第5章 液压控制元件及辅件1
合集下载
第5章 液压控制元件(1)PPT课件
普通单向阀的应用
(1)用单向阀
将系统和泵隔断
3
用单向阀5将系统和泵
隔断。
4
泵开机时泵排出的油 可经单向阀5进入系统;
泵停机时,单向阀5可 阻止系统中的油倒流。
1
2 5
8
24.09.2020
液压与气压传动---第5章 液压控制元件 6/17
普通单向阀的应用 3
4
(2) 用单向阀 将两个泵隔断
1
2
双泵供油的快速回路.swf
液流按②方向流动时,因单向阀的阻力远比节流阀为小, 所以液流经过单向阀流出阀体。
②
①
1
24.09.2020
液压与气压传动---第5章 液压控制元件 6/175.2.1 单向阀2. Nhomakorabea控单向阀
组成:普通单向阀+小活塞缸
特点:a. 无控制油时(Pk=0),与普通单向阀一样。 b. 通控制油时(Pk≥Ks*△x/A),可双向通流。
下图表示阀芯处于中位时的情况, 此时从P 口进来的压力
油没有通路。 A 、B 两个油口也不和T口相通。
AB
PT
A
B
AB PT
T
P
1
24.09.2020
液压与气压传动---第5章 液压控制元件 6/17
下图表示人向一侧搬动控制手柄,阀芯左移,或者说阀芯
处于左位的情况。此时P口和A口相通,压力油经P、A到其它 元件;从其它元件回来的油经B、阀芯中心孔,T 回油箱。
A、B—工作油口,接执行元件; T或O—回油口,接油箱。
A
B
AB PT
1
T /O P
24.09.2020
液压与气压传动---第5章 液压控制元件 6/17
(1)用单向阀
将系统和泵隔断
3
用单向阀5将系统和泵
隔断。
4
泵开机时泵排出的油 可经单向阀5进入系统;
泵停机时,单向阀5可 阻止系统中的油倒流。
1
2 5
8
24.09.2020
液压与气压传动---第5章 液压控制元件 6/17
普通单向阀的应用 3
4
(2) 用单向阀 将两个泵隔断
1
2
双泵供油的快速回路.swf
液流按②方向流动时,因单向阀的阻力远比节流阀为小, 所以液流经过单向阀流出阀体。
②
①
1
24.09.2020
液压与气压传动---第5章 液压控制元件 6/175.2.1 单向阀2. Nhomakorabea控单向阀
组成:普通单向阀+小活塞缸
特点:a. 无控制油时(Pk=0),与普通单向阀一样。 b. 通控制油时(Pk≥Ks*△x/A),可双向通流。
下图表示阀芯处于中位时的情况, 此时从P 口进来的压力
油没有通路。 A 、B 两个油口也不和T口相通。
AB
PT
A
B
AB PT
T
P
1
24.09.2020
液压与气压传动---第5章 液压控制元件 6/17
下图表示人向一侧搬动控制手柄,阀芯左移,或者说阀芯
处于左位的情况。此时P口和A口相通,压力油经P、A到其它 元件;从其它元件回来的油经B、阀芯中心孔,T 回油箱。
A、B—工作油口,接执行元件; T或O—回油口,接油箱。
A
B
AB PT
1
T /O P
24.09.2020
液压与气压传动---第5章 液压控制元件 6/17
第五章 液压控制元件
单向阀结构
单向阀都采用图示的座阀式结构, 这有利于保 证良好的反向密封性能。
符号
单向阀外形
单向阀的工作原理
(a) 钢球式直通单向阀
(b) 锥阀式直通单向阀
点我
(c)
详细符号
(d) 简化符号
直动式单向阀
动画演示
2、液控单向阀
如图6-2所示液控单向阀的结构,当控制口K不通压力油时, 此阀的作用与单向阀相同;但当控制口通以压力油时,阀就保持开 启状态,液流双向都能自由通过。图上半部与一般单向阀相同,下 半部有一控制活塞1,控制油口K通以一定压力的压力油时,推动活 塞1并通过推杆2使锥阀芯3抬起,阀就保持开启状态。
当进口压力不高时:液压力不能克服先导阀的弹簧阻力,先导阀口关 闭,阀内无油液流动。主阀心因前后腔油压相同,故被主阀弹簧压在阀座 上,主阀口亦关闭。 系统油压升高到先导阀弹簧的预调压力时:先导阀口打开,主阀弹簧 腔的油液流过先导阀口并经阀体上的通道和回油口T流回油箱。这时,油液 流过阻尼小孔,产生压力损失,使主阀心两端形成了压力差。主阀心在此 压差作用下克服弹簧阻力向上移动,使进、回油口连通,达到溢流稳压的 目的。
◆ (2) 先导式溢流阀
3、溢流阀的应用 ◆ 溢流阀应用
三、减压阀
减压阀是用来减压、稳压,将较高的进口油压降 为较低的出口油压 。
1、减压阀的工作原理
◆ 工作原理
2、减压阀应用 ◆ 减压阀应用 3、减压阀与溢流阀的区别 ◆ 区别
四、顺序阀
利用液压系统压力变化来控制油路的通断,从而 实现某些液压元件按一定顺序动作。
先 导 式 溢
调压螺钉
外形图
符号
安装孔
流
溢流出口 压力油入口
阀
液压与气动控制技术(辛连学)5液压控制元件-压力.答案
第五章 液压压力控制阀和压力控制回路
第一节 压力控制阀 第二节 压力控制回路 实训项目
本章小结 思考题与习题
第五章 液压压力控制阀和压力控制回路
压力控制阀是控制液压系统压力或利用压力的变化来实现某种动作的阀,简称压力阀。 这类阀的共同点是利用作用在阀芯上的液压力和弹簧力相平衡的原理来工作的。按 用途不同,可分溢流阀、减压阀、顺序阀和压力继电器等。 压力控制回路是对系统或系统某一部分的压力进行控制的回路。这种回路包括调压、 卸荷、保压、减压、增压、平衡等多种回路。
第五章 液压压力控制阀和压力制回路
第二节 压力控制回路
一、调压回路 3.多级调压回路 二级调压回路 阀2的调定压力必须 小于阀1的调定压力, 否则不能实现二级调 压。 三级调压回路 在这种调压回路中, 阀2和阀3的调定压力 要低于主溢流阀1的 调定压力。
第五章 液压压力控制阀和压力控制回路
二、
第五章 液压压力控制阀和压力控制回路
三、保压回路 在液压系统中,液压缸在工作循环的某一阶段,若需要保持一定的工作压力,就应采用 保压回路。在保压阶段,液压缸没有运动,最简单的办法是用一个密封性能好的单向阀 来保压。但是,阀类元件处的泄漏使得这种回路的保压时间不能维持太久。 1.利用液压泵的保压回路 如图5-15所示的回路,系统压力较低,低压大流量泵供油,系统压力升高到卸荷阀的调 定压力时,低压大流量泵卸荷,高压小流量泵供油保压,溢流阀调节压力。
荷。那么在液压传动系统中是依靠什么元件来实现这一目的?这
些元件又是如何工作的呢?
二、任务分析
稳定的工作压力是保证系统工作平稳的先决条件,如果液压传动
系统一旦过载,如无有效的卸荷措施的话,将会使液压传动系统
中的液压泵处于过载状态,很容易发生损坏。液压传动系统必须
第一节 压力控制阀 第二节 压力控制回路 实训项目
本章小结 思考题与习题
第五章 液压压力控制阀和压力控制回路
压力控制阀是控制液压系统压力或利用压力的变化来实现某种动作的阀,简称压力阀。 这类阀的共同点是利用作用在阀芯上的液压力和弹簧力相平衡的原理来工作的。按 用途不同,可分溢流阀、减压阀、顺序阀和压力继电器等。 压力控制回路是对系统或系统某一部分的压力进行控制的回路。这种回路包括调压、 卸荷、保压、减压、增压、平衡等多种回路。
第五章 液压压力控制阀和压力制回路
第二节 压力控制回路
一、调压回路 3.多级调压回路 二级调压回路 阀2的调定压力必须 小于阀1的调定压力, 否则不能实现二级调 压。 三级调压回路 在这种调压回路中, 阀2和阀3的调定压力 要低于主溢流阀1的 调定压力。
第五章 液压压力控制阀和压力控制回路
二、
第五章 液压压力控制阀和压力控制回路
三、保压回路 在液压系统中,液压缸在工作循环的某一阶段,若需要保持一定的工作压力,就应采用 保压回路。在保压阶段,液压缸没有运动,最简单的办法是用一个密封性能好的单向阀 来保压。但是,阀类元件处的泄漏使得这种回路的保压时间不能维持太久。 1.利用液压泵的保压回路 如图5-15所示的回路,系统压力较低,低压大流量泵供油,系统压力升高到卸荷阀的调 定压力时,低压大流量泵卸荷,高压小流量泵供油保压,溢流阀调节压力。
荷。那么在液压传动系统中是依靠什么元件来实现这一目的?这
些元件又是如何工作的呢?
二、任务分析
稳定的工作压力是保证系统工作平稳的先决条件,如果液压传动
系统一旦过载,如无有效的卸荷措施的话,将会使液压传动系统
中的液压泵处于过载状态,很容易发生损坏。液压传动系统必须
第5章 液压控制阀
1、直动式溢流阀:(用于低压, p≤2.5MPa,反向不通) 如下页图所示,直动式溢流阀是利用系 统中的油液作用力,直接作用在阀芯上与弹 簧力相平衡的原理来控制阀芯的启闭动作, 以保证(油缸)进油口处的油液压力恒定。 进油口P处的压力油经阀芯的橫孔及阻尼 孔作用在阀芯底部的锥孔表面上。当进口 压力较小时,阀芯在弹簧的作用下处于下 端位置,P与T不能相通;当进口压力升高, 阀芯下端压力油产生的作换 向阀的优点,既可以很方便的控制换向,又 可以实现对较大流量回路的控制。 几点说明: ①液动阀两端控制油路上的节流阀可以调节 主阀的换向速度,从而使主油路的换向平 稳性得到控制; ②为保证液动阀回复中位,电磁阀的中位必 须是A、B、T油口互通。
③控制油可以取自主油路(内控),也可以 取独立油源(外控)。 • 思考:执能符号中六个油口分别接何处? 5、手动换向阀 通过控制手柄直接操纵阀芯的移动,换向 精度和平稳性不高,适用于间歇动作且无 需自动化的场合。
如图(a):向左推动手柄→左位工作; 向右推动手柄→右位工作。 弹簧复位。 如图(b):为钢球定位的手动换向阀, 与图(a)的区别:手柄可在三个位置上定 位,不推动手柄,阀芯不会自动复位。
§5-2 压力控制阀 压力控制阀是用来控制液压系统中油液 压力或利用压力信号实现控制(以液体压力 的变化来控制油路的通断)的阀类。按其功 能可分为溢流阀、减压阀、顺序阀、压力继 电器等。 本节主要介绍压力阀的工作原理、调节 性能、典型结构及主要用途。 一、溢流阀 溢流阀的作用是将系统的压力稳定在某 一调定值上,从而进行安全保护。按其调压 性能和结构特征划分,溢流阀可分为直动式 和先导式两大类。 (一)、溢流阀的工作原理及典型结构
二、换向阀 换向阀作用是利用阀芯和阀体间相对 位置的变化来接通、断开或改变系统中油液 的流动方向。
液压与气压传动 第5章液压辅助元件
1 p2
1/ n
1 p1
1
/
n
(6.3)
当蓄能器用于保压时,气体压缩过程缓慢,与
外界热交换得以充分进行,可认为是等温变化过程
这时取n=1;而当蓄能器作辅助或应急动力源时,释
放液体的时间短,热交换不充分,这时可视为绝热
过程,取n=1.4。
2. 作吸收冲击用时的容量计算
当蓄能器用于吸收冲击时,一般按经验公式计算缓冲 最大冲击力时所需要的蓄能器最小容量,即
1 .冷却器
多管式冷却器
蛇形管冷却器
不论哪一类 的冷却器,都应安 装在压力很低或 压力为零的管路 上,这样可防止冷 却器承受高压且 冷却效果也较好.
2 .加热器
液压系统的加热一般采用电加热器,它用法兰盘水 平安装在油箱侧壁上,发热部分全部浸在油液内。
油箱 电加热器
加热器的安装
5.4 管 件
V1 — 皮囊被压缩后相应于 p1 时的气体体积
p2 — 系统最低工作压力,即蓄能器向系统供油结束时的压力
V2 — 气体膨胀后相应于 p2 时的气体体积
体积差 V V2 V1 为供给系统油液的有效体积,将 它代入式(6.1),使可求得蓄能器容量 V0 ,即
1
1
1
1
V0
P2 P0
n V2
P2 P0
V mq p
(5.5)
式中: V — 油箱的有效容量
q p — 液压泵的流量
m — 经验系数,低压系统:m=2~4,中压系统: m =5~7,中高压或高压系统:m =6~12
对功率较大且连续工作的液压系统,必要时还要进行 热平衡计算,以此确定油箱容量。
油箱设计注意事项:
(1) 泵的吸油管与系统回油管之间的距离应尽可 能远些,管口都应插于最低液面以下,但离油箱底要 大于管径的2-3倍,以免吸空和飞溅起泡。吸油管端 部所安装的滤油器,离箱壁要有3倍管径的距离,以 便四面进油。回油管口应截成45斜角,以增大回截 面,并使斜面对着箱壁,以利散热和沉淀杂质。(2) 在油箱中设置隔板,以便将吸、回油隔开,迫使油液 循环流动,利于散热和沉淀。
第5章 液压辅助元件
按滤芯的材质和过滤方式,过滤器可分为网式、线隙式、 纸芯式、烧结式和磁性式等多种类型。各种过滤器的性能 见表5-3-2所示。
三、滤油器的选用及安装位置
(1)选用 选用滤油器时,要考虑下列几点: ①过滤精度应满足预定要求。
②能在较长时间内保持足够的通流能力。 ③滤芯具有足够的强度,不因液压的作用而损坏。 ④滤芯抗腐蚀性能好,能在规定的温度下持久地工作。
1、管道
液压系统中使用的管道有钢管、纯铜管、尼龙管、 塑料管和橡胶管等,须依其安装位置、工作条件和 工作压力来正确选用。各种常用管道的特点及使用 场合如表5-2-1所示。
①管道应尽量短,最好横平竖直,拐弯少。为避免 管道皱折,减少压力损失,管道装配的弯曲半径要 足够大,管道悬伸较长时应适当设置管夹及支架。
管接头的种类很多,其规格品种可查阅有关手册。 液压系统中常用的管接头如表5-2-2所示。管接头 的连接螺纹采用国家标准米制锥螺纹(ZM)和普 通细牙螺纹(M)。锥螺纹可依靠自身的锥体旋紧
和采用聚四氟乙烯生料带进行密封,广泛用于中、 低压系统;细牙螺纹常在采用组合垫圈或O型圈,
有时也采用紫铜垫圈进行端面密封后用于高压液压 系统。
油箱的典型结构如图5-1-1所示。由图可见,油箱 内部用隔板7、9将吸油管1与回油管4隔开。顶部 、侧部和底部分别装有滤油网2、液位计6和排放污 油的放油阀8。安装液压泵及其驱动电机的安装板5 则固定在油箱顶面上。
对油箱的设计要求是:
(1)油箱的有效容积(油面高度为油箱高度80%时的容积)应根据液压系统发 热、散热平衡的原则来计算,这项计算在系统负载较大、长期连续工作时是 必不可少的。
液压与气动技术
液压系统中的辅助元件,如蓄能器、滤油器、油 箱、热交换器、管件等,对系统的动态性能、工 作稳定性、工作寿命、噪声和温升等都有直接影 响,必须予以重视。其中油箱需根据系统要求自 行设计,其它辅助装置则做成标准件,供设计时 选用。
电子教案与课件液压与气压传动化工第三版第5章液压控制元件
力为( 0.3~0.5)MPa。
9
机械工程学院
第五章 液压控制元件
➢ 液控单向阀
• 工作原理
– 当控制油口不通压力 油时,油液只能从 p1→p2;当控制油口 通压力油时,正、反 向的油液均可自由通 过。
– 根据控制活塞上腔的 泄油方式不同分为内 泄式和外泄式。
图5.2 液控单向阀
a)简式 b)复式 1-控制活塞;2-单向阀阀芯;卸载阀小阀芯
23
机械工程学院
第五章 液压控制元件
一、溢流阀
➢ 溢流阀类型
• 按结构形式分 直动型溢流阀和先导型溢流阀
24
机械工程学院
第五章
(1)直动型溢流阀
• 结构原理 直动型溢流阀由阀芯、
阀体、弹簧、上盖、调节杆、调节螺 母等零件组成。阀体上进油口旁接在 泵的出口,出口接油箱。原始状态, 阀芯在弹簧力的作用下处于最下端位 置,进出油口隔断。进口油液经阀芯 径向孔、轴向孔作用在阀芯底端面, 当液压力等于或大于弹簧力时,阀芯 上移,阀口开启,进口压力油经阀口 溢回油箱。此时阀芯受力平衡,阀口 溢流满足压力流量方程。
用外控时,独立油源的流量不得小
于主阀最大通流量的15 %,以保证
换向时间要求。
▪ 电磁阀的回油可以单独引出(外排),也可以在阀体内与主阀回油口
沟通,一起排回油箱(内排)。
▪ 液动阀两端控制油路上的节流阀可以调节主阀的换向速度。
20
机械工程学院
第五章 液压控制元件
滑阀的中位机能
• 三位的滑阀在中位时各油口 的连通方式体现了换向阀的 控制机能,称之为滑阀的中 位机能。
能要好,压力阀阀芯工作的稳定性要好。 • 所控制的参数(压力或流量)要稳定,受外干扰时变化
9
机械工程学院
第五章 液压控制元件
➢ 液控单向阀
• 工作原理
– 当控制油口不通压力 油时,油液只能从 p1→p2;当控制油口 通压力油时,正、反 向的油液均可自由通 过。
– 根据控制活塞上腔的 泄油方式不同分为内 泄式和外泄式。
图5.2 液控单向阀
a)简式 b)复式 1-控制活塞;2-单向阀阀芯;卸载阀小阀芯
23
机械工程学院
第五章 液压控制元件
一、溢流阀
➢ 溢流阀类型
• 按结构形式分 直动型溢流阀和先导型溢流阀
24
机械工程学院
第五章
(1)直动型溢流阀
• 结构原理 直动型溢流阀由阀芯、
阀体、弹簧、上盖、调节杆、调节螺 母等零件组成。阀体上进油口旁接在 泵的出口,出口接油箱。原始状态, 阀芯在弹簧力的作用下处于最下端位 置,进出油口隔断。进口油液经阀芯 径向孔、轴向孔作用在阀芯底端面, 当液压力等于或大于弹簧力时,阀芯 上移,阀口开启,进口压力油经阀口 溢回油箱。此时阀芯受力平衡,阀口 溢流满足压力流量方程。
用外控时,独立油源的流量不得小
于主阀最大通流量的15 %,以保证
换向时间要求。
▪ 电磁阀的回油可以单独引出(外排),也可以在阀体内与主阀回油口
沟通,一起排回油箱(内排)。
▪ 液动阀两端控制油路上的节流阀可以调节主阀的换向速度。
20
机械工程学院
第五章 液压控制元件
滑阀的中位机能
• 三位的滑阀在中位时各油口 的连通方式体现了换向阀的 控制机能,称之为滑阀的中 位机能。
能要好,压力阀阀芯工作的稳定性要好。 • 所控制的参数(压力或流量)要稳定,受外干扰时变化
液压传动教案第五章
二、压力表开关 3、特点:压力表开关有一点、二点、三点、六点等,多点压 力表开关,可使压力表油路分别与几个被测油路相连通,从 而用一个压力表即可检测多点处的压力。 4、注意:当液压系统进入正常工作状态后,应将手柄拉出, 使压力表和系统油路断开,以保护压力表并延长其使用寿命。
第四节 密封装臵
密封装臵的作用:防止液压元件和液压系统中的液压油 泄漏,保证必要的工作压力,还可以防止外漏油液污染 工作环境,节省油料。
2、线式过滤器 结构原理:特形金属线缠绕 在筒形芯架上,制成滤芯, 利用线间间隙过滤杂质。过 滤精度为30-100μm 特点:结构简单,过滤精度 较高,通流能力大,但不易 清洗 应用:常安装在压力管路上, 用以保护系统中较精密或易 堵塞的液压元件,其通油压 力可达6.3~32Mpa
3、纸芯式过滤器 工作原理:用微孔过滤纸折迭成星状绕在骨架上形成,利用 滤纸的微孔过滤。
注:液压系统中除了整个系统所需的滤油器外,还常常 在一些重要元件(如伺服阀、精密节流阀等)的前面单独 安装一个专用的精滤油器来确保它们的正常工作。
过滤器安装注意 一般过滤器只能单方向使用,即进出油口不可反接, 以利于滤芯清洗和安全。必要时可增设单向阀和过滤器, 以保证双向过滤。目前双向过滤器已问世。
焊接式钢管接头的特点及应用:
连接简单,O型密封圈密封可靠,工作压力可达32Mpa; 球面与锥面接触的安装要求不很严格,但密封性较差,其最 高工作压力应低于8Mpa。 主要用来连接管壁较厚的钢管,用在压力较高的液压系 统中。 4、卡套式铰接管接头
5、扣压式软管接头
特点及应用 可用于工作压力为6-40Mpa系统中软管的连接,在装配时 须剥离胶层,然后在专门的设备上扣压而成
6、快速装拆接头
第五章 液压控制阀
2.滑阀式换向阀(换向阀)
滑阀式换向阀在液压系统中比转阀式用得广泛,
以滑阀式换向阀为主介绍换向阀的各项工作性能。 五槽四通滑阀(左位),五槽四通滑阀(右位)。
换向阀图形符号含义
⑴用方框表示换向阀的工作位置,几个方框几个位;
⑵一个方框的上边和下边与外部连接的接口数即为通路数;
⑶方框内的箭头表示此位置上油路的通断状态,但箭头的方向 并不一定代表油液实际流动的方向;
实现远程调压或系统卸荷。
二、减压阀
Hale Waihona Puke 减压阀是利用液体流过缝隙产生压降的原理,使出口压力低 于进口压力的压力控制阀,按调节要求的不同,可分为定值
减压阀、定比减压阀和定差减压阀三种。
其中定值减压阀应用较广,简称减压阀。 直动和先导。先导应用多。 典型结构如下图
先导减压阀
减压阀和溢流阀的区别
表5-1 换向阀类型表
分类方式 按阀的结构 类型 转阀式、滑阀式
按阀的操纵方式
按阀的位置和通路数
手动、机动(行程)、电磁、液动、电液动
二位二通、二位三通……三位四通、三位五 通……
1.转阀式换向阀(转阀)
a)工作原理图 1-阀芯 2-阀体 b)应用自卸汽车车 厢举升机构 c)特点: 密封性差;阀芯径 向力不平衡;结构 简单、紧凑。
H型
Y型 K型 M型 X型 P型
P 、 T相通,A 、B 口封闭,泵卸荷,液压缸闭锁,从静止到启动 较平稳;制动性与O 型相同;可用于泵卸荷液压缸锁紧的系统中
四口处于半开启状态,泵基本卸荷,但仍保持一定的压力。换向 性能介于O 型和H型之间 P 、A 、B 相通, T封闭,泵与液压缸两腔相通,可组成差动连接。 从静止到启动平稳;制动平稳;换向位置变动比 H型的小,应用 广泛
第5章 液压控制元件汇总
(3)电磁换向阀
图5-9 二位二通机动换向阀
1-滚轮 2-阀芯 3-阀体 4-弹簧
图5-10 直流湿式三位四通电磁换向阀
1-电磁铁 2-推杆 3-阀芯 4-弹簧 5-挡圈 第5章 液压控制元件
2019/3/7
(4) 液动换向阀
(5)电液换向阀
图5-11 三位四通液动换向阀
图5-12 电液换向阀
第5章 液压控制元件 2019/3/7
5.1.2
滑阀式换向阀
图形符号
1.换向阀的结构和工作原理 (1)换向阀的原理与图形符号
(2)换向阀的操纵控制方式
图5-6 滑阀式换向阀结构原理图 1-阀芯 2-阀体
按操纵方式不同,换向阀可分为手动控制、机动控制、电磁 控制、液动控制、电液动控制。 操纵形式符号
第5章 液压控制元件 2019/3/7
①系统保压。当P口被堵塞,系统保压,液压泵能用于多缸系统。 当P口不太通畅地与T口接通时(如X型),系统能保持一定的压力供控 制油路使用。 ②系统卸荷。P口通畅地与T口接通时,系统卸荷。 ③执行元件“浮动”。 阀在中位,当A、B两口互通时,卧式液压 缸呈“浮动”状态,可利用其他机构移动工作台,调整其位置。 ④执行元件任意位置停止。当A、B两口堵塞,则可使液压缸或液压 马达在任意位置处停下来。 ⑤制动和锁紧要求。执行元件采用了液压锁、制动器等时,要求中 位时两腔与油箱相通,保证锁紧和制动的可靠性。
5.2.1 溢流阀
溢流阀的主要用途是维持液压系统压力恒定,起调 压作用,另一种用途作为液压系统起安全保护装置,起 限压作用。 溢流阀在结构上有直动式和先导式之分。
第5章 液压控制元件 2019/3/7
1.溢流阀的工作原理
(1) 直动式溢流阀
第5章 液压控制阀
泄油口L(在侧面,图中看不见)
进油口P1
进油口P1
出油口P2
出油口P2
泄油口L
◆减压阀的主要特点:
1)常态下阀口打开
2)从出口引压力油控制阀口开度 3)进口压力小于调定值时,不起减压作用
4)当进口压力高于调定值时,保持出口稳定低压
5)泄油口单独接油箱
◆减压阀和溢流的区别: 1、减压阀是出口压力控制,保证出口压力为定值; 溢流阀是进口压力控制,保证进口压力为定值 2、减压阀阀口常开;溢流阀阀口常闭
◆静态特性
(4)溢流阀的压力调节范围: 溢流阀的能够保证性能的压力使用范围。调节压力
时进口压力能保持平稳变化,无突变、迟滞等现象
更换不同刚度的弹簧可改变压力调节范围 (5)溢流阀许用流量范围: 许用流量范围是额定流量的15%—100%
动态特性
溢流阀的动态特性是指流量阶跃时的压力响应特性, 如图。其衡量指标主要有压力超调量、响应时间等。
此力指向阀口开启方向 作用在锥阀上的稳态液动力 (a)外流式; (b)内流式
(3)液压卡紧现象 卡紧现象 在中高压系统中,当阀芯停止运动一段时间后, 移动阀芯十分费力,这就是卡紧现象。 引起的原因 主要是滑阀付几何形状误差和同心度变化引起的 径向不平衡力。有的是赃物进入缝隙或油温升高阀芯
膨胀卡紧
(3)液压卡紧现象 卡紧力 •径向不平衡力分析: 1、无几何误差,但轴心线平行不重合:不出现径向不 平衡力。
◆静态特性 (2)溢流阀的启闭特性: 开启比:Pc与 Pn 之比越大、调压偏差越小阀的压力稳定 性越好; 闭合比:Pc· 与 Pn率越大阀的性能越好 一般开启压力比率> 90% ;闭合压力比率> 85% (3)溢流阀的卸荷压力: 溢流阀的遥控口与油箱连通后泵处于卸荷状态时,溢流阀 进出油口压力之差称之为卸荷压力。一般卸荷压力不大于 0.2MPa,最大不应超过0.4MPa。
第五章 液压控制阀
我国的液动阀控制压力不小于0.35MPa,(使用条件)即(3.5kgf/㎝2), 由于此阀换向时间可调,换向冲击小,一般用于较大流量(>63L/min)的
场合。
(5)电液动换向阀 电液动换向阀又称电液换向阀,它由电磁换向阀与换向 时间可调的液动阀组成。其中电磁换向阀称先导阀,改变 液动阀的控制油路的方向(虚线位控制油路),而液动阀实 现主油路的换向,称为主阀。换向的速度由控制油路中的 单向节流阀调节。
/min左右),而且当阀芯被卡住或由于电压低等原因吸合不上时,电磁
铁线圈易烧坏(起动电流大)、工作可靠性差;
直流电磁铁在工作或过载情况下,其电流基本不变,因此不会因阀 芯被卡住而烧坏电磁铁线圈,工作可靠,换向冲击、噪声小,换向时间
长(约0.1~0.15s),换向频率允许较高(120次/min,最高可达240次/ min),但需要直流电源或整流装置,并且起动力小,反应速度较慢。
液动换向阀有换向时间可调和换向时间不可调两种。
换向时间不可调液动阀
液动换向阀 换向时间可调液动阀
A、换向时间不可调的液动换向阀
如图所示三位四通液动换向阀结构原理图,当控制油口K1和
K2均不通控制压力油时,阀芯在复位弹簧的作用下处于中位,当
K1通压力油,K2通油箱时,阀芯右移,使P与A通,B与T通;反
一、单向阀
单向阀包括普通的单向阀和液控单向阀两种。
单向阀 普通的单向阀 液控单向阀 1、普通单向阀(单向阀) 它只允许油液沿一个方向通过,而反向液流被截止, 亦称逆止阀、止回阀,要求其正向液流通过时压力 损失较小,反向截止时密封性能好。
图形符号
按进出油液流向的不同分直通式和直角式两种结构, 都由阀芯、阀体和弹簧等组成。(小规格直通式阀有用钢球作 阀芯的),当液流从进油口A 流入时,油液压力克服弹簧阻力 和阀体1与阀芯2间的摩擦力,顶开带有锥端的阀芯(或钢球), 从出油口B 流出。当油液反向从B流入时,油液压力使阀芯 紧密地压在阀座上,故不能逆流。由于弹簧仅起复位作用, 因而弹簧力很小。所以正向开启压力只需0.03~0.05MPa ; 反向截止时,因阀芯与阀座孔为线密封,且密封力随压力增 高而增大,故密封性能良好。
场合。
(5)电液动换向阀 电液动换向阀又称电液换向阀,它由电磁换向阀与换向 时间可调的液动阀组成。其中电磁换向阀称先导阀,改变 液动阀的控制油路的方向(虚线位控制油路),而液动阀实 现主油路的换向,称为主阀。换向的速度由控制油路中的 单向节流阀调节。
/min左右),而且当阀芯被卡住或由于电压低等原因吸合不上时,电磁
铁线圈易烧坏(起动电流大)、工作可靠性差;
直流电磁铁在工作或过载情况下,其电流基本不变,因此不会因阀 芯被卡住而烧坏电磁铁线圈,工作可靠,换向冲击、噪声小,换向时间
长(约0.1~0.15s),换向频率允许较高(120次/min,最高可达240次/ min),但需要直流电源或整流装置,并且起动力小,反应速度较慢。
液动换向阀有换向时间可调和换向时间不可调两种。
换向时间不可调液动阀
液动换向阀 换向时间可调液动阀
A、换向时间不可调的液动换向阀
如图所示三位四通液动换向阀结构原理图,当控制油口K1和
K2均不通控制压力油时,阀芯在复位弹簧的作用下处于中位,当
K1通压力油,K2通油箱时,阀芯右移,使P与A通,B与T通;反
一、单向阀
单向阀包括普通的单向阀和液控单向阀两种。
单向阀 普通的单向阀 液控单向阀 1、普通单向阀(单向阀) 它只允许油液沿一个方向通过,而反向液流被截止, 亦称逆止阀、止回阀,要求其正向液流通过时压力 损失较小,反向截止时密封性能好。
图形符号
按进出油液流向的不同分直通式和直角式两种结构, 都由阀芯、阀体和弹簧等组成。(小规格直通式阀有用钢球作 阀芯的),当液流从进油口A 流入时,油液压力克服弹簧阻力 和阀体1与阀芯2间的摩擦力,顶开带有锥端的阀芯(或钢球), 从出油口B 流出。当油液反向从B流入时,油液压力使阀芯 紧密地压在阀座上,故不能逆流。由于弹簧仅起复位作用, 因而弹簧力很小。所以正向开启压力只需0.03~0.05MPa ; 反向截止时,因阀芯与阀座孔为线密封,且密封力随压力增 高而增大,故密封性能良好。
第五章液压控制元件13节
第五章 液压控制元件
5.2 压力控制阀
一、 溢流阀 3. 溢流阀的特性分析 (1) 溢流阀的主要性能指标:
p0-起始稳态压力;pn-最终稳态压力;
b. 动态性能指标
溢流量由零阶跃变化到额 定流量时,其进口压力(系统 压力)将迅速升高并超过额定 压力的调定值,然后再衰减到 最终稳定压力,完成动态过渡 过程。
第五章 液压控制元件
一、 溢流阀 3. 溢流阀的特性分析
5.2 压力控制阀
(2) 先导型溢流阀的静态特性分析 ➢自学P134~138(不作掌握要求)
第五章 液压控制元件
二、 减压阀
5.2 压力控制阀
功用:使其出口压力低于进口压力的压力控制阀。可以分为定压输出减压 阀、定差减压阀和定比减压阀三种。
b. 动态性能指标
➢响应时间t1:点A(起始 稳态压力)到点B(最终 稳态压力)所用的时间, 其值越小响应越快;
第五章 液压控制元件
一、 溢流阀 3. 溢流阀的特性分析
5.2 压力控制阀
(1) 溢流阀的主要性能 指标:
b. 动态性能指标
➢过渡过程时间t2:点B到 点C(±95%(pn-p0))所 用的时间,其值越小表明
第五章 液压控制元件 §5.1 液压控制元件的分类及典型结构
分类
分类法
一、依据 在系统中 的功用分 类
分
类
1. 压力控制元件 溢流阀
(控制液流压力 或利用压力控制)
减压阀
顺序阀
2. 流量控制元件 节流阀 (控制液流流量) 调速阀
分集流阀
3. 方向控制元件 单向阀 (控制液流方向) 换向阀
功能特点
控制进口压力,有安全或定压的作用
第五章 液压控制元件
(完整版)第五章 液压控制元件
2020/2/8
阀芯的三种形式
滑阀 锥阀 球阀
滑阀为间隙密封,阀芯与阀口存在一定的密封 长度,因此滑阀运动存在一个死区。
锥阀阀芯半锥角一般为12 °~20 °,阀口关闭
时为线密封,密封性能好且动作灵敏。
性能与锥阀相同。
二、液压阀的性能参数
❖ 公称通径 代表阀的通流能力大小,对应阀的额定
流量。与阀的进出口连接的油管的规格应与 阀的通径相一致。 ❖ 额定压力
安全阀属于自动阀类, 主要用于锅炉、压力容 器和管道上,控制压力 不超过规定值,对人身 安全和设备运行起重要 保护作用。
(3)作卸荷阀 用,溢流阀在 近于零压下溢 流,液压泵卸
荷空运。
(4)作背压阀用,一般安装在液压缸回油 路上,可使缸回油腔成背压,提高运动部件 及液压系统的平稳性。
二、减压阀
DB型溢流阀(二级同心式),工艺性比三级同心式溢流阀好。
3、应用举例
(1)作溢流阀用,随 时把系统中多余的油 液放回油箱,保持系 统压力的基本稳定;
(2)作安全阀用,溢 流阀常闭,当负载增 大使系统的压力超过 溢流阀调定的压力是, 溢流阀开启,油液流 回油箱,保证液压系 统的安全;
安全阀
❖ 安全阀是一种安全保 护用阀,它的启闭件 受外力作用下处于常 闭状态,当设备或管 道内的介质压力升高, 超过规定值时自动开 启,通过向系统外排 放介质来防止管道或 设备内介质压力超过 规定数值。
第五章 液压控制元件
液压控制阀又称液压阀,是液压系统中的控 制元件。控制和调节系统中工作液体的压力、流 量和方向,以满足对执行机构(液压缸、液压马 达)所提出的压力、速度和换向的要求,从而使 执行机构实现预期的动作。
液压控制阀的分类
分类方法
液压元件及附件的原理
液压元件及附件的原理
液压元件及附件的原理如下:
1. 液压缸:它是执行元件,作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
2. 液压马达:与液压缸的作用类似,它是执行元件,作用是将液体的压力能转换为机械能。
3. 液压阀:它是控制元件,在液压系统中控制和调节液体的压力、流量和方向。
其中控制压力的称为压力控制阀,控制流量的称为流量控制阀,控制通、断和流向的称为方向控制阀。
4. 油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等:这些是辅助元件,它们帮助维持液压系统的稳定和正常工作。
5. 液压油:它是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
总的来说,液压系统利用液压缸、液压马达等执行元件将液体的压力能转换为机械能,以驱动负载动作。
同时,液压阀等控制元件则负责控制和调节液体的压力、流量和方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
滑阀的中位机能 三位的滑阀在 中位时各油口 的连通方式体 现了换向阀的 控制机能,称 之为滑阀的中 位机能。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
5)电液换向阀:由电磁换向阀和液动换向阀组合而成。 电磁换向阀起先导作用,它可以改变控制液流的方向,从而改变液动换 向阀的位置。由于操纵液动换向阀的液压推力可以很大,所以主阀可以做 得很大,允许有较大的流量通过。这样用较小的电磁铁就能控制较大的液 流。图4-11所示三位四通电液换向阀。该阀的工作状态(不考虑内部结构) 和普通电磁阀一样,但工作位置的变换速度可通过阀上的节流阀调节。
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
4.1.2 换向阀:换向阀是利用阀芯对阀体的 相对位置改变来控制油路接通、关断或改 变油液流动方向。一般以下述方法分类。 1. 按接口数及切换位置数分类 接口是指阀上各种接油管的进、出口, 进油口通常标为P,回油口则标为R或T, 出油口则以A、B来表示。阀内阀芯可移动 的位置数称为切换位置数,通常我们将接 口称为“通”,将阀芯的位置称为“位”, 例如:图4-3所示的手动换向阀有三个切 换位置,4个接口,我们称该阀为三位四 通换向阀。该阀的三个工作位置与阀芯在 阀体中的对应位置如图4-4所示,各种位 和通的换向阀符号见图4-5所示。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
4.1.2 换向阀:换向阀是利用阀芯对阀体的相对位置改变来控制油路接通、 关断或改变油液流动方向。一般以下述方法分类。
2.按操作方式分类 推动阀内阀芯移动的动力有手、脚、机械、液压、电磁等方法,如 图4-6所示。阀上如装弹簧,则当外加压力消失时,阀芯会回到原位。
图4-7a为自动复位式手动换向阀,手柄左扳则阀芯右移,阀的油口P和 A通,B和T通;手柄右扳则阀芯左移,阀的油口P和B通,A和T通;放开手 柄,阀芯2在弹簧3的作用下自动回复中位(四个油口互不相通)。 如果将该阀阀芯右端弹簧3的部位改为图中7b的形式,即成为可在三个 位置定位的手动换向阀,图4-7c、d为其图形符号图。
深圳职业技术学院——液压与气动技术 2013年7月29日星期一
4.1 方向控制阀(direction control valves)
4.1.2 换向阀:换向阀是利用阀芯对阀体的相对位置改变来控制油路 接通、关断或改变油液流动方向。一般以下述方法分类。
1. 按接口数及切换位置数分类 接口是指阀上各种接油管的进、出口,进油口通常标为P,回 油口则标为R或T,出油口则以A、B来表示。阀内阀芯可移动的位置 数称为切换位置数,通常我们将接口称为“通”,将阀芯的位置称为 “位”,例如:图4-3所示的手动换向阀有三个切换位置,4个接口, 我们称该阀为三位四通换向阀。该阀的三个工作位置与阀芯在阀体中 的对应位置如图4-4所示,各种位和通的换向阀符号见图4-5所示。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
3.换向阀结构:在液压传动系统中广泛采用的是滑阀式换向阀,在这里主要 介绍这种换向阀的几种结构。
1) 手动换向阀:手动换向阀是利用手动杠杆来改变阀芯位置实现换向的,图 4-7所示为手动换向阀的图形符号。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
方向控制阀是通过控制液体流动的方向来操纵执行元件的运动,如液 压缸的前进、后退与停止,液压马达的正反转与停止等。
4.1.1 单向阀 单向阀(Check valve)使油只能在一个方向流动,反方向则堵塞。 其构造及符号如图4-1所示。
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
2)系统卸荷:中位“M‖型, 图4-14 所示 ,当方向 阀于中位时,因P、T口 相通,泵输出的油液不 经溢流阀即可流回油箱, 由于直接接油箱,所以 泵的输出压力近似为零, 也称泵卸荷,减少功率 损失。 3)液压缸快进:中位“P‖ 型,图4 -15 所示,当 换向阀于中位时,因P、 A、B相通,故可用作 差动回路。
液控单向阀如图4-2所示,在普通单向阀的基础上多了一个控制口, 当控制口空接时,该阀相当于一个普通单向阀;若控制口接压力油,则油 液可双向流动。 为减少压力损失,单向阀的弹簧刚度很小,但若置于回油路作背压阀 使用时,则应换成较大刚度的弹簧。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
P A B
T 液压泵
P
溢流阀
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
换向阀:滑阀式换向阀
A B T
P A B
T 液压泵
P
溢流阀
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
换向阀:滑阀式换向阀
A B A B
T P T P
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
换向阀不同的中位机能,可以满足液压系统的不同要求,由表 4-1可以看出中位机能是通过改变阀芯的形状和尺寸得到的。 在分析和选择三位换向阀的中位机能时,通常考虑以下几点:
深圳职业技术学院——液压与气动技术 2013年7月29日星期一
4.1 方向控制阀(direction control valves)
液压与气动技术 第三单元 液压控制元件及辅件
2005-1-20
教学内容:
方向控制阀(重点) 压力控制阀及应用(重点)
流量控制阀及应用(重点)
叠加阀/插装阀(了解)
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.液压控制元件
液压控制元件主要是各种控制阀,在液压系统中 控制液体流动方向、流量大小和压力的高低,以满足 执行元件的工作要求。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
1)直动式
a断电状态 b)通电状态 c)电磁铁a通电b断电 d) 电磁铁b通电a断电
深圳职业技术学院——液压与气动技术 2013年7月29日星期一
4.1 方向控制阀(direction control valves)
4)液动换向阀 图4-10所示为三位四通液动换 向阀,当K1 通压力油,K2 回油时,P 与A接通,B与T接通;当K2通压力油, K1 回油时,P与B接通,A与T接通; 当K1 、K2都未通压力油时,P、T、A、 B四个油口全堵死。
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
5. 中位机能 1)系统保压 中位为“O‖型, 如图4-13所示, P口被堵塞 时,此时油需从溢流阀流回 油箱,增加功率消耗;但是 液压泵能用于多缸系统。
深圳职业技术学院——液压与气动技术
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
4.1.2 换向阀:换向阀是利用阀芯对阀体的相对位置改变来控制油路接通、关 断或改变油液流动方向。一般以下述方法分类。
1. 按接口数及切换位置数分类 接口是指阀上各种接油管的进、出口,进油口通常标为P,回油口则标 为R或T,出油口则以A、B来表示。阀内阀芯可移动的位置数称为切换位置数, 通常我们将接口称为“通”,将阀芯的位置称为“位”,例如:图4-3所示 的手动换向阀有三个切换位置,4个接口,我们称该阀为三位四通换向阀。该 阀的三个工作位置与阀芯在阀体中的对应位置如图4-4所示,各种位和通的 换向阀符号见图4-5所示。
换向阀
A B A B
T P T P
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
5. 中位机能
当液压缸或液压马达需在任何位置均可停止时,须使用3位阀, (即除前进端与后退端外,还有第三位置),此阀双边皆装弹簧, 如无外来的推力,阀芯将停在中间位置,称此位置为中间位置, 简称为中位,换向阀中间位置各接口的连通方式称为中位机能, 各种中位机能如表4-1所示。
深圳职业技术学院——液压与气动技术 2013年7月29日星期一
(O型)
换向阀
A B
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
2)先导式
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
5)电液换向阀
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)
深圳职业技术学院——液压与气动技术
2013年7月29日星期一
4.1 方向控制阀(direction control valves)