圆的单元测试
圆单元测试卷
《圆》单元测试卷一、选择题:1.如图,⊙O中弧AB的度数为60°,AC是⊙O的直径,那么∠BOC等于 ( ) A.150° B.130° C.120° D.60°AB、相交于P,则下列结论正确的是()2.如图,⊙O中,弦CDA.PA·AB=PC·PD B. PA·AB=PC·CDC.PA·PB=PC·PD D. PA·PD=PC·PB3.一条弦分圆为1∶5两部分,则这条弦所对的圆周角的度数为()A.300 B.1500 C.300或1500 D.不能确定4.下列命题是真命题的是()A、垂直于圆的半径的直线是圆的切线B、经过半径外端的直线是圆的切线C、直线上一点到圆心的距离等于圆的半径的直线是圆的切线D、到圆心的距离等于圆的半径的直线是圆的切线5.⊙O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是()A.点A在⊙O内部 B.点A在⊙O上C.点A在⊙O外部 D.点A不在⊙O上6.如图,在平面直角坐标系中,⊙O′与两坐标轴分别交于A、B、C、D四点.已知:A(6, 0),B(0,-3),C(-2,0),则点D的坐标是()A.(0,2) B.(0,3) C.(0,4) D.(0,5)7.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于()图3P BCOADA、32 B 、22 C 、233D 、2 二、填空题:1.已知AB 是⊙O 的直径,CB 与⊙O 相切于点B ,AC =2AB ,则∠ACB = 。
2.在△ABC 中,∠ACB=90°.AC=2cm,BC=4cm,CM 是中线,以C 为圆心以5cm 长为半径画圆则A 、B 、M 三点在圆外的是 ,在圆上的是 。
圆单元测试题及答案大题
圆单元测试题及答案大题一、选择题1. 圆的周长公式是:A. C = πdB. C = 2πrC. C = πrD. C = 2r答案:B2. 圆的面积公式是:A. S = πr²B. S = 2πrC. S = πdD. S = C/2π答案:A二、填空题1. 半径为2厘米的圆的周长是________厘米。
答案:12.562. 半径为3厘米的圆的面积是________平方厘米。
答案:28.26三、简答题1. 如何计算一个圆的直径?答案:圆的直径是半径的两倍,即D = 2r。
2. 如果一个圆的半径增加1厘米,它的面积会增加多少?答案:圆的面积增加量可以通过公式ΔS = π((r+1)² - r²)计算,其中r是原来的半径。
四、计算题1. 已知一个圆的半径为5厘米,求它的周长和面积。
答案:周长C = 2πr = 2 × 3.14 × 5 = 31.4厘米;面积S =πr² = 3.14 × 5² = 78.5平方厘米。
2. 如果一个圆的周长为31.4厘米,求它的半径。
答案:半径r = C / (2π) = 31.4 / (2 × 3.14) = 5厘米。
五、应用题1. 一个圆形花坛的直径是20米,如果绕花坛走一圈,需要走多少米?答案:周长C = πd = 3.14 × 20 = 62.8米。
2. 一个圆形水池的面积是314平方米,求它的半径。
答案:半径r = √(S/π) = √(314/3.14) ≈ 10米。
六、判断题1. 圆的周长总是它的直径的π倍。
答案:正确2. 圆的面积总是它的半径的平方的π倍。
答案:正确七、论述题1. 论述圆的周长和面积公式的推导过程。
答案:圆的周长公式C = 2πr来源于圆的无限分割,将圆分割成无数小弧段,这些小弧段近似为小三角形,其底边为圆的半径r,高为圆的周长的一部分,当圆被无限分割时,这些小三角形的底边之和即为圆的周长。
《圆》单元测试题
圆单元测试题一、填空题.1.圆的周长除以它的直径,所得的商是( ),用字母( )表示.2.圆的半径扩大2倍,直径扩大( )倍,它的周长扩大( )倍.3.一个圆的半径是2厘米,它的直径是( )厘米,周长是( )厘米.4.在一个长4厘米,宽3厘米的长方形内画一个最大的圆,这个圆的周长是( )厘米.5.用长94.2厘米铁丝围成的圆的面积是( )平方厘米.6.在一个圆内画一个最大的正方形,这个正方形的对角线长12厘米,圆的面积是( )平方厘米.7.一张长0.6米,宽4分米的铁板,剪成半径是5厘米的圆,最多可以剪( )个.8在对称图形中,对称轴两侧相对的点到对称轴的距离( ).9. .如果一个图形沿着一条直线对折,两侧的图形能够( ),这个图形就是对称图形.折痕所在的这条直线叫做( ).10. 一个圆的半径扩大2倍,那么这个圆的直径就扩大( )倍.二、判断题.(对的画“√”,错的画“×”)1.半径长的圆,面积也较大.( )2.两个圆的半径相等,周长也相等.( )3.两上半圆可以拼成一个圆.( )4.周长相等的正方形和圆形,圆的面积比较大.( )5.如果一个圆的圆心与半径确定了,那么这个圆也就确定了.( )6. 任何一条直径都是圆的对称轴.( )7. 已知正方形的边长等于一个圆的直径,那么正方形的面积小于这个圆的面积.( )三、选择题.1、3点时,钟面上分针与时针的夹角是( ).①40°②120°③90°2、环形是轴对称图形,它的对称轴有( )条.①1 ②2 ③无数3、周长相等的两个圆,它们的面积( ).①不相等②相等4、3.14和π比较( ).①3.14=π②3.14<π③3.14>π5、若正方形、长方形和圆的周长都相等,面积最大的是( ).①正方形②长方形③圆四、应用题.1、一个圆形光盘的周长是21。
98厘米,求它的半径是多少?2、用10米长的席子围一个底面是圆形的粮囤,已知相接处重叠了0.58米,这个粮囤的占地面积有多大?3、一辆自行车轮胎的外直径约是60厘米,若每分钟转200圈,通过一座长2000米的桥,大约需几分钟?(得数保留整数)。
圆单元测试题及答案解析
圆单元测试题及答案解析一、选择题1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆的直径是圆的最长弦C. 圆的半径是圆心到圆周上任意一点的距离D. 圆的周长与直径的比值是一个常数答案:A2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 2rD. C = πd答案:B3. 如果圆的半径为3,那么它的直径是:A. 6B. 9C. 12D. 15答案:A二、填空题4. 圆的面积公式是 _______。
答案:A = πr²5. 一个圆的半径是4厘米,那么它的周长是 _______ 厘米。
答案:25.12三、简答题6. 圆的切线有哪些特点?答案:圆的切线在圆上只有一个接触点,且在该点的切线与半径垂直。
7. 圆的内接四边形有哪些性质?答案:圆的内接四边形的对角互补,即一个内角等于其对角的补角。
四、计算题8. 已知圆的半径为5厘米,求圆的周长和面积。
答案:周长 C = 2πr = 2 × 3.14 × 5 = 31.4 厘米;面积 A = πr² = 3.14 × 5² = 78.5 平方厘米。
9. 一个圆的周长是44厘米,求这个圆的半径。
答案:半径r = C / (2π) = 44 / (2 × 3.14) ≈ 7 厘米。
五、证明题10. 证明:圆的内接四边形的对角线互相平分。
答案:设圆内接四边形ABCD,连接对角线AC和BD。
由于ABCD是圆内接四边形,所以∠A + ∠C = 180°,同理∠B + ∠D = 180°。
根据圆周角定理,∠BAC和∠BDC是圆心角的一半,所以它们相等。
同理∠CAD和∠ABD也相等。
因此,△ABC和△ADC是全等的,所以AC平分BD。
同理,BD平分AC。
所以圆的内接四边形的对角线互相平分。
六、应用题11. 一个圆形花坛的直径是20米,求花坛的周长和面积。
《圆》单元测试
(一)课题:第一单元圆的测试题1.请写出元的直径和半径的关系(用字母表示):2.圆的周长公式用字母表示为(1)(2)3.圆的面积公式用字母表示为:4.求出下列圆的周长和面积:直径为20cm 半径为4dm 直径为80mm 半径3m周长:面积:1.画一个半径是1.5厘米的圆。
(1)用字母标出圆心、半径和直径(2)画出它的一条对称轴2.计算3.14×2= 3.14×5= 3.14×4= 3.14×6=3.14×8= 3.14×3= 3.14×9= 3.14×7=2.日本富士山是世界最著名的火山之一,底座直径约40千米,富士山的占地面积约是多少平方千米?3.天坛公园中的回音壁呈圆形。
它的内圆半径是32.5米,周长是多少米?4.一粒小石子投到平静的水中,水波大约可传5米;一片落叶掉到水中,水波大约可传1米。
哪种物体产生的水波面积大?大多少?5.餐厅有两种圆桌,小圆桌桌面直径是1.6米,是大圆桌的4/5。
(1)小圆桌与大圆桌周长比是多少?(2)大圆桌面积比小圆桌大约大多少平方米?(得数保留两位小数)6.一个圆形花坛,原来直径是15米,扩建后的直径与原来的比是4:3.扩建后花坛的周长和面积各是多少?(二)新青岛版(五四制)小学五年级下册数学完美的图形圆的综合测试题一、填空1.一个圆形桌面的直径是 2米,它的面积是()平方米。
2.已知圆的周长c,求d=(),求r=()。
3.圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。
4.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。
5.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。
6.一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。
7.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。
圆的单元测试卷及答案
圆的单元测试卷及答案(总分:100分时间:120分钟)一、填空题(每题3分,共30分)。
1.如图1所示AB是⊙O的弦,OC⊥AB于C,若OA=2cm,OC=1cm,则AB长为______.•图1 图2 图3 2.如图2所示,⊙O的直径CD过弦EF中点G,∠EOD=40°,则∠DCF=______.3.如图3所示,点M,N是正八边形相邻两边AB,BC上的点,且AM=BN,则∠MON=____度.4.如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是_______.5.如图4所示,宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)•则该圆的半径为______cm.图4 图5 图66.如图5所示,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x与⊙A•的位置关系是________.7.如图6所示,O是△ABC的内心,∠BOC=100°,则∠A=______.8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为________.(用含 的式子表示)9.已知圆锥的底面半径为40cm,•母线长为90cm,•则它的侧面展开图的圆心角为_______.10.矩形ABCD中,AB=5,BC=12,如果分别以A,C为圆心的两圆相切,点D在⊙C内,点B在⊙C外,那么⊙A的半径r的取值范围为____________.二、选择题(每题3分,共30分)11.如图7所示,AB是直径,点E是AB中点,弦CD∥AB且平分OE,连AD,∠BAD度数为()A.45° B.30° C.15° D.10°图7 图8 图9 12.下列命题中,真命题是()A.圆周角等于圆心角的一半 B.等弧所对的圆周角相等C.垂直于半径的直线是圆的切线 D.过弦的中点的直线必经过圆心13.半径分别为5和8的两个圆的圆心距为d,若3<d≤13,•则这两个圆的位置关系一定是()A.相交 B.相切 C.内切或相交 D.外切或相交14.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为()A.3cm B.6cm C.9cm 15.半径相等的圆的内接正三角形,正方形边长之比为()A.1 B C.3:2 D.1:2 16.如图8,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB•的延长线交于点P,则∠P等于()A.15° B.20° C.25° D.30°17.如图9所示,在直角坐标系中,A点坐标为(-3,-2),⊙A 的半径为1,P为x•轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-4,0) B.(-2,0)C.(-4,0)或(-2,0) D.(-3,0)18.在半径为3的圆中,150°的圆心角所对的弧长是()A.154π B.152π C.54π D.52π19.如图10所示,AE切⊙D于点E,AC=CD=DB=10,则线段AE 的长为()A.B.15 C. D.2020.如图11所示,在同心圆中,两圆半径分别是2和1,∠AOB=120°则阴影部分的面积为()A.4π B.2π C.3π D.π4三、解答题(共40分)21.(6分)如图所示,CE是⊙O的直径,弦AB⊥CE于D,若CD=2,AB=6。
第三章《圆》单元测试(含答案)
单元测试(三)圆(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.已知⊙O的半径是5,直线l是⊙O的切线,则点O到直线l的距离是(C)A.2.5B.3C.5D.102.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于(D)A. 2B. 3C.2 3D.2 23.如图,⊙O是△ABC的外接圆,连接OB,OC,若OB=BC,则∠BAC等于(C)A.60°B.45°C.30°D.20°4.下列说法正确的是(B)A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等5.如图,C,D是以线段AB为直径的⊙O上的两点,若CA=CD,且∠ACD=40°,则∠CAB =(B)A.10°B.20°C.30°D.40°6.如图,当圆形桥孔中的水面宽度AB为8米时,弧ACB恰为半圆.当水面上涨1米时,桥孔中的水面宽度A′B′为(D)A.15米B.4米C.217米D.215米7.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,AB =10,∠P=30°,则AC的长度是(A)A.5 3B.5 2C.5D.5 28.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上的两点,且∠PDC=60°,则∠OBC等于(B)A.55°B.65°C.70°D.75°9.如图,在△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于点E,F,D,则DF的长为(A)A.2B.3C.4D.610.如图,将正六边形ABCDEF放置在平面直角坐标系内,A(-2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2 018次翻转之后,点C的坐标是(B)A .(4 038,0)B .(4 034,0)C .(4 038,3)D .(4 034,3)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =60°.12.如图,在矩形ABCD 中,AB =3,AD =4,若以点A 为圆心,以4为半径作⊙A ,则点A ,点B ,点C ,点D 四点中在⊙A 外的是点C .13.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E =50°.14.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =22,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分的面积为π2-1(结果保留π).15.如图,半圆O 的半径为2,E 是半圆上的一点,将E 点对折到直径AB 上(EE ′⊥AB ),当被折的圆弧与直径AB 至少有一个交点时,则折痕的长度取值范围是三、解答题(本大题共8个小题,满分75分)16.(8分)如图,以正六边形ABCDEF 的边AB 为边,在内部作正方形ABMN ,连接M C.求∠BCM 的大小.解:∵六边形ABCDEF 为正六边形,∴∠ABC =120°,AB =B C. ∵四边形ABMN 为正方形,∴∠ABM =90°,AB =BM . ∴∠MBC =120°-90°=30°,BM =B C. ∴∠BCM =∠BM C.∴∠BCM =12×(180°-30°)=75°.17.(9分)如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AO C.证明:∵AB ︵=AC ︵, ∴AB =A C.∴△ABC 是等腰三角形. ∵∠ACB =60°, ∴△ABC 是等边三角形. ∴AB =BC =A C.∴∠AOB =∠BOC =∠AO C.18.(9分)如图,在平面直角坐标系中,已知点A (1,3)、B (3,3)、C (4,2). (1)请在图中作出经过点A 、B 、C 三点的⊙M ,并写出圆心M 的坐标; (2)若D (1,4),则直线BD 与⊙M 的位置关系是相切.解:如图所示,圆心M 的坐标为(2,1).19.(9分)如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接E C.若AB =8,CD =2,求EC 的长.解:∵OD ⊥AB ,AB =8,∴AC =BC =12AB =4.设⊙O 的半径为r ,则OC =r -2.在Rt △AOC 中,OA 2=AC 2+OC 2,即r 2=42+(r -2)2,解得r =5.∴AE =2r =10. 连接BE .∵AE 是⊙O 的直径,∴∠ABE =90°.在Rt △ABE 中,∵AE =10,AB =8,∴BE =AE 2-AB 2=102-82=6. 在Rt △BCE 中,∵BE =6,BC =4, ∴CE =BE 2+BC 2=62+42=213.20.(9分)如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线DF 交边AC 于点F . (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)解:(1)证明:连接O D.∵DF 是⊙O 的切线,D 为切点,∴OD ⊥DF .∴∠ODF =90°. ∵BD =CD ,OB =OA ,∴OD 是△ABC 的中位线. ∴OD ∥A C.∴∠CFD =∠ODF =90°. ∴DF ⊥A C.(2)∵∠CDF =30°,∠ODF =90°, ∴∠ODB =180°-∠CDF -∠ODF =60°. ∵OB =OD ,∴△OBD 是等边三角形. ∴∠BOD =60°.∴l BD ︵=60π×5180=53π.21.(10分)如图,AB 是⊙O 的直径,点P 是AB 下方的半圆上不与点A ,B 重合的一个动点,点C 为AP 中点,延长CO 交⊙O 于点D ,连接AD ,过点D 作⊙O 的切线交PB 的廷长线于点E ,连接CE .(1)求证:△DAC ≌△ECP ; (2)填空:①当∠DAP =45°时,四边形DEPC 为正方形;②在点P 运动过程中,若⊙O 的半径为5,∠DCE =30°,则AD证明:∵DE 为切线, ∴OD ⊥DE .∴∠CDE =90°. ∵点C 为AP 的中点,∴DC ⊥AP .∴∠DCA =∠DCP =90°. ∵AB 是⊙O 直径, ∴∠APB =90°.∴四边形DEPC 为矩形.∴DC =EP .在△DAC 和△ECP 中,⎩⎪⎨⎪⎧AC =CP ,∠ACD =∠CPE ,DC =EP ,∴△DAC ≌△ECP (SAS ).22.(10分)如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y 轴的正半轴于点N .劣弧MN ︵的长为65π,直线y =-43x +4与x 轴,y 轴分别交于点A ,B.(1)求证:直线AB 与⊙O 相切;(2)求图中所示的阴影部分的面积.(结果保留π)解:(1)证明:作OD ⊥AB 于D.∵劣弧MN ︵的长为65π,∴90π·OM 180=6π5.解得OM =125.故⊙O 的半径为125.∵直线y =-43x +4与x 轴,y 轴分别交于点A ,B ,当y =0时,x =3;当x =0时,y =4,∴A (3,0),B (0,4).∴OA =3,OB =4.∴AB =32+42=5. ∵S △AOB =12AB ·OD =12OA ·OB ,∴OD =OA·OB AB =125.∴OD 为⊙O 的半径. ∴直线AB 与⊙O 相切.(2)S 阴影=S △AOB -S 扇形OMN =12×3×4-90π×(125)2360=6-3625π.23.(11分)问题背景:如图1,在四边形ACBD 中,∠ACB =∠ADB =90°,AD =BD ,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路:将△BCD 绕点D 逆时针旋转90°到△AED 处,点B ,C 分别落在点A ,E 处(如图2),易证点C ,A ,E 在同一条直线上,且△CDE 是等腰三角形,所以CE =2CD ,从而得出结论:AC +BC =2C D. 简单应用:(1)在图1中,若AC =2,BC =22,则CD =3;(2)如图3,AB 是⊙O 的直径,点C ,D 在⊙O 上,AD ︵=BD ︵,若AB =13,BC =12,求CD 的长;(3)如图4,∠ACB =∠ADB =90°,AD =BD ,若AC =m ,BC =n (m <n ),求CD 的长.(用含m ,n 的代数式表示)图1 图2 图3 图4解:(2)连接AC ,BD ,AD ,∵AB 是⊙O 直径, ∴∠ADB =∠ACB =90°. ∴AC =AB 2-BC 2=5. ∵AD ︵=BD ︵, ∴AD =B D.将△BCD 绕点D 顺时针旋转90°到△AED , ∴∠EAD =∠DB C. ∵∠DBC +∠DAC =180°, ∴∠EAD +∠DAC =180°. ∴E ,A ,C 三点共线. ∵BC =AE ,∴CE =AE +AC =BC +AC =17. ∵∠EDA =∠CDB ,∴∠EDA +∠ADC =∠CDB +∠ADC , 即∠EDC =∠ADB =90°.∵CD =ED ,∴△EDC 是等腰直角三角形. ∴CE =2C D. ∴CD =1722.(3)以AB 为直径作⊙O ,连接DO 并延长交⊙O 于点D 1,连接D 1A ,D 1B ,D 1C. 由(2)可知:AC +BC =2D 1C , ∴D 1C =2(m +n )2. 又∵D 1D 是⊙O 的直径, ∴∠DCD 1=90°. ∵AC =m ,BC =n ,∴由勾股定理可求得:AB 2=m 2+n 2. ∴D 1D 2=AB 2=m 2+n 2. ∵D 1C 2+CD 2=D 1D 2,∴CD 2=m 2+n 2-(m +n )22=(m -n )22.∵m<n,∴CD=2(n-m)2.。
人教版苏科版初中数学—圆(单元测试卷)
班级小组姓名成绩(满分100)一、填空题.(共16分,每空2分)1.圆的直径扩大4倍,它的周长就扩大倍,它的面积就扩大倍.2.在长8分米、宽6分米的长方形中画一个最大的圆,圆的周长是分米,面积是平方分米.π取3.14)3.画圆时,圆规两脚之间的距离为4厘米,那么这个圆的直径是厘米,周长是厘米,面积是平方厘米.(π取3.14)4.一根铁丝刚好可以围成一个边长是0.785米的正方形,用这根铁丝围成一个圆,这个圆的半径是米.(π取 3.14)5.一个半圆形的花坛周长是30.84米,这个半圆形花坛的面积是平方米.π取3.14)6.把一头牛用3米长的绳系在一根木桩上,这头牛吃草的最大面积是平方米.(π取3.14)二、判断题.(对的打“√”错的打“×”)(共8分,每题2分)1.周长相等的两个圆,它们的面积也一定相等.()2.半径是2厘米的圆,在数值上,它的周长和面积相等.()3.大圆的圆周率比小圆的圆周率要大.()4.一个圆的直径等于一个正方形的边长,那么正方形面积小于圆的面积.()三、选择题(把正确答案的序号填在括号里)(共10分,每题2分)1.车轮滚动一周,所行的路程是求车轮的()A、周长B、半径C、直径2.设C为圆的周长,12cπ⨯=()A、圆的面积B、圆的直径C、圆的半径3.如图是一个半圆,那它的周长的正确计算算式是()3.1415+152C⨯⨯、4.小圆的直径是2厘米,大圆的半径是2厘米,小圆的面积是大圆面积的().A、21B、41C、815.用同样长的铁丝围成的正方形、圆形,其面积().A、相等B、正方形大C、圆形四、求阴影部分的面积.(共24分,每题8分)1.下图中正方形的边长为10厘米,求出阴影部分的面积.(π取3.14)2.下图中正方形的边长为4厘米,求出阴影部分的面积.π取3.14)3.已知图中三角形为等腰直角三角形,请根据图中数据,求出阴影部分的面积.(π取3.14)五、解决问题我能行.(共42分,每题8分)1.在一个半径是20米的圆形苗圃边沿修一条2米宽的环行路.这条路的面积是多少平方米?(π取 3.14)2.通过一座桥,直径是1.5米的车轮需转500圈,这座桥长多少米?(π取3.14)3.一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?(π取 3.14)4.一只大钟,它的时针长40厘米.当从中午12时到下午3时,这根时针的尖端所走的路程是多少米?(π取3.14)5.给直径为0.75米的水缸做一个木盖,木盖的直径比缸口直径大5厘米,这个木盖的面积是多少平方米?周长是多少米?(π取3.14)6.在一个半径是4分米的圆内画一个最大的正方形,这个正方形的面积是多少平方分米?(π取3.14)。
六年级圆单元测试卷【含答案】
六年级圆单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 圆的周长公式是:A. C = πdB. C = πrC. C = 2πrD. C = 2d2. 半径为5厘米的圆的面积是:A. 25π cm²B. 50π cm²C. 78.5 cm²D. 314 cm²3. 下列哪个图形是圆?A. 正方形B. 长方形C. 三角形D. 所有点到圆心距离相等的图形4. 圆的直径是:A. 圆周上任意两点间的距离B. 圆心到圆周上任意一点的距离C. 通过圆心并且两端都在圆周上的线段D. 圆周上最长的线段5. 若一个圆的半径增加了2厘米,其周长将增加:A. 2厘米B. 4厘米C. 2π厘米D. 4π厘米二、判断题(每题1分,共5分)1. 圆的直径是半径的两倍。
()2. 所有的直径都相等。
()3. 圆的面积公式是A = πr²。
()4. 圆的周长与半径成正比。
()5. 圆的半径决定了圆的大小。
()三、填空题(每题1分,共5分)1. 圆的面积公式是______。
2. 半径为r的圆的周长是______。
3. 若圆的周长是31.4厘米,则其半径是______厘米。
4. 圆的直径是半径的______倍。
5. 若圆的面积是28.26平方厘米,则其半径是______厘米。
四、简答题(每题2分,共10分)1. 解释什么是圆的半径。
2. 什么是圆的直径?3. 圆的周长与哪些因素有关?4. 如何计算圆的面积?5. 为什么说圆是最对称的图形?五、应用题(每题2分,共10分)1. 一个圆形花坛的直径是10米,计算花坛的周长和面积。
2. 若一个圆的周长是25.12厘米,求其半径。
3. 一个圆的面积是50.24平方厘米,求其半径和直径。
4. 如果一个圆的半径增加了3厘米,计算新圆的周长和面积。
5. 一个圆形池塘的半径是8米,计算池塘的面积。
六、分析题(每题5分,共10分)1. 小明家的圆形游泳池直径是12米,他想在游泳池周围铺设一圈鹅卵石,每米需要20颗鹅卵石。
人教版数学九年级上册《圆》单元检测附答案
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 308.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 311.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.参考答案一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对【答案】C【解析】【分析】根据直线与圆的位置关系的判定方法,分OA⊥l和圆心O到直线l的距离小于AO两种情况判断即可解答. 【详解】已知⊙O的直径为12cm,则半径为6cm,又已知AO=6cm,所以AO为半径,则A在⊙O上.当AO⊥l时,有1个公共点,即相切.当圆心O到直线l的距离小于AO时,有2个公共点,即相交.故选C.【点睛】本题考查了直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED【答案】C【解析】【分析】根据垂径定理解答即可.【详解】∵AB是直径,AB⊥CD,∴,,EC=DE,选项A,B,D正确,不能判断EO=EB,选项C错误.故选C.【点睛】本题考查了垂径定理,熟知垂直于弦的直径平分弦,并且平分弦所对的两条弧是解决问题的关键.3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.【答案】C【解析】【分析】分针1小时(60分钟)转1周,扫过的面积是一个圆的面积,40分钟分针扫过的面积是圆面积的,根据圆的面积公式s=πr2,把数据代入公式进行求解即可.【详解】依题意,得×π×22=π(cm2);答:分针所扫过的面积是πcm2.故选C.【点睛】本题考查了扇形面积的计算和旋转的性质.解答本题的关键是明确分针的尖端40分钟扫过的面积是圆面积的.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°【答案】D【解析】【分析】根据圆周角定理即可解答.【详解】由圆周角定理得,∠AOC=2∠ABC=102°,故选D.【点睛】本题考查了圆周角定理,熟知圆周角定理的内容是解决问题的关键.5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°【答案】B【解析】【分析】根据三角形的内角和定理求得∠ABC+∠ACB=140°,由内心的定义可求得∠IBC+∠ICB=70°,再由三角形的内角和定理即可求得∠BIC的度数.【详解】∵∠A+∠ABC+∠ACB=180°,∠A=40°,∴∠ABC+∠ACB=140°,∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=×140°=70°,∴∠BIC=180°﹣(∠IBC+∠ICB)=110°.故选B.【点睛】本题考查了三角形的内心,熟知三角形的内心是三角形三个角的角平分线的交点是解决问题的关键.6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°【答案】D【解析】【分析】根据等弧所对的圆周角相等可知∠B=∠C,故根据三角形的一个外角等于与它不相邻的两个内角和可以求出∠APD的大小.【详解】由于∠C和∠B所对应的弧都是,故∠C=∠B=40°,∴∠APD=∠C+∠A=75°,故答案选D.【点睛】本题主要考查了等弧所对应的圆周角相等以及三角形的外角等于与它不相邻的两个内角之和,灵活应用这些是解答本题的关键.7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 30【答案】A【解析】【分析】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,即可得△ODE的面积=×△ADE的面积,由此求得△ODE的面积,再由圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成,即可求得正八边形ABCDEFGH的面积.【详解】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,∴△ODE的面积=×△ADE的面积=×8=4,圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成.则圆内接正八边形ABCDEFGH为8×4=32,故选A.【点睛】本题考查了正多边形和圆的知识,一般的,任何一个正n边形都有一个外接圆,分别经过各顶点的这些半径将这个正n边形分成n个全等的等腰三角形.8.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°【答案】C【解析】【分析】根据圆内接四边形的性质、圆周角定理即可求得∠A=60°,∠BOD=120°,由此即可求得的度数.【详解】∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的度数为120°故选C.【点睛】本题考查了圆内接四边形的性质及圆周角定理,正确求得∠BOD=120°是解决问题的关键.9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°【答案】C【解析】【分析】连接OD,已知CD与⊙O相切,根据切线的性质定理可得∠ODC=90 °,由OA=OD,根据等腰三角形的性质可得∠A=∠ODA,由三角形外角的性质可得∠COD=∠A+∠ODA=2∠A=56°,由此即可求得∠C=34°.【详解】如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90 °,∵OA=OD,∴∠A=∠ODA,∴∠COD=∠A+∠ODA=2∠A=56°,∴∠C=90°﹣56°=34°,故选C.【点睛】本题考查了切线的性质定理、等腰三角形的性质及三角形外角的性质,熟练运用相关知识是解决问题的关键.10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 3【答案】B【解析】【分析】由直径所对的圆周角为直角可得∠ACB=∠ADB=90°,再利用特殊角的三角函数值求出AB的值,再根据等弧所对的弦相等结合勾股定理可得出结果.【详解】∵AB是⊙O的直径, ∴∠ACB=∠ADB=90°, ∵∠CBA=30°,BC=,∴AB==6,∵CD平分∠ACB,∴∠BCD=∠ACD, ∴AD=BD,∴AD=,∴2AD²=72, ∴AD=6.故选B.【点睛】本题考查了圆周角的性质,直径所对的圆周角为直角,在同圆或等圆中,相等的圆周角所对的弧相等,解题的关键是得出AD=BD.11.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°【答案】B【解析】【分析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8【答案】B【解析】【分析】作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,为C′D的长,求得C′D的长即可求得PC+PD的最小值.【详解】解:作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,连接OC,OD,由勾股定理得,OE==3,OF=4,∴EF=EO+OF=7,作C′H⊥DF交DF的延长线于H,则四边形EC′HF为矩形,∴FH=C′E=CE=4,C′H=EF=7,∴DH=DF+FH=7,∴PC+PD=C′D=.故选B.【点睛】本题考查了轴对称-线路最短的问题,确定使PC+PD的值最小时动点P的位置是解题的关键.二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.【答案】.【解析】【分析】先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD的中点,由三角形的面积可求出CM的长;再在Rt△ACM中,根据勾股定理可求出AM的长,然后再由AD=2AM即可得出结论.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵且AC=3,BC=4,AB=5,∴在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即解得:∴故答案为:【点睛】考查勾股定理,垂径定理及推论,掌握垂径定理是解题的关键.注意辅助线的作法.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.【答案】【解析】【详解】如图,设AC交BD于点E,当A,B,C,D四点在同一个圆上时,∵AB=AD=5,CB=CD,∴AC垂直平分线段BD,AC为圆的直径,设该圆的半径为r,圆心为O.连接OD.∴BE=DE=4,AE==3,在Rt△ODE中,则有r2=(r﹣3)2+42,得r=.故答案为:.【点睛】本题考查了线段垂直平分线的性质、垂径定理及勾股定理,求得BE =4,AE=3是解决问题的关键.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.【答案】65【解析】【分析】连接OA、OC、OB,根据切线的性质定理可得∠DAO=∠EBO=90°,由是必须的内角和为360°可得∠P+∠AOB=180°,由此求得∠AOB=130°,由切线长定理可得∠AOD=∠DOC,∠COE=∠BOE,从而得∠DOE=∠AOB=65°.【详解】连接OA、OC、OB,∵OA⊥PA,OB⊥PB,OC⊥DE,∴∠DAO=∠EBO=90°,∴∠P+∠AOB=180°,∴∠AOB=180°﹣50°=130°;∵∠AOD=∠DOC,∠COE=∠BOE,∴∠DOE=∠AOB=×130°=65°.故答案为:65.【点睛】本题考查了切线的性质定理及切线长定理,求得∠AOB=130°是解决问题的关键.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】【解析】试题解析:∵直线与x轴、y轴分别交于两点,∴A点的坐标为(4,0),B点的坐标为(0,−3),∴OA=4,OB=3,过C作CM⊥AB于M,连接AC,MC的延长线交C于N,则由三角形面积公式得,圆C上点到直线的最小距离是∴△P AB面积的最小值是故答案为:17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.【答案】2【解析】【分析】作OH⊥MN于H,连接ON,由已知条件可得OA=OB=ON=4,OP =2,再求得OH=;在Rt△OHN中,利用勾股定理求得NH=,再利用垂径定理即可求得MNN=2cm.【详解】解:作OH⊥MN于H,连接ON,AB=AP+PB=8,∴OA=OB=ON=4,∴OP=OA﹣AP=2,∵∠NPB=45°,∴OH=OP=,在Rt△OHN中,NH=,∵OH⊥MN,∴MN=2HN=2(cm),故答案为:2.【点睛】本题考查了垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解决问题的关键.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.【答案】2﹣4【解析】【分析】由∠AFD=90°可得点F的运动轨迹是以AD为直径的⊙O,连接OB,OF,根据勾股定理求得OB=2,由BF≥OB﹣OF即可求得BF的最小值为2﹣4.【详解】如图,∵AE⊥DF,∴∠AFD=90°,∴点F的运动轨迹是以AD为直径的⊙O,连接OB,OF.∵四边形ABCD是矩形,∴∠BAO=90°,∵AB=6,AO=4,∴OB==2,FO=AD=4,∵BF≥OB﹣OF,∴BF的最小值为2﹣4,故答案为2﹣4.【点睛】本题考查了圆周角定理的推论及勾股定理,明确点O、B、F在一条直线上时BF的值最小是解决问题的关键.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.【答案】22【解析】【分析】根据圆周角定理即可求解.【详解】由圆周角定理可得:∠C= ∠O=×44°=22°;故答案为:22;【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决本题的关键.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】5【解析】【分析】求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最小距离,根据面积公式求出即可.【详解】∵直线y=x﹣3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x ﹣4y﹣12=0,即OA=4,OB=3,由勾股定理得:AB=5.过C作CM⊥AB于M,连接AC,则由三角形面积公式得:×AB×CM=×OA×OC+×OA×OB,∴5×CM=4×2+3×4,∴CM=4,∴圆C上点到直线y=x﹣3的最小距离是:4-2=2,∴△P AB面积的最小值是×5×2=5.故答案为:5.【点睛】本题考查了三角形的面积,点到直线的距离公式的应用,解答此题的关键是求出圆上的点到直线AB的最小距离.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.【答案】(1)证明见解析;(2)CE=.【解析】【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等可证得∠BCE =∠A,又由C是的中点,证得∠DBC =∠A,继而可证得CF﹦BF;(2)由C是的中点和CD=5可求得BC=5,利用勾股定理求得AB=13,即可求得⊙O的半径为6.5;在Rt△ACB中,利用三角形面积的两种表示方法即可求得EC的长.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°.∴∠A+∠ABC=90°.又∵CE⊥AB,∴∠CEB=90°.∴∠BCE+∠ABC=90°.∴∠BCE=∠A,∵C是的中点,∴=.∴∠DBC=∠A,∴∠DBC=∠BCE.∴CF=BF;(2)∵=,CD=5,∴BC=CD=5,∴AB==13,∴⊙O的半径为6.5,∵CE•AB=AC•BC,∴CE===.【点睛】本题考查了圆周角定理、勾股定理及直角三角形的面积求法,熟练运用相关知识是解决本题的关键.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.【答案】(1)见解析;(2)四边形ABCD的面积为.【解析】【分析】(1)据已知条件和圆周角定理即可得到结论;(2)过点A作AE⊥CD,过点B作BF⊥AC,得∠AED=90°,∠ADE=60°,∠DAE=30°,DE =1,,CE= 5,从而求出,再求出,即可求出结论.【详解】解:(1)∵ 四边形ABCD内接于⊙O∴∠ABC+∠ADC=180°∵∠ABC=60°,∴∠ADC=120°∵ DB平分∠ADC,∴∠ADB=∠CDB=60°∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°∴∠ABC=∠BCA=∠BAC∴△ABC是等边三角形⑵ 过点A作AE⊥CD,垂足为点E;过点B作BF⊥AC,垂足为点F.∴∠AED=90°∵∠ADC=120°∴∠ADE=60°∴∠DAE=30°∴ DE==1,∵ CD=4∴ CE=CD+DE=1+4=5∴Rt△AEC中,∠AED=90°∴ AC=∵ △ABC是等边三角形∴ AB=BC=AC=∴ AF=FC=∴∴∴ 四边形ABCD的面积=.【点睛】本题考查勾股定理、圆周角定理、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.【答案】(1)证明见解析;(2)∠BDF=116°.【解析】【分析】(1)连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;由CD=BD 可得AD垂直平分BC,根据线段垂直平分线的性质可得AB=AC,所以∠B=∠C;根据同弧所对的圆周角相等可得∠B=∠E,由此即可证得∠E=∠C;(2)已知四边形AEDF是⊙O的内接四边形,根据圆内接四边形对角互补可得∠AFD=180°﹣∠E,由邻补角的定义可得∠CFD=180°﹣∠AFD,从而求得∠CFD=∠E=58°,再由∠BDF=∠C+∠CFD即可求得∠BDF的度数.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=58°,又∵∠E=∠C=58°,∴∠BDF=∠C+∠CFD=116°.【点睛】本题考查了圆周角定理及圆内接四边形对角互补的性质,熟知圆周角定理及圆内接四边形对角互补的性质是解决问题的关键.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.【答案】(1)证明见解析;(2) .【解析】试题分析:(1)首先连接OD,由在△ABC中,∠B=90°,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,易证得Rt△ODC≌Rt△OBC(HL),然后由等腰三角形与三角形外角的性质,证得∠OED=∠BOC,继而证得DE∥OC;(2)由AD、DC的长可得AC、BC的长,再根据勾股定理即可得AB的长,再根据AD2=AE•AB,从而可得AE的长,继而得到OB的长,问题得以解答.试题解析:(1)连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°,在Rt△OCD和Rt△OCB中, ,∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC,∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,∴∠BOC=∠OED,∴DE∥OC;(2)由AD=2,DC=3得:BC=3,AC=5,由勾股定理得AB= =4,又∵AD2=AE·AB,∴AE=1,∴BE=3,OB=BE=,∴=.【点睛】本题考查了切线的性质、全等三角形的判定与性质、勾股定理等.解题的关键是恰当添加辅助线,解题过程中要注意掌握数形结合思想的应用.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.【答案】(1)①证明见解析;②直线DE与⊙O相切,理由见解析;(2)AF=3.【解析】【分析】(1)①连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;再由等腰三角形三线合一的性质即可证得结论;(2)直线DE与⊙O相切,连接OD,已知AB=AC、OB=OD,根据等腰三角形的性质可得∠ODB=∠B=∠C,即可判定OD∥BC,由DE⊥AC可得DE⊥OD,由此即可判定DE 与⊙O相切;(2)根据已知条件易证四边形ODEF是矩形,即可得OD=EF=4;设AF=x,则AB=AC=x+6,AO =x+2,在Rt△AOF中,利用勾股定理列出方程(x+2)2=x2+42,解方程求得x的值,即可求得AF的长.【详解】(1)①连接AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,AD⊥BC,∴BD=CD;②直线DE与⊙O相切,理由:连接OD,∵AB=AC,OB=OD,∴∠ODB=∠B=∠C,∴OD∥BC,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切;(2)由(1)同理得,DE与⊙O相切,连接OF,∵EF与⊙O相切,DE⊥AC,∴∠ODE=∠OFE=∠EDF=90°,即四边形ODEF是矩形,∴OD=EF=4,设AF=x,则AB=AC=x+6,AO=x+6﹣4=x+2,在Rt△AOF中,(x+2)2=x2+42,解得,x=3,即AF=3.【点睛】本题考查了切线的判定与性质,解决第(2)问构造直角三角形利用勾股定理作为相等关系列方程是解决问题的关键.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.【答案】(1)详见解析;(2)2;(3)4﹣π.【解析】【分析】(1)连接OD、OE、OF、OA,证明四边形OFCE为正方形,根据正方形的性质得到OF=CF,证明△GFC≌△AOF,根据全等三角形的性质证明结论;(2)根据切线长定理得到BE=BD=6,AF=AD=4,CF=CE,根据勾股定理列出方程,解方程即可;(3)根据正方形的面积公式和扇形面积公式计算.【详解】(1)证明:连接OD、OE、OF、OA,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴OE⊥BC,OF⊥AC,又∠ACB=90°,OE=OF,∴四边形OFCE为正方形,∴OF=CF,∵AF=AD,OF=OD,∴OA⊥DF,又∠AFD=∠GFC,∴∠G=∠OAF,在△GFC和△AOF中,,∴△GFC≌△AOF(AAS),∴AF=GC;(2)解:由切线长定理得,BE=BD=6,AF=AD=4,CF=CE,则AB=AD+BD=10,由勾股定理得,AC2+BC2=AB2,即(4+CF)2+(6+CE)2=102,解得,CF=2,即⊙O的半径为2;(3)解:图中由弧EF与线段CF、CE围成的阴影部分面积=22﹣=4﹣π.【点睛】本题考查的是三角形的内切圆与内心,扇形面积计算,掌握切线长定理,扇形面积公式,全等三角形的判定和性质是解题的关键.。
圆单元测试题及答案
圆单元测试题及答案一、选择题1. 圆的周长公式是()。
A. C = πdB. C = 2πrC. C = 2πdD. C = πr2. 圆的面积公式是()。
A. A = πr²B. A = πd²C. A = 2πrD. A = πd3. 一个圆的半径为3厘米,那么它的直径是()厘米。
A. 6B. 9C. 12D. 184. 如果一个圆的周长是18.84厘米,那么它的半径是()厘米。
A. 3B. 6C. 9D. 125. 圆心角的度数与它所对的弧长成正比,这个比例是()。
A. 半径B. 直径C. 周长D. 面积二、填空题6. 一个圆的半径是4厘米,那么它的周长是________厘米。
7. 一个圆的直径是10厘米,那么它的面积是________平方厘米。
8. 如果一个圆的周长是25.12厘米,它的半径是________厘米。
9. 一个圆的半径增加2厘米,那么它的面积增加了________平方厘米。
三、简答题10. 解释什么是圆的切线,并给出切线的性质。
四、计算题11. 一个圆的半径为5厘米,求它的周长和面积。
12. 如果一个圆的周长是44厘米,求它的半径。
五、解答题13. 一个圆的直径是14厘米,求这个圆的面积。
答案:一、选择题1. B2. A3. A4. A5. A二、填空题6. 25.127. 78.58. 49. 12π三、简答题10. 圆的切线是指在圆上某一点处与圆相切的直线。
切线的性质包括:切线与圆在切点处的夹角为90度,且切线与圆只有一个交点。
四、计算题11. 周长= 2π × 5 = 31.4厘米,面积= π × 5² = 78.5平方厘米。
12. 半径 = 周长÷ 2π = 44 ÷ 2π ≈ 7厘米。
五、解答题13. 面积= π × (14 ÷ 2)² = 153.94平方厘米。
结束语:本单元测试题涵盖了圆的基本性质和公式,通过这些题目的练习,可以帮助学生更好地理解和掌握圆的相关概念和计算方法。
第二十四章 圆单元测试试题(含答案)
24章 《圆》单元测试(时间120分钟 总分150分)姓名:__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。
其中不正确的有( )个 A 、1 B 、2 C 、3 D 、42、如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD.如果∠DAC =78°,那么∠ADO 等于( )A 、70°B 、64°C 、62°D 、51°3、已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A 、相交B 、相切C 、相离D 、无法确定4、如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为( )A 、12B 、10C 、14D 、155、如图,直线PA PB ,是O 的两条切线,A B ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为( ) A 、53厘米B 、5厘米C 、103厘米D 、532厘米 6、如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )A 、55°B 、60°C 、65°D 、70°7、已知A 、B 、C 三点在⊙O 上,且AB 是⊙O 内接正三角形的边长,AC 是⊙O 内接正方形的边长,则∠BAC 的度数为( )A 、15°或105°B 、75°或15°C 、75°D 、105°8、如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( )A 、24329B 、81329C 、8129D 、813289、在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示.若AB=4,AC=2,S 1﹣S 2=,则S 3﹣S 4的值是( )A 、B 、C 、D 、10、如图,点A ,B ,C 均在⊙O 上,若∠A=66°,则∠OCB 的度数是( )A 、24°B 、28°C 、33°D 、48°11、如图,从一张腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A 、10cmB 、15cmC 、10cmD 、20cm12、如图,已知A 、B 两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1,E 是⊙C 上的一动点,则△ABE 面积的最大值为( ) A 、2+B 、3+C 、3+D 、4+二、填空题(共6小题,每小题4分,共24分)13、如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若 BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为 .14、已知一条弧的长是3πcm ,弧的半径是6cm ,则这条弧所对的圆心角是 度15、已知一圆锥的底面半径为1cm ,母线长为4cm ,则它的侧面积为________cm 2(结果保留π). 16、如图,四边形ABCD 内接于半圆O ,其中点A ,D 在直径上,点B ,C 在半圆弧上,AB ∥CD ,∠B=90°,若AO=3,∠BAD=120°,则BC= .17、如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 的长为半径作CD ︵交OB 于点D.若OA =2,则阴影部分的面积为________.18、如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________(填序号).三、解答题(共8小题,共78分)19、(8分)如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l ,求⊙O的半径.20、(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.21、(8分)如图,已知在⊙O 中AB=43,AC 是⊙O 的直径,AC⊥BD 于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.22、(8分)已知一个圆的半径为6cm,这个圆的内接正六边形的周长和面积各是多少?23、(10分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线; (2)若DE=1,BC=2,求劣弧的长l.24、(10分)如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?25、(12分)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图1),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图2),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.26、(14分)如图,已知∠xOy=90°,线段AB=10,若点A在Oy上滑动,点B随着线段AB在射线Ox上滑动(A,B与O不重合),Rt△AOB的内切圆☉K分别与OA,OB,AB切于点E,F,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.【参考答案】 1.D 2.B 3.C 4.B 5.D 6.C 7.B 8.C 9.D 10.D 11.D 12.A 13. 414. 90015. 4π 16. 3.17.32+π12(提示:连接OE.∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE.∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB=90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=π12+32.)20.证明:连接OC ,∵OA ⊥CE ,OB ⊥CF ,∴EM=CM ,NF=CN ,∠CMO=∠CNO=90°, ∵C 为的中点, ∴∠AOC=∠BOC , 在△CNO 与△CNO 中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.21.(1)过O 作OE⊥AB 于E,∴AE=23,又∠A=30°,∴AO=4,∠BOC=60°,则有∠BOD=120°,∴S阴影=120360·π·42=163π;(2)∵BCD=120180·π×4=83=2πr,∴r=43,即底面圆半径为43.22.解:如图所示,⊙O 中内接正六边形,OA=6cm.∵正六边形内接于⊙O,∴中心角∠AOB=60°,∴△AOB 是等边三角形,∴AB=OA=6cm,∴周长为::6 AB=36cm.过O 点作OD⊥AB,∴∠AOD=30°,∴AD=12OA=3cm,∴由勾股定理可得OD=33cm,∴S△OAB=12×6×33=93(cm2),∴S正六边形=6×93=543 (cm2).23.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)解:连接OD ,DC , ∵∠DAC= 21∠DOC ,∠OAC= 21∠BOC , ∴∠DAC=∠OAC ,∵ED=1,DC=2, ∴∠ECD=30°, ∴∠OCD=60°, ∵OC=OD ,∴△DOC 是等边三角形,∴∠BOC=∠COD=60°,OC=2, ∴l==32π. 24.解:学校受到噪音影响.理由如下: 作AH ⊥MN 于H ,如图, ∵PA=160m ,∠QPN=30°,∴AH=21PA=80m , 而80m <100m ,∴拖拉机在公路MN 上沿PN 方向行驶时,学校受到噪音影响, 以点A 为圆心,100m 为半径作⊙A 交MN 于B 、C ,如图, ∵AH ⊥BC ,∴BH=CH ,在Rt △ABH 中,AB=100m ,AH=80m , BH==60m ,∴BC=2BH=120m ,∵拖拉机的速度=18km/h=5m/s , ∴拖拉机在线段BC 上行驶所需要的时间=5120=24(秒), ∴学校受影响的时间为24秒.25.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD ,∵CD是☉O的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.26.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.∵S=ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5.。
圆第一单元测试卷
圆第一单元测试卷一、选择题(每题3分,共30分)1. 圆的周长公式是()。
A. C = 2πrB. C = πdC. C = 4rD. C = 2d2. 半径为3的圆的面积是()。
A. 28.26B. 9C. 18.84D. 363. 圆的直径是半径的()倍。
A. 1B. 2C. 4D. 34. 一个圆的半径增加1厘米,面积增加()。
A. πB. 2πC. π(2r+1)D. π(r+1)²5. 扇形的面积公式是()。
A. S = 1/2 * r² * θB. S = 1/2 * r * θC. S = r * θD. S = π * r²6. 圆的内接四边形的对角和是()。
A. 90°B. 180°C. 360°D. 270°7. 圆的切线与半径垂直,垂直点在()。
A. 圆心B. 圆周上C. 圆内D. 圆外8. 圆的弧长公式是()。
A. L = r * θB. L = 2πr * θ/360C. L = πr * θD. L = r * θ/29. 圆的内切圆与外切圆的半径之和等于()。
A. 内切圆半径B. 外切圆半径C. 圆的直径D. 圆的半径10. 圆的内接多边形的边数增加,其内角趋近于()。
A. 90°B. 180°C. 360°D. 无法确定二、填空题(每题2分,共20分)11. 半径为5的圆的周长是______。
12. 圆的面积公式是S = ______。
13. 扇形的弧长是半径的2倍时,其圆心角是______度。
14. 圆的切线与半径垂直,其切线长度等于______。
15. 圆的内接正六边形的边长等于______。
16. 圆的直径为10,其内接正方形的面积是______。
17. 圆的半径为r,圆心角为α,扇形的面积是______。
18. 圆的内接正三角形的边长为s,其半径为______。
圆的认识一单元测试卷
圆的认识一单元测试卷一、选择题(每题2分,共10分)1. 下列哪个图形是圆?A. 正方形B. 长方形C. 圆形D. 三角形2. 圆的周长公式是什么?A. C = πdB. C = 2πrC. C = πrD. C = 2d3. 圆的半径增加1倍,其面积增加多少倍?A. 1倍B. 2倍C. 3倍D. 4倍4. 圆的直径是半径的多少倍?A. 1倍B. 2倍C. 3倍D. 4倍5. 圆内最长的线段是?A. 半径B. 直径C. 弦D. 弧二、填空题(每空1分,共10分)1. 圆心是圆的______,用字母O表示。
2. 圆的半径是圆心到圆上任意一点的距离,用字母r表示。
3. 圆的直径是圆的两个点之间的距离,且这两个点都在圆上,用字母d表示。
4. 圆的周长是圆的边缘的长度,其公式为C=______。
5. 圆的面积是圆内部的平面区域,其公式为A=______。
三、判断题(每题1分,共5分)1. 所有圆的周长都是相同的。
()2. 圆的半径是直径的一半。
()3. 圆的面积与半径的平方成正比。
()4. 圆的周长和直径成正比。
()5. 圆内任意两点之间的最短距离是直径。
()四、简答题(每题5分,共10分)1. 请简述圆的对称性。
2. 请解释圆周角和圆心角的区别。
五、计算题(每题10分,共20分)1. 已知圆的半径为5厘米,求其周长和面积。
2. 如果一个圆的周长是31.4厘米,请计算其半径。
六、作图题(每题5分,共5分)1. 根据题目要求,在给定的坐标系中画出一个半径为3厘米的圆。
七、思考题(每题5分,共5分)1. 圆的周长和面积公式在实际生活中的应用有哪些?八、结束语本单元测试卷旨在帮助学生巩固对圆的基本性质和公式的理解,以及在实际问题中的应用能力。
希望同学们通过本测试卷能够更好地掌握圆的相关知识。
【注】本测试卷仅供参考,具体题目和分值可能根据教学大纲和课程要求有所调整。
第一单元《圆》过关测试 2022—2023北师大版六年级上册(含答案)
第一单元《圆》单元练习题2022—2023北师大版六年级上册(含答案)一、选择题1. 一个圆的周长是直径的()倍.A.B.C.3倍多一些D.π2. 下面的图形中,()的对称轴最少。
A.B.C.D.3. 周长相等的圆、正方形、长方形的面积相比,()。
A.圆最大B.长方形最大C.正方形最大D.一样大4. 我国古代数学家祖冲之算出圆周率的值在3.1415926和()之间.A.3.1415927B.3.1415928 C.3.14159295. 图中长方形的周长是()cm。
A.6 B.8 C.16二、填空题6. 用圆规画圆,圆规两脚张开的距离是所画圆的半径..7. 在一个长6分米,宽4分米的长方形里画一个最大的圆,这个圆的面积是( )。
8. 在边长为10厘米的正方形内画一个最大的圆,圆的周长是__________厘米,面积是__________平方厘米。
9. 在一张长12厘米,宽9厘米的长方形硬纸板上剪下一个最大的圆,这个圆的周长是( )厘米,面积是( )平方厘米。
10. 在一个长6cm,宽4cm的长方形里画一个最大的半圆,这个半圆的周长是( )cm,面积是( )2cm。
11. 请写下关于圆周率的两点知识:()12. 圆周率是圆的和的比值,它是一个小数.13. 把一个圆分成若干等分后拼成近似的长方形,这个长方形的长是6.28dm,原来圆的周长是( )dm,面积是( )dm²。
14. 如图,长方形的周长是( )cm,圆O的面积是( )cm2,涂色部分的周长是( )cm。
15. 圆的半径扩大4倍,直径扩大( )倍,周长扩大( )倍,面积扩大( )倍。
三、判断题16. 圆的周长和直径越大,圆周率就越大.( )17. 圆是轴对称图形,平行四边形也是轴对称图形。
( )18. 半圆只有一条对称轴.( )19. 圆的半径扩大到原来的2倍,直径就扩大到原来的4倍.( )20. 两圆相比,周长小的面积一定小.( )四、其它计算21. 求直径是2厘米圆的周长。
圆的认识单元测试卷
圆的认识单元测试卷(一)一、填空(第12题每格0.5分,其余每空1分,共35.5分)。
1.从圆心到圆上任意一点的线段叫( )。
通过()并且()都在()的线段叫做直径。
圆的位置是由()确定的,圆的大小决定于()的长短。
2.在同一个圆里,所有的半径(),所有的()也都相等,直径等于半径的()。
3.圆周率表示同一圆内()和()的倍数关系,它用字母()表示,保留两位小数后的近似值是()。
4.在同一个圆内可以画()条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是()厘米。
5.在长6厘米,宽4厘米的长方形内剪下一个最大的圆,这个圆的周长是(),面积是(),还剩下面积( )。
6.一个圆环,外圆半径是6分米,内圆半径4分米,圆环的面积是()。
7.甲圆直径长8厘米,是乙圆直径的40%。
乙圆的周长是()。
8.一个圆的半径是8厘米,这个圆面积的是()平方厘米。
9.大圆的半径等于小圆直径,则大圆面积是小圆面积的()倍,小圆周长是大圆周长的()。
10.在一张长32厘米,宽16厘米的长方形内画半径是4厘米的圆,这样的圆最多能画()个,这些圆的面积和是()。
11.圆是()图形,它有()对称轴。
正方形有()条对称轴,长方形有()条对称轴,等边三角形有()条对称轴。
12.填表:1.圆的周长是它的直径的π倍。
()2.半径为1厘米的圆的周长是3.14厘米。
()3.一个圆的周长是12.56厘米,面积是12.56平方厘米。
()4.圆的半径由6分米增加到9分米,圆的面积增加了45平方分米。
()5.当长方形、正方形、圆的周长相等时,圆的面积最大。
()6.水桶是圆形的。
()7.半个圆的周长就是圆周长的一半。
()8.所有的直径都相等。
()9.π=3.14.()三、画一画。
(共7.5分)1.以O为圆心,画一个直径是4厘米的圆。
2.在正方形中画一个最大的圆。
3,画出所有对称轴。
·O四、计算下列各圆的周长。
(6分)1.直径是6厘米 2.半径是5分米五、计算下列各圆的面积。
小学数学六年级上册-圆单元检测卷含答案
圆-单元测试卷一、填空.(每空2分,共22分)1.以半圆为弧的扇形的圆心角是度,以1圆为弧的扇形的圆心角是度.42.一个圆环,外圆直径是6分米,内圆直径是4分米,圆环的面积是平方分米.3.圆心角是90度的扇形面积是所在圆面积的分之.4.大圆的半径2厘米,小圆半径1厘米,小圆面积是大圆面积的.5.大圆半径是小圆半径的3倍,小圆与大圆的周长之比是,面积之比是.6.在一个周长为187.5米的圆中,36度的圆心角所对的弧长为米.7.一个圆的周长、直径、半径的和是27.84厘米,这个圆的半径是厘米.8.把直径为18厘米的圆等分成9个扇形,每个扇形的周长是厘米.9.一个扇形面积是它所在圆面积的5,则这个扇形的圆心角是.18二、判断.(每题2分,共10分)10.扇形不是轴对称图形..(判断对错).改错.11.扇形的大小不仅和圆心角的大小有关,还和半径的长度有关.(判断对错)12.半径越大的扇形的弧越长.(判断对错)13.所对圆心角相同时,半径越大的扇形的弧越长.(判断对错)14.所对圆心角越大的扇形的弧越长.(判断对错)三、选择题.(每题2分,共8分)15.在一个圆里,最多可以画()个扇形.A.360B.180C.4D.无数16.120︒的圆心角所对的弧长是12.56米,弧所在的圆的半径是()米.A.2B.4C.5D.617.圆的一部分()A.一定是扇形B.不一定是扇形C.一定不是扇形D.一定小于半圆18.一个圆的半径增加2cm,则这个圆()πA.周长增加4cm B.周长增加4cmπC.面积增加24cm4cm D.面积增加2四、求下面图形阴影部分的面积(单位:分米)(5分)19.求下面图形阴影部分的面积(单位:分米)五、解决问题.(共45分)20.学校围绕一个半径7米的圆形花坛铺一条1米宽的石子小路,小路面积为多少平方米?如果每平方米投资150元,修这条小路要投资多少元?21.已知一个半圆环形零件的外圆直径是100厘米,内圆直径是60厘米,求这个半圆环形零件的面积.22.一种压路机的前轮直径1.5米,宽2米.如果每分钟滚动5圈,它每分钟前进多少米?每分钟压路面多少平方米?23.将一个半径5厘米的圆形铁片,加工成半径为4厘米的圆形铁片零件,铁片的面积减少了多少平方厘米?24.公园里有一个直径为16米的圆形花圃,在它的周围环绕着一条2米宽的走道.现将走道也改成花圃,现在花圃的面积是多少?圆-单元测试卷参考答案与试题解析一、填空.(每空2分,共22分)1.(4分)以半圆为弧的扇形的圆心角是180度,以14圆为弧的扇形的圆心角是度.【解答】解:13601802⨯=(度);1360904⨯=(度);答:以半圆为弧的扇形的圆心角是180度,以14圆为弧的扇形的圆心角是90度.故答案为:180,90.2.(2分)一个圆环,外圆直径是6分米,内圆直径是4分米,圆环的面积是15.7平方分米.【解答】解:623÷=(分米)422÷=(分米)223.14(32)⨯-3.145=⨯15.7=(平方分米).答:这个圆环的面积是15.7平方分米.故答案为:15.7.3.(2分)圆心角是90度的扇形面积是所在圆面积的四分之.【解答】解:90:3601:4︒︒=,所以圆心角是90度的扇形面积是所在圆面积的四分之一.故答案为:四、一.4.(2分)大圆的半径2厘米,小圆半径1厘米,小圆面积是大圆面积的25%.【解答】解:大圆的面积是224ππ⨯=(平方厘米),小圆的面积是21ππ⨯=,40.2525%ππ÷==,答:小圆面积是大圆面积的25%.故答案为:25%.5.(4分)大圆半径是小圆半径的3倍,小圆与大圆的周长之比是1:3,面积之比是.【解答】解:因为圆的周长和半径成正比例,圆的面积和半径的平方成正比例,所以大圆半径是小圆半径的3倍,小圆与大圆的周长之比是1:3,小圆面积与大圆面积比是221:31:9=.故答案为:1:3,1:9.6.(2分)在一个周长为187.5米的圆中,36度的圆心角所对的弧长为18.75米.【解答】解:36187.518.75360⨯=(米)答:36度的圆心角所对的弧长为18.75米.故答案为:18.75.7.(2分)一个圆的周长、直径、半径的和是27.84厘米,这个圆的半径是3厘米.【解答】解:设圆的半径是r ,则直径为2r ,周长为:2r π,由题意可得:2227.84r r r π++=,(122)27.84r π++=,9.2827.84r =,3r =;答:这个圆的半径是3厘米.故答案为:3.8.(2分)把直径为18厘米的圆等分成9个扇形,每个扇形的周长是24.28厘米.【解答】解:3.14189⨯÷3.142=⨯6.28=(厘米)6.281824.28+=(厘米)答:每个扇形的周长是24.28厘米.故答案为:24.28.9.(2分)一个扇形面积是它所在圆面积的518,则这个扇形的圆心角是100︒.【解答】解:536010018︒⨯=︒,答:这个扇形的圆心角是100︒.故答案为:100︒.二、判断.(每题2分,共10分)10.(2分)扇形不是轴对称图形.⨯.(判断对错).改错.【解答】解:根据轴对称图形的意义可知,“扇形不是轴对称图形”的说法错误,正确的说法是:扇形是轴对称图形;故答案为:⨯,扇形是轴对称图形.11.(2分)扇形的大小不仅和圆心角的大小有关,还和半径的长度有关.√(判断对错)【解答】解:由分析可知:扇形的大小与圆心角的度数和半径的长短有关,所以本题说法正确;故答案为:√.12.(2分)半径越大的扇形的弧越长.⨯(判断对错)【解答】解:根据弧长公式可得,半径越大的扇形的弧越长,此说法错误,因为弧长还与圆心角的度数有关;故答案为:⨯.13.(2分)所对圆心角相同时,半径越大的扇形的弧越长.√(判断对错)【解答】解:根据弧长公式可得,所对圆心角相同时,半径长越大的弧越长,此选项说法正确;故答案为:√.14.(2分)所对圆心角越大的扇形的弧越长.⨯(判断对错)【解答】解:半径不确定,所以无法确定弧长,所以本题“所对圆心角越大的扇形的弧越长”说法错误;故答案为:⨯.三、选择题.(每题2分,共8分)15.(2分)在一个圆里,最多可以画()个扇形.A.360B.180C.4D.无数【解答】解:因为一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形,所以在一个圆里,最多能画出无数个完全相同的扇形.故选:D。
圆的单元测试卷六年级数学
一、选择题(每题2分,共20分)1. 下列图形中,不属于圆的是()A. 圆形B. 椭圆形C. 正方形D. 梯形2. 一个圆的半径是5cm,它的直径是()A. 10cmB. 15cmC. 20cmD. 25cm3. 圆的周长公式是()A. C=πrB. C=2πrC. C=πdD. C=2πd4. 圆的面积公式是()A. S=πr²B. S=2πr²C. S=πd²D. S=2πd²5. 如果一个圆的半径增加了2cm,那么它的面积增加了()A. 4πcm²B. 8πcm²C. 16πcm²D. 32πcm²6. 一个圆的直径是12cm,它的周长是()A. 24cmB. 36cmC. 48cmD. 60cm7. 一个圆的面积是50πcm²,它的半径是()A. 5cmB. 10cmC. 15cmD. 20cm8. 下列哪个选项不是圆的性质()A. 圆上任意两点到圆心的距离相等B. 圆内最长的弦是直径C. 圆内最短的弦是直径D. 圆的周长与直径的比值是一个常数9. 下列哪个图形的面积最大()A. 半径为5cm的圆B. 半径为4cm的圆C. 半径为3cm的圆D. 半径为2cm的圆10. 一个圆的半径增加了20%,它的面积增加了()A. 20%B. 40%C. 60%D. 100%二、填空题(每题2分,共20分)11. 一个圆的半径是6cm,它的直径是______cm。
12. 圆的周长与直径的比值是______。
13. 一个圆的面积是113.04cm²,它的半径是______cm。
14. 一个圆的直径是10cm,它的周长是______cm。
15. 一个圆的半径增加了50%,它的面积增加了______。
16. 圆的面积公式是______。
17. 圆的周长公式是______。
18. 圆内最长的弦是______。
19. 圆的周长与直径的比值被称为______。
圆单元测试题
圆单元测试题题一:1. 请计算圆的周长和面积。
解答:设圆的半径为r,则圆的周长为2πr,圆的面积为πr²。
2. 已知圆的周长为20π,求该圆的半径和面积。
解答:设圆的半径为r,则根据周长公式,有2πr=20π。
解得r=10,即该圆的半径为10。
根据面积公式,可计算出该圆的面积为π(10)²=100π。
题二:1. 已知一个圆的面积为400π,求该圆的半径和周长。
解答:设圆的半径为r,则根据面积公式,有πr²=400π。
解得r=20,即该圆的半径为20。
根据周长公式,可计算出该圆的周长为2π(20)=40π。
2. 已知一个圆的周长为30,求该圆的半径和面积。
解答:设圆的半径为r,则根据周长公式,有2πr=30。
解得r=15/π,即该圆的半径为15/π。
根据面积公式,可计算出该圆的面积为π(15/π)²=225/π。
题三:1. 已知两个圆的半径分别为r1和r2,求它们的周长和面积之和。
解答:设第一个圆的周长为L1,面积为S1;第二个圆的周长为L2,面积为S2。
根据周长和面积的计算公式,有:L1=2πr1,S1=πr1²L2=2πr2,S2=πr2²所以,两个圆的周长和面积之和为L1+L2+S1+S2=2πr1+2πr2+πr1²+πr2²。
2. 已知一个圆的半径为r,求该圆周长与面积之差的平方。
解答:设该圆的周长为L,面积为S。
根据周长和面积的计算公式,有:L=2πr,S=πr²所以,该圆周长与面积之差的平方为(L-S)²=(2πr-πr²)²。
题四:1. 若一个圆的周长是另一个圆周长的2倍,它的面积是另一个圆的3倍,求这两个圆的半径之比。
解答:设第一个圆的周长为L1,面积为S1;第二个圆的周长为L2,面积为S2。
根据题意,有:L1=2L2,S1=3S2根据周长和面积的计算公式,有:L1=2πr1,S1=πr1²L2=2πr2,S2=πr2²所以,2πr1=2(2πr2),πr1²=3πr2²化简得r1/r2=sqrt(3/2),即这两个圆的半径之比为sqrt(3/2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》单元练习
一、填空。
(每空2分,共38分)
1、用圆规画一个直径是4厘米的圆,圆规两脚间的距离应张开()厘米,所画圆的周长是(),面积是()
2、大圆的半径等于小圆的直径,小圆的半径是大圆的(),大圆的面积是小圆面积的()。
3、在一个长6厘米,宽4厘米的长方形中画一个最大的半圆,它的半径是()厘米,面积是()平方厘米。
4、把一个半径为2厘米的圆转化成近似的长方形,长方形的周长是()厘米,面积是()平方厘米。
5、一个环形的外圆直径是10厘米,内圆直径是8厘米,它的面积是()平方厘米。
三、选择。
(15分)
1、在一个边长为6厘米的正方形内,画一个最大的圆,它的面积是()
A、50.24平方厘米
B、18.84平方厘米
C、28.26平方厘米
D、6.28平方厘米
2、一个半圆,半径是r,则它的周长是()
A、2∏r
B、∏r
C、∏r+2r
3、下列图形中,对称轴最多的是()
A、正方形
B、半圆
C、圆
D、平行四边形
4、圆周率()3.14.
A、大于
B、小于
C、等于
5、下列说法正确的有()个。
①半圆的周长就是圆周长的一半。
②一个圆的直径越大,周长也越大,圆周率也就越大。
③一个圆的面积和正方形的面积相等,则他们的周长也相等。
④甲圆的直径是10厘米,乙圆的半径是5厘米,它们的面积相等。
⑤当长方形、正方形、圆的周长相等时,圆的面积是最大的。
A、1
B、2
C、3
D、0
三、操作题。
(5+8=13)
画一个直径为4厘米的半圆,并求它的周长和面积。
四、解决问题。
1、压路机前轮直径为1.2米,每分钟向前滚动6圈,每分钟前进多少米?1小时呢
2、一个圆形花坛的直径为8米,园林阿姨要在花坛的周围摆放盆花,每隔1.57米放一盆花,一共可以放几盆?
3、求出下面运动场的周长和面积。
100米
64米
4、某公园有一个直径是10米的街心花坛,在它的周围铺了一条宽2米的环形小路,求小路的面积。
5、同学们,我们学习了圆的面积,你知道圆的面积怎么推导出来的吗?在这个过程中体现了什么数学思想方法?你能举例子说明圆的面积在生活中的实际运用吗?。