第节 Smith 圆图及应用阻抗匹配
阻抗匹配与史密斯(Smith)圆图基本原理
阻抗匹配与史密斯(Smith)圆图:基本原理本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。
实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括:∙计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
∙手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
∙经验:只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
∙史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
Smith(史密斯)圆图阻抗匹配
利用归一化阻抗与反射系数之间的一一对应 关系,将归一化阻抗表示在反射系数复平面上。
(z ') 2e j2z' 2 e j(2 2z')
构成反射系数复平面
2
ZL Z0 ZL Z0
2
tan 1
RL2
2 X LZ0
X
2 L
Z02
Z (z ') R jX 1 (z ') 1 (z ')
可得
2a b2 2 2 且 2 1
等反射系数模值圆的方程
jb
||=0.5 S=3
j
||=1, =0
开路点
a
1
1
||=1, = 短路点
j
||=0.2 S=1.5
1、反射系数曲线坐标(续)
2 2 z ' tan1 a b 反射系数相角射线方程
X
2b
(1
2 a
)2
b2
a
2
R R 1
b2
1
2
R 1
等归一化电阻圆方程
a
12
b
1 X
2
1 X
2
等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
一一对应关系
二、圆图的基本构成
阻抗圆图是表示在复平面上的反射系数和归 一化阻抗轨迹图,包括两个曲线坐标系统和四簇 曲线。
阻抗匹配与史密斯(Smith)圆图:基本原理
阻抗匹配与史密斯(Smith)圆图:基本原理在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括:计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
用史密斯圆图做RF阻抗匹配课件
解决方案
通过使用史密斯圆图,可以方便 地找到最佳的阻抗匹配点,并设
计出相应的匹配网络。
案例分析
在具体案例中,需要考虑系统的 实际情况,如信号频率、传输线 长度和类型、元件参数等,通过 调整匹配网络的参数,实现最佳
的阻抗匹配效果。
01
实践操作与案例分 析
实际操作:使用史密斯圆图进行RF阻抗匹配
01
02
03
04
05
史密斯圆图简介
1. 确定源阻抗和 负载…
2. 绘制史密斯圆 3. 寻找匹配点 图
4. 设计匹配网络
史密斯圆图是一种用于表 示阻抗、导纳和反射系数 的图示方法,通过在图上 旋转和缩放,可以方便地 找到最佳的阻抗匹配点。
问题1
01 信号反射大,传输效率低。
解决方案
02 调整传输线的特征阻抗或信号
源的输性差,容易受到干扰
。
解决方案
04 通过阻抗匹配,减小信号反射
和能量损失,提高系统的稳定 性和可靠性。
问题3
05 无法找到最佳的阻抗匹配点。
解决方案
06 使用史密斯圆图进行阻抗匹配
用史密斯圆图做RF 阻抗匹配课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 史密斯圆图简介 • RF阻抗匹配概述 • 使用史密斯圆图进行RF阻抗匹配 • 史密斯圆图的高级应用与技巧 • 实践操作与案例分析
01
史密斯圆图简介
史密斯圆图的历史与发展
史密斯圆图由工程师Reginald Aubrey Smith于1937年发明,
用于解决阻抗匹配问题。
随着无线通信技术的发展,史密 斯圆图在RF领域的应用越来越
smith圆图的原理和应用
Smith圆图的原理和应用1. 前言Smith圆图是一种用于分析和解决电路中匹配问题的有效工具。
它由英国电气工程师Philip H. Smith于1939年创造,被广泛应用于射频电路、微波电路和天线设计等领域。
本文将介绍Smith圆图的基本原理和其在电路设计中的应用。
2. Smith圆图的基本原理2.1 反射系数和阻抗的关系Smith圆图是基于反射系数和阻抗之间的关系来进行分析的。
在电路中,反射系数表示反射波与入射波之间的关系,它是一个复数,可以用幅值和相位角来表示。
而阻抗则表示电路的负载特性,是一个实数。
Smith圆图将反射系数和阻抗之间的关系以一种直观而又简洁的方式进行了可视化。
2.2 Smith圆图的表示方式Smith圆图以单位圆为基础,将纯虚轴表示为电阻为无穷大的点,将实轴表示为电抗为零的点。
反射系数的值可以通过在Smith圆图上找到相应的点来表示。
例如,反射系数为0时,点位于单位圆的中心,反射系数为1时,点位于单位圆的边缘。
3. Smith圆图的应用3.1 反射系数的测量Smith圆图可以用于测量电路中的反射系数。
通过将电路与信号源和负载连接,可以使用向电路中注入信号的方式来测量反射系数。
通过测量反射系数的幅值和相位角,并将其在Smith圆图上进行标记,可以得到电路的匹配情况。
3.2 阻抗匹配Smith圆图可以帮助我们进行阻抗匹配,即调整电路的参数,以使得电路的输入和输出阻抗相匹配。
在Smith圆图上,我们可以通过移动点的位置来调整电路的参数,直至反射系数最小化。
通过在Smith圆图上定位匹配的点,可以快速找到合适的参数设置。
3.3 确定失配的原因Smith圆图可以帮助我们确定电路中失配的原因。
当电路的反射系数不为零时,可以使用Smith圆图来定位反射点,并判断失配的原因。
例如,如果反射系数位于实轴上,则说明电路存在电抗失配;如果反射系数位于圆心,则说明电路存在电阻失配。
3.4 天线设计Smith圆图在天线设计中也有广泛的应用。
Smith圆图在天线阻抗匹配上的应用
Smith圆图在天线阻抗匹配上的应用天线性能的好坏直接决定了所发射信号的强弱,在调试天线时,阻抗匹配、电压驻波比对天线的性能影响很大,在调试阻抗以及驻波比时,利用Smith圆图能够简单方便的提供帮助。
通过Smith圆图,我们能够迅速的得出在传输线上任意一点阻抗、电压反射系数、驻波比等数据。
图1-1Smith圆图如图1-1所示,Smith圆图中包括电阻圆(图中红色的,从右半边开始发散的圆)和电导圆(图中绿色的,从左半圆发散开的圆),和电阻电导圆垂直相交的半圆则称为电抗圆,其中,中轴线以上的电抗圆为正电抗圆(表现为感性),中轴线以下的为负电抗圆(表现为容性)。
一、利用Smith圆图进行阻抗匹配1、使用并联短截线的阻抗匹配我们可以通过改变短路的短截线的长度与它在传输线上的位置来进行传输网络的匹配,当达到匹配时,连接点的输入阻抗应正好等于线路的特征阻抗。
图2-1并联短截线的阻抗匹配假设传输线特征阻抗的导纳为Yin,无损耗传输线离负载d处的输入导纳Yd=Yin+jB(归一化导纳即为1+jb),输入导纳为Ystub=-jB的短截线接在M点,以使负载和传输线匹配。
在Smith圆图上的操作步骤:1.做出负载的阻抗点A,反向延长求出其导纳点B;2.将点B沿顺时针方向(朝着源端)转动,与r=1的圆交于点C和D;3.点D所在的电抗圆和圆周交点为F;4.分别读出各点对应的长度,B(aλ),C(bλ),F(kλ);5.可以得出:负载至短截线连接点的最小距离d=bλ-aλ,短截线的长度S=kλ-0.25λ。
图2-2Smith圆图联短截线的阻抗匹配2、使用L-C电路的阻抗匹配在RF电路设计中,还经常用L-C电路来达到阻抗匹配的目的,通常的可以有如下8种匹配模型可供选择:图2-3L-C阻抗匹配电路这些模型可根据不同的情况合理选择,如果在低通情况下可选择串联电感的形式,而在高通时则要选择串联电容的形式。
使用电容电感器件进行阻抗匹配,在Smith圆图上的可以遵循下面四个规则:-沿着恒电阻圆顺时针走表示增加串联电感;-沿着恒电阻圆逆时针走表示增加串联电容;-沿着恒电导圆顺时针走表示增加并联电容;-沿着恒电导圆逆时针走表示增加并联电感。
阻抗匹配与史密斯(Smith)圆图:基本原理
Advanced Design System 简称ADS它 是由Agilent公司出品的一款电路仿真软件,随着射频微波产品的广泛应用,从事电路设计开发的人也越来越多,所以掌握应用一种辅助设计软件对我们的工 作将会是事半功倍的一件好事。
现在我也对自己学习ADS的经验拿出来与大家分享一下,以便大家更加了解ADS也让大家更快的认识ADS.首先我 要强调的是理论知识,如果没有一个基本的基础知识,运用ADS那不过只是纸上谈兵罢了!就简单的说威尔金森功分器,3dB电桥,LANGE,filter 等,如果你不了解它们的一些理论知识,光有ADS你首先是无从下手的,其次就算你设计出了电路但你不知道结果是该如何。
甚至就算你作出来了并且结果也很好 但是却没法在实际中实现。
所以再学习ADS 之前我建议大家补习自己的理论知识。
再说ADS 的学习,有好多人再所求ADS的教材其实我觉得最好的教材还在于ADS本身,就是HELP文件和它自带的designguide,我就是从 designguide里学习了如放大器大信号,小信号等放大器本身相关的一些性能的电路仿真!在designguide里还有如滤波器,振荡器,PLL 等电路的examples,通过这些例子你会全面的了解ADS的功能还有它代给我们的便捷。
但这需要你耐下性子去看。
简单的谈了一下ADS的学习,自己也是琢磨的一些经验可能也有不足的地方,在以后的日子我也会通过一些简单的例子带大家更深的了解ADS。
最后再提一句ADS不是万能的,我不希望大家太依赖与它,毕竟实践才是检验真理的唯一标准。
阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
如何用史密斯圆图进行阻抗匹配
如何用史密斯圆图进行阻抗匹配史密斯圆图简介史密夫图表(Smith chart,又称史密斯圆图)是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。
是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。
该图由三个圆系构成,用以在传输线和某些波导问题中利用图解法求解,以避免繁琐的运算。
一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密夫图表的特点便是省略一些计算程序。
阻抗匹配简介阻抗匹配(impedance matching)信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。
否则,便称为阻抗失配。
有时也直接叫做匹配或失配。
如何用史密斯圆图进行阻抗匹配史密斯圆图红色的代表阻抗圆,蓝色的代表导纳圆!先以红色线为例!圆中间水平线是纯阻抗线,如果有点落在该直线上,表示的是纯电阻!例如一个100欧的电阻,就在中间那条线上用红色标2.0的地方;15欧的电阻就落在中间红色标0.3的点上!水平线上方是感抗线,下方是容抗线;落在线上方的点,用电路表示,就是一个电阻串联一个电感,落在线下方的点,是一个电阻串联一个电容。
图上的圆表示等阻抗线,落在圆上的点阻抗都相等,向上的弧线表示等感抗线,向下的弧线表示等容抗线!可以看出是感是容,是高是低接着讲蓝色线。
因为导纳是阻抗的倒数,所以,很多概念都很相似。
中间的是电导线,图上的圆表示等电导圆,向上的是等电纳线,向下的是等电抗线!用。
(完整版)史密斯圆图及应用
(z) u jv
Z(z) 1 (z) 1 (z)
Z (z) 1 u jv 1 u jv
1 (u2
2 v
)
j
2u
(1 u )2 v2 (1 u )2 v2
r jx
阻抗圆图----等阻抗圆
r 1 (u2 v2 ) (1 u )2 v2
x
2u
(1 u )2 v2
(u
r
r )2 1
– 已知负载阻抗ZL,确定传输线上第一个电 压波腹点与波节点距离负载的距离;
– 已知驻波系数VSWR及距离负载电压波节 点的位置,确定负载阻抗ZL
阻抗圆图的应用----阻抗变换
一个典型的包含有长度为d、特性阻抗为Z0、终端 负载为ZL的传输线的电路,采用Smith圆图分析 其阻抗特性,可以按以下步骤进行:
两个旋转方向
– 顺时针向源 – 逆时针向负载
阻抗圆图----特点
Smith圆图可以直接提供如下信息
– 直接给出归一化输入阻抗值zin ,乘以特性 阻抗即为实际值;
– 直接给出反射系数的模值||及其相位; – 根据反射系数模值计算出驻波系数的值
阻抗圆图的应用
应用于下列问题的计算
– 已知负载阻抗ZL,确定传输线上的驻波系 数或反射系数和输入阻抗Zin;
jX
ji
4
2
0.5
1
2
1 x=0.5
x=-0.5
0.2 RC
4 D r
-1
-0.2
-4
-2
-2
-0.5 -1
-4
(b)
阻抗圆图----等电抗圆
||1,因此只有单位圆内的部分才有物理意义 等电抗圆都相切于点,即D点x=0时,圆的半 径为无限大对应于复平面上的实轴即直线CD 当x时,电抗圆缩为一个点,D点
射频阻抗匹配与史密斯_Smith_圆图:基本原理详解
阻抗匹配与史密斯(Smith)圆图:基本原理在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的 格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
• • •手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在 RF 领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。
Smith圆图和阻抗匹配网络PDF格式讲义
中较大的那个Q值。
• π型匹配网络的有载Q值
电路 Q 值
Q=
Lω 0 Ri
=
L1ω 0 Ri
+
L2ω 0 Ri
= Q1 + Q2
网络有载 Q 值
Qe
=
Lω 0 2Ri
=
L1ω 0 2Ri
+
L2ω 0 2Ri
=
1 2
Q 1
+
1 2
Q 2
= Qe1 + Qe2
20
• 当RS/Ri>>1, RL/Ri >>1时
L = X L = X L1 + X L2 = 0.675mH
解 已知RL>RS
Ls
L1
RS
计算Q值:Q =
RL RS
−1
=
58 −1 =1.96 12
VS
计算L网络并联支路电抗:X P
=
RL Q
= 58 = 29.6Ω 1.96
计算L网络串联支路电抗:XS = QRS =1.96×12 = 23.5Ω
则
电容
CP
=
1 2πfXP
=
2π
1 ×1.5×109 × 29.6
3dB带宽为 BW ≈ f0 / Qe
ω0 与 Q 的关系为 ω0 =
1 LC
1
−
1 Q2
=
1 LC
1
−
1 4Qe2
17
– L匹配网络举例
• 已知信号源内阻RS=12Ω,并串有寄生电感LS=1.2nH。负载电阻 RL=58Ω,并带有并联的寄生电容CL=1.8pF,工作频率为
f=1.5GHz。设计L匹配网络,使信号源和负载达到共轭匹配。
Smith圆图应用_串联枝节匹配
'
1
L`=0.318l
1
0.308l
d`=(0.308-0.162)l=0.146l
0.318l
导纳相加枝节无耗要求无耗传输线阻抗匹配smith圆图部分应用特性阻抗50欧负载阻抗25j75欧的无耗传输线求单支节短路串联匹配的位置d和长度l
串联枝节匹配思路
无耗传输线阻抗匹配
z in 1 j 0
z 1 jx
' in
匹配要求
z in 1 j 0
zL
z
" in
枝节串联要求
jx
z in z z
" in ' in
' in
" in
枝节无耗要求
串联:阻抗相加 并联:导纳相加
z jx z 1 jx
无耗线等 |G|要求
z
' in
z L 在等|G|圆上
Smith圆图部分应用
特性阻抗50欧、负载阻抗25+j75欧 的无耗传输线,求单支节短路串联 匹配的位置d和长度l。
z in 1 j 0
枝节串联要求
匹配要求
0.162l L=0. 182l
0.182l
z in z in z in
z in jx z in 1 jx
无耗线等 |G|要求"源自'"
d=(0.192-0.162)l=0.03l
枝节无耗要求
'
0.192l
z in z L 在等|G|圆上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) /4阻抗变换器匹配方法
此处接/4阻抗 变换器
Z 01 Z 0 Rl
Zin Z0
Z0
第一个电压波节点 所处的位置
/4
Z0
Z01
电容性负载
l1
4
l
4
l1
Z0
Z01
Z0
Zi n=Z0
Rx=Z0/
Z0
第一个电压波腹点 所处的位置
/4
Z0
Z01
电感性负载
Zl Rl jX l
l1
4
在圆图上做直线找到P1点相对中心点对称的P2点, P2点即是归一化负载导纳(查图得其归一化导纳即为0.4-j0.2)对应位置; P2点对应的向电源方向的电长度为0.463 ;
将P2点沿等l圆顺时针旋转与匹配电导圆交于A点B 点
A点的导纳为1+j1,对应的电长度为0.159,
B点的导纳为1-j1,对应的电长度为0.338。
纯电导线
g=1 匹配圆
开路点
匹配点
短路点
纯电纳圆
下半圆电感性
b=-1电纳圆弧
《微波技术与天线》
[例1-8]设负载阻抗为Zl=100+j50接入特性阻抗为Z0=50的传输线上。要用支节 调配法实现负载与传输线匹配,试用Smith圆图求支节的长度及离负载的距离。
解:
A
B
0.463 负载阻抗归一化2+j,并在圆图上找到与相对应的点P1;
(1)支节离负载的距离为
d1=(0.5-0.463) +0.159 =0.196 d2=(0.5-0.463) +0.338 =0.375
0.159 0.125
A B
(2)短路支节的长度:
0.463
由于短路支节负载为短路,对应导纳圆图的右端点。
0.375
短路支节对应的归一化导纳应为:-j1和+j1,分别与1+j1和1-j1 中的虚部相抵消。
l /4
ld1
解法: 圆图法 1. 负载阻抗归一化 zl=Zl/Z0=0.6+j0.(5 对应0.094)
2. 过归一化负载阻抗点,沿等反射系数圆向电源(顺时针)转向纯电阻处
rmax 2.20
(波腹)
3. 求出 l 0.25 0.094 0.156
反归一: l l 12.48cm
i 0.094
4
l
波腹点
l1
2
arc tan
1
1
l2 2 arctan
A
d
Z0
Z0
Zl
l Z0
A
匹配对象:任意负载 Zl rl jxl 调节参数:枝节距负载距离d 和枝节长度l。 分析枝节匹配的方法均采用倒推法
——由结果推向原因
PROBLEM:
设计一个串联开路线,将负载阻抗 Zl 100 j80 匹配到 50传输线上;
l2 0.397 d2 0.12
(3) 并联单支节调配器
A
B
l '1
lm in1
Y0
Y0
Y0
A l2
此处输入导纳应 等于特性导纳
B
l m in1
4
l
4
l1
2
ar c tan
1
l2
4
2
arctan1
此处为第一 波节点
l Yin``=-jB
Yin=1
Yin`=1+jB d
Yl=Gl+Bl
1. 负载阻抗归一化 zl=Zl/Z0=2+j1.6 (对应0.208)
Zl
0.208
O
2. 做等反射系数圆;
3. 做匹配圆,找到其与等反射系数 圆的交点(Z1,Z2),并确定交点 到负载阻抗的距离及归一电抗;
z1=1+j1.33 (对应0.172)
距离负载的位置:
d1 (0.5 - 0.208) 0.172 0.463
从短路点出发,沿纯电纳圆(单位圆)顺时针旋转至与b= 1和 b=1的交点,旋转的长度分别为:
l1=0.375 0.25 = 0.125 l2= 0.125+0.25 =0.375
0.338
因此,从以上分析可以得到两组答案,即:
d1=0.196 ,,l1= 0.125 d2=0.375 , l2= 0.375
四、Smith 圆图用于阻抗匹配
1. /4阻抗变换器匹配方法
2. 串联单支节调配器 3. 并联单支节调配器
第一章 均匀传输线理论之•史密斯圆图及其应用
结论:阻抗圆图上的重要点、线、面
上半圆电感性
x=+1电抗圆弧
纯电阻线
短路点
匹配点
r=1的等电阻圆 开路点
纯电抗圆
下半圆电容性
x=-1电抗圆弧
《微波技术与天线》
Z2=1 j1.33
要求串联支节线具有电抗为: j1.33
l2 0.25 0.147 0.397
d2 0.12
0.147
0.172
Z1 Zl
0.208
O
开路点
Z2
0.358
0.328
总结:
反归一,则开路单支节匹配有两组解,即, 枝节距负载距离d 和枝节长度l分别为:
l1 0.108 d1 0.463
l
l1
Z0
Z01 Z0
Zi n=Z0
Rx=Z0·
Problems
[例1] 无耗双导线特性阻抗 Z0 500。
Zl 300 j250,工作波长 = 80cm
现在欲以 / 4线使负载与传输线匹配,求 / 4线的特性阻
抗 Z01和安放位置l1。
Z0
ZZ0` 01
Z0=500
Zl=300+j250
z2=1 j1.3(3 对应0.328)
距离负载的位置:
d2 (0.328 - 0.208) 0.12
0.172
Z1 Zl
0.208
O
Z2
0.328
4. 沿外纯电抗圆求串联支节的长度;
Z1=1+j1.33
要求串联支节线具有电抗为: j1.33
l1 0.358 0.25 0.108
d1 0.46-步骤
已知负载 Zl
Yin=1
Yin`=1+jB
反演成导纳
d
Yl
等| | 圆 向电源 匹配圆
采用外圆 求出l
阻抗圆图当做导纳圆图用
Yl=Gl+Bl
第一章 均匀传输线理论之•史密斯圆图及其应用
(阻抗圆图用作)导纳圆图上的重要点、线、面
上半圆电容性
b=+1电纳圆弧
4. z01 1.4832
Zl
反归一: Z01 z01Zo 741.62
2.20 0.25
r Rr=mrax
r
20 cm
4
向电源
Z01 Z0 z01 Z01 Z0
(2)串联单支节调配器
A
Z0
l2
Z0
A
此处输入阻抗应 等于特性阻抗
B
l '1
lm ax1
Z0
Zl
B
此处为第一
l m a x1
并联单枝节匹配 单枝节匹配通常有两组解
由于枝节并联,采用导纳更为方便;
结果要求并联网络关系有 Yin 1.0 j0
Y in Y ' is Y ' in
Y
'
in
1
jb
Y "in jb
利用 Yl 和gl 系jb统l 的|Γ|不变性,沿等|Γ|圆转到 。 专门Y 'in把 1 jb的圆称为匹g配 1圆.0 。