高考物理二轮复习课时作业5功能关系与能量守恒定律的应用
高考物理二轮复习课件:功和能量知识在力学中的应用
③动能定理涉及的功是外力对物体所做的
总
功 ,外力包括作用在物体上的一切力,既可以是 重力、弹力、摩擦力,也可以是电场力、磁场力或 其他的力.因此,必须对物体作全面的受力分析.
④动能定理可用于恒力作用的过程,也可以用
于变力作用的过程;可以是同时作用的力,也可以 是不同时作用的力.对于研究对象所受的几个外力 不同时作用的复杂过程,无法计算合外力和合外力 的功,物体的动能变化就等于整个过程各个外力所
【点评】 (1)要能把平抛动规律与坡面的抛物线方程正确结合. (2)解决物理问题要学会使用数学手段如求解极值问题.
【例5】如图所示,长为L的轻杆右端和中点分别固 定一个质量都是 m的小球 A和B,杆的左端可绕O点
无摩擦地转动,现将轻杆拉到水平位置后自由释放,
求 杆转到竖直位置时,A、B两球的线速度分别为多
fl 2m时,v′=v 3fl 2 v0+ 时,v′= 2m v2- 0 fl 2m
fl 2m≤v≤
【点评】 要能很好地利用动能定理解决变 力做功问题.
【例3】如图所示,物体在离斜面底端4m处由 静止滑下,若动摩擦因数均为0.5,斜面倾角为 37°,斜面与平面间由一小段圆弧连接,求物
体能在水平面上滑行多远?
90 103 可得匀加速运动的最大速度 v1 F = 1.5 104 m/s 6m/s 牵 由v1=at1 P额
(2)当F牵=0.05mg时,a=0, 汽车能够达到的最大速度
v1 得汽车做匀加速运动的时间为t1 =3s a
P额
90 103 vm m/s 30m/s 0.05mg 3000
高考物理总复习配套课件:5-4 功能关系 能量守恒定律
知识点一 功能关系 [想一想] 如图所示,质量为m的物体在力F的作 用下由静止从地面运动到离地h高处, 已知F= mg,试分别求出在此过程中 重力、力F和合力的功,以及物体的重力 势能、动能和机械能的变化量,并分析 这些量之间存在什么关系?
5 【提示】 重力做功-mgh,力 F 做功 mgh,合 4 1 1 力做功 mgh,重力势能增加 mgh,动能增加 mgh, 4 4 5 机械能增加 mgh。关系:重力做功等于重力势能变 4 化量的负值,合外力的功等于物体动能的变化量,力 F 的功等于物体机械能的变化量。
【提示】 (1)受到的力有重力、向上的拉力 。 (2)各力做功情况如何?哪些力做功可引起机 械能的变化? 【提示】 重力做负功,拉力做正功,除重 力以外的力做功可引起机械能的变化。 【自主解答】 _______________________________________ _______________________________________ ____________________________ 【答案】 D
合 k2 k1 k
(2)重力做功等于物体重力势能的减少: W =E -E =-ΔE 即 。 (3)弹簧弹力做功等于弹性势能的减少: W =E -E =-ΔE 即 。 (4)除了重力和弹簧弹力之外的其他力所做的 W =E -E =ΔE 总功,等于物体机械能的改变,即 。(功能原理)
G p1 p2 p 弹 p1 p2 p 其他力 2 1
变式训练1 (2013· 山东理综)如图所示, 楔形木块abc固定在水平面上,粗糙斜 面ab和光滑斜面bc与水平面的夹角相同, 顶角b处安装一定滑轮。质量分别为M、m(M >m)的滑块,通过不可伸长的轻绳跨过定滑 轮连接,轻绳与斜面平行。两滑块由静止释 放后,沿斜面做匀加速运动。若不计滑轮的 质量和摩擦,在两滑块沿斜面运动的过程中( ) A.两滑块组成系统的机械能守恒 B.重力对M做的功等于M动能的增加 C.轻绳对m做的功等于m机械能的增加
高考物理总复习功能关系 能量守恒定律
2023:山东T4;
题是高考的热点.预计2025年高考题
2022:江苏T10;
出题可能性较大,有可能会结合体
2019:全国ⅡT18
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
返回目录
第4讲
功能关系
能量守恒定律
核心考点
五年考情
命题分析预测
功能关系在选择题中考查的频率比
2 570
车牵引力大小F2= =
2
2
N=285 N,从P到Q,小车匀速行驶,小车牵引力F2=f2+
mg sin 30°,解得f2=F2-mg sin 30°=285
1
N-50×10×
2
N=35 N;从P到Q,小车克服
摩擦力做的功Wf2=f2·PQ=35×20 J=700 J,故D正确.从P到Q,小车上升的高度h=
动能定理得mgh-μmgs cos θ=Ek-0,h=xtan
θ,s=
,解得Ek=mgx(tan
cos
θ-μ),木块
在水平面上运动时,设初动能为Ek0,根据动能定理得-μmg(x-x1)=Ek-Ek0,解得Ek=
Ek0-μmg(x-x1),B正确.木块克服摩擦力做功转化为内能,木块在斜面上时,Q=μmgs
2023:浙江6月T18;
能量守恒定律的应用
2022:河北T9;
2021:山东T18;
2019:江苏T8
较高,特别是功能关系中的图像问
题是高考的热点.预计2025年高考题
出题可能性较大,有可能会结合体
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
高考经典课时作业5-4 功能关系、能量守恒定律
高考经典课时作业5-4 功能关系、能量守恒定律(含标准答案及解析)时间:45分钟 分值:100分1. 木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是( )A .子弹的机械能守恒B .木块的机械能守恒C .子弹和木块的总机械能守恒D .子弹和木块的总能量守恒 2.(2013·长春模拟)如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ,下列说法正确的是( )A .物块滑到b 点时的速度为gRB .物块滑到b 点时对b 点的压力是3mgC .c 点与b 点的距离为RμD .整个过程中物块机械能损失了mgR3.已知货物的质量为m ,在某段时间内起重机将货物以加速度a 加速升高h ,则在这段时间内,下列叙述正确的是(重力加速度为g )( ) A .货物的动能一定增加mah -mgh B .货物的机械能一定增加mah C .货物的重力势能一定增加mah D .货物的机械能一定增加mah +mgh 4.(2013·东城区模拟)2010年广州亚运会上,刘翔重归赛场,以打破亚运会记录的方式夺得110米跨栏的冠军.他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,在向前加速的同时提升身体重心.如图所示,假设质量为m 的运动员,在起跑时前进的距离x 内,重心上升高度为h ,获得的速度为v ,阻力做功为W 阻、重力对人做功W 重、地面对人做功W 地、运动员自身做功W 人,则在此过程中,下列说法中不正确的是( )A .地面对人做功W 地=12mv 2+mghB .运动员机械能增加了12mv 2+mghC .运动员的重力做功为W 重=-mghD .运动员自身做功W 人=12mv 2+mgh -W 阻5.如图所示,一物体从斜面上高为h 处的A 点由静止滑下,滑至斜面底端B 时,因与水平面碰撞仅保留了水平分速度而进入水平轨道,在水平面上滑行一段距离后停在C 点,测得A 、C 两点间的水平距离为x ,设物体与斜面、水平面间的动摩擦因数均为μ,则( )A .μ>hxB .μ<h xC .μ=hxD .无法确定6.(2013·秦皇岛模拟)如图所示,固定的倾斜光滑杆上套有一个质量为m 的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A 点,弹簧处于原长h .让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中( ) A .圆环机械能守恒B .弹簧的弹性势能先增大后减小C .弹簧的弹性势能变化了mghD .弹簧的弹性势能最大时圆环动能最大7.如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上的P 点,已知物体的质量为m =2.0 kg ,物体与水平面间的动摩擦因数μ=0.4,弹簧的劲度系数k =200 N/m.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能E p =1.0 J ,物体处于静止状态,若取g =10 m/s 2,则撤去外力F 后( ) A .物体向右滑动的距离可以达到12.5 cm B .物体向右滑动的距离一定小于12.5 cm C .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0 8.(2013·长春模拟)如图所示,质量为m 的可看成质点的物块置于粗糙水平面上的M 点,水平面的右端与固定的斜面平滑连接,物块与水平面及斜面之间的动摩擦因数处处相同.物块与弹簧未连接,开始时物块挤压弹簧使弹簧处于压缩状态.现从M 点由静止释放物块,物块运动到N 点时恰好静止,弹簧原长小于MM ′.若物块从M 点 运动到N 点的过程中,物块与接触面之间由于摩擦所产生的热量为Q ,物块、弹簧与地球组成系统的机械能为E ,物块通过的路程为s .不计转折处的能量损失,下列图象所描述的关系中可能正确的是( )9.(2012·高考安徽卷)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR10.如图所示,质量为m 的长木块A 静止于光滑水平面上,在其水平的上表面左端放一质量为m 的滑块B ,已知木块长为L ,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F 拉滑块B .(1)当长木块A 的位移为多少时,B 从A 的右端滑出? (2)求上述过程中滑块与木块之间产生的内能.11.(2012·安徽合肥一中联考)如图所示,物块A 的质量为M ,物块B 、C 的质量都是m ,并都可看做质点,且m <M <2m .三物块用细线通过滑轮连接,物块B 与物块C 的距离和物块C 到地面的距离都是L .现将物块A 下方的细线剪断,若物块A 距滑轮足够远且不计一切阻力.求:(1)物块A 上升时的最大速度;(2)若B 不能着地,求Mm满足的条件.12.如图所示, AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力大小; (3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件?标准答案及解析:1.解析:子弹射入木块过程,系统中摩擦力做负功,机械能减少,而共同上摆过程,系统只有重力做功,机械能守恒.综上所述,整个过程机械能减少,减少部分等于克服木块摩擦力做功产生的热量. 答案:D 2.答案:BCD 3.解析:据牛顿第二定律,物体所受的合外力F =ma ,则动能的增加量为mah ,选项A 错误;重力势能的增加量等于克服重力做的功mgh ,选项C 错误;机械能的增量为除重力之外的力做的功(ma +mg )h ,选项B 错误、D 正确. 答案:D 4.解析:由动能定理可知W 地+W 阻+W 重+W 人=12mv 2,其中W 重=-mgh ,所以W 地=12mv 2+mgh -W 阻-W 人,A 错误;运动员机械能的增加量ΔE =W 地+W 阻+W 人=12mv 2+mgh ,B 正确;重力做功W 重=-mgh ,C 正确;运动员自身做功W 人=12mv 2+mgh -W 阻-W 地,D 错误. 答案:AD 5.解析:μmgx <mgh ,则μ<hx,故B 正确.答案:B 6.解析:圆环下滑过程中,圆环和弹簧组成的系统机械能守恒,圆环减少的重力势能转化为动能和弹簧的弹性势能,因初末状态的动能均为零,故弹簧弹性势能的增加量等于圆环重力势能的减少量,故A 错误,C 正确;在整个过程中弹簧先逐渐压缩,再恢复原长,最后又伸长,弹簧的压缩量最大时,圆环的速度还在增大,故B 、D 均错误. 答案:C 7.解析:物体向右滑动时,kx -μmg =ma ,当a =0时速度达到最大,而此时弹簧的伸长量x =μmg k,物体没有回到O 点,故C 错误;因弹簧处于原长时,E p >μmg ·x =0.8 J ,故物体到O 点后继续向右运动,弹簧被压缩,因有E p =μmgx m +E p ′,得x m =E p -E p ′μmg <E pμmg=12.5 cm ,故A 错误、B 正确;因物体滑到最右端时,动能为零,弹性势能不为零,故系统的机械能不为零,D 正确. 答案:BD 8.答案:C 9.解析:一个小球在A 点正上方由静止释放,刚好通过B 点恰好对轨道没有压力,只有重力提供向心力,即:mg =m v 2R ,得v 2=gR ,对全过程运用动能定理可得D 正确.答案:D 10.解析:(1)设B 从A 的右端滑出时,A 的位移为l ,A 、B 的速度分别为v A 、v B ,由动能定理得μm gl =12mv 2A(F -μmg )·(l +L )=12mv 2B又由同时性可得v A a A =v B a B ⎝⎛⎭⎫其中a A =μg ,a B =F -μmg m 可解得l =μmgLF -2μmg.(2)由功能关系知,拉力做的功等于A 、B 动能的增加量和A 、B 间产生的内能,即有F (l +L )=12mv 2A +12mv 2B +Q可解得Q =μmgL . 答案:(1)μmgLF -2μmg (2)μmgL11.解析:(1)A 上升L 时速度达到最大,设为v ,由机械能守恒定律有2mgL -MgL =12(M +2m )v 2得v =2 2m -M g L2m +M.(2)C 着地后,若B 恰不能着地,即B 物块再下降L 时速度为零. 法一:根据转化观点,机械能守恒定律的表达式可写为MgL -mgL =12(M +m )v 2将v 代入,整理得:M =2m .法二:根据转移观点,机械能守恒定律的表达式还可写为:MgL -12Mv 2=mgL +12mv 2代入v ,解得:M =2m 所以Mm >2时,B 物体将不会着地.答案:(1)2 2m -M g L 2m +M(2)Mm > 212.解析:(1)物体在P 点及最终到B 点的速度都为零,对全过程由动能定理得 mgR cos θ-μmg cos θ·s =0①得s =R μ.(2)设物体在E 点的速度为v E ,由机械能守恒定律有mgR (1-cos θ)=12mv 2E②在E 点时由牛顿第二定律有N -mg =mv 2ER③联立②③式解得N =(3-2cos θ)mg .由牛顿第三定律可知物体对圆弧轨道E 点的压力大小为(3-2cos θ)mg . (3)设物体刚好通过D 点时的速度为v D ,由牛顿第二定律有:mg =m v 2DR ,得:v D =gR ④设物体恰好通过D 点时,释放点距B 点的距离为L 0,在粗糙直轨道上重力的功 W G 1=mgL 0sin θ⑤滑动摩擦力的功:W f =-μmg cos θ·L 0⑥在光滑圆弧轨道上重力的功W G 2=-mgR (1+cos θ)⑦对全过程由动能定理得W G 1+W f +W G 2=12mv 2D ⑧联立④⑤⑥⑦⑧式解得:L 0=3+2cos θR 2 s in θ-μcos θ则L ′≥3+2cos θR2 s in θ-μcos θ.答案:(1)Rμ (2)(3-2cos θ)mg(3)L ′≥3+2cos θR 2 s in θ-μcos θ。
人教版2014年高考物理二轮复习专题:五 能量守恒定律的综合应用(含答案解析)
专题五 能量守恒定律的综合应用1. 如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上、半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A. 2RB. 53RC. 43RD. 23R2. (2013·上海八校联考)质量相同的两个物体分别在地球和月球表面以相同的初速度竖直上抛.已知月球表面的重力加速度比地球表面重力加速度小.若不计空气阻力,下列说法中正确的是( )A. 物体在地球表面时的惯性比在月球表面时的惯性大B. 物体在地球表面上升到最高点所用时间比在月球表面上升到最高点所用时间长C. 落回抛出点时,重力做功的瞬时功率相等D. 在上升到最高点的过程中,它们的重力势能变化量相等3. (2013·盐城中学)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直.一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP=2R,重力加速度为g,则小球从P 到B 的运动过程中( )A. 重力做功2mgRB. 机械能减少mgRC. 合外力做功mgRD. 克服摩擦力做功12mgR4. (多选)(2013·宿迁徐州三模)如图所示,弹簧的一端固定在水平面上,另一端与质量为1 kg的小球相连,小球原来处于静止状态.现用竖直向上的拉力F作用在小球上,使小球开始向上做匀加速直线运动,经0.2s弹簧刚好恢复到原长,此时小球的速度为1 m/s.整个过程弹簧始终在弹性限度内,取g=10 m/s2.则( )A. 弹簧的劲度系数为100N/mB. 在00.2s内拉力的最大功率为15WC. 在00.2s内拉力对小球做的功等于1.5JD. 在00.2s内小球和弹簧组成的系统机械能守恒5. (多选)某节能运输系统装置的简化示意图如图所示.小车在轨道顶端时,自动将货物装入车中,然后小车载着货物沿不光滑的轨道无初速度地下滑,并压缩弹簧.当弹簧被压缩至最短时,立即锁定并自动将货物卸下.卸完货物后随即解锁,小车恰好被弹回到轨道顶端,此后重复上述过程.则下列说法中正确的是 ()A. 小车上滑的加速度大于下滑的加速度B. 小车每次运载货物的质量必须是确定的C. 小车上滑过程中克服摩擦阻力做的功小于小车下滑过程中克服摩擦阻力做的功D. 小车与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能6. 在竖直平面内,一根光滑金属杆弯成图示形状,相应的曲线方程为y=2.5cos2π3kx⎛⎫+⎪⎝⎭(单位:m),式中k=1 m-1.将一光滑小环套在该金属杆上,并从x=0处以v0=5m/s的初速度沿杆向下运动,取重力加速度g=10m/s2,下列说法中正确的是()A. 小环沿金属杆运动过程中,机械能不守恒B. 小环运动到x=π2 m 时的速度大小是5m/s C. 小环运动到x=π2 m 时的速度大小是53 m/s D. 小环运动到x=π2 m 时的速度大小是543 m/s7. 摩天大楼中一部直通高层的客运电梯,行程超过百米.电梯的简化模型如图甲所示.考虑安全、舒适、省时等因素,电梯的加速度a 是随时间t 变化的.已知电梯在t=0时由静止开始上升,a-t 图象如图乙所示. 电梯总质量m=2.0×103kg.忽略一切阻力.重力加速度取g=10m/s 2.甲 乙(1) 求电梯在上升过程中受到的最大拉力F 1和最小拉力F 2.(2) 类比是一种常用的研究方法.对于直线运动,教科书中讲解了由v t 图象求位移的方法.请你借鉴此方法,对比加速度和速度的定义,根据图乙所示a t 图象,求电梯在第1s 内的速度改变量Δv 1和第2s 末的速率v 2.(3) 求电梯以最大速率上升时,拉力做功的功率P;再求在011s 时间内,拉力和重力对电梯所做的总功W.8. (2013·资阳一模)一质量为m=2kg的小滑块从半径R=1.25m的14光滑圆弧轨道上的A点由静止滑下,圆弧轨道竖直固定,其末端B切线水平.a、b两轮半径r=0.4m,滑块与传送带间的动摩擦因数μ=0.1,传送带右端点C距水平地面的高度h=1.25m,E为C的竖直投影点.取g=10m/s2.(1) 当传送带静止时,滑块恰能在b轮最高点C离开传送带,则B、C两点间的距离是多少?(2) 当a、b两轮以某一角速度顺时针转动时,滑块从C点飞出落到地面D点,已知C、D 两点水平距离为3m.试求:a、b两轮转动的角速度和滑块与传送带间产生的内能.专题五能量守恒定律的综合应用1. C2. D3. D4. AB5. ABC6. D7. (1) 根据牛顿运动定律F1-mg=ma1,a1=1.0m/s2,代入数据得F1=2.2×104 N.又F2-mg=ma2,a1=-1.0m/s2,代入数据得F2=1.8×104 N.(2) 由面积法有Δv1=12×1×1.0 m/s=0.5m/s,v 2=Δv1+Δv2=0.5 m/s+1.0×1 m/s=1.5m/s.(3) 最大速度vm=0.5 m/s+1.0×9 m/s+0.5 m/s=10 m/s,电梯以最大速率上升时,此时拉力大小等于重力,其做功的功率P=mgvm=2.0×105 W.根据动能定理,在011s时间内,拉力和重力对电梯所做的总功W=ΔEk =12m2m v=1.0×105J.8. (1) 由题知,滑块从A到B由机械能守恒有mgR=12m2B v,滑块由B到C,由动能定理有-μmgx=12m2C v-12m2B v,滑块恰能在C点离开传送带,有mg=m2Cv r,解得x=10.5m.(2) 设滑块从C点飞出的速度为v'C,a、b两轮转动的角速度为ω,则h=12gt2,xED=v'Ct,ω='Cvr,解得ω=15rad/s.滑块在传送带上加速过程,根据牛顿运动定律及功能关系有对滑块μmg=ma,滑块加速时间t='-C Bv v a,滑块位移x1=vBt+12at2,传送带移动的距离x2=v'Ct,产生的内能Q=μmg(x2-x1),解得Q=1J.。
功能关系能量守恒定律
功能关系能量守恒定律什么是功能关系能量守恒定律?它是指在一个封闭系统内,能量从一个形式转化为另一个形式,但总能量保持不变。
这个定律是基于对自然界各个系统的观察和实验总结得出的。
无论是机械系统中的动能和势能转化,还是热系统中的热能转化,能量守恒定律都适用。
例如,当一个物体从高处滑下时,其势能转化为动能,但整个系统的总能量保持不变。
能量守恒定律是自然界中各种现象和过程的基础。
在物理学中,它被广泛应用于解释和描述各种物理现象。
例如,在机械学中,能量守恒定律可以用来解释物体的运动和力学性质。
在热学中,能量守恒定律可以用来解释热传导、热辐射等热现象。
在电磁学中,能量守恒定律可以用来解释电磁场的产生和传播。
在化学中,能量守恒定律可以用来解释化学反应过程中的能量变化。
无论是哪个学科领域,能量守恒定律都是解释和理解自然界中各种现象的重要工具。
功能关系是指事物之间的相互作用和相互影响的关系。
能量守恒定律与功能关系的关联在于它们都涉及到事物之间的转化和守恒。
功能关系可以看作是能量守恒定律在不同领域的具体应用。
无论是机械系统、热系统、电磁系统还是化学系统,它们都是由不同的功能关系构成的。
这些功能关系之间的能量转化和守恒遵循着能量守恒定律。
以机械系统为例,当物体在重力作用下从高处滑下时,其势能转化为动能。
这个过程可以用功能关系进行描述,即重力势能和动能之间的转化关系。
根据能量守恒定律,这个过程中总能量保持不变。
类似地,在热系统中,热能可以转化为机械能或其他形式的能量。
这些能量之间的转化关系可以通过功能关系进行描述,而守恒的总能量则遵循能量守恒定律。
能量守恒定律是自然界中能量转化和守恒的基本规律。
它适用于各个学科领域,包括机械学、热学、电磁学和化学等。
功能关系则是能量守恒定律在不同领域的具体应用,描述了不同形式能量之间的转化关系。
通过研究和理解能量守恒定律和功能关系,我们可以更好地理解自然界中的各种现象和过程。
同时,这也为人类创造和利用能源提供了重要的理论基础。
高考物理专题复习:功能关系能量守恒定律
专题5.4 功能关系能量守恒定律【高频考点解读】1.掌握功和能的对应关系,特别是合力功、重力功、弹力功分别对应的能量转化关系2.理解能量守恒定律,并能分析解决有关问题.【热点题型】题型一功能关系的理解与应用例1、自然现象中蕴藏着许多物理知识,如图541所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()图541A.增大B.变小C.不变D.不能确定解析:选A 人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A 正确。
【提分秘籍】1.对功能关系的理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2.几种常见的功能关系及其表达式各种力做功对应能的变化定量的关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性势能增加,且W弹=-ΔE p=E p1-E p2只有重力、弹簧弹力的功不引起机械能变化机械能守恒ΔE=0非重力和机械能除重力和弹力之外的其他力做正功,物体的机械能弹力的功变化增加,做负功,机械能减少,且W其他=ΔE电场力的功电势能变化电场力做正功,电势能减少,电场力做负功,电势能增加,且W电=-ΔE p【举一反三】轻质弹簧右端固定在墙上,左端与一质量m=0.5 kg的物块相连,如图542甲所示。
弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2。
以物块所在处为原点,水平向右为正方向建立x轴。
现对物块施加水平向右的外力F,F随x轴坐标变化的情况如图乙所示。
高二物理高效课堂资料14 功能关系 能量守恒定律
高二物理高效课堂资料功能关系、能量守恒定律(理解、摩擦力做功与能量的关系、能量守恒定律应用)一、基础知识1.对照一轮资料P90页循图忆知和易错判断,翻阅课本。
2.P91梳理常见功能关系式。
二、做一轮P91-P92相关习题三、小检测(一)功能关系1.小球由地面竖直上抛,上升的最大高度为H,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h处,小球的动能是势能的两倍,在下落至离地高度h处,小球的势能是动能的两倍,则h等于A. B. C. D.2.已知货物的质量为m,在某段时间内起重机将货物以a的加速度加速升高h,则在这段时间内叙述正确的是(重力加速度为g)( )A.货物的动能一定增加mah-mghB.货物的机械能一定增加mahC.货物的重力势能一定增加mahD.货物的机械能一定增加mah+mgh3.如图1所示滑块静止于光滑水平面上,与之相连的轻质弹簧处于自然伸直状态.现用恒定的水平外力F作用于弹簧右端,在向右移动一段距离的过程中,拉力F做了10 J的功.上述过程中( )A.弹簧的弹性势能增加了10 JB.滑块的动能增加了10 JC.滑块和弹簧组成的系统机械能增加了10 JD.滑块和弹簧组成的系统机械能守恒图1(二)摩擦力做功与能量关系1. 如图3所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s的速度运动,运动方向如图所示.一个质量为2 kg的物体(物体可以视为质点),从h=3.2 m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,则:图3(1)物体由静止沿斜面下滑到斜面末端需要多长时间?(2)传送带左右两端AB间的距离l至少为多少?(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少?(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?(三)能量守恒定律的应用某人在距离地面高25 m处,斜向上方抛出一个质量为100g的小球,小球出手时的速度为010v=m/s.落地时的速度为120v=m/s.(取g=10 m/s2)试求:(1)人抛出小球时做了多少功?(2)若小球落地后不反弹,则小球在飞行过程中克服空气阻力做的功.(3)若小球撞地后会继续反弹,但与地相撞没有机械能损失,且小球所受空气阻力大小恒为0.5 N,则小球经过的总路程为多少?2。
2025高考物理总复习功能关系和能量守恒定律
知,动能可以表示为Ek=2s J,设斜面倾角为θ,则有sin
cos
4
θ= ,由功能关系有-μmgcos
5
ℎ
3
θ= = ,
5
θ·s=Ep+Ek-30 J=(30-6s+2s
-30)J=-4s J,可得μ=0.5,B正确;
目录
高中总复习·物理
可得a=μg
由公式0-v2=-2as
可得v= 2。
目录
高中总复习·物理
(2)小车通过20个减速带共损失的机械能ΔE总;
答案:mg(L+19d)sin θ-μmgs
解析:以水平地面为零势能面,开始下滑处小车的机械能为E1
=mg(L+19d)sin θ
1
通过20个减速带时小车的机械能为E2= mv2=μmgs
C. 物块下滑时加速度的大小为6.0 m/s2
D. 当物块下滑2.0 m时机械能损失了12 J
目录
高中总复习·物理
解析:
由重力势能和动能随下滑距离s变化的图像可知,重力
势能和动能之和随下滑距离s的增大而减小,可知物块下滑过程中
机械能不守恒,A正确;在斜面顶端,重力势能Ep=mgh=30 J,解
得物块质量m=1 kg,由重力势能随下滑距离s变化图像可知,重力
(1)求摩擦力对滑块做功时用滑块对地的位移x滑;
(2)求摩擦力对木板做功时用木板对地的位移x板;
(3)求摩擦生热时用相对位移Δx或相对滑行路程。
目录
高中总复习·物理
【典例4】 如图所示,A为一具有光滑曲面的固
定轨道,轨道底端是水平的,质量为M=20 kg的
平板小车B静止于轨道右侧,其上表面与轨道底端
新课标高考物理二轮复习 专题06-功能关系和能量守恒(解析版)
高考物理二轮复习专题内容06功能关系和能量守恒§知识网络§1.机械能守恒定律(1)守恒条件①只有重力或系统内弹簧弹力做功。
②虽受其他力,但其他力不做功或做的总功为零。
(2)三种表达式①守恒的观点:E k1+E p1=E k2+E p2。
②转化的观点:ΔE p=-ΔE k。
③转移的观点:E A增=E B减。
2.几种常见的功能转化关系(1)合力的功影响动能,关系式为W合=ΔE k。
(2)重力的功影响重力势能,关系式为W G=-ΔE p。
(3)弹簧弹力的功影响弹性势能,关系式为W弹=-ΔE p。
=-ΔE p。
(4)电场力的功影响电势能,关系式为W电系,判定能的转化形式,确定能量之间转化多少。
(2)也可以根据能量之间的转化情况,确定是什么力做功,尤其可以方便计算变力做功的多少。
3.典例分析【答案】BC【解析】由功能关系除重力和弹簧弹力以外的力做功等于机械能的增加量,知E-h图象的切线斜率表示升降机对物体的支持力。
0~h1切线斜率逐渐变小,则支持力逐渐变小,但支持力肯定与运动方向相同,在此阶段一直做正功,故B选项正确。
0~h1过程,动能如何变化,要看合外力做的功,合外力一开始向上,随支持力减小是不是合外力一直向上则不确定,故A选项错误。
h1~h2过程,E-h切线斜率不变,故支持力不变,若支持力等于重力,则C选项正确,h1~h2物体随升降机向上运动重力做负功,重力势能增加,故D选项错误。
4.相关类型题目某同学将质量为m的一矿泉水瓶(可看成质点)竖直向上抛出,水瓶以54g的加速度匀减速上升,上升的最大高度为H。
水瓶往返过程受到的阻力大小不变,则()A.上升过程中水瓶的动能减少量为54mgHB.上升过程中水瓶的机械能减少了54mgHC.水瓶落回地面时动能大小为14mgHD.水瓶上升过程处于超重状态,下落过程处于失重状态【答案】A【解析】水瓶以a=54g减速上升,设阻力为f,则有mg+f=ma,解得阻力f=14mg,上升阶段动能的改变量等于合外力做功,W合=-maH=-54mgH,故A选项正确。
高三二轮复习《第2讲 功能关系、机械能守恒定律和能量守恒定律》教案
专题五功和能第2讲功能关系机械能守恒定律和能量守恒定律一、核心知识、方法回扣:1.机械能守恒定律:(1)内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.(2)机械能守恒的条件①对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.②对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.(3)三种表达式:①守恒的观点:____ ____ _____。
②转化的观点:_____ _____。
③转移的观点:_____ ___。
2.几个重要的功能关系(1)重力的功等于的变化,即W G=.(2)弹力的功等于的变化,即W弹=.(3)合力的功等于的变化,即W=.(4)重力之外(除弹簧弹力)的其他力的功等于的变化.W其他=ΔE.(5)一对滑动摩擦力做的功等于的变化.Q=F·s相对.3.静电力做功与无关.若电场为匀强电场,则W=Fs cos α=Eqs cos α;若是非匀强电场,则一般利用W=来求.4.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都;安培力可以做正功、负功,还可以不做功.5.电流做功的实质是电场对做功.即W=UIt=.6.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做功,使机械能转化为能.7.静电力做功等于的变化,即W AB=-ΔE p.二、方法、规律:1.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功代数和是否.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系.②根据研究对象所经历的物理过程,进行、分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始末状态时的机械能.④根据机械能守恒定律列方程,进行求解.2.功能关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,通过审题,抓住和运动过程分析是关键,然后根据不同的运动过程各力做功的特点来选择规律求解. 3.力学中的动能定理和能量守恒定律在处理电学中能量问题仍然是首选的方法.三、错题集:1、如图所示,桌面高地面高H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A.mgh B.mgH C.mg(H+h) D.mg(H-h)2、以下过程中机械能守恒的是()A.以8m/s2的加速度在空中下落的石块B.沿固定的光滑斜面自由下滑的滑块C.正在升空的火箭D.吊在轻质弹簧下端正在自由振动的小球3、如图所示,质量分别为2m和m的A、B两物体用不可伸长的轻绳绕过轻质定滑轮相连,开始两物体处于同一高度,绳处于绷紧状态,轻绳足够长,不计一切摩擦。
高考物理总复习第五章 第4讲 功能关系、能量守恒定律
2013-11-27 有志者事竟成 9
高考复习· 物理
3.(2012· 安徽理综)如图5-4-1所示,在竖直平面内有 一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量 为m的小球自A的正上方P点由静止开始自由下落,小球沿轨 道到达最高点B时恰好对轨道没有压力.已知AP=2R,重力 加速度为g,则小球从P到B的运动过程中( )
2013-11-27
有志者事竟成
4
高考复习· 物理
(4)电场力做功:电势能与其他能相互转化. (5)安培力做功:电能和机械能相互转化. 二、能量守恒定律 1.内容. 能量既不会消灭,也不会创生,它只能从一种形式转化 为另一种形式,或者从一个物体转移到另一个物体,而在转 化和转移的过程中,能量的总量保持不变.
A.逐渐升高 B.逐渐降低 C.先降低后升高 D.始终不变
2013-11-27
有志者事竟成
17
高考复习· 物理
解析
由题意知外力对绳索做正功,机械能增加,重心
升高,故选A项.
答案
A
高考复习· 物理
题型归类•深度剖析
2013-11-27
有志者事竟成
19
高考复习· 物理
8
高考复习· 物理
解析 功的计算公式W=Fscosα中的s是指相对于地面 的位移,滑动摩擦力和静摩擦力仅起阻碍物体间的相对运动 (或相对运动趋势)的作用,它与物体对地“绝对位移”的方 向既可能相同也可能相反,说它们一定做负功是错误的.物 体间有静摩擦力作用时两物体相对静止,物体可以对地移 动,所以静摩擦力也可能做功.物体间有相对滑动时,伴随 机械能的损耗(转化为内能),所以一对滑动摩擦力做功的总 和恒为负值.
答案 A
高考物理 专题5-4 功能关系 能量守恒定律(教学案)
【高频考点解读】1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系。
2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题。
【热点题型】热点题型一功能关系的理解和应用例1(2018年江苏卷)如图所示,轻质弹簧一端固定,另一端连接一小物块,O 点为弹簧在原长时物块的位置.物块由A 点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B 点.在从A 到B 的过程中,物块()A.加速度先减小后增大B.经过O 点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功【答案】AD【变式探究】【2017·新课标Ⅲ卷】如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂。
用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l 。
重力加速度大小为g 。
在此过程中,外力做的功为A .19mgl B .16mgl C .13mglD .12mgl【答案】A【变式探究】质量为m的物体由静止开始下落,由于空气阻力影响,物体下落的加速度为45g,在物体下落高度为h的过程中,下列说法正确的是() A.物体的动能增加了45mghB.物体的机械能减少了45mghC.物体克服阻力所做的功为45mghD.物体的重力势能减少了45mgh解析:由牛顿第二定律有mg-f=ma,由a=45g得f=15mg,利用动能定理有W=Fh=45mgh=ΔE k,选项A正确;判断机械能的变化要看除重力外其他力的做功情况,-fh=-15mgh=ΔE,说明阻力做负功,机械能减少1 5mgh,选项B错误;物体克服阻力做功应为15mgh,选项C错误;高度下降了h,则重力势能减少了mgh,选项D错误。
答案:A【提分秘籍】1.对功能关系的进一步理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现到不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
高三物理二轮复习课教学设计案例-功能关系 能量守恒
高三物理二轮复习课教学设计案例——功能关系能量守恒(长沙市长郡中学高三物理李龙军)【教材分析】1、功能关系能量守恒是是贯穿整个物理的一条主线,每年的高考中都要涉及到,综合程度高,考查的能力要求高。
2、高考考纲上要求掌握:“功能关系、机械能守恒定律及其应用”。
3、功能关系和能量守恒是高考的重点,更是高考的热点,往往与电场、磁场以及典型的运动规律相联系,并常作为压轴题出现。
可能从以下角度组织命题:(1) 滑动摩擦力做功情况下的功能关系问题.(2) 与带电粒子在电场、磁场、复合场中的运动相综合的问题。
【学情分析】1、我校学生整体层次较高,要求在高考中要尽量少丢分,然而很多学生知识迁移能力、综合分析能力和模型构建应用能力其实并不强,而且不善于思考,还存在“眼高手低”的问题。
2、新课程理念要求,教育教学过程中师生地位要均等,要以人为本,坚持学生的主体地位,教师的主导地位。
3、本节课是方法的探究归纳课,呈现在学生面前的是现象,是问题,当然也要结论。
受应试教育的影响,在上课前告诉学生上课的内容,学生会将结论记住,在课堂上机械的,剧本式的配合老师,没有深入的思考,达不到教学的目的,因此本节课的教学没有要求学生预习。
4、面对新现象,新问题,没有唯一固定的答案,学生有浓厚的探究欲望,为其思维的发散提供了较大的空间。
从另外一个角度讲,本节内容,数学运算,物理理论要求不高,适当地又降低了学习难度,重点在受力分析、过程分析、方法选择上,选择探究式教学是最佳的途径。
【教学目标】1、知识与技能a)通过对几个典型例题的探究分析,找到几种常用的功能关系,特别是合力功、重力功、弹力功以及除重力、弹力外其他力的功分别所对应的能量转化关系,并会在平时的学习和考试中灵活运用。
b)理解能量守恒定律,并能分析解决有关问题。
c)通过对同一个问题中可能涉及的多种方法进行反复对比分析,找到最佳方法,培养学生分析问题和解决问题的能力。
2、过程与方法a)学会从能量转化和守恒的观点来解释物理现象,分析物理问题。
高三物理:功能关系及能量守恒的综合应用(解析版)
功能关系及能量守恒的综合应用1.功能关系及能量守恒在高考物理中占据了至关重要的地位,因为它们不仅是物理学中的基本原理,更是解决复杂物理问题的关键工具。
在高考中,这些考点通常被用于检验学生对物理世界的深刻理解和应用能力。
2.从命题方式上看,功能关系及能量守恒的题目形式丰富多样,既可以作为独立的问题出现,也可以与其他物理知识点如牛顿运动定律、动量守恒定律等相结合,形成综合性的大题。
这类题目往往涉及对能量转化、传递、守恒等概念的深入理解和灵活运用,对考生的逻辑思维和数学计算能力有较高的要求。
3.备考时,考生需要首先深入理解功能关系及能量守恒的基本原理和概念,明确它们之间的转化和守恒关系。
这包括理解各种形式的能量(如动能、势能、热能等)之间的转化关系,以及能量守恒定律在物理问题中的应用。
同时,考生还需要掌握相关的公式和计算方法,如动能定理、机械能守恒定律等,并能够熟练运用这些公式和方法解决实际问题。
4.考向一:应用动能定理处理多过程问题1.解题流程2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。
(2)应用动能定理的关键在于对研究对象进行准确的受力分析及运动过程分析,并画出运动过程的草图,借助草图理解物理过程之间的关系。
(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解,这样更简便。
(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验。
考向二:三类连接体的功能关系问题1.轻绳连接的物体系统常见情景二点提醒(1)分清两物体是速度大小相等,还是沿绳方向的分速度大小相等。
(2)用好两物体的位移大小关系或竖直方向高度变化的关系。
2.轻杆连接的物体系统常见情景三大特点(1)平动时两物体线速度相等,转动时两物体角速度相等。
(2)杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒。
二轮复习 功能关系 能量守恒
2.机械能守恒定律的表达形式 1 2 1 (1)守恒形式:E1=E2,即 mgh+ mv =mgh′+ mv′2, 2 2 适用于一个物体. (2)转化形式:ΔEk=-ΔEp,适用于一个、两个或多个物体. (3)转移形式:ΔEA=-ΔEB,适用于两个物体.
3.机械能守恒定律解题的基本思路 (1)选取研究对象——物体系或物体. (2)根据研究对象所经历的物理过程,明确初、末状态,进 行受力、做功分析,判断机械能是否守恒. (3)恰当地选取参考平面,确定研究对象在过程的初、末态 时的机械能. (4)根据机械能守恒定律列方程,进行求解.
机械能守恒定律及应用
[例 1]
(2013· 保定高三摸底)如图所示,在竖直墙面内建立
直角坐标系 xOy,x、y 轴分别沿水平和竖直方向,用细线的一端 连接一小球,另一端固定在原点 O,细线长度为 l,小球的质量 为 m.将细线拉直到水平位置,由静止释放小球,细线摆动中碰 到墙上的钉子后, 绕钉子做圆周运动, 不计空气阻力和一切摩擦, 忽略钉子的直径.
2
l 1 mg2-r= mv2 1,联立解得 2
l r= 3
2 l 2 2 x1 满足3l =x1+22
l 2 2 =x2+
2
3 解得 x2= l 2 则钉子在虚线上的横坐标范围 7 3 3 7 l≤x≤ l 或- l≤x≤- l. 6 2 2 6 答案:见解析
运用能量守恒定律解题的基本思路
3.如图所示,光滑坡道顶端距水平面高度为 h,质量为 m 的小物块 A 从坡道顶端由静止滑下,进入水平面上的滑道时无 机械能损失,为使 A 制动,将轻弹簧的一端固定在水平滑道 M 处的墙上,另一端恰位于滑道的末端 O 点.已知在 OM 段,物 块 A 与水平面间的动摩擦因数均为 μ,其余各处的摩擦不计, 重 力加速度为 g.
高考物理二轮复习课时作业功能关系与能量守恒定律的应用.doc
.如图所示,一根绳的两端分别固定在两座猴山上的A、B间绳长为20 m.质量为10 kg的猴子抓住套在绳上的滑环从点所在水平面为参考平面,猴子在滑行过程中重力势能最小值约为重力势能最小的点为最低点,结合“同绳同力”可知,,设右边绳子长为a,则左边绳长为sinθ-(20-a)sinθ=如图所示,光滑水平桌面上由大小相同的铜环串在一起的匀质铜链总质量为.如图所示,竖直实线表示某匀强电场中的一簇等势面,具有一定初速度的带电小球如图中虚线所示).小球只受电场力和重力,私家车的拥有量大幅增加,在出行便利的同时也给城市的交产生的尾气也会污染环境.为把整个城市的交通真正做得顺畅,某公司设计了“云轨”作为中小运力的轨道交通产品.稳定和导向,车体骑跨在轨道梁上运行,设小球抛出瞬间的速度大小为v0,抛出后,某时刻t小球的速度-gt)2,结合数学知识知,选项A正确.如图,水平地面上有一固定光滑斜面AB,其底端B点与半径为与圆心在同一水平线上,M、N为C点正上方两点,距离点静止释放,小球在AB上能到达的最高处接着小球沿斜面滑下返回进入圆弧轨道,若不考虑空气阻力,则解析:据题意可知,小球从M点静止释放能到达D点,据此可知在B点损失的能量为mgR(在B点能量的损失与在B点的速度有关);当小球从D点返回时,在B点损失的能量小于mgR.当小球从D点返回过程中,由于在B点损失的能量小于mgR,据能量守恒可知,小球返回时能到达C点以上,N点以下,故A、B错误,C正确.若将小球从N点静止释放,在B 点损失能量且小于mgR,所以小球在AB上能到达的最高处距水平面的高度h满足R<h<2R,故D错误.答案:C7.如图所示,正电荷Q固定于O点,在M、N两点各有一个带电荷量分别为q M、q N(q M<q N)的点电荷.已知两点电荷的质量相等,某时刻两点电荷以大小相同的速度v0向O点运动,运动过程中两点电荷均未到达O点.已知MO=NO,若刚开始运动时点电荷q M、q N的加速度大小分别为a M、a N,q M、q N距离O点最近的距离分别为r M、r N,分别从M、N点出发到距离O 点最近的过程中,q M、q N克服电场力做功分别为W M、W N,仅考虑Q对点电荷q M、q N的电场力作用,下列判断正确的是( )A.a M<a N B.r M>r NC.r M=r N D.W M=W N解析:根据库仑定律可知,在距离相等时,带电荷量较大的点电荷q N所受的库仑力较大,由牛顿第二定律可知q N刚开始运动时的加速度较大,即a N>a M,选项A正确;由于两个点电荷的初动能相同,根据动能定理,分别从M、N点出发到距离O点最近的过程中,q M、q N克服电场力做功相同,即W M=W N,选项D正确;由于q M、q N克服电场力做功相同,而q N所受的库仑力较大,所以q N运动的距离较小,q N距离O点最近的距离较大,即r M<r N,选项B、C错误.答案:AD8.[2018·浙江杭州诊断]如图所示,在一竖直平面内,BCDF段是半径为R的圆弧形挡板,AB段为直线形挡板(长为4R),两者在B点相切,θ=37°,C、F两点与圆心等高,D 在圆弧形挡板的最低点,所有接触面均光滑,绝缘挡板处于水平方向场强为E的匀强电场中.现将带电荷量为+q,质量为m的小球从挡板内侧的A点由静止释放,小球沿挡板内侧ABCDF运动到F点后抛出,在这段运动过程中,下列说法正确的是(sin37°=0.6,cos37°、截面积S=1.0×10-5 m向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率0.20 m的竖直导轨,下端连接阻值-2kg的导体棒ab间的区域仅有垂直纸面的不随时间变化的匀强磁场B2.接通开关为零.假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻.的大小,并指出磁场方向;后撤去挡条,棒开始下滑,经t=0.25 s点的距离;物块在斜面上滑行的总时间(结果可用根式表示).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.如图所示,一根绳的两端分别固定在两座猴山上的A、B
间绳长为20 m.质量为10 kg的猴子抓住套在绳上的滑环从点所在水平面为参考平面,猴子在滑行过程中重力势能最小值约为
重力势能最小的点为最低点,结合“同绳同力”可知,
,设右边绳子长为a,则左边绳长为
sinθ-(20-a)sinθ=
如图所示,光滑水平桌面上由大小相同的铜环串在一起的匀质铜链总质量为
.如图所示,竖直实线表示某匀强电场中的一簇等势面,具有一定初速度的带电小球
如图中虚线所示).小球只受电场力和重力,
私家车的拥有量大幅增加,在出行便利的同时也给城市的交产生的尾气也会污染环境.为把整个城市的交通真正做得顺畅,
某公司设计了“云轨”作为中小运力的轨道交通产品.
稳定和导向,车体骑跨在轨道梁上运行,
设小球抛出瞬间的速度大小为v0,抛出后,某时刻t小球的速度
-gt)2,结合数学知识知,选项A正确.
如图,水平地面上有一固定光滑斜面AB,其底端B点与半径为
与圆心在同一水平线上,M、N为C点正上方两点,距离
点静止释放,小球在AB上能到达的最高处
接着小球沿斜面滑下返回进入圆弧轨道,若不考虑空气阻力,则
解析:据题意可知,小球从M点静止释放能到达D点,据此可知在B点损失的能量为mgR(在B点能量的损失与在B点的速度有关);当小球从D点返回时,在B点损失的能量小于mgR.当小球从D点返回过程中,由于在B点损失的能量小于mgR,据能量守恒可知,小球返回时能到达C点以上,N点以下,故A、B错误,C正确.若将小球从N点静止释放,在B 点损失能量且小于mgR,所以小球在AB上能到达的最高处距水平面的高度h满足R<h<2R,故D错误.
答案:C
7.如图所示,正电荷Q固定于O点,在M、N两点各有一个带电荷量分别为q M、q N(q M<q N)的点电荷.已知两点电荷的质量相等,某时刻两点电荷以大小相同的速度v0向O点运动,运动过程中两点电荷均未到达O点.已知MO=NO,若刚开始运动时点电荷q M、q N的加速度大小分别为a M、a N,q M、q N距离O点最近的距离分别为r M、r N,分别从M、N点出发到距离O 点最近的过程中,q M、q N克服电场力做功分别为W M、W N,仅考虑Q对点电荷q M、q N的电场力作用,下列判断正确的是( )
A.a M<a N B.r M>r N
C.r M=r N D.W M=W N
解析:根据库仑定律可知,在距离相等时,带电荷量较大的点电荷q N所受的库仑力较大,由牛顿第二定律可知q N刚开始运动时的加速度较大,即a N>a M,选项A正确;由于两个点电荷的初动能相同,根据动能定理,分别从M、N点出发到距离O点最近的过程中,q M、q N克服电场力做功相同,即W M=W N,选项D正确;由于q M、q N克服电场力做功相同,而q N所受的库仑力较大,所以q N运动的距离较小,q N距离O点最近的距离较大,即r M<r N,选项B、C错误.
答案:AD
8.[2018·浙江杭州诊断]如图所示,在一竖直平面内,BCDF段是半径为R的圆弧形挡板,AB段为直线形挡板(长为4R),两者在B点相切,θ=37°,C、F两点与圆心等高,D 在圆弧形挡板的最低点,所有接触面均光滑,绝缘挡板处于水平方向场强为E的匀强电场中.现将带电荷量为+q,质量为m的小球从挡板内侧的A点由静止释放,小球沿挡板内侧ABCDF运动到F点后抛出,在这段运动过程中,下列说法正确的是(sin37°=0.6,cos37°
、截面积S=1.0×10-5 m
向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率
0.20 m的竖直导轨,下端连接阻值
-2kg的导体棒ab
间的区域仅有垂直纸面的不随时间变化的匀强磁场B2.接通开关
为零.假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻.
的大小,并指出磁场方向;
后撤去挡条,棒开始下滑,经t=0.25 s
点的距离;
物块在斜面上滑行的总时间(结果可用根式表示).。