概率数学笔记

合集下载

九年级数学上人教版《概率初步》课堂笔记

九年级数学上人教版《概率初步》课堂笔记

《概率初步》课堂笔记
一、概率的定义和意义
1.定义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数
p附近,那么这个常数p就叫做事件A的概率,记为P(A) = p。

2.意义:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表
现。

二、等可能事件和不可能事件
1.等可能事件:当一次试验要分成若干个相等的机会,并且这些机会是可数的,
或是有确定的数量时,出现各不相同的结果并且出现每种结果的可能性都相等的随机事件。

2.不可能事件:在一定条件下不可能发生的事件。

三、简单事件的概率计算
1.公式:P(A) = m/n,其中m是事件A发生的次数,n是试验总次数。

2.注意事项:在计算概率时,需要注意以下几点:
•要注意区分频率与概率的不同。

频率是试验中某个事件出现的次数与试验总次数的比值,而概率是频率的稳定值。

•要注意在等可能事件中,不同的试验结果出现的可能性是相等的。

•要注意任何一个事件的概率都应该是0到1之间的一个实数。

四、实例应用
通过实例分析,理解概率的概念和计算方法。

例如,抛硬币、掷骰子等实例的分析,可以引出概率的定义和计算方法。

同时,通过实例分析,也可以让学生更好地理解概率的意义和应用。

五、课堂小结
本节课学习了概率初步这一节内容,主要包括了概率的定义和意义、等可能事件和不可能事件、简单事件的概率计算等方面的知识。

通过本节课的学习,学生应该能够初步掌握概率的概念和计算方法,并且能够运用这些知识解决实际问题。

同时,学生也应该能够认识到概率在生活和其他领域中的应用,激发学习兴趣。

概率论背诵笔记

概率论背诵笔记
事件的运算律
1、交换律:AB=BA,AB=BA。
2、结合律:(AB)C=A(BC), (AB)C=A(BC)。
3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC)。
4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
f
(
x,
y)
4,
1 x 0, 0 y 2x 1, 2
0,
其他.
( X ,Y )关于X的边缘概率密度为
当x 1 时, 2
fX (x) 0;
fX (x) f (x, y)dy,
当 1 x 0时, 2
fX (x)
f (x, y)dy
2x1 4dy 8x 4;
0
当x 0时,
k
k
k
k
3. A B AB A AB.
概率的性质
性质 1-1 0 P( A) 1, P() 0. 性质 1-2 对于任意事件A,B有 P(AUB)=P(A)+P(B)-P(AB).
特别地,当A与B互不相容时, P(AUB)=P(A)+P(B).
性质1-2可推广:对于任意事件A,B,C有 P(AUBUC)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC).
P
X
y 8
2
FX
y
8 2
,
其中FX (x)为X的分布函数.

fY
( y)
FY (
y)
FX
y
2
8
1 2
fX
y
2
8
1 2
1 8

概率的定义及其计算学习笔记

概率的定义及其计算学习笔记
15
例 Dewey G. 统计了约438023个英语单词中各 字母出现的频率,发现各字母出现的频率 不同:
A: 0.0788 E: 0.1268 I: 0.0707 M: 0.0244 Q: 0.0009 U: 0.0280 Y: 0.0202
B: 0.0156 F: 0.0256 J: 0.0010 N: 0.0706 R: 0.0594 V: 0.0102 Z: 0.0006
Anm n(n 1)(n 2)(n m 1)
全排列
Ann n!
可重复排列:从 n 个不同的元素中可重复地 取出 m 个排成一排, 不同的排法有
nm 种
23
不尽相异元素的全排列:n 个元素中有 m 类, 第 i 类中有 ki 个相同的元素,
k1 k2 km n, 将这 n 个元素按一定的次序排成一排,
(1)某指定的 k 个盒子中各有一球;
则 nA1 k!
P( A1)
(2)恰有 k 个盒子中各有一球;
nA1 n
k! Nk
nA2 CNk k !
P(
A2
)
CNk N
k!
k
7
(3)某指定的一个盒子没有球;
nA3 (N 1)k
P(
A3
)
(
N 1)k Nk
(4)某指定的一个盒子恰有 m 个球 ( m k );
又由 AB B, P(B AB) P(B) P(AB) P(A B) P(A) P(B) P(AB)
19
推广: P( A B C) P( A) P(B) P(C)
P( AB) P( AC) P(BC)
P( ABC)
一般:P(n
Ai
)
n
P(

学霸笔记高中数学

学霸笔记高中数学

学霸笔记高中数学
1. 概率:
(1)概率的定义:概率是指事件发生的可能性,用来表示一
个事件发生的可能性大小。

(2)概率的计算公式:概率的计算公式为:P(A)=满足条
件A的概率/全部可能的概率。

(3)概率的性质:概率的性质有:
1)概率的值在0到1之间;
2)概率的和为1;
3)对称性:如果事件A和事件B相互独立,则P(A)=P (B);
4)互斥性:如果事件A和事件B不可能同时发生,则P(A)+ P(B)=1。

2. 三角函数:
(1)三角函数的定义:三角函数是指一类以角度为变量的函数,它们的值取决于角的大小。

(2)三角函数的公式:
1)正弦函数:y=sin x
2)余弦函数:y=cos x
3)正切函数:y=tan x
(3)三角函数的性质:
1)正弦函数和余弦函数的值在-1到1之间;
2)正切函数的值在-∞到+∞之间;
3)正弦函数、余弦函数和正切函数的周期都是2π;
4)正弦函数、余弦函数和正切函数的图像都是周期函数。

概率论与数理统计笔记(重要公式)

概率论与数理统计笔记(重要公式)

第一章随机事件与概率
第二章随机变量及其概率分布
第三章多维随机变量及其概率分布
第四章随机变量的数字特征
E(X)=
E(Y)=E[g(X)]=
E(X)=D(X)=
第五章大数定律及中心极限定理
第六章统计量及其抽样分布
第七章 参数估计
包含所要估计的未知参数(其中它与未知参数无关。

)的概率密度的对称性(见
未知时因为
,,,,;)]n x θ'时取最大值则取=。

的无偏估计,否则称
则称有效,即方差小参数估计越优。

,不等式.
不仅给出了统计量(对于已知时的置信区间),其中已知,而未
的置信度
可作为
采用
将上式开方即可得标准差
第八章假设检验
及备择假设

)分布,
的叫接受域,另一个的叫拒绝域,记为
则知小概率事件发生了,拒绝,接受
拒绝
时,
时,
时,
接受
落入接受域内时,则接受,拒绝
内,则拒绝,接受
未落在拒绝域内,则接受,拒绝
是从正态总体中抽取的一个样
为已知数,提出假设
引入统计量
相应的拒绝域
中抽取的一个样
本,其中
,其中
构造统计量
表求分位数
则拒绝域
未知,
本,欲检验假设:,其中
,可查
,即
若统计量,接受
若统计量,拒绝
第九章回归分析。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的一个重要分支,它涉及到随机现
象的概率规律和统计规律的研究。

在学习概率论与数理统计时,我
们需要掌握一些重点概念和方法,下面我会从概率论和数理统计两
个方面分别介绍一些重点内容。

首先是概率论部分。

概率论是研究随机现象的规律性和统计规
律的数学理论。

重点内容包括事件与概率、随机变量及其分布、大
数定律和中心极限定理等。

事件与概率是概率论的基础,它涉及到
样本空间、事件的概念、事件的运算规则等内容。

随机变量及其分
布是概率论的核心内容,包括离散型随机变量、连续型随机变量及
它们的分布、数学期望和方差等。

大数定律和中心极限定理是概率
论的重要成果,它们揭示了大量独立随机变量和的平均值的规律性,是概率论在实际问题中的重要应用。

其次是数理统计部分。

数理统计是利用数学方法研究统计规律
的学科。

重点内容包括抽样分布、参数估计、假设检验等。

抽样分
布是数理统计的基础,它涉及到样本分布、样本均值的分布、样本
方差的分布等内容。

参数估计是数理统计的核心内容,包括点估计
和区间估计,涉及到最大似然估计、贝叶斯估计等方法。

假设检验
是数理统计的重要应用,它包括了假设检验的基本原理、参数检验和非参数检验等内容。

总的来说,概率论与数理统计是数学中的重要分支,它们的重点内容涉及到概率论和数理统计的基本概念、方法和应用。

在学习过程中,我们需要深入理解这些内容,并能够灵活运用到实际问题中去。

希望这些内容能够帮助你更好地理解概率论与数理统计。

考研数学概率笔记...

考研数学概率笔记...

第一章 事件与概率(一次半)基础班(8次 学时8×3=24小时)概率论:它是研究随机现象统计规律性的一门数学科学。

简史:起源于赌博。

17世纪法国Pascal 和Fermat 解决Mere (公平赌博)问题等并提出了排列与组合的新知识。

18世纪早期J.Bernoulli 提出了概率论历史上第一个极限定理(贝努里大数定理),19世纪初Laplace 提出了古典概率定义。

20世纪30年代Kolmogorov 建立了概率的公理化定义(19世纪末Cantor 集合论和20世纪30年代Lebesgue 测试论)。

历史上Gauss 、De Moirve 、、Chebeshev 、Liapunov 、Borel 、Khinchine 、Markov 、K.Pearson 、Fisher 、Cramer 、Wiener 、Doob 、Ito 、许宝禄、Rao 等人亦对概率统计发展作出了重要贡献。

1.1随机事件、样本空间①、②、③、④例子,称满足○a 、○b 、○c 条件的试验为随机试验,记为E ,基本事件(样本点):用e 表示;随机事件:用“A,B,…”表示;样本空间(必然事件):用S 表示。

Remark :(1)A 发生A e e i i ∈∃⇔,,e i 出现了;(2)S 引入意义。

1.2事件的关系与运算(两种语言刻划)一、六种关系:{}{}{}{}1.0,1,2,....,1000,...,0,1,2,3,4,5,0,1,2,3,4,5,....,100,7,8,9,10,11,12,,.S A B C A B C ====例观查某电话呼叫台接到的呼叫次数的随机试验,,求之间的关系二、四个运算性质:Remark :(1)两个事件互斥(互不相容) 两个事件互为对立事件;(2)A -B=B A =A -AB ;(3)事件的假设与事件的相互表示是学好概率论与数理统计的基本功。

例1 某人向一目标射击三次,A i 表示第i 次命中(i=1,2,3),B j 表示命中j 次(j=0,1,2,3),用A i 表示B j 。

概率论基础定积分概念笔记

概率论基础定积分概念笔记

第五次P141.习题3、2、29、301、⎰⎰++=++dx 3sinxx 3cosx3x 31dx 3sinx x cosx x 3232 ()⎰++=++=C 3s i n x x ln 313sinx x x sin 3x d 31333 解:()()⎰⎰=+xlnx d edx lnx 1x xlnxxC x C ex x l n x+=+=2、习题4,(11) 解:⎰⎰=x lnsinxdtan dx xcos lnsinx2⎰-=dx sinxcosxtanxtanxlnsinx C x tanxlnsinx +-=3、P109,例3.5,习题3,选择题4、⎰⎰--=dtanx tanxe dx e xcos sinx tanxtanx 3⎰--=tanx tanxde⎰--+-=d t a n xe t a n x et a n xt a n xC e tanxe tanx tanx +--=--5、设()C x arcsin dx x xf +=⎰,则()()⎰+--=C x 131x f dx 3230有理函数积分()⎰dx x R →真分式→部分分式 部分分式:()()n 22n q px x NMx ,q px x N Mx ,b ax 1,b ax 1++++++++ 其中:04q p 2<-5、⎰--+dx 12x x 1x 2解:()()3x 4x 1x 12x x 1x 2+-+=--+3x B4x A ++-=()()()()3x 4x 4x B 3x A +--++=()()1x 4x B 3x A +=-++令 ,75A 4x ==令 72B 3x =-=∴ ⎰⎰⎪⎭⎫⎝⎛++-=+++dx 3x 24x 571dx 53x x 1x 2C 3x ln 724x ln 75+++-=6、P112 例3.6 (4),(5) 7 P142 习题6 (3),(4)c 22x arctan 21dx 8x 4x 12++=++⎰⎰⎰++-+=++8x 4x 24x 221dx 8x 4x 122()()()2x d 22x 18x 4x 84x d 212222+++-++++=⎰⎰c 22x arctan 218x 4x ln 212++-++=40三角有理式积分()⎰dx cosx sinx,R令 222t 12t sinx t 1t 1cosx t2x tan +=+-== 2t12dtdx += 8、⎰+dx sinx 21⎰+⋅++=dt t 12t 12t 2122⎰++=dt 1t t 12⎰⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=21t d 2321t 122C 2321t arctan 32++=C 312x 2tanarctan 32++=9、⎰⎰+=+dx 1x 3sec xsec x cos 3dx 222 ⎰+=tanx 3d 4x 3tan 1312C 2tanx 3arctan 2131+⋅=C 2tanx3arctan 321+=6、设()x f 的原函数()x F 恒正,且()10F =,当0x ≥,有()()2x sin x F x f 2=,求()x f解:()()x f x F =' ()()x sin x F x F 2='()()⎰⎰='2xdx sin dx x F x F 2()()()⎰⎰-=dx cos4x 121x dF x F()C sin4x 41x x F 2+-= 由()10F = 得C=1∴ ()1sin4x 41x x F +-=∴ ()1sin4x 41x x sin x f 2+-=定积分的概念一、定义及性质 <定义>:()()∑⎰=→∆=n1i i i 0x b ax ζf lim dx x f ,{}i ni 1x max λ∆=≤≤注意(1)积分区间有限,被积函数有界; (2)与“分法”、“取法”无关;(3)定积分的值与积分变量的选取无关()()⎪⎭⎫ ⎝⎛=⎰⎰b a b a dt t f dx x f ; (4)()x f 在[]b ,a 有界是()x f 在[]b ,a 可积的必要条件,()x f 在[]b ,a 连续是()x f 在[]b ,a 可积的充分条件。

考研数学概率论与数理统计笔记知识点(全)

考研数学概率论与数理统计笔记知识点(全)
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结一:期望引入:1.1离散型随机变量的期望注:其实是在等概率的基础上引申来的,等概率下的权重都是1/N。

1.2连续型随机变量的期望注意:因为连续随机变量的一个点的概率是没有意义的,所以我们需要借用密度函数,如所示,这实际上是一个期望积累的过程。

1.3期望的性质注:其中第三个性质,可以把所有的X+Y的各种情况展开,最后得出的结果就是这样的。

二:随机变量函数(复合随机)的数学期望1.理解注:其实就是复合随机变量的期望,对于离散型,其主要是每个值增加了多少倍/减少了多少倍,但是概率不变,所以公式见上面;对于连续性随机变量,其实是一样的,每个点的概率没有变,所以就是变量本身的值发货所能了改变。

三:方差引入的意义:求每次相对于均值的波动:求波动的平方和:定义:注:其实就是对X-E(X)方,求均值其实就是方差,注意这里的均值也是加权平均,所以方差其实就是一种特殊的期望。

3.1离散型随机变量的方差3.2连续性随机变量的方差3.3方差的性质注:3)4)5)等性质可以套入定义中就可以得到,这里不多说;对于独立以及协方差见后;8)的证明如下四:协方差4.1定义注:与上一个变量相比,之前是一个变量移位平方,但这里是两个变量移位相乘。

4.2离散型二维随机变量的协方差4.3连续型二维随机变量的协方差4.4二维随机变量的协方差性质注:了解即可…4.5协方差矩阵五:相关系数所以:独立必不相关,但不相关不一定独立,因为这里的不相关指的是线性不相关,可能会有其他非线性关系,具体例子找到再补充-------。

参考链接:。

文科数学高考知识点概率

文科数学高考知识点概率

文科数学高考知识点概率概率是数学中的一个重要分支,也是文科数学高考中的一个重要考点。

概率可以说是一种描述随机性的工具,它可以帮助我们分析和预测各种事件的发生可能性。

在高考中,概率常常和统计一起出现,共同构成了数学的一大门类。

一、概率的基本概念在学习概率之前,我们首先需要了解一些基本的概念。

概率的基本单位是事件,而事件是指某件事情发生或者不发生。

在概率的计算中,我们通常使用事件发生的可能性大小来描述概率的大小。

概率的取值范围是0到1之间,其中0表示不可能事件,而1表示必然事件。

二、概率的计算方法1.古典概型古典概型是最简单的概率计算方法之一。

在古典概型中,我们假设每个样本点出现的机会是相等的,然后通过计算有利事件出现的样本点数目与总样本点数目的比值来计算概率。

2.频率概率频率概率是根据事件发生的频率来计算概率。

通过大量的实验或观察,我们可以统计出事件发生的次数,然后计算事件发生的频率作为概率的近似值。

3.几何概型在几何概型中,我们通常是通过计算几何图形的面积或者长度来求解概率。

几何概型常常应用在正方形、圆形、三角形等几何图形的计算中。

4.条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。

条件概率的计算对于解决一些实际问题非常有用,它能够帮助我们预测在特定条件下事件发生的可能性。

5.全概率全概率是利用分区思想来计算概率的一种方法。

通过将一个事件分解成若干个互斥且穷尽的事件,然后计算各个事件发生的概率并相加,就可以得到整个事件发生的概率。

三、概率的应用概率在现实生活中有着广泛的应用。

在商业领域中,概率可以用于市场调研、销售预测等方面。

在医学领域中,概率可以帮助医生分析疾病的风险和预后。

在金融领域中,概率可以用于投资决策和风险控制。

在运输和物流领域中,概率可以帮助我们进行货物运输和交通流量的规划。

总之,概率在各个领域中都发挥着重要的作用。

结语概率作为一门重要的数学学科,是文科数学高考中的重要考点之一。

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A∪B (和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~?(?)参数为?的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (?>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为?的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (?>0).(3)X~N (?,?2)参数为?,?的正态分布 222)(21)(σμσπ--=x e x f -?<x<?, ?>0.特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, ?(-x)=1-Φ(x) .若X ~N ((?,?2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<?}= F (x , ?) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<?, Y ≤y}= F (?,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jj i j j i p p y Y P y Y x X P •=====P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差?(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n p n p (1- p) 3.X~ ?(?) ? ?,}{},{•=====i ji i j i p p x X P y Y x X P4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为?的指数分布 ? ?26.X~ N (?,?2) ? ?2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .2.?2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ ?2(n)自由度为n 的?2分布.(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则22)1(σS n -~ ?2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ ?2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (?,?2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).4.F 分布 (1)定义 若U~?2(n 1), V~ ?2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=?,则估计量∧θ称为参数?的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数?的相合估计量. 二.区间估计1.求参数?的置信水平为1-?的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定.(2)利用双侧?分位点找出W 的区间(a,b),使P{a<W <b}=1-?.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间? ?2已知 n X σμ-~N (0,1) (2/ασz n X ±) ? ?2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α ?2 ?未知22)1(σS n -~ ?2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差? 1-? 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) ? 1,? 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.。

概率论与数理统计同济笔记

概率论与数理统计同济笔记

概率论与数理统计同济笔记以下是概率论与数理统计的同济大学笔记,供您参考:
1. 概率论的基本概念
样本空间与随机事件
概率的公理化定义与性质
条件概率与独立性
2. 随机变量及其分布
随机变量的定义与性质
离散型随机变量及其分布
连续型随机变量及其分布
随机变量的函数的分布
3. 多维随机变量及其分布
二维随机变量及其分布
边缘分布与条件分布
随机变量的独立性
多维随机变量的函数的分布
4. 随机变量的数字特征
数学期望与方差
协方差与相关系数
大数定律与中心极限定理
5. 数理统计基础
统计量与抽样分布
点估计与估计量的评价标准
区间估计与假设检验
方差分析与回归分析
6. 概率论在金融中的应用
期望、方差与风险度量
资本资产定价模型(CAPM)与套利定价理论(APT)风险管理与保险精算
期权定价与风险管理
7. 概率论在信息科学中的应用
信息论基础与熵的概念
贝叶斯推断与决策分析
马尔可夫链蒙特卡洛方法(MCMC)在信息科学中的应用数据挖掘与机器学习中的概率论方法
8. 概率论在其他领域的应用
在物理、化学和生物中的概率论应用
在社会科学中的概率论应用
在工程技术和人工智能中的概率论应用。

概率论与数理统计总结笔记

概率论与数理统计总结笔记

概率论与数理统计总结笔记
以下是概率论与数理统计的总结笔记:
1 .概率论与数理统计是研究随机现象及其规律的一门数学学科。

2 .随机现象是指在相同条件下进行多次试验或观察,结果不确定的
现象。

3 .概率论与数理统计的主要内容包括概率空间、随机变量、分布函数、
概率密度函数、边缘分布、条件概率、独立性、随机变量的函数等。

4 .概率论与数理统计的应用范围包括金融、统计、物理、化学、工程
等领域。

5 .概率论与数理统计常用的方法包括数学期望、方差、协方差、相关
系数、回归分析、假设检验等。

6 .概率论与数理统计的基本原则是公理化原则,即要满足一定的数
学条件,如非负性、规范性、可列可加性等。

7 .概率论与数理统计的主要特点是研究随机现象的不确定性和复杂
性,以及在不确定性和复杂性下的决策和推断问题。

8 .概率论与数理统计的发展历史可以追溯到17世纪,这个学科的发
展不仅推动了数学的发展,也对其他学科的发展产生了重要的影响。

9 .概率论与数理统计的学习方法包括掌握基本概念和公式,多做练
习题,结合实际例子进行理解和应用,以及进行综合性和设计性实验。

猴博士概率论笔记

猴博士概率论笔记

猴博士概率论笔记
以下是猴博士概率论笔记的部分内容,如需完整的笔记,请提供更详细的信息或联系猴博士。

概率论的基本概念
1. 样本空间:实验所有可能结果的总和。

2. 事件:样本空间中的一个子集,包含的样本点就是事件的结果。

3. 必然事件:样本空间中包含了所有的样本点,记作。

4. 随机事件:样本空间中某些样本点组成的集合。

5. 概率:用于度量随机事件发生的可能性大小的数值。

条件概率
1. 条件概率的定义:在某个事件B已经发生的情况下,另一个事件A发生的概率。

记作P(AB)。

2. 条件概率的公式:P(AB) = P(A∩B) / P(B)。

3. 全概率公式:如果B1, B2, ..., Bn是样本空间的一个划分,则任何一个事件A的条件概率等于A对于各个划分事件的概率与划分事件概率的乘积之和,即P(A) = P(B1)P(AB1) + P(B2)P(AB2) + ... + P(Bn)P(ABn)。

贝叶斯定理
1. 贝叶斯定理公式:如果P(B)>0,P(A)>0,则P(AB) = P(BA)P(A) / P(B)。

2. 贝叶斯定理的应用:在已知某些条件下,利用贝叶斯定理可以计算其他条件下的概率。

以上是猴博士概率论笔记的部分内容,如需完整的笔记,请提供更详细的信息或联系猴博士。

部编版高中数学必修二第十章概率笔记重点大全

部编版高中数学必修二第十章概率笔记重点大全

(名师选题)部编版高中数学必修二第十章概率笔记重点大全单选题1、抛掷一枚质地均匀的正方体骰子,若事件A =“向上的点数为3”,B =“向上的点数为6”,C =“向上的点数为3或6”,则有( )A .A ⊆B B .C ⊆B C .A ∩B =CD .A ∪B =C答案:D分析:根据事件的关系、和事件、积事件的定义逐一判断四个选项的正误,即可得出正确选项对于A :事件A =“向上的点数为3”发生,事件B =“向上的点数为6”一定不发生,故选项A 不正确;对于B :事件C =“向上的点数为3或6”发生,事件B =“向上的点数为6”不一定发生,但事件B =“向上的点数为6”发生,事件C =“向上的点数为3或6” 一定发生,所以B ⊆C ,故选项B 不正确;对于C :事件A 和事件B 不能同时发生,A ∩B =∅,故选项C 不正确;对于D :事件A =“向上的点数为3”或事件B =“向上的点数为6”发生,则事件C =“向上的点数为3或6”发生,故选项D 正确;故选:D2、把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( )A .23B .13C .35D .14 答案:B解析:根据列举法,列举出总的基本事件,以及满足条件的基本事件,基本事件个数之比即为所求概率. 分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为(12,3,4),(12,4,3),(3,12,4),(4,12,3),(3,4,12),(4,3,12),有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为(1,23,4),(4,23,1),(23,1,4),(23,4,1),(1,4,23),(4,1,23),有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为(1,2,34),(2,1,34),(34,1,2),(34,2,1),(1,34,2),(2,34,1),有6种分法;共有18种分法,则2,3连号的概率为P =618=13. 故选:B .小提示:本题主要考查求古典概型的概率,属于基础题型.3、10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( )A .35B .23C .34D .415答案:B分析:根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券,则在甲中奖条件下,乙没有中奖的概率P =69=23.故选:B.4、齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( )A .13B .14C .15D .16 答案:D分析:将齐王与田忌的上、中、下等马编号,列出双方各出上、中、下等马各一匹分组分别进行一场比赛的基本事件即可利用古典概率计算作答.齐王的上等马、中等马、下等马分别记为A ,B ,C ,田忌的上等马、中等马、下等马分别记为a ,b ,c , 双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,依题意,共赛3场,所有基本事件为:(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Bb,Ca),(Ac,Ba,Cb),共6个基本事件,它们等可能, 田忌获胜包含的基本事件为:(Ac,Ba,Cb),仅只1个,所以田忌获胜的概率p =16.故选:D5、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( )A .249B .649C .17D .27 答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.6、若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足m 2+n 2<25的概率是( )A .12B .1336C .49D .512答案:B分析:利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(m,n)表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足m 2+n 2<25有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足m 2+n 2<25的概率P =1336.故选:B7、甲、乙、丙三人独立地去译一个密码,译出的概率分别15,13,14,则此密码能被译出的概率是 A .160B .25C .35D .5960 答案:C解析:先计算出不能被译出的概率,由此求得被译出的概率.用事件A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P(A)=15,P(B)=13,P(C)=14,且P(ABC)=P(A)P(B)⋅P(C )=45×23×34=25. ∴此密码能被译出的概率为1−25=35.故选:C小提示:本小题主要考查相互独立事件概率计算,考查对立事件概率计算,属于基础题.8、“某彩票的中奖概率为1100”意味着( )A .买100张彩票就一定能中奖B .买100张彩票能中一次奖C .买100张彩票一次奖也不中D .购买彩票中奖的可能性为1100答案:D分析:根据概率的意义判断各选项即可.概率表示事件发生的可能性的大小,并不代表事件发生的频率,“某彩票的中奖概率为1100”意味着购买彩票中奖的可能性为1100.所以答案是:D多选题 9、下列各对事件中,不是相互独立事件的有A .运动员甲射击一次,“射中9环”与“射中8环”B .甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C .甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”D .甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”答案:ACD解析:根据相互独立事件的概念以及判断,分析出是相互独立事件的选项.在A 中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B 中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C 中,甲,乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标“不可能同时发生,二者是互斥事件,不独立;在D 中,设“至少有1人射中目标”为事件A ,“甲射中目标但乙未射中目标”为事件B ,则AB =B ,因此当P(A)≠1时,P(AB)≠P(A)⋅P(B),故A 、B 不独立,故选:ACD小提示:本小题主要考查相互独立事件的判断,属于基础题.10、下列命题中是真命题的有( )A .有A ,B ,C 三种个体按3︰1︰2的比例分层抽样调查,如果抽取的A 个体数为9,则样本容量为30B .一组数据1,2,3,3,4,5的平均数、众数、中位数相同C .若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是甲D .某一组样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在区间[114.5,124.5]内的频率为0.4答案:BD分析:利用分层抽样中样本的抽样比等于各层的抽样比即可判断A ,求出这一组数据的平均数、众数、中位数即可判B,计算乙的方差,比较方差大小即可判断C,利用落在区间[114.5,124.5]内的个数除以总的个数计算概率,即可判断D,从而得出正确选项.对于选项A:根据样本的抽样比等于各层的抽样比,样本容量为9÷31+2+3=18,故选项A 不正确;对于选项B:数据1,2,3,3,4,5的平均数为15(1+2+3+4+5)=3,众数和中位数都是3,故选项B正确;对于选项C:乙组数据的平均数为15(5+6+9+10+5)=7,乙组数据的方差为15[(5−7)2+(6−7)2+(9−7)2+(10−7)2+(5−7)2]=4.4<5,所以这两组数据中较稳定的是乙,故选项C不正确;对于选项D:样本数据落在区间[114.5,124.5]有120,122,116,120有4个,所以样本数据落在区间[114.5,124.5]内的频率为410=0.4,故选项D正确,故选:BD11、下列各对事件中,为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:ABD分析:利用相互独立事件的定义一一验证即可.在A中,样本空间Ω={1,2,3,4,5,6},事件M={2,4,6},事件N={3,6},事件MN={6},∴P(M)=36=12,P(N)=26=13,P(MN)=12×13=16,即P(MN)=P(M)P(N),故事件M与N相互独立,A正确.在B中,根据事件的特点易知,事件M是否发生对事件发生的概率没有影响,故M与N是相互独立事件,B 正确;在C中,由于第1次摸到球不放回,因此会对第2次摸到球的概率产生影响,因此不是相互独立事件,C错误;在D中,从甲组中选出1名男生与从乙组中选出1名女生这两个事件的发生没有影响,所以它们是相互独立事件,D正确.故选:ABD.小提示:判断两个事件是否相互独立的方法:(1)直接法:利用生活常识进行判断;(2)定义法:利用P(MN)=P(M)P(N)判断.填空题12、有两枚质地均匀,大小相同的正方体骰子,六个面分别标有数字1,2,3,4,5,6,同时掷两枚骰子,则两枚骰子朝上面的数字之积能被6整除的概率为___________.答案:512分析:根据题意,列举基本事件总数,和满足条件的基本事件数,进而根据古典概型求解即可.解:两枚相同的正方体骰子,六个面分别标有数字1,2,3,4,5,6,同时掷两枚骰子,基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有6×6=36种,两枚骰子朝上面的数字之积能被6整除包含的基本事件有:(1,6),(2,3),(2,6),(3,2),(3,4),(3,6),(4,3),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共15种,所以两枚骰子朝上面的数字之积能被6整除的概率为P=1536=512.所以答案是:512。

高中统计与概率笔记

高中统计与概率笔记

高中统计与概率笔记
统计与概率是数学中的一个分支,通常被用来解决数据分析和推断的问题。

在高中阶段,我们主要学习以下几个方面的知识: 1. 概率基础
概率是研究随机事件发生的可能性的数学。

我们通过定义事件、样本空间、随机变量等概念,来描述和计算事件发生的概率。

2. 概率分布
概率分布是指随机变量可能取到某个值的概率分布情况。

常见的概率分布包括二项分布、正态分布、泊松分布等。

3. 统计推断
统计推断是从观察到的数据中推断总体的一些特征。

其中,点估计可以根据样本数据估计总体参数;区间估计可以给出总体参数的一个置信区间;假设检验可以判断总体参数是否符合某个假设。

4. 相关性和回归分析
相关性和回归分析是研究两个或多个变量之间关系的方法。

其中,相关性可以衡量变量之间的线性相关程度;回归分析可以建立一个模型,来预测一个变量对其他变量的影响。

以上是高中统计与概率的一些基础知识,希望对你有所帮助。

猴博士概率论笔记

猴博士概率论笔记

猴博士概率论笔记摘要:I.引言- 猴博士概率论笔记的概念和作用- 本文的目的和结构II.概率论基本概念- 随机事件和概率- 古典概型和几何概型- 事件的概率和独立性III.条件概率和全概率公式- 条件概率的概念和性质- 全概率公式和贝叶斯公式IV.离散型随机变量- 离散型随机变量的概念和性质- 分布律和期望V.连续型随机变量- 连续型随机变量的概念和性质- 概率密度函数和期望VI.大数定律和中心极限定理- 大数定律的概念和意义- 中心极限定理的概念和意义VII.总结和展望- 概率论的重要性- 猴博士概率论笔记的贡献和价值正文:猴博士概率论笔记是一份关于概率论的总结和笔记,由猴博士根据自己的理解和经验编写而成。

它涵盖了概率论的基本概念、核心理论和重要应用,对于学习概率论的人来说具有很高的参考价值和实用意义。

本文将从以下几个方面对猴博士概率论笔记进行详细介绍和解析。

首先,猴博士概率论笔记介绍了概率论的基本概念,包括随机事件和概率、古典概型和几何概型、事件的概率和独立性等。

这些概念是概率论的基础,对于理解概率论的核心理论和应用具有重要意义。

猴博士通过生动的例子和简单易懂的语言,将这些概念讲解得十分清晰和透彻,有助于读者理解和记忆。

其次,猴博士概率论笔记讲解了条件概率和全概率公式,这是概率论中的重要概念和工具。

猴博士详细介绍了条件概率的概念和性质,以及全概率公式和贝叶斯公式的推导和应用。

这些内容对于概率论的学习和应用具有重要作用,能够帮助读者更好地理解和掌握概率论的核心概念和理论。

接着,猴博士概率论笔记介绍了离散型随机变量和连续型随机变量,这是概率论中的重要概念和对象。

猴博士详细介绍了离散型随机变量的概念和性质,以及分布律和期望的计算方法。

同时,他也介绍了连续型随机变量的概念和性质,以及概率密度函数和期望的计算方法。

这些内容对于理解概率论的重要概念和理论具有重要作用。

最后,猴博士概率论笔记介绍了大数定律和中心极限定理,这是概率论中的重要定理和结论。

部编版高中数学必修二第十章概率知识汇总笔记

部编版高中数学必修二第十章概率知识汇总笔记

(名师选题)部编版高中数学必修二第十章概率知识汇总笔记单选题1、两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12答案:D解析:男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .小提示:本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.2、若随机事件A,B 满足P (AB )=16,P (A )=23,P (B )=14,则事件A 与B 的关系是( )A .互斥B .相互独立C .互为对立D .互斥且独立答案:B分析:利用独立事件,互斥事件和对立事件的定义判断即可解:因为P (A )=23, P (B )=14, 又因为P (AB )=16≠0,所以有P (AB )=P (A )P (B ),所以事件A 与B 相互独立,不互斥也不对立故选:B.3、用1,2,3,4编号10个小球,其中1号球4个,2号球2个,3号球3个,4号球1个,则0.4是指1号球占总体的( )A .频数B .频数/组距C .频率/组距D .频率答案:D分析:根据频率定义可得答案.因为1号球的频数为4,所以1号球占总体的频率为410=0.4.故选:D.4、若P(AB)=19,P(A )=23,P(B)=13,则事件A 与B 的关系是( ) A .事件A 与B 互斥B .事件A 与B 对立C .事件A 与B 相互独立D .事件A 与B 既互斥又相互独立答案:C分析:结合互斥事件、对立事件、相互独立事件的知识求得正确答案.∵P(A)=1−P(A )=1−23=13,∴P(AB)=P(A)P(B)=19≠0, ∴事件A 与B 相互独立、事件A 与B 不互斥,故不对立.故选:C5、《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为( ).A .13B .23C .16D .12 答案:C分析:根据题意,设齐王的上,中,下三个等次的马分别为a , b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案.设齐王的上,中,下三个等次的马分别为a ,b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,双方各出上、中、下等马各1匹分组分别进行1场比赛,所有的可能为:Aa ,Bb ,Cc ,田忌得0分;Aa ,Bc ,Cb ,田忌得1分Ba ,Ab ,Cc ,田忌得1分Ba ,Ac ,Cb ,田忌得1分;Ca ,Ab ,Bc ,田忌得2分,Ca ,Ac ,Bb ,田忌得1分田忌得2分概率为P =16,故选:C6、某公司为了促进技术部门之间良好的竞争风气,公司决定进行一次信息化技术比赛,三个技术部门分别为麒麟部,龙吟部,鹰隼部,比赛规则如下:①每场比赛有两个部门参加,并决出胜负;②每场比赛获胜的部门与未参加此场比赛的部门进行下一场的比赛;③在比赛中,若有一个部门首先获胜两场,则本次比赛结束,该部门就获得此次信息化比赛的“优胜部门”.已知在每场比赛中,麒麟部胜龙吟部的概率为13,麒麟部胜鹰隼部的概率为35,龙吟部胜鹰隼部的概率为12.当麒麟部与龙吟部进行首场比赛时,麒麟部获得“优胜部门”的概率是( )A .445B .29C .415D .1345 答案:D分析:由题设,麒麟部与龙吟部进行首场比赛且麒麟部获得“优胜部门”的情况有:1 、首场麒麟部胜,第二场麒麟部胜;2 、首场麒麟部胜,第二场鹰隼部胜,第三场龙吟部胜,第四场麒麟部胜;3 、首场龙吟部胜,第二场鹰隼部胜,第三场麒麟部胜,第四场麒麟部胜;再由独立事件乘法公式及互斥事件的加法公式求概率即可.设事件A :麒麟部与龙吟部先比赛麒麟部获胜;由于在每场比赛中,麒麟部胜龙吟部的概率为13,麒麟部胜鹰隼部的概率为35,龙吟部胜鹰隼部的概率为12, ∴麒麟部获胜的概率分别是:P(A)=13×35+13×(1−35)×12×13+(1−13)×(1−12)×35×13=1345,故选:D .7、10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( )A .35B .23C .34D .415 答案:B分析:根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券,则在甲中奖条件下,乙没有中奖的概率P =69=23. 故选:B.8、将一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( )A .4B .40C .250D .400答案:D分析:直接利用频率的定义求解即可.∵一个容量为1000的样本分成若干组,某组的频率为0.4,∴该组的频数为:1000×0.4=400.故选:D .小提示:本题考查频数的求法,解题时要认真审题,属于基础题.多选题9、下列说法不正确的是( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显疗效,现有胃溃疡的病人服用此药,则估计其会有明显疗效的可能性为76%答案:ABC分析:根据概率和频率的概念即可判断答案.概率只是说明事件发生的可能性大小,其发生具有随机性,则A,B是错的.频率受试验次数的影响,不稳定,但当试验次数较多时频率会稳定在概率附近,则C错误,D正确.故选:ABC.10、下列说法错误的有()A.随机事件A发生的概率是频率的稳定值,频率是概率的近似值B.在同一次试验中,不同的基本事件不可能同时发生C.任意事件A发生的概率P(A)满足0<P(A)<1D.若事件A发生的概率趋近于0,则事件A是不可能事件答案:CD分析:根据概率与频率的关系判断①正确,根据基本事件的特点判断②正确,根据必然事件,不可能事件,随机事件的概念判断③错误,根据小概率事件的概念判断④错误.∵随机事件A发生的概率是频率的稳定值,频率是概率的近似值,∴A中说法正确;基本事件的特点是任意两个基本事件是互斥的,∴在同一次试验中,不同的基本事件不可能同时发生,∴B中说法正确;必然事件发生的概率为1,不可能事件发生的概率为0,随机事件发生的概率大于0且小于1.∴任意事件A发生的概率P(A)满足0≤P(A)≤1.∴C中说法错误;若事件A发生的概率趋近于0,则事件A是小概率事件,但不是不可能事件,∴D中说法错误.故选CD小提示:本题主要考查了概率的概念和有关性质,属于概念辨析题,对一些易混概念必须区分清.11、若干个人站成排,其中不是互斥事件的是A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”答案:BCD分析:互斥事件是不能同时发生的事件,因此从这方面来判断即可.排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B、C、D中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥.故选BCD.小提示:本题考查互斥事件的概念,判断是否是互斥事件,就是判断它们能否同时发生,能同时发生的就不是互斥事件,不能同时发生的就是互斥事件.填空题12、甲、乙两人进行乒乓球比赛,比赛规则为“三局两胜制”(即先赢两局者为胜,若前两局某人连胜,则无需比第三局),根据以往两人的比赛数据分析,甲在每局比赛中获胜的概率为23,则本次比赛中甲获胜的概率为___________.答案:2027分析:根据题意,利用相互独立事件的概率乘法公式分别求得甲前两局获胜的概率和前两局中一胜一负,第三局胜利的概率,结合互斥事件的概率加法公式,即可求解.因为甲在每局比赛中获胜的概率为23,若甲前两局获胜,其概率为P1=23×23=49;若甲前两局中一胜一负,第三局胜利,其概率为P2=C21⋅23⋅(1−23)×23=827,所以本次比赛中甲获胜的概率为P=P1+P2=49+827=2027.所以答案是:2027.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合题目复习
(1)题目:有六个人站成一圈(不分方位),甲和乙不相邻,共有多少种排列方法?
方法一:3 x4!
解析:先定下甲的位置,则乙有3个位置。

剩下的4个位置进行全排列。

方法二:若条件中只有不分方位一共有多少种算法?
答案是6
而减去(用捆绑法求出甲和乙相邻时的排列情况)。

所以最后的答案是6。

(2)题目:五个人站成一排,甲和乙必相邻,一共有24种排列方法。

1、甲和丙不相邻
2、乙和丙不相邻
解析:当第一个条件成立时,即甲、丙不相邻时,
利用插空法:首先把甲乙看成一个整体
图示如下
1 ——
2 —— 3
(甲乙)、丙分别插入1、2、3个空隙里面
最后再对甲乙两个进行排列
答案为2
还有一种情况:
对于1——2——3
若(甲乙)丙——————
也不会相邻,则为
答案为2+=36
问题2答案也为36
(3)题目:一共有5个三好名额,8个先进名额。

全部分给甲乙两个部门,且每个部门至少分到一个名额,其中共有( )种分配方法?
A、52
B、40
C、38
D、11
E、35
解析:采用隔板法
概率常用的两个结论:
1、概率相等或者不相等,跟事件之间的独立不独立没有任何的关系。

2、抓阄原理:在抓阄中,不放回的取出,只要前者不公布结果,则此次的概率与前者的概率相同。

(4)研究概率的方法
1、已知中没有概率,求概率的考题:
理解为两个排列组合的问题即可
(一般来说先做分母)
2、已知中有概率,求出概率
一般直接应用(+、原理来操作。

3、已知独立多重事件,求概率的考题,直接套用公式操作。

例子、一共打了10发子弹,每发命中的概率为0.7,求以下概率:
A、每一发均明确时,直接算清次幂即可。

1)、在全中的情况下,概率:0.710
2)、只有第二枪、第三枪命中的概率:0.720.38
3)、直到第八枪才中的概率:0.70.37
4)、第八枪命中的概率是:0.7
5)、第八枪中,第五枪、第六枪都不中的概率:0.70.32
B、每发均不太明确时,先用c进行明确,再按明确的状态操作即可。

1)、其中恰有两枪命中的概率:
2)、直到第八枪才中4枪的概率:
解析:直到第八枪才中了4枪,则第八枪肯定中了,而前七枪中了3枪,直接对前边7枪进行排列就可以了。

3)、直到第4枪才连续中两枪的概率。

(参考年数学高分指南2010年MBA考试真题15题)答案非常详细。

4)、其中共中6枪且第3枪中,第4枪不中概率:
解析:由题目可以知道,除了第3枪和第4枪外,一共有5枪中,还有3枪不中,那么对前边的进行排列:
C、其它状态下的概率:
一般要分类操作:
1)、至少中一枪的概率:
1-
2)、至多中一枪的概率:
中0枪+中1枪
5.猜答案
1)、大概率事件,小概率事件(限制越多,概率越小)
2)、答案中若有两个答案加起来之和等于1,则两个答案从二者之中选择一个
3)、平均分组求概率的考题一般用画图秒杀。

例题:
8个人平均分成两组,其中甲和乙不同组的概率是多少?
0 0 0 0
0 0 0 0
如果甲在第一个位置的话,则乙有四种选择
而乙所有的位置选择一共有七个
那么得出结论
老师讲课中书上不会的题目可以在qq群中交流。

相关文档
最新文档