人教版八年级上册数学试题:第十五章 分式复习课
人教版八年级上册数学 第十五章 分式实际应用题 综合复习练习题(含答案)
人教版八年级上册数学第十五章分式实际应用题综合复习练习题
1.某装修工程,甲、乙两人可以合作完成,若甲、乙两人合作4天后,再由乙独作12天可以完成,已知甲独作每天需要费用580元.乙独作每天需费用280元.但乙单独完成的天数是甲单独完成天数的2倍.
(1)甲、乙两人单独作这项工程各需多少天?
(2)如果工期要求不超过18天完成,应如何安排甲乙两人的工期使这项工程比较省钱?
2.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
3.新冠肺炎疫情爆发之后,全国许多省市对湖北各地进行了援助,广州市某医疗队备好医疗防护物资迅速援助武汉.
第一批医疗队员乘坐高铁从广州出发,2.5小时后,第二批医疗队员乘坐飞机从广州出发,两批队员刚好同时到达武汉.已知广州到武汉的飞行距离为800千米,高铁路程为飞行
距离的倍.
(1)求广州到武汉的高铁路程;
(2)若飞机速度与高铁速度之比为5:2,求飞机和高铁的速度.
4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.
(1)甲、乙二人每小时各做零件多少个?
(2)甲做几小时与乙做4小时所做机械零件数相等?
5.小明准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少6元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价各是多少?
(2)小明准备用自己的180元压岁钱购买这种笔和本子,计划180元刚好用完,并且笔和本子都买,请列出所有购买方案.。
人教版 初中数学八年级上册 第十五章 分式 复习习题 (含答案解析)
人教版初中数学八年级上册第十五章分式复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.使代数式有意义的自变量x的取值范围是()A.x≥3B.x>3且x≠4C.x≥3且x≠4D.x>32.下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3C.π是有理数D.是有理数3.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠24.分式方程的解为()A.B.C.D.无解5.已知,则的值是A.60B.64C.66D.72在实数范围内有意义,则x的取值范围是( )6.若-A.x<B.x≤C.x≠D.x>7.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A.B.C.D.8.若分式的值为0,则x的值为()A.-2B.0C.2D.±29.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=10.若代数式在实数范围内有意义,则x的取值范围为()A . x >0B . x ≥0C . x ≠0D . x ≥0且x ≠1 11.关于x 的分式方程的解为非负数,且使关于x 的不等式组有解的所有整数k 的和为( )A . ﹣1B . 0C . 1D . 212.若x 取整数,则使分式的值为整数的x 值有 A . 3个 B . 4个 C . 6个 D . 8个13.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是 A . 2 B . 3 C . 4 D . 5 14.下列等式正确的是 ( ) ①0.000126=1.26×10-4②3.10×104=31000③1.1×10-5=0.000011 ④12600000=1.26×106A . ①②B . ②④C . ①②③D . ①③④15.若数a 使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a 的值之积为( ) A . 28 B . ﹣4 C . 4 D . ﹣2 16.若关于x 的方程无解,则m 的值为A .B .C .D . 17.如果成立,那么下列各式一定成立的是( )A .B .C .D .18.关于x 则实数m 的取值范围是( ) A . m<-6且m≠2 B . m >6且m≠2 C . m<6且m≠-2 D . m<6且m≠2 19.下列运算正确的是( ) A .11x y x y xy--= B .=-1b aa b b a +-- C . 21111a a a --=--+ D . 2111·1a a a a a--=-+20.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子的最小值是”.其推导方法如下:在面积是的矩形中设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是.模仿张华的推导,你求得式子的最小值是().A.B.C.D.二、填空题21.如果a+b=2,那么代数式(a﹣)÷的值是______.22.已知x为正整数,当时x=________时,分式的值为负整数.23.计算:=__.24.分式方程的解为__________.25.一个铁原子的质量是,将这个数据用科学记数法表示为__________.26.已知,则=_____.27.已知2n+2-n=k(n为正整数),则4n+4-n=____________.(用含k的代数式表示)28.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______________.29.请观察一列分式:﹣,,﹣,,…则第11个分式为_____.30.分式和的最简公分母是____________.31.若关于x的方程有增根,则a的值为________.32.对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=_____.33.要使关于x a的取值范围是___..34.当x 取_____时,分式有意义.35.已知a 1=,a 2=,a 3=,…,a n +1=(n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示). 36.对于正数x ,规定 f (x )=,例如:f (4)== ,f ( )==,则f (2017)+f (2016)+…+f (2)+f (1)+f ()+f ()+…+f ()+f ()= .37.如果关于x 的不等式组(){2432x mx x ->-<-的解集为,且关于的分式方程有非负整数解,则符合条件的所有m 的取值之积为( )A .B .C .D . 15-38.已知(x+3)2 - x =1,则x 的值可能是___________;39.若关于x 的方程=3的解是非负数,则b 的取值范围是_____. 40.若分式方程1x aa x -=+无解,则a =________.三、解答题41.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.) 42.解分式方程:2311xx x x +=--. 43.计算:.44.先化简,再求值:,其中 是不等式组的整数解.45.先化简,再求值:,其中m= +1.46.先化简,再求值:,其中 .47.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?48.计算:(1)3a5÷(6a3)•(﹣2a)2;(2)(3.14﹣π)0+0.254×44﹣()﹣149.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?50.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?51.先化简,再求值:(-其中52.已知,,求()的值.53.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?54.计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|55.(1)计算:;(2)化简并求值:,其中,.56.解方程:57.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A ,B 两种机械设备,每台B 种设备的成本是A 种设备的1.5倍,公司若投入16万元生产A 种设备,36万元生产B 种设备,则可生产两种设备共10台.请解答下列问题: (1)A 、B 两种设备每台的成本分别是多少万元?(2)若A ,B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A 种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A 种设备,航空运输每次运2台B 种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数. 58.计算:﹣12018﹣|1﹣ |+()﹣1+(3.14﹣π)0+ .59.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元? 60.计算:(2b ax )2÷(﹣3ax b)×38ab .61.(2017云南省,第18题,6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元. (1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和. 62.解方程(1)﹣1=.(2).63.某校计划在暑假两个月内对现有的教学楼进行加固改造,经调查发现,甲、乙两个工程队都有能力承包这个项目,已知甲队单独完成工程所需要的时间是乙队的2倍,甲、乙两队合作12天可以完成工程的;甲队每天的工作费用为4500元,乙队每天的工作费用为10000元,根据以上信息,从按期完工和节约资金的角度考虑,学校应选择哪个工程队?应付工程队费用多少元?64.我市向民族地区的某县赠送一批计算机,首批270台将于近期启运.经与某物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B型汽车比A型汽车每辆车可多装15台,求A、B两种型号的汽车各能装计算机多少台?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元.若运送这批计算机同时用这两种型号的汽车,其中B型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆运费多少元?65.先化简,再求值:,其中.66.先化简,再求值:,其中x的值从不等式组的整数解中选取.67.解方程:68.先化简,再求值:,其中x满足x2-2x-2=0.69.某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.70.若关于的方程的解为正数,求的取值范围.71.计算题(1)先化简,再求值:÷(1+),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 72.已知关于x 的分式方程.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 73.已知关于x 的方程4433x mm x x---=--无解,求m 的值. 74.计算:(1)a (a +2b )﹣(a ﹣2b )(a +b )(2 75.阅读理解:把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131xx --表示成部分分式?设分式=将等式的右边通分得: =得: 3{ 1m n m n +=--=,解得: 1{ 2m n =-=-,(1m = ,n = ;(276.某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完. (1)商厦第一批和第二批各购进休闲衫多少件? (2)请问在这两笔生意中,商厦共盈利多少元? 77.先化简,再求值:,其中x=﹣3.78.A ,B 两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A ,B 两地同时出发匀速前往B ,A 45分钟. (1)求甲车速度;(2)乙车到达A 地停留半小时后以来A 地时的速度匀速返回B 地,甲车到达B 地后立即提速匀速返回A 地,若乙车返回到B 地时甲车距A 地不多于30千米,求甲车至少提速多少千米/时?79.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成; (B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工. 为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由. 80.已知关于x 的分式方程2=+4m x x 与分式方程3121x x =-的解相同,求m 2-2m 的值.81.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?82,其中A 、B 为常数,求42A B -的值. 83.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.84.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?85.化简:.86.化简(+a﹣2)÷.87.先化简,再求值:,其中88.先化简再求值:÷(x﹣1﹣),其中x=(1)2017×(﹣)2018.89.先化简,再求值:﹣÷,其中x=2.90.已知,,,求的值.91.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则;等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.任何一个假分式都可以化成整式与真分式的和;(1)下列分式中,属于真分式的是:________(填序号);(2)________+________;(3)__________________. 92.先化简,再计算: 其中.93.为加快城市群的建设与发展,在A,B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.94.阅读思考:数学课上老师出了一道分式化简求值题目.题目:÷(x+1)·-,其中x=-.“勤奋”小组的杨明同学展示了他的解法:解:原式=- ..................第一步=-................ ..第二步 =..........................第三步=..................................第四步 当x =-时,原式=.......................第五步请你认真阅读上述解题过程,并回答问题:你认为该同学的解法正确吗?如有错误,请指出错误在第几步,并写出完整、正确的解答过程.95.湖州市在2017年被评为“全国文明城市”,在评选过程中,湖州市环卫处每天需负责市区范围420千米城市道路的清扫工作,现有环卫工人直接清扫和道路清扫车两种马路清扫方式.已知20名环卫工人和1辆道路清扫车每小时可以清扫20千米马路,30名环卫工人和3辆道路清扫车每小时可以清扫42千米的马路. (1)1名环卫工人和1辆道路清扫车每小时各能清扫多长的马路?(2)已知2017年环卫处安排了50名环卫工人参与了直接清扫工作,为保证顺利完成每日的420千米清扫工作,需派出多少辆道路清扫车参与工作(已知2017年环卫工人与清扫车每天工作时间为6小时)?(3)为了巩固文明城市创建成果,从2018年5月开始,环卫处新增了一辆清扫车参与工作,同时又增加了若干个环卫工人参与直接清扫,使得每日能够较早的完成清扫工作。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(五)(含答案)
第十五章分式实际应用题综合复习(五)1.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?2.2020年1月份,为抗击新型冠状病毒,某药店计划购进一批甲、乙两种型号的口罩,已知一袋甲种口罩的进价与一袋乙种口罩的进价和为40元,用90元购进甲种口罩的袋数与用150元购进乙种口罩的袋数相同.(1)求每袋甲种、乙种口罩的进价分别是多少元?(2)该药店计划购进甲、乙两种口罩共480袋,其中甲种口罩的袋数少于乙种口罩袋数的,药店决定此次进货的总资金不超过10000元,求商场共有几种进货方案?3.某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.(1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?4.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?5.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2019年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2019 年地铁每小时客运量是2012年地铁每小时客运量的4倍,2019年客运240万人所用的时间比2012年客运240万人所用的时间少30小时,求2019年地铁每小时的客运量?6.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?7.甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?8.列分式方程解应用题某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.9.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?10.城都地铁17号线正在建设汇总,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参加该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案1.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.2.解:(1)设甲种口罩进价x元/袋,则乙种口罩进价为(40﹣x)元/袋,依题意有=,解得x=15,经检验x=15是原方程的解,则40﹣x=25.故甲种口罩进价15元/袋,则乙种口罩进价为25元/袋;(2)设购进甲种口罩y袋,则购进乙种口罩(480﹣y)袋,依题意有,解得200≤y<204.因为y是整数,甲种口罩的袋数少于乙种口罩袋数,所以y取200,201,202,203,共有4种方案.3.解:(1)设乙种电器购进x件,则甲种电器购进1.5x件,根据题意得:,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴1.5x=45.答:甲种电器购进45件,乙种电器购进30件.(2)(10350+9600)×40%=7980(元).答:售完这批电器商场共获利7980元.4.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.5.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.6.解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,根据题意,得=,解得:x=10,经检验,x=10是原方程的根,每件甲种商品的进价为:10﹣2=8.答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.由题意得:3y﹣5+y≤95.解得y≤25.答:商场最多购进乙商品25个;(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,解得:y≥23.∵y为整数,y≤25,∴y=24或25.∴共有2种方案.方案一:购进甲种商品67个,乙商品件24个;方案二:购进甲种商品70个,乙种商品25个.7.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件,甲每小时做18个零件.8.解:设甲车的平均速度是x千米/时,则乙车的平均速度是1.2x千米/时,根据题意,得=+,解得x=60.经检验,x=60是原方程的解,此时1.2x=72.答:乙车的平均速度是72千米/时.9.解:(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据题意得:﹣=10,解得:x=200,经检验,x=200是原方程的根,且符合题意,∴2x+x=2×200+200=600.答:凤凰茶叶公司两次共购进这种凤凰茶叶600千克.(2)设每千克茶叶售价y元,根据题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200.答:每千克茶叶的售价至少是200元.10.解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工180天完成该项工程,根据题意可得:+15(+)=1,解得:x=20,检验得:x=20是原方程的根,答:乙队单独施工,需要20天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥16,答:乙队至少施工16天才能完成该项工程.。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(四)(含答案)
第十五章分式实际应用题综合复习(四)1.如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.2.“青山一道同云雨,明月何曾是两乡”我国新冠疫情基本控制,境外疫情肆虐.为了帮助全球抗疫,某厂接到在规定时间内生产1500台呼吸机支援境外抗疫.在生产了300台呼吸机后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务.求原来每天生产多少台呼吸机?3.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?4.某公司计划购买A、B两种型号的机器人搬运材料,已知A型机器人比B型机器人每小时多搬运15kg材料,且A型机器人搬运500kg的材料所用的时间与B型机器人搬运400kg材料所用的时间相同.(1)求A、B两种型号的机器人每小时分别搬运多少材料?(2)该公司计划采购A、B两种型号的机器人共10台,要求每小时搬运的材料不得少于700kg,则至少购进A型机器人多少台?5.列方程解应用题据了解,2019年世园会园区整体结构布局是“一心两轴三带多片区”.“一心”为核心景观区,包括中国馆、国际馆、演艺中心、中国展园和部分世界展园;“两轴”以冠帽山、海坨山为对景,形成正南北向的山水园艺轴和近东西向的世界园艺轴;“三带”包括妫河生态休闲带、园艺生活体验带和园艺产业发展带.为保障2019年世园会的顺利举办,各场馆建设与室内设计都在稳步推进.周末,小明约了几位好友到距离家10千米的场馆路边查看工程进度情况,一部分人骑自行车先走,过了小时,其余的人乘公交车出发,结果他们同时到达,已知汽车的速度是骑自行车人速度的2倍,求骑车学生每小时走多少千米?6.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?7.甲、乙两个公司为某国际半程马拉松比赛各制作6400个相同的纪念品.已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?8.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.9.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?10.新型冠状病毒肺炎疫情发生后,全社会的积极参与疫情防控工作下,才有了我们的平安复学.为了能在复学前将一批防疫物资送达校园,某运输公司组织了甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱防疫物资,且甲种货车装运900箱防疫物资所用车辆与乙种货车装运600箱防疫物资所用的车辆相等,求甲、乙两种货车每辆车可装多少箱防疫物资?参考答案1.解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:﹣=40,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴(1+50%)x=60,=80,=120.答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.2.解:设原来每天生产x台呼吸机,则提高工作效率后每天生产1.5x台呼吸机,依题意,得:﹣=4,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:原来每天生产100台呼吸机.3.解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.4.解:(1)设B型机器人每小时搬运xkg材料,则A型机器人每小时搬运(x+15)kg 依题意得:解得x=60经检验,x=60是原方程的解答:A型每小时搬动75kg,B型每小时搬动60kg.(2)设购进A型a台,B型(10﹣a)台75a+60(10﹣a)≥700a≥6答:至少购进7台A型机器人.5.解:设骑车学生每小时走x千米,则汽车的速度是每小时2x千米,根据题意得:﹣=,解得:x=15,经检验,x=15是原方程的解,且符合题意.答:骑车学生每小时走15千米.6.解:(1)按原计划完成总任务的时,已抢修道路为1800×=600(米),答:按原计划完成总任务的时,已修建道路600米;(2)设原计划每小时抢修道路x米,根据题意得:+=10,经检验:x=140是原方程的解.答:原计划每小时抢修道路140米.7.解:设乙公司有x人,则甲公司有(1﹣20%)x人,根据题意得:﹣=20,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴(1﹣20%)x=64.答:甲公司有64人,乙公司有80人.8.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.9.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:﹣=2,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤220,解得:m≥10.答:至少安排甲队工作10天.10.解:设乙种货车每辆车可装x箱防疫物资,则甲种货车每辆车可装(x+20)箱防疫物资,由题意得:,解得:x=40;经检验x=40是原方程的解,且符合题意.答:乙种货车每辆车可装40箱防疫物资,则甲种货车每辆车可装60箱防疫物资.。
第十五章+分式 复习课件 2024—2025学年人教版八年级数学上册
5.计算 的结果是( ) .
B
A. B. C. D.
6.化简 的结果是( ) .
A
A. B. C. D.
7.已知 , , ,则 , , 的大小关系是( ) .
B
A. B. C. D.
8.若把分式 中 和 的值都扩大为原来的2倍,则分式的值( ) .
2.下列关于 的方程是分式方程的是( ) .
C
A. B. C. D.
3.计算: ( ) .
D
A. B. C.5 D.
4.石墨烯是目前世界上最薄的纳米材料,其理论厚度仅有 .这个数用科学记数法表示正确的是( ) .
C
A. B. C. D.
18.先化简,再求值: ,其中 .
解:原式 ,当 时,原式
19.刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
刘峰:我查好地图了,你看看._
李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天8:30的车.
刘峰:从地图上看,我家到科技馆的距离比你家近 ,我就骑自行车去了.
考点2 变式
(2022·贺州)解方程: .
解:方程两边乘 ,得 ,解得 .检验:当 时, , 不是原方程的解,原方程无解.
考点3 分式方程的实际应用
例3 (2021·山西)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太榆路全程是 ,但交通比较拥堵;路线二:走太原环城高速全程是 ,平均速度是路线一的 倍,因此到达太原机场的时间比走路线一少用 .求走路线一到达太原机场需要多长时间.
人教版八年级数学上册第15章《分式》复习课件
解之得:
经检验:
是原方程的解.
答:乙工程队单独完成这项工程所需的天数为60天.
2.已知轮船在静水中每小时行20千米,如 果此船在某江中顺流航行72千米所用的 时间与逆流航行48千米所用的时间相同, 那么此江水每小时的流速是多少千米?
解:设江水每小时的流速是x千米,根据题 意得:
约分一般是将一个分式化为最简分式,将分式 约分所得的结果有时可能是整式.
分式的乘法法则: 分式乘以分式,用分子的积做积的分子,分母的积做
积的分母.
化简下列分式:
(1)a 2bc ab x2 1
(2) x2 2x 1 5xy
(3) 20x2y (4) a(a b)
b(b2 a2 )
分式的运算
列分式方程解应用题的一般步骤
1.审:分析题意,找出研究对象,建立等量关系. 2.设:选择恰当的未知数,注意单位. 3.列:根据等量关系正确列出方程. 4.解:认真仔细. 5.验:有二次检验. 6.答:不要忘记写.
例9、A、B两地相距80千米,甲骑车从A地出发1小时后, 乙也从A地出发,用相当于甲1.5倍的速度追赶, 当追到B地时,甲比乙先到20分钟,求甲、乙的速度.
变式: 如果把分式 x 2 y 中的xy都扩大10倍,则分式的值( )
x 2.下列等式从左到右的变形一定正确的是( )
( A) a a m (B) a ac
b bm
b bc
ak a
a a2
(C) bk b
(D) b b2
分式约分的主要步骤是: 1、把分式的分子与分母分解因式。 2、然后约去分子与分母的公因式.
72 48 20 x 20 x
反馈练习
人教版八年级数学上册第十五章 分式 单元复习练习题( 教师版)
人教版八年级数学上册第十五章 分式 单元复习练习题一、选择题1.计算:20·2-3=(B)A.-18B.18C.0D.82.下列运算中,正确的是(C)A.m -n m +n =n -m n +mB.22a +b =1a +bC.ab ab -b 2=a a -bD.a -a +b =-a a +b 3.下列各式计算错误的是(D)A.-3ab 4x 2y ·10xy 21b =-5a 14xB.xy 22yz ÷3x 2y 8yz =4y 3xC.a -b a ÷(a 2-ab)=1a 2D.(-a)3÷a 3b =b 4.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.800x +50=600xB.800x -50=600xC.800x =600x +50D.800x =600x -50 5.若分式|m|-1m -1的值为零,则m 的取值为(B) A.m =±1 B.m =-1 C.m =1 D.m 的值不存在6.下列分式变形正确的是(A)A.m n =m (x 2+1)n (x 2+1)B.25+y =2x 5x +yC.-x x -y =x x +yD.-x x -y =x -x -y7.计算(x +y)÷x +y x ·x x +y的结果是(B) A.x +y B.x 2x +y C.1y D.11+y8.若x +1x -3有意义,则实数x 的取值范围是(D) A.x =-1 B.x =3 C.x ≠-1 D.x ≠39.计算(12)-1的结果是(D) A.-2 B.-12 C.12 D.210.解分式方程x 2x -1+21-2x=3时,去分母化为一元一次方程,正确的是(C) A.x +2=3B.x -2=3C.x -2=3(2x -1)D.x +2=3(2x -1) 11.化简(a -1)÷(1a-1)·a 的结果是(A) A.-a 2 B.1 C.a 2 D.-112.世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是(A)A.500x -50010x =45B.50010x -500x=45 C.5 000x -500x =45 D.500x -5 000x =45 二、填空题13.已知分式x -12-3x .(1)当x =23时,分式无意义;(2)当x =1时,分式的值是0. 14.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为6.9×10-7.15.若a =23,则(a -3)(a +1)(a -4)(a -3)的值等于-12. 16.化简:a 2-ab a 2÷(a b -b a )=b a +b17.方程3x +2+2x 2-4=1x -2的根是x =3. 18.若分式x -3x2的值为负数,则x 的取值范围是x<3且x≠0. 19.若关于x 的方程22-x +x +m x -2=2的解为正数,则m 的取值范围是m >-2且m≠0. 20.方程x -3x =x x +1的解是x =-32. 21.如果把分式2ab a +b 中的a ,b 都扩大2倍,那么该分式的值扩大2倍. 22.当x =2时,(2x +1x +x)÷x +1x的值是3. 23.当m =2时,分式方程x -5x -3=m 3-x无解. 24.符号“⎪⎪⎪⎪⎪⎪a b c d ”称为二阶行列式,规定它的运算法则为⎪⎪⎪⎪⎪⎪a b c d =ad -bc.根据上述规定,符号⎪⎪⎪⎪⎪⎪⎪⎪2 111-x 1x -1=1中x 的值为4. 三、解答题25.通分:x +2x 2-2x ,x -1x 2-4x +4. 解:x +2x 2-2x =x 2-4x (x -2)2,x -1x 2-4x +4=x 2-x x (x -2)2. 26.计算:(1)(-a 2b c )2·(-c 2)2÷(bc a)4; 解:原式=a 4b 2c 2·c 4÷b 4c 4a 4=a 4b 2c 2·c 4·a 4b 4c 4=a 8c 2b 2.(2)(1+1m +1)÷m 2-4m 2+m. 解:原式=m +2m +1·m (m +1)(m +2)(m -2)=m m -2.27.张家界到长沙市的总路程约为320 km ,大货车、小轿车同时从张家界去长沙市,已知小轿车的平均速度是大货车的1.25倍,且比大货车早到1小时.试求大货车和小轿车的平均速度各是多少?解:设大货车的平均速度是x km/h ,则小轿车的平均速度是1.25x km/h.根据题意,得 320x =3201.25x+1,解得x =64. 经检验,x =64是分式方程的解,且符合题意.∴1.25x =80.答:大货车的平均速度是64 km/h ,小轿车的平均速度是80 km/h.28.化简:(2a 2+2a a 2-1-a 2-a a 2-2a +1)÷2a a -1. 解:原式=[2a (a +1)(a +1)(a -1)-a (a -1)(a -1)2]÷2a a -1=(2a a -1-a a -1)÷2a a -1 =a a -1÷2a a -1=a a -1·a -12a =12.29.化简分式(a 2-3a a 2-6a +9+23-a )÷a -2a 2-9,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.解:原式=[a (a -3)(a -3)2-2a -3]÷a -2(a +3)(a -3)=(a a -3-2a -3)·(a +3)(a -3)a -2 =a -2a -3·(a +3)(a -3)a -2=a +3.∵a ≠-3,2,3,∴a =4或a =5.当a =4时,原式=7;当a =5时,原式=8.30.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用 3 000元购进A ,B 两种粽子1 100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍.(1)求A ,B 两种粽子的单价各是多少?(2)若计划用不超过7 000元的资金再次购进A ,B 两种粽子共2 600个,已知A ,B 两种粽子的进价不变.求A 种粽子最多能购进多少个?解:(1)设B 种粽子单价为x 元/个,则A 种粽子单价为1.2x 元/个,根据题意,得 1 500x +1 5001.2x=1 100, 解得x =2.5.经检验,x =2.5是原方程的解,且符合题意,∴1.2x =3.答:A 种粽子单价为3元/个,B 种粽子单价为2.5元/个.(2)设购进A 种粽子m 个,则购进B 种粽子(2 600-m)个,依题意,得3m +2.5(2 600-m)≤7 000,解得m≤1 000.答:A 种粽子最多能购进1 000个.。
人教版初中数学八年级上册《第15章分式复习课》
4
+
-
抽取若干 定义 (可重复) 分母中含有未知数的方 程叫做分式方程.
组分式
1
x 1
1 x2
x 1
4
解分式方程, 并归纳步骤.+Leabharlann -
小结
去分母,化成整式方程 检验 解整式方程 写出原方程的解.
话分式
通过本节课的学习,你收获了什么?
知识
分数
类 比
注意事项
数学思想
分式
约 分
{
转 化
2 2
针对其中一个, 设计问题考大家
小结
2.最简分式:分子与分母没有公因式的分式.
A A 1.若分式 B 有意义,则 B≠0; 若分式 B 无意义,则 A 若分式 B 的值为零,则 A=0且 B≠0.
B=0;
3.分式的基本性质:分子与分母乘(或除以)同一个不 等于0的整式,分式的值不变.
玩分式
任选两个
+
-
任选一个
同桌两人互相出 题解答并评判, 交流归纳注意点.
玩分式
2 1 x
x 1 x
1 x x2 1
-
已知 x =
2
x x2 1
2 2 选一个你喜欢的 x 1
1 x x
+
整数 x 代入求值.
组分式
1
组成分式方程
x 1
1 x2
x 1
得分式
小明回家复习分式的运算,在 整理笔记时发现一道题,
1 x2 x 1 1 x
“ ”处的运算符号和括号里 的式子都被墨水遮住了,你能将这 道题补充完整吗?
人教版 八年级数学上册 第15章 分式 综合复习(含答案)
人教版 八年级数学上册 第15章 分式 综合复习一、选择题(本大题共10道小题)1. 计算x +1x -1x 的结果为( )A. 1B. xC. 1xD. x +2x2. 已知分式 (x -1)(x +2)x2-1的值为0,那么x 的值是( )A. -1B. -2C. 1D. 1 或-23.甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A. 8 B. 7 C. 6 D. 54. 要使分式有意义,则x 的取值范围应满足 ( )A .x ≠-1B .x ≠2C .x=-1D .x=25. 化简a2-b2ab -ab -b2ab -a2等于( ) A. b a B. a b C. -b a D. -a b6. 下列分式中,最简分式是 ( )A .B .C .D .7. A ,B 两地相距m 米,通信员原计划用t 小时从A 地到达B 地,现因有事需提前n 小时到达,则每小时应多走( )A .米B .米C .米D .米8. 把通分后,各分式的分子之和为( ) A .2a 2+7a+11B .a 2+8a+10C .2a 2+4a+4D .4a 2+11a+139. 若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A. m <92B. m <92且m ≠32C. m >-94D. m >-94且m ≠-3410. 若m+n-p=0,则m -+n --p +的值是 .二、填空题(本大题共5道小题)11. 方程 12x =2x -3的解是________.12. 化简:(a2a -3+93-a )÷a +3a =________.13. 化简:x +3x2-4x +4÷x2+3x(x -2)2=________.14. 化简:-= .15. 若m -3m -1·|m |=m -3m -1,则m =________.三、解答题(本大题共6道小题) 16. x -3x -2+1=32-x .17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 分式的定义告诉我们:“一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.”我们还知道“两数相除,同号得正”.请运用这些知识解决问题:(1)如果分式的值是整数,求整数x的值;(2)如果分式的值为正数,求x的取值范围.19. 先化简,再求值:(xx2+x -1)÷x2-1x2+2x+1,其中x的值从不等式组⎩⎨⎧-x≤12x-1<4的整数解中选取.20. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+.(1)下列分式中,属于真分式的是()A .B .C .-D .(2)将假分式化成整式与真分式的和的形式.21. 化简:(x -5+16x +3)÷x -1x2-9.人教版 八年级数学上册 第15章 分式 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】A 【解析】x +1x -1x =x +1-1x =xx =1.2.【答案】B 【解析】分式(x -1)(x +2)x2-1的值为0,须满足:⎩⎪⎨⎪⎧(x -1)(x +2)=0x2-1≠0,解得x =-2 .3. 【答案】A【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x×2+(1x +1x )(x -2-3)=1, 解得x =8.4. 【答案】B[解析] 分式的分母不为0时,分式有意义.若分式有意义,则x-2≠0,即x ≠2.5.【答案】B 【解析】原式=(a +b )(a -b )ab -b (a -b )a (b -a )=(a +b )(a -b )ab +b a =(a +b )(a -b )+b2ab =a2-b2+b2ab =a2ab=ab ,故答案为B.6. 【答案】B[解析] ==,=,只有选项B 是最简分式.7. 【答案】D[解析] 由题意得-===.8. 【答案】A[解析] ==,=,=,所以把通分后,各分式的分子之和为-(a+1)2+6(a+2)+3a (a+1)= 2a 2+7a+11.9.【答案】B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3mx -3=3,解得x =9-2m 2,解方程组⎩⎪⎨⎪⎧9-2m 2>09-2m 2≠3,得m <92且m ≠32,故选B.10. 【答案】-3[解析] 原式=-+---=+-.∵m+n-p=0,∴m-p=-n ,n-p=-m ,m+n=p. ∴原式=-1-1-1=-3.二、填空题(本大题共5道小题)11.【答案】x =-1 【解析】化简12x =2x -3得x -3=4x ,则-3x =3,所以x =-1,经检验x =-1是原方程的根.12. 【答案】a 【解析】原式=(a2a -3-9a -3)÷a +3a =a2-9a -3÷a +3a =(a +3)·aa +3=a.13. 【答案】1x 【解析】原式=x +3(x -2)2·(x -2)2x (x +3)=1x .14. 【答案】[解析] -=-===.15. 【答案】m =-1或m =3 【解析】m -3m -1·|m|=m -3m -1,去分母得(m -3)·|m|=m -3,即(m -3)(|m|-1)=0,所以m =3或m =±1,经检验m =1是方程的增根,所以m =3或m =-1.三、解答题(本大题共6道小题)16. 【答案】解:去分母得x -3+x -2=-3,(2分) 解得x =1,(4分)检验:x =1时,x -2=-1≠0,2-x =2-1=1≠0,(6分) ∴原方程的解为x =1.(8分)17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x+2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】解:(1)∵分式的值是整数,∴x+1=±1,解得x=0或x=-2.(2)∵分式的值为正数, ∴或解得x>0或x<-1.∴x 的取值范围是x>0或x<-1.19. 【答案】解:原式=x -x2-x x2+x ÷(x +1)(x -1)(x +1)2(2分)=-x2x (x +1)·(x +1)2(x +1)(x -1)=-xx -1.(4分)解不等式组⎩⎪⎨⎪⎧-x≤12x -1<4,得-1≤x <52,∴不等式组的整数解为-1,0,1,2,(5分)∵要使分式有意义,则x 只能取2,∴原式=-22-1=-2.(6分)20. 【答案】解:(1)C(2)==+=m-1+.21. 【答案】解:原式=(x -5)(x +3)+16x +3÷x -1x2-9(1分) =x2-2x +1x +3·x2-9x -1(2分)=(x -1)2x +3·(x +3)(x -3)x -1(3分)=(x -1)(x -3)(4分) =x 2-4x +3.(5分)。
人教版八年级上册数学第十五章 分式 含答案
人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、如果y=﹣x+3,且x≠y,那么代数式的值为()A.3B.﹣3C.D.﹣2、如果把分式中的a、b都扩大2倍,那么分式的值一定()A.是原来的2倍B.是原来的4倍C.是原来的D.不变3、在数中,最大的数是()A.(﹣)﹣2B.(﹣2)﹣2C.D.(﹣2)﹣14、的计算结果为()A. B. C. D.5、下列变形不正确的是()A. B. C. D.6、豆豆老师到学校距离是8千米,她开车上班的平均速度是乘公交车平均速度的2.5倍,已知豆豆老师自己开车上班比乘公交车上班所需的时间少用小时,若设乘公交车平均每小时走千米,根据题意可列方程为()A. B. C. D.7、同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4且x≠﹣2B.x=﹣4,或x=2C.x=﹣4D.x=28、下列分式化简正确的是()A. B. = C. = D.9、小虎在下面的计算中只做对了一道题,他做对的题目是( )A.()2=B. + =C.a 3÷a=a 2D. =-110、使得分式有意义的 m 的取值范围是()A.m≠0B.m≠2C.m≠-3D.m>-311、从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3B.﹣2C.﹣D.12、若将分式中的、都扩大10倍,则该分式的值()A.不变B.扩大到原来的10倍C.扩大到原来的100倍D.缩小到原来的13、下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程的解是x=0;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有()A.1个B.2个C.3个D.4个14、在函数y=中,自变量x的取值范围是()A.x≠0B.x>4C.x≠﹣4D.x≠415、函数y=的自变量x的取值范围是()A.x>0B.x≥﹣2C.x>﹣2D.x≠﹣2二、填空题(共10题,共计30分)16、甲乙两地相距5km,汽车从甲到乙,速度为km/h,可按时到达,若每小时多行驶km,则汽车提前________h到达.17、当x________时,(x-4)0=1.18、若分式的值为0,则x=________.19、计算:(x﹣1+ )÷=________.20、式子有意义的x的取值范围是________.21、若分式的值为0,则的值是________.22、对于分式,当x=________时,分式无意义;当x=________时,分式值为零.23、若方程有增根,则________.24、计算a2b2÷=________.25、设0<<1,则m=,则m的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.27、解分式方程:﹣2=.28、已知y=,x取哪些值时,y的值是零?分式无意义?y的值是正数?29、某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.求每台电冰箱与空调的进价分别是多少?30、如图,点A,B在数轴上,它们所对应的数分别是﹣3和,且点A,B 到原点的距离相等,求x的值.参考答案一、单选题(共15题,共计45分)1、A2、A3、A5、C6、D7、D8、C9、C10、C11、A12、B13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
人教版八年级上册数学 第十五章分式同步复习题(含详细答案)
人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。
人教版八年级数学上册第15章 分式 小结与复习
因为 ( 3)2 ( 3)2 3,所以小玲的计算结果也正确.
例4
解析:本题若先求出 a 的值,再代入求值,显
然比较复杂;但是如果将分式
的分子、
分母颠倒过来,即求
的值,
再利用完全平方公式变形求解就简单多了.
归纳总结 利用 A 和 1 互为倒数的关系,构造已知
A
条件与所求式子的关系,并运用整体代换,可使一 些分式求值问题的思路豁然开朗,简化解题过程.
第十五章 分 式
小结与复习
一、分式 1. 分式的概念:
一般地,如果 A、B 都表示整式,且 B 中含有
字母,那么称 为分式. 其中 A 叫做分式的分子,
B 叫做分式的分母. 2. 分式有意义的条件:
对于分式 :当__B_≠__0__时分式有意义; 当__B__=_0__时分式无意义.
3. 分式值为零的条件: 当 A = 0 且 B≠0 时,分式
的值为零.
4. 分式的基本性质:
A A C , A A C(C 0). B BC B BC
5. 分式的约分: 约分的定义
根据分式的基本性质,把一个分式的分子与分母
的公因式约去,叫做分式的约分.
最简分式的定义 分子与分母没有公因式的分式,叫做最简分式.
注意:分式的约分,一般要约去分子和分母所有 的公因式,使所得的结果成为最简分式或整式.
此方法是在众多未知元之中选取某一元为主元, 其余视为辅元,并将辅元用含有主元的式子表示,从 而达到减元的目的,最终实现化繁为简,化难为易.
针对训练
9.
已知
x y
2 3
,求
x2
x2 y2 2xy
y2
xy 2x2
y2 2xy
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(一)(含答案)
第十五章分式实际应用题综合复习(一)1.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)2.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)3.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?4.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?5.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?7.列分式方程解应用题.为缓解市区至通州沿线的通勤压力,北京市政府利用现有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.8.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?9.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若这两次购买防护口罩过程中所产生其他费用不少于600元,那么该超市购买这两批防护口罩的平均单价至少为多少元?10.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.参考答案1.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.2.解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:=1.25×,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600﹣,∴1800﹣a﹣b=1800﹣(1600﹣)﹣b=200+,∵a≤1000,∴1600﹣≤1000,∴b≥533,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个3.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.4.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.5.解:设原计划每天加工x个,根据题意,得,解得:x=400,经检验,x=400是原方程的解且符合题意.答:原计划每天加工400个.6.解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.7.解:设改装前每节车厢乘坐x人,由题意列分式方程得:=+4,解得:x=120,经检验知x=120是原分式方程的解,则改装后每节车厢可以搭载的乘客人数=120×=200人,答:改装后每节车厢可以搭载的乘客人数为200人8.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.9.解:(1)设第一批口罩进货单价为x元,则第二批进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原分式方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)购进第一批防护口罩的数量1600÷8=200(个),购进第二批防护口罩的数量200×3=600(个).设该超市购买这两批防护口罩的平均单价为m元,依题意,得:(200+600)m≥1600+6000+600,解得:m≥10.25.答:该超市购买这两批防护口罩的平均单价至少为10.25元.10.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.。
人教版八年级数学上册 第十五章 分式 单元复习练习题
人教版八年级数学上册 第十五章 分式 单元复习练习题一、选择题1.已知关于x 的分式方程1311a x x +=--的解为正数,关于x 的不等式组314143513x x x a -+⎧+>⎪⎪⎨-⎪<⎪⎩无解,则所有满足条件的整数a 的和是( ) A .9 B .8C .5D .42.设3333111112399S =++++,则4S 的整数部分等于( ). A .4B .5C .6D .73.下列等式成立的是( ) A .23a b +=5ab B .33a b +=1a b + C .2ab ab b -=aa b - D .a a b -+=a a b-+ 4.若三角形三边分别为a 、b 、c 、且分式2ab ac bc b a c-+--的值为0、则此三角形一定是、 、A .不等边三角形B .腰与底边不等的等腰三角形C .等边三角形D .直角三角形5.一项工程,甲单独做要x 天完成,乙单独做要y 天完成,则甲、乙合做完成工程需要的天数为( 、A .xy x y+B .2x y +C .x yy x +D .x y +6.已知ab=1,M=1111a b +++,N=11a ba b+++,则M 与N 的关系为 ( ) A .M>NB .M=NC .M<ND .不能确定7.若关于x 的分式方程7311mxx x +=--无解,则实数m 的值是( 、 A .x=0或1B .x=1或3C .x=3或7D .x=0或38.轮船从河的上游A 地开往河的下游B 地的速度为v 1,从河的下游B 地返回河的上游A 地的速度为v 2,则轮船在A、B 两地间往返一次的平均速度为( )A .122v v +B .122v v +C .12122v v v v +D .12122v v v v +9.当x 分别取﹣2015、、2014、、2013、…、、2、、1、0、1、12、13、…、12013、12014、12015时,计算分式2211x x -+的值,再将所得结果相加,其和等于( ) A .、1B .1C .0D .201510.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子1(0)x x x+>的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是12x x ⎛⎫+ ⎪⎝⎭;当矩形成为正方形时,就有1(0)x x x =>,解得1x =,这时矩形的周长124x x ⎛⎫+= ⎪⎝⎭最小,因此1(0)x x x +>的最小值是2.模仿张华的推导,你求得式子24(0)x x x+>的最小值是( 、、A .2B .4C .6D .8二、填空题11.从4-,3-,1,3,4这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组()19230x x a ⎧-≤-⎪⎨⎪-<⎩的解集是x a <,且使关于x 的分式方程3122x a x x --=--有整数解,那么这5个数中所有满足条件的a 的值之和是______. 12.下列说法:① 若a +b +c =0,则(a +b )3+c 3=0;②若a +b =0,则|a |=|-b |,反之也成立;③若22b a c c=(c ≠0),则b -c =a -c ;④若|x +1|+x -y +5=0,当x ≤-1时,y 是常数;⑤若|x +1|+x -y +5=0,则y ≥x ,其中正确的有_________ 13.a 是不为1的有理数,我们把11a-称为a 的差倒数,如2的差倒数为112-,-1的差倒数为111(1)2=--,已知1a =5,2a 是1a 差倒数,3a 是2a 差倒数,4a 是3a 差倒数,以此类推…,2020a 的值是_____.14.若关于x 的分式方程233x ax x+--=2a 无解,则a 的值为_____. 15.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程方程为________. 三、解答题16.先观察下列各式,再完成题后问题:1112323=-⨯;11344-⨯;1114545=-⨯ (1)①写出:156=⨯________ ②请你猜想:120102012=⨯________ (2)求1111112233445(1)n n++++⋅⋅⋅+⨯⨯⨯⨯-⨯的值; (3)运用以上方法思考:求11111111141224406084112144180++++++++的值. 17.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:x 1x 2+-,2x ·····x 2+像这样的分式是假分式;像1x 2-,2x ·····x 1-这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式.例如:()x 23x 13 1x 2x 2x 2-++==+---;()()2x 2x 24x 4x 2x 2x 2x 2+-+==-++++,解决下列问题: (1)将分式x 2x 3-+化为整式与真分式的和的形式为: (直接写出结果即可) (2)如果分式2x 2xx 3++的值为整数,求x 的整数值18.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导. (1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品? 19.探索发现:111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ;(2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+(3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++20.阅读下列材料,回答问题. 关于x 的方程121x x +=的解是1x =;222x x +=的解是2x =;323x x +=的解是3x =;222x x --=(即222x x -+=-)的解是2x =-.(1)请观察上述方程与其解的特征,x 的方程2(0)m xm x m+=≠与上述方程有什么关系?猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可得到以下结论:如果方程的左边是一个未知数倒数的a 倍与这个未知数的1a的和等于2,那么这个方程的解是x=a.请用这个结论解关于x 的方程:2212(1)x a a x a+=+--. 21.用如图所示的甲、乙、丙三块木板做一个长、宽、高分别为a 厘米,b 厘米和10厘米的长方体木箱,其中甲块木板锯成两块刚好能做箱底和一个长侧面,乙块木板刚好能做一个长侧面和一个短侧面,丙块木板刚好能做一个箱盖和剩下的一个短侧面(厚度忽略不计,a >b )(1)用含a ,b 的代数式分别表示这三块木板的面积.(2)若甲块木板的面积比丙块木板的面积大200平方厘米,木箱的体积为150000立方厘米,求乙块木板的面积. (3)如果购买一块长为100厘米,宽为(a+b )厘米的长方形木板做这个木箱,木板的利用率为90%,试求分式55a b++222277a b ab a b--的值.22.喜迎中华人民共和国成立70周年,学校将举行以“歌唱祖国”为主题的“红五月”歌咏比賽,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同. (1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a 为正整数),则购买小红旗b 袋能恰好配套,请用含a 的代数式表示b .(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w 元,求w 关于a 的函数关系式,现学校有初一1200名学生参加演出,初三500名学生参加演出,计算两个年级所需总费用分别为多少元?23.已知点A 在x 轴正半轴上,以OA 为边作等边OAB ∆,()0A x ,,其中x 是方程312223162x x -=--的解. (1)求点A 的坐标.(2)如图1,点C 在y 轴正半轴上,以AC 为边在第一象限内作等边ACD ∆,连DB 并延长交y 轴于点E ,求BEO ∠的度数.(3)如图2,若点F 为x 轴正半轴上一动点,点F 在点A 的右边,连FB ,以FB 为边在第一象限内作等边FBG ∆,连GA 并延长交y 轴于点H ,当点F 运动时,GH AF -的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.【参考答案】1.B 2.A 3.C 4.B 5.A 6.B 7.C 8.D 9.A 10.B 11.0 12.①③④⑤13.5.14.0.5或1.515.1209020x x=+16.(1)①1156-;②111220102012⎛⎫-⎪⎝⎭或1140204024-;(2)1nn-;(3)92017.(1)513x-+;(2)4-、2-、0、6-18.(1)、、、、、、、16、、、、、、、、、、、、24、、(2)、、、、、、、、、、、、、、、、1225、、、、、、、、、、、.19.(1)1111,451n n--+;(2)nn1+;(3)略.20.(1)普遍形式,x m=.(2)x=21.(1)(ab+10a)平方厘米,(10a+10b)平方厘米,(ab+10b)平方厘米;(2)cm2);(3)36 722.(1)每袋国旗图案贴纸15元, 每袋小红旗的价格20元;(2)54b a=;(3) 初一总费用1696元;初三总费用800元.23.(1)()3,0;(2)120︒;(3)不变化,9.。
人教版数学 八年级上 第十五章 分式 小结及习题训练 复习课件
再 见
知识体系
定义
有关概念 分式有意义的条件
分式值为零的条件
约分
分
基本性质性质 通分
式
分式的运算
分式的加减、乘除、乘方、混合运算
分式方程
分式方程的定义 分式方程的解法 分式方程的应用
知识体系
概念
的形式
B中含有字母 B≠0
约分
分式的基本性质
通分
分 式
分式的乘除
分式的运算 分式的加减
分式有意义 分式的值为0
(1)该学生解答过程是从第 一步开始出错的,其错
误原因是 分式的性质用错了 . (2)请写出此题的解答过程。
返回
返回
2018吉林中考
如图是学习分式方程应用时,老师板书的问题和 两名同学所列的方程。
15.3分式方程 甲、乙两个工程队,甲队 修路400米与乙队修路 600米所用时间相等,乙 队每天比甲队多修20米, 求甲队每天修路的长度。
根据以上信息,解答下列问题. (1)冰冰同学所列方程中的x表示 甲队每天修路的 长度, 庆庆同学所列方程中的y表示 甲队修路400米 所;用的天数 (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的 问题.
解:(2)选冰冰所列方程 甲队修路400米与乙队修路600米所用的时间相等; 选庆庆所列的方程, 乙队每天修路长度与甲队每天修路长度的差等于20米。
最简分式
去分母
解分式方程
解整式方程
验根
分式方程应用
变式提高
其中B型垃圾箱的成本比A型高3元,A、B两型号 垃圾箱的单价各是多少? 问题2:由题可得
小结
【小结】
本节课有哪些的收获?
人教版八年级数学上册第十五章 分式复习(两课时).docx
初中数学试卷桑水出品课题:第十五章 分式复习(两课时)【复习目标】:复习整理分式有关概念和分式运算,分式的实际应用【复习重点】:分式的概念及分式的运算;【复习难点】:对分式化简的应用;【导学指导】:一、知识回顾1.分式的定义如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A叫做分式。
(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零)2.分式的基本性质3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式除法法则:分式乘方法则:分式的加减法则:同分母的分式相加减, 不变,把分子相 。
c ba cbc a ±=±异分母的分式相加减,先 ,变为同分母分式,然后再 bd bcad d c b a±=±混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
(1)解分式方程的步骤 :能化简的先化简((2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.二、合作探究1、在m a y x xyx x 1,3,3,21,21,12+++π中,分式的个数是( )A 2B 3C 4D 52、当x __________时分式x x3131-+有意义.3、若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或34、 如果把分式y x x232-中的x,y 都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍5、下列式子:(1)y x y x y x -=--122;(2)c a ba a c ab --=--;(3)1-=--b a ab ;(4)y x yxy x y x +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个6(1) ()d cd b a c ab 234322222-•-÷ (2) 111122----÷-a a a a a a(3 )⎪⎭⎫ ⎝⎛---÷--225262x x x x (4) 22111a a aa a ++---7 、若b ab a bab a b a ---+=-2232,311求=8 、已知aa-b =2,求a3-4a2b-5ab2a3-6a2b+5ab2 的值9 、已知x+1x =2,求 2x 2x 4-x 2+1 的值10、()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式 复习课
使用年级:八年级 科目:数学 制作人:
一、自主梳理:并独立完成学案中所涉及的基础知识。
1、分式与整式的区别是什么? 。
2,分式有意义 ,无意义 ,值为零
3、什么是分式的基本性质? 分式的基本性质中要注意什么问题? 约分的主要依据是什么?
4、通分: 通分的关键是 ,单项式 多项式要首先 5,你能写出分式的加法、减法、乘法与除法的法则吗?
二、基础知识巩固
1、下列各式中,2
4,2),(31,23,2,312---+-x x b a y x m x π; 整式有 分式有
2、若分式2
3-+x x 有意义,则x ; 无意义,则x ; 若值为0,则 x ; 若232+x x
有意义,则x
3、若分式933--x x 的值为零,则x 等于
4、(1)2
261,42ab a 的最简公分母是 (2)9
452,233,3212-+-+x x x x 的最简公分母是 5、2
4) (21a a =;n m mn m n m +=+) (22 6、2
3
263xy y x = ;44422+--x x x = 。
7、计算ab a
⨯1= ;()()=÷35xy xy ;=-a a 2523 ,
1
1122
2---x x x = 。
8、计算:a 2÷b ×b
1÷c ×c 1= 。
x x x --12= 。
9、若0≠-=y x xy ,则分式=-x y 11( ) 三、典例分析
(一)分式的值为正、负的条件:
(1)当x
为何值时,分式2)1(35-+-x x 为负; (2) 当x 为何值时,分式
32+-x x 为负数. (二)化简求值题 已知21=-
x x ,求221x x +的值.
1. 已知a +a 1=6,则(a -a
1)2 = 2.已知:31=+x x ,求1
242++x x x 的值. 3、已知a+b=2,ab=-5,则=+b a 11 a b +b a =____________
(三)计算:
1、29631a a --+
2、b a b b a ++-22
3、29631a
a --+
(四)混合运算
1、2228224a a a a a a +-⎛⎫+÷
⎪--⎝⎭
2、4421642++-÷-x x x x 其中 x = 3 .
3、
2-4x x ⎪⎭
⎫ ⎝⎛++-÷2121x x 4、。