)(本小题满分14分)如图,三棱柱111ABC A B C -中,BC 垂直 于正方形11A ACC 所在平面,2,1AC BC ==,D 为AC 中点,E 为线段1BC 上的一点(端点除外),平面1AB E 与BD 交于点F .(I )若E 不是1BC 的中点,求证:1//AB EF ;(II )若E 是1BC 的中点,求AE 与平面D BC 1所成角的正弦值;(III )在线段1BC 上是否存在点E ,使得1,A E CE ⊥若存在,求出1BEEC 的值,若不存在,请说明理由.(18)(本小题满分13分)已知函数()e axf x =,2()(,,)g x x bx c a b c =-++∈R ,且曲线()y f x =与曲线()y g x =在它们的交点(0,)c 处具有公共切线. 设()()()=-h x f x g x . (I )求c 的值,及,a b 的关系式; (II )求函数()h x 的单调区间;(III )设0a ≥,若对于任意12,[0,1]x x ∈,都有12()()e 1h x h x -≤-,求a 的取值范围.(19)(本小题满分13分)已知椭圆M :()222210x y a b a b+=>>的焦距为2,点(0,3D 在椭圆M 上,过原点O 作直线交椭圆M 于A 、B 两点,且点A 不是椭圆M 的顶点,过点A 作x 轴的垂线,垂足为H ,点C 是线段AH 的中点,直线BC 交椭圆M 于点P ,连接AP .(Ⅰ)求椭圆M 的方程及离心率; (Ⅱ)求证:AB AP ⊥.(20)(本小题满分14分)定义{}123maxn x ,x ,x ,,x 表示123n x ,x ,x ,,x 中的最大值.已知数列1000=n a n,2000=n b m ,1500=n c p ,其中200++=n m p ,=m kn ,,,,∈n m p k *N .记{}max n n n n d a ,b ,c =.(I )求{}maxn n a ,b ;(II )当2=k 时,求n d 的最小值; (III )∀∈k *N ,求n d 的最小值.昌平区 高三年级第二次统一练习数学试卷参考答案及评分标准 (理科) .5一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目题号 1 2 3 4 5 6 7 8 答案BADACBBC二、填空题(本大题共6小题,每小题5分,共30分) (9)*2(N )n n ∈ (102(11) 120︒6 (12)5 (13)144 (14)1;15123三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(I )023()2sin(2),.324f x x x ππ=+=…………………7分(II )由ππππ5π[, ],2[,]44366x x ∈-+∈-, ……………………9分 当π236x π+=-时,即4x π=-,min ()()1;4f x f π=-=-z yxC 1B 11F EDC BAG当232x ππ+=时,即12x π=,max ()() 2.12f x f π== ……………………13分(16)(本小题满分13分)解: (I )两校新生的数学测试样本成绩的平均值相同;甲校新生的数学测试样本成绩的方差小于乙校新生的数学测试样本成绩的方差. ……………………6分(II )设事件D =“从甲、乙两校新生中各随机抽取一名新生,甲校新生的数学基础等级高于乙校新生的数学基础等级”.设事件1E =“从甲校新生中随机抽取一名新生,其数学基础等级为A ”,11(),5P E = 设事件2E =“从甲校新生中随机抽取一名新生,其数学基础等级为B ”,27(),10P E =设事件1F =“从乙校新生中随机抽取一名新生,其数学基础等级为B ”,13(),10P F =设事件2F =“从乙校新生中随机抽取一名新生,其数学基础等级为C ”,23(),10P F =根据题意,111222,D E F E F E F =⋃⋃所以111222111222()()()()()()()()()()P D P E F P E F P E F P E P F P E P F P E P F =++=++131373335105101010100=⨯+⨯+⨯=. 因此,从甲、乙两校新生中各随机抽取一名新生,甲校新生的数学基础等级高于乙校新生的数学基础等级的概率为33.100……………………13分(17)(本小题满分14分)(I )证明:连接C B 1,交1BC 于点G ,连接GD . 在三棱柱111C B A ABC -中, G 为1B C 中点, 且D 为AC 中点, 所以1//GD AB . 因为1GD BC D ⊂平面, DBC AB 11平面⊄所以11//AB BC D 平面. ………………2分由已知,平面1AB E 与BD 交于点F , 所以1F AB ∈平面,E 从而1EF AB EF ⊂平面,又1EF BC D ⊂平面, 所以11BC DAB EF EF =平面平面,所以1//AB EF . ……………………4分(II) 建立空间直角坐标系 11C ACB -如图所示.11(2,2,0),(2,0,0),(0,2,0),(0,0,0),1(0,2,1),(0,0,1),(0,1,),(1,2,0).2A A C CB B E D 1 111(2,1,),(0,2,1),(1,2,0)2AE C B C D =--==.设平面1BC D 的法向量为(,,)n x y z =由110,0,n C B n C D ==得20,20.y z x y +=⎧⎨+=⎩,令1,y =,得(2,1,2)n =--. ……………………6分421cos ,63||||AE n AE n AE n <>== ……………………8分所以,AE 与平面1BC D 所成角的正弦值为2163. ……………………9分 (III) 在线段1BC 上存在点E ,使得1,A E CE ⊥且114BEEC =.理由如下:假设在线段1BC 上存在点E ,使得1,A E CE ⊥设11(0,,)E y z ,1(0)BEEC λλ=>.则1BE EC λ=⋅,1111(0,2,1)(0,,)y z y z λ--=--.112,11,1y z λλ⎧=⎪⎪+⎨⎪=⎪+⎩21(0,,)11E λλ++. ………………11分 121(2,,)11A E λλ=-++,21(0,,)11CE λλλ-=++. 22410(1)(1)λλλ-+=++,解得: 14λ=. ………………13分 所以,在线段1BC 上存在点E ,使得1,A E CE ⊥且114BE EC =.………………14分 (18)(本小题满分13分)解:(I )因为函数()e axf x =,2()=-++g x x bx c ,所以函数'()e axf x a =,'()2=-+g x x b .又因为曲线()y f x =与曲线()y g x =在它们的交点(0,)c 处具有公共切线,所以(0)(0),'(0)'(0)=⎧⎨=⎩f g f g ,即1,.c a b =⎧⎨=⎩………………4分(II )由已知,2()()()e 1axh x f x g x x ax =-=+--. 所以'()e 2axh x a x a =+-.设()'()e 2axF x h x a x a ==+-,所以2'()e 2axF x a =+,∀∈a R ,'()0>F x ,所以'()h x 在(,)-∞+∞上为单调递增函数. ……………6分由(I )得,'(0)'(0),f g =所以'(0)'(0)'(0)0h f g =-=,即0是'()h x 的零点. 所以,函数()h x 的导函数'()h x 有且只有一个零点0.…………………………7分所以'()h x 及()h x 符号变化如下,x(,0)-∞0 (0,)+∞'()h x - 0+ ()h x ↘ 极小值 ↗所以函数(0,)+∞.……………9分(III )由(II )知当[0,1]x ∈ 时,()h x 是增函数. 对于任意12,[0,1]x x ∈,都有12()()e 1h x h x -≤-等价于max min ()()(1)(0)e e 1a h x h x h h a -=-=-≤-,等价于当0a ≥时,()e (e 1)0aG a a =---≤,因为'()e 10aG a =-≥,所以()G a 在[0,)+∞上是增函数, 又(1)0G =,所以[0,1]a ∈. ……………13分(19)(本小题满分13分)解:(I )由题意知1,c =3b =2224a b c =+=,所以椭圆M 的方程为22143x y +=,椭圆M 的离心率为12. ……………5分(II )设0011(,),(,)A x y P x y ,则0000(,),(,).2y B x y C x -- 由点,A P 在椭圆上,所以2200143x y +=① 2211143x y += ②点A 不是椭圆M 的顶点,②-①得 2210221034y y x x -=-- . 法一:又01001000332,,24PB BCy y y y k k x x x x +===+且点,,B C P 三点共线, 所以10010034y y y x x x +=+, 即 0100104().3()y y y x x x +=+ 所以,2201010101022010*******()4()43()1,3()3()34AB PAy y y y y y y y y k k x x x x x x x x x -+--====⨯-=--+-- 即 AB AP ⊥. ……………13分法二:由已知AB 与AP 的斜率都存在,2210101022101010PA PB y y y y y y k k x x x x x x -+-==-+-221022103()344x x x x --==--又03,4PB BC y k k x ==得00,PA x k y =-则0000()1AB PA y x k k x y -==-, 即 AB AP ⊥. ……………13分(20)(本小题满分14分)解:(I )由题意,{}10002000max max n n a ,b ,nkn ⎧⎫=⎨⎬⎩⎭, 因为1000200010002--=(k )n kn kn, 所以,当1=k 时,10002000<n kn,则{}2000max n n n a ,b b n ==,当2=k 时,10002000=n kn,则{}1000max n n n a ,b a n ==,当3≥k 时,10002000>n kn,则{}1000max n n n a ,b a n ==. ……………4分 (II )当2=k 时,{}{}10001500max max max 2003n n n n n n d a ,b ,c a ,c ,n n ⎧⎫===⎨⎬-⎩⎭, 因为数列{}n a 为单调递减数列,数列{}n c 为单调递增数列, 所以当100015002003=-n n时,n d 取得最小值,此时4009=n . 又因为40044459<<, 而{}44444444250max 11d a ,c a ===,454530013d c ==,有4445<d d . 所以n d 的最小值为25011. ……………8分 (III )由(II)可知,当2=k 时,n d 的最小值为25011. 当1=k 时,{}{}2000750max max max 100n n n n n n d a ,b ,c b ,c ,n n ⎧⎫===⎨⎬-⎩⎭. 因为数列{}n b 为单调递减数列,数列{}n c 为单调递增数列, 所以当2000750100=-n n时,n d 取得最小值,此时80011=n . 又因为800727311<<, 而72722509==d b ,73732509==d c . 此时n d 的最小值为2502502509911,>. ⑵当3≥k 时,15001500375200(1)200450≥=-+--k n n n,>n n a b , 所以{}{}1000375max max max 50n n n n n n d a ,b ,c a ,c ,n n ⎧⎫==≥⎨⎬-⎩⎭. 设1000375max 50n h ,n n ⎧⎫=⎨⎬-⎩⎭, 因为数列{}n a 为单调递减数列,数列375{}50-n为单调递增数列, 所以当100037550=-n n 时,n h 取得最小值,此时40011=n .又因为400363711<<, 而36362509h a ==,3737525037513913h ,=<. 此时n d 的最小值为2502502509911,>. 综上,n d 的最小值为4425011=d . ……………14分。
北京市昌平区2018届高三数学12月月考试题理
如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!北京市昌平区2018届高三数学12月月考试题 理一、选择题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知(1i)i 1i(b b +=-+∈R),则b 的值为 A.1 B.1- C. i D.i -2. 已知集合{}124xA x =<<,{}10B x x =-≥,则A B I = A .{}12x x ≤< B .{}01x x <≤ C .{}01x x << D .{}12x x <<3.如图,正方形ABCD 中,E 为DC 的中点,若AD AC AE λμ=+u u u r u u u r u u u r,则λμ-的值为A.3B.2C. 1D.3-4.某程序框图如图所示,执行该程序,若输入的a 值为1, 则输出的a 值为A.1B.2C.3D.55.已知数列12345:,,,,A a a a a a ,其中{1,0,1},1,2,3,4,5i a i ∈-=, 则满足123453a a a a a ++++=的不同数列A 一共有A.15个B.25个C.30个D.35个 6.已知函数1,2,()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1)a ≠的最大值为1,则a 的取值范围是A .112[,) B .01(,) C .102(,] D .1(,)+∞EABCD输出输入开始 结束7. 若,x y 满足+20,40,0,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则2||z y x =-的最大值为A.8-B.4-C.1D.28.同时具有性质: “①最小正周期是π; ②图象关于直线3x π=对称; ③在区间5,6π⎡⎤π⎢⎥⎣⎦上是单调递增函数” 的一个函数可以是 A.cos()26x y π=+B.sin(2)6y x 5π=+C.cos(2)3y x π=-D.sin(2)6y x π=- 9.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成为等比数列{}n b 中的b 、b 、b ,则数列{}n b 的通项公式为A. 12n n b -= B. 13n n b -=C. 22n n b -= D. 23n n b -=10. “0x >”是“2212x x +≥”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件11.如图,△ABC 为正三角形,111////AA BB CC ,1CC ⊥底面ABC ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 27212. 已知正方体''''ABCD A B C D -,记过点A 与三条直线,,'AB AD AA 所成角都相等的直线条数为m , 过点A 与三个平面..',,'AB AC AD 所成角都相等的直线的条数为n ,则下面结论正确的是A.1,1m n ==B.4,1m n ==C. 3,4m n ==D.4,4m n ==二、填空题共4小题,每小题5分,共20分。
昌平区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
昌平区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 定义在(0,+∞)上的单调递减函数f (x ),若f (x)的导函数存在且满足,则下列不等式成立的是( )A .3f (2)<2f (3)B .3f (4)<4f (3)C .2f (3)<3f (4)D .f (2)<2f (1) 2. 下列各组函数为同一函数的是( ) A .f (x )=1;g (x )= B .f (x )=x ﹣2;g (x )= C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=3. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A.(﹣,0) B.(﹣,0) C.(,0) D.(,0)4. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a 5. 复数z=(其中i 是虚数单位),则z的共轭复数=( ) A.﹣iB.﹣﹣i C.+iD.﹣+i6.已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A.(,+∞) B .(1,) C .(2.+∞) D .(1,2)7. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x8. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若5L ≥e 的取值范围是( )(A ) ⎥⎦⎤⎝⎛550, ( B )0⎛⎝⎦ (C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 9. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知椭圆Γ:22221(0)x y a b a b+=>>的焦距为2c ,左焦点为F ,若直线y x c =+与椭圆交于,A B 两点,且3AF FB =,则该椭圆的离心率是( )A .14B .12C .2D .211.下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部12.数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259B .2516C .6116D .3115二、填空题13.函数f (x )=x 3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是 .14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.15.定积分sintcostdt= .16.i 是虚数单位,化简: = .17.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .18.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .三、解答题19.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.20.(本小题满分12分)如图长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =4,D 1F =8,过点E ,F ,C 的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由); (2)求平面α将长方体分成的两部分体积之比.21.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.22.如图所示,在正方体1111ABCD A BC D 中. (1)求11AC 与1B C 所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求11AC 与EF 所成角的大小.23.已知等差数列{a n }的首项和公差都为2,且a 1、a 8分别为等比数列{b n }的第一、第四项. (1)求数列{a n }、{b n }的通项公式;(2)设c n =,求{c n }的前n 项和S n .24.已知函数且f (1)=2.(1)求实数k 的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.昌平区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵f(x)为(0,+∞)上的单调递减函数,∴f′(x)<0,又∵>x,∴>0⇔<0⇔[]′<0,设h(x)=,则h(x)=为(0,+∞)上的单调递减函数,∵>x>0,f′(x)<0,∴f(x)<0.∵h(x)=为(0,+∞)上的单调递减函数,∴>⇔>0⇔2f(3)﹣3f(2)>0⇔2f(3)>3f(2),故A正确;由2f(3)>3f(2)>3f(4),可排除C;同理可判断3f(4)>4f(3),排除B;1•f(2)>2f(1),排除D;故选A.【点评】本题考查利用导数研究函数的单调性,求得[]′<0是关键,考查等价转化思想与分析推理能力,属于中档题.2.【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.故选:C.3.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.4.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C5.【答案】C【解析】解:∵z==,∴=.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.6.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.7. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 8. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d,则L =解得2165d ≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昌平区2018年高三年级第二次统一练习 数学试卷(理科) 2018.5本试卷共5页,共150分.考试时长120分钟.考生务必将答案作答在答题卡上,在试卷上作答无效.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合A ={x ∣x <1-或x > 1},则U A =ðA .(,1)(1,)-∞-+∞UB .(,1][1,)-∞-+∞UC .(1,1)-D .[1,1]-2.若复数cos isin z θθ=+,当4=π3θ时,则复数z 在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知等比数列{}n a 中,143527,a a a a ==,则7a = A .127B .19 C .13D .34.设0.212a ⎛⎫= ⎪⎝⎭,2log 3b =,0.32c -=,则A .b c a >>B .a b c >>C .b a c >>D .a c b >>5.若满足条件010x y x y y a -≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y 恰有12个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为A .3-B .2-C .1-D .0俯视图左视图22 16.设,x y ∈R ,则22+2x y ≤“”是||1||1x y ≤≤“且”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,则该四棱锥的所有面中最大面的面积是 A .4 B .5 C . 2 D .28.2011年7月执行的《中华人民共和国个人所得税法》规定:公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累进计算:全月应纳税所得额(含税级距)税率(%) 不超过1500元3 超过1500元至4500元的部分 10 超过4500元至9000元的部分20 ……某调研机构数据显示,纳税人希望将个税免征额从3500元上调至7000元.若个税免征额上调至7000元(其它不变),某人当月少交纳此项税款332元,则他的当月工资、薪金所得介于A .5000~6000元B .6000~8000元C .8000~9000元D .9000~16000元第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在二项式6(1)x +的展开式中,第四项的系数是 .(用数字作答)2 主视图10.在ABC ∆中,34ABC S ∆=,3AB =,1AC =,则BC = . 11.已知双曲线C :2221(0)x y a a -=>的渐近线方程为12y x =±,则双曲线C 的离心率是 .12.执行如图所示的程序框图,若输入 x 值满足24x -<≤, 则输出y 值的取值范围是 .13.向量a ,b 在边长为1的正方形网格中的位置如图所示, 则向量a ,b 所成角的余弦值是_________;向量a ,b 所张成的平行四边形的面积是__________.14.已知函数()22,1ln 1.x ax x f x a xx x ⎧-+<⎪=⎨≥⎪⎩‚‚ ① 当1x <时,若函数()f x 有且只有一个极值点,则实数a 的取值范围是 ; ② 若函数()f x 的最大值为1,则a = .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分)已知函数()2sin()cos()3sin 244f x x x x =--+ππ. (I )求函数()f x 的最小正周期;(II )求函数()f x 在区间[0,]2π上的最值及相应的x 值.ab2log y x=2x <23y x =-是否x输入输出y 结束开始B 地区(AQI)(201,248)(158,120)(153,145)(150,222)(120,115)(90,78)(97,144)(88,216)(60,42)(54,49)(53,65)(51,77)(40,77)(45,54)(40,38)(30,48)(29,30)(27,27)(25,25)(21,22)2502001501005025020015010050A 地区(AQI)O16.(本小题13分)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从A ,B 两地区一年的数据中随机抽取了相同20天的观测数据,得到A ,B 两地区的空气质量指数(AQI )如下图所示:根据空气质量指数,将空气质量状况分为以下三个等级:空气质量指数AQI (0,100)[100,200)[200,300)空气质量状况优良 轻中度污染 重度污染(Ⅰ)试估计A 地区当年(365天)的空气质量状况“优良”的天数;(Ⅱ)假设两地区空气质量状况相互独立,记事件C :“A 地区空气质量等级优于B 地区空气质量等级”. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件C 的概率.(Ⅲ)若从空气质量角度选择生活地区居住,你建议选择A ,B 两地区哪个地区.(只需写出结论)如图1,在边长为2的菱形ABCD 中,60BAD ∠=,DE AB ⊥于点E ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D BE ⊥,如图2.(I )求证:1A E ⊥平面BCDE ; (II )求二面角1E A D B --的余弦值;(III )在线段BD 上是否存在点P ,使平面1A EP ⊥平面1A BD ?若存在,求出BPBD的值;若不存在,说明理由.18.(本小题14分) 已知椭圆()2222:10x y E a b a b+=>>经过点(0,1),且离心率为22.(I )求椭圆E 的标准方程;(II )过右焦点F 的直线l (与x 轴不重合)与椭圆交于,A B 两点,线段AB 的垂直平分线交y 轴于点(0,)M m ,求实数m 的取值范围.ABCDE 图1A 1BCDE图2已知函数2()e x f x ax ax x =+-,1a >.(I )若曲线()f x 在点(0,(0))f 处的切线方程为y x =,求a 的值; (II) 证明:当0x <时,函数()f x 存在唯一的极小值点为0x ,且0102x -<<.20.(本小题13分)已知正项数列{}n a 中,若存在正实数p ,使得对数列{}n a 中的任意一项k a ,kpa 也是数列{}n a 中的一项,称数列{}n a 为“倒置数列”,p 是它的“倒置系数”.(I )若数列:1,4,9,(9)x x >是“倒置系数”为p 的“倒置数列”,求x 和p 的值; (II )若等比数列{}n a 的项数是m ,数列{}n a 所有项之积是T ,求证:数列{}n a 是“倒置数列”,并用m 和T 表示它的“倒置系数”p ;(III )是否存在各项均为整数的递增数列{}n a ,使得它既是等差数列,又是“倒置数列”,如果存在,请写出一个满足条件的数列,如果不存在,请说明理由.昌平区2018年高三年级第二次统一练习数学试卷(理科)参考答案一、选择题(共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案 DCACBBBC二、填空题(共6小题,每小题5分,共30分)9.20 10.1或7 11.5212.[3,2]- 13.45; 3 14.1a <;1-三、解答题(共6小题,共80分) 15.(共13分)解:(I )π()sin(2)3sin 22f x x x =-+cos23sin 2x x=+π2sin(2)6x =+所以()f x 的最小正周期是π. -------------------8分 (II )因为 π02x ≤≤, 所以 02πx ≤≤,所以 ππ7π2666x ≤≤+,当π6x =时,max ()2f x =. 当π2x =时,m ()1in -f x =. --------------------13分16.(共13分)解:(Ⅰ)从A 地区选出的20天中随机选出一天,这一天空气质量状况为“优良”的频率为510.7520-=,估计A 地区当年(365天)的空气质量状况“优良”的频率为0.75,A 地区当年(365天)的空气质量状况“优良”的天数约为3650.75274⨯≈天. -----------4分(Ⅱ)记1A 表示事件:“A 地区空气质量等级为优良”;2A 表示事件:“A 地区空气质量等级为轻中度污染”; 1B 表示事件:“B 地区空气质量等级为轻中度污染”; 2B 表示事件:“B 地区空气质量等级为重度污染”, 则1A 与1B 独立,2A 与2B 独立,1B 与2B 互斥,111222C A B A B A B =.所以111222()()P C P A B A B A B =111222()()()P A B P A B P A B =++111222()()()()()()P A P B P A P B P A P B =++.由所给数据得1A ,2A ,1B ,2B 发生的频率分别为34,15,15,320. 故13()4P A =,21()5P A =,11()5P B =,23()20P B =, 所以31313()()0.2925.4520520P C =⨯++⨯= --------------------10分(Ⅲ)从空气质量角度,建议选择A 地区居住 . --------------------13分17.(共14分)证明:(I )因为DE AB ⊥,所以BE DE ⊥.又因为1BE A D ⊥,1DE A D D =,所以BE ⊥平面1A DE . 因为1A E ⊂平面1A DE , 所以1A E BE ⊥. 又因为1A E DE ⊥,BEDE E =,所以1A E ⊥平面BCDE .--------------------5分 (II )因为1A E ⊥平面BCDE ,BE DE ⊥,所以以E 为原点,分别以EB ,ED ,EA 1为 x ,y ,z 轴,建立空间直角坐标系,则(1,0,0)B ,(0,3,0)D ,1(0,0,1)A .A 1BCDExyz所以1(1,0,1)BA =-,(1,3,0)BD =-. 设平面1A BD 的法向量(,,)x y z =n ,由1030BA x z BD x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩n n ,得3x z x y =⎧⎪⎨=⎪⎩令1y =,得(3,1,3)=n .因为BE ⊥平面1A DE ,所以平面1A DE 的法向量(1,0,0)EB =uu r,所以321cos ,77EB EB EB⋅===⋅n n n .因为所求二面角为锐角,所以二面角1E A D B --的余弦值为217. -------------------10分 (III )假设在线段BD 上存在一点P ,使得平面1A EP ⊥平面1A BD .设(,,)P x y z ,(01)BP BD λλ=≤≤,则(1,,)(1,3,0)x y z λ-=-. 所以(1,3,0)P λλ-.所以1(0,0,1)EA =,(1,3,0)EP λλ=-. 设平面1A EP 的法向量(,,)x y z =m ,由10(1)30EA z EP x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩m m ,得0(1)3z x y λλ=⎧⎪⎨-=-⎪⎩,令3x λ=,得(3,1,0)λλ=-m .因为平面1A EP ⊥平面1A BD , 所以310λλ⋅=+-=m n ,解得[]10,14λ=∈, 所以在线段BD 上存在点P ,使得平面1A EP ⊥平面1A BD ,且14BP BD =. --------------------14分18.(共14分)(Ⅰ)由题意,得222122b c e a a b c =⎧⎪⎪==⎨⎪⎪=+⎩, 解得21a b ⎧=⎪⎨=⎪⎩. 所以椭圆E 的标准方程是2212x y +=. -------------------5分 (II )(1)当直线x AB ⊥轴时,m = 0符合题意.(2)当直线AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,由22(1)220y k x x y =-⎧⎨+-=⎩,得()()2222124210k x k x k +-+-=, 由2222(4)8(12)(1)0k k k ∆=--+->,得k ∈R .设()11,x y A ,()22,x y B ,则2212122242(1)1212k k x x x x k k-+=⋅=++,. 所以121222(2)12k y y k x x k -+=+-=+,所以线段AB 中点C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭.由题意可知,0k ≠,故直线C M 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭, 令x = 0,212k y k =+,即212k m k =+当k > 0时,,得2120=11242k m k kk<=≤++,当且仅当22k =时“=”成立. 同理,当 k < 0时,2120=11242k m k k k>=≥-++,当且仅当22k =-时“=”成立. 综上所述,实数m 的取值范围为22,44⎡⎤-⎢⎥⎣⎦.--------------------14分19.(共13分)解:(I )因为2()e x f x ax ax x =+-,得()2e e x x f x ax a x '=+--,所以(0)1f a '=-.因为曲线在点(0,(0))f 处的切线方程为y x =,所以(0)11f a '=-=,即2a =. --------------------5分(II) 设()2e e x x h x ax a x =+--,则()22e e 2(2)e x x x h x a x a x '=--=-+. 因为0x <,所以22x +<,e 1x<.又因为1,a >所以 ()0h x '>,故()(21)e (1)x h x a x x =+-+在(,0)-∞上为增函数. 又因(0)10h a =->,1211()e 022h --=-<,由零点存在性定理,存在唯一的01(,0)2x ∈-,有0()0h x =. 当0(,)x x ∈-∞时,()()0h x f x ='<,即()f x 在0(,)x -∞上为减函数,当0(,0)x x ∈时,()()0h x f x ='>,即()f x 在0(,)x -∞上为增函数,所以0x 为函数()f x 的极小值点. --------------------13分20.(共13分) 解:(I )因为数列:1,4,9,(9)x x >是“倒置系数”为p 的“倒置数列”. 所以,,,94p p p p x 也是该数列的项,且94p p p p x <<<. 故1,49p p x ==, 即36x p ==. --------------------3分(II )因为数列{}n a 是项数为m 项的有穷正项等比数列,取10m p a a =⋅>,对数列{}n a 中的任意一项(1)i a i m ≤≤,111m i m i m i i i ia a a a p a a a a +-+-===也是数列{}n a 中的一项, 由“倒置数列”的定义可知,数列{}n a 是“倒置数列”;又因为数列{}n a 所有项之积是T ,所以21231211()()()m m m m m m m T a a a a a a a a a a p --===即2m p T =. --------------------9分 (III )假设存在这样的等差数列{}n a 为“倒置数列”,设它的公差为(0)d d >,“倒置系数”为p.因为数列{}n a 为递增数列,所以123n a a a a <<<<< 则123n p p p p a a a a >>>>>又因为数列{}n a 为“倒置数列”,则正整数i p a 也是数列{}n a 中的一项(1,2,i =),故数列{}n a 必为有穷数列,不妨设项数为n 项,则1(11)i n i p a a i n +-=⋅≤≤-则121n n a a a a -=,得11()()n n a a a d a d =+-,即2(2)0n d -=由3n ≥,故0d =,与0d >矛盾.所以,不存在满足条件的数列{}n a ,使得它既是等差数列,又是“倒置数列”.--------------------13分。