2020高中数学 2.2平面与平面平行判定与性质教案 新人教A版必修2

合集下载

2.2.2平面与平面平行的判定(解析版)

2.2.2平面与平面平行的判定(解析版)

人教版A版高中数学必修二2.2.2平面与平面平行的判定学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内的两条相交直线平行于另一个平面D.一个平面内有无数条直线平行于另一个平面【答案】C【解析】【分析】根据面面平行的判定定理或定义可得出结论.【详解】根据面面平行的定义可知,若两个平面没有公共点,则这两个平面平行,则一个平面内所有直线都与另一个平面没有公共点,则这两个平面平行.由面面平行的判定定理可知,一个平面内两条相交直线与另一个平面平行,则这两个平面平行.故选:C.【点睛】本题考查面面平行的判断,一般利用面面平行的定义或判定定理来判断,考查对面面平行的定义和判定定理的理解,属于基础题.2.下列说法正确的是()A.若两条直线与同一条直线所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线分别平行于两个相交平面,则一定平行它们的交线D.若两个平面都平行于同一条直线,则这两个平面平行【答案】C【解析】【分析】利用逐一验证法,结合面面平行的判定以及线线平行的特点,可得结果.A 错,由两条直线与同一条直线所成的角相等,可知两条直线可能平行,可能相交,也可能异面;B 错,若一个平面内有三个点到另一个平面的距离相等,则这两个平面可能平行或相交;C 正确,设,l m αβ⋂=//,m α//β,利用线面平行的性质定理,在平面α中存在直线a //m ,在平面β中存在直线b //m ,所以可知a //b ,根据线面平行的判定定理,可得b //α,然后根据线面平行的性质定理可知b //l ,所以m //l ;D 错,两个平面可能平行,也可能相交.故选:C【点睛】本题考查面面平行的判定,还考查线面平行的判定定理以及性质定理,重点在于对定理的熟练应用,属基础题.3.已知,αβ是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是( )A .α内有无穷多条直线与β平行B .直线a //,a α//βC .直线,a b 满足b //,a a //,b α//βD .异面直线,a b 满足,a b αβ⊂⊂,且a //,b β//α【答案】D【解析】【分析】采用逐一验证法,根据面面平行的判定定理,可得结果.【详解】A 错α内有无穷多条直线与β平行,B 错若直线a //,a α//β,则平面α与平面β可能平行,也可能相交,C 错若b //,a a //,b α//β,则平面α与平面β可能平行,也可能相交,D 正确当异面直线,a b 满足,a b αβ⊂⊂,且a //,b β//α时,可在α上取一点P ,过点P 在α内作直线'b //b ,由线面平行的判定定理,得'b //β,,a b 异面,所以',a b 相交,再由面面平行的判定定理,得α//β,故选:D.【点睛】本题考查面面平行的判定,属基础题.4.已知三条互不相同的直线l m n ,,和三个互不相同的平面αβγ,,,现给出下列三个命题:①若l 与m 为异面直线,l m αβ⊂⊂,,则αβ∥;②若αβ∥,l m αβ⊂⊂,,则l m P ;其中真命题的个数为( )A .3B .2C .1D .0【答案】D【解析】【分析】通过线面平行的性质与判定,以及线面关系,对三个命题进行判断,得到答案.【详解】①中,两平面也可能相交,故①错误;本题考查线面平行的判定和性质,线面关系,属于简单题.5.设α,β表示两个不同平面,m 表示一条直线,下列命题正确的是( ) A .若//m α,//αβ,则//m β.B .若//m α,//m β,则//αβ.C .若m α⊂,//αβ,则//m β.D .若m α⊂,//m β,则//αβ.【答案】C【解析】【分析】由//m β或m β⊂判断A ;由//αβ,或αβ、相交判断B ;根据线面平行与面面平行的定义判断C ;由//αβ或αβ、相交,判断D .【详解】若//m α,//αβ,则//m β或m β⊂,A 不正确; 若//m α,//m β,则//αβ,或αβ、相交,B 不正确;若m α⊂,//αβ,可得m 、β没有公共点,即//m β,C 正确;若m α⊂,//m β,则//αβ或αβ、相交,D 不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题. 空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6.能够推出平面α∥平面β的是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α【解析】试题分析:对于A ,一条直线与两个平面都平行,两个平面不一定平行.故A 不对;对于B ,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B 不对;对于C ,两个平面中的两条直线平行,不能保证两个平面平行,故C 不对;对于D ,两个平面中的两条互相异面的直线分别平行于另一个平面,可以保证两个平面平行,故D 正确考点:空间线面平行的判定与性质7.设,a b 是两条不同的直线,,αβ是两个不同的平面,则//αβ等价于( ) A .存在两条异面直线,a b ,,,//,//a b a b αββα⊂⊂.B .存在一条直线a ,//,//a a αβ.C .存在一条直线a ,,//β⊂a a a .D .存在两条平行直线,a b ,,,//,//αββ⊂⊂a b a b a .【答案】A【解析】【分析】根据面面平行的判定定理,以及线面,面面位置关系,逐项判断,即可得出结果.【详解】对于A 选项,如图:,a b 为异面直线,且,,//,//a b a b αββα⊂⊂,在β内过b 上一点作//c a ,则β内有两相交直线平行于α,则有//αβ;故A 正确;对于B 选项,若//,//a a αβ,则a 可能平行于α与β的交线,因此α与β可能平行,也可能相交,故B 错;对于D 选项,若,,//,//αββ⊂⊂a b a b a ,则α与β可能平行,也可能相交,故D 错.故选:A【点睛】本题主要考查探求面面平行的充分条件,熟记面面平行的判定定理,以及线面,面面位置关系即可,属于常考题型.8.已知m ,n 为两条不同的直线,α,β为两个不同的平面,对于下列四个命题: ①m α⊂,n ⊂α,m βP ,n P P βαβ⇒ ②n m ∥,n m αα⊂⇒P ③αβ∥,m α⊂,n m n P β⊂⇒ ④m αP ,n m n α⊂⇒P 其中正确命题的个数有( )A .0个B .1个C .2个D .3个 【答案】A【解析】①m α⊂,n α⊂,m P β,n βP ,则α与β可能相交,①错;②n m P ,n α⊂,则m 可能在平面α内,②错;③αβP ,m α⊂,n β⊂,则m 与n 可能异面,③错;④m αP ,n α⊂,则m 与n 可能异面,④错,故所有命题均不正确,故选A .【方法点晴】本题主要考查线面平行的判定与性质、面面平行判定与性质,属于中档题. 空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价. 9.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都平行于γ②存在两条不同的直线l ,m ,使得l ⊂β,m ⊂β,使得l ∥α,m ∥α③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个【答案】B利用直线与平面、平面与平面的位置关系,对选项进行逐一判断,确定出正确选项即可.【详解】对于①:由平行于同一平面的两个平面平行可知①正确;对于②:由面面平行的判定定理知,若,l m 是同一平面内的两条相交直线时,可以判定α与β平行,反之不成立,故②不正确;对于③:若,αβ是两个相交平面时,如果平面α内不共线的三点在平面β的异侧时,此三点可以到平面β的距离等,此时不能判定α与β平行,故③不正确;对于④:在平面α内作''//,//l l m m ,因为,l m 是两条异面直线,所以必有'',l m 相交,又因为//,//l m ββ,所以''//,//l m ββ,由面面平行的判定定理知,α与β平行,故④正确;故选:B【点睛】本题考查面面平行的判定及线面平行的判定;熟练掌握面面平行的判定定理是求解本题的关键;重点考查学生的逻辑思维能力;属于中档题、常考题型.10.如图,在棱长为2的正方体1111ABCD A B C D -中,M 是11A B 的中点,点P 是侧面11CDD C 上的动点,且1MP AB C P ,则线段MP 长度的取值范围是( )A .B .C .D .【答案】B【解析】【分析】 取CD 的中点N ,1CC 的中点R ,11B C 的中点H ,根据面面平行的判定定理,得到平MRN ∠是直角,进而即可求出结果.【详解】取CD 的中点N ,1CC 的中点R ,11B C 的中点H ,则1////MN B C HR ,//MH AC , ∴平面//MNRH 平面1AB C ,∴MP ⊂平面MNRH ,线段MP 扫过的图形是MNR V∵2AB =,∴MN NR MR ===∴222MN NR MR =+,∴MRN ∠是直角,∴线段MP 长度的取值范围是. 故选B.【点睛】本题主要考查面面平行的判定,熟记面面平行的判定定理即可,属于常考题型.二、填空题11.给出下列命题:①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行;④一个平面中的两条直线与另一个平面都平行,则这两个平面平行;其中说法正确的有_____(填序号).【答案】②③【解析】【分析】对四个选项进行逐一分析即可.对①:根据公理可知,只有不在同一条直线上的三点才能确定一个平面,故错误;对②:三条平行线,可以确定平面的个数为1个或者3个,故正确;对③:垂直于同一个平面的两条直线平行,故正确;对④:一个平面中,只有相交的两条直线平行于另一个平面,两平面才平行,故错误. 综上所述,正确的有②③.故答案为:②③.【点睛】本题考查立体几何中的公理、线面平行的判定,属综合基础题.12.过平面外两点,可作______个平面与已知平面平行.【答案】0或1【解析】【分析】当这两点在平面的同一侧,且距离平面相等,这样就有一个平面与已知平面平行,当这两点在平面的异侧,不管两个点与平面的距离是多少,都没有平面与已知平面平行,结论不唯一,得到结果.【详解】两点与平面的位置不同,得到的结论是不同的,当这两点在平面的同一侧,且距离平面相等,这样就有一个平面与已知平面平行,当这两点在平面的异侧,不管两个点与平面的距离是多少,都没有平面与已知平面平行, 这样的平面可能有,可能没有,故答案为0或1.【点睛】本题考查平面的基本性质及推论,考查过两个点的平面与已知平面的关系,本题要考查学生的空间想象能力,是一个基础题.13.如图,在正方体ABCD-A1B1C1D1中,与面ABCD平行的面是____________.【答案】面A1B1C1D1【分析】根据正方体的性质,得到答案.【详解】在正方体ABCD -A 1B 1C 1D 1中根据正方体的性质,对面互相平行所以与面ABCD 平行的面是A 1B 1C 1D 1【点睛】本题考查正方体的基本性质,属于简单题.14.设直线,l m ,平面,αβ,下列条件能得出//αβ的是_____.l m αα⊂⊂①,,且//,//l m ββ;l m αβ⊂⊂②,且//l m ;③,l m αβ⊥⊥,且//l m ;//,//l m αβ④,且//l m .【答案】③【解析】【分析】利用空间直线和平面的位置关系对每一个命题分析判断得解.【详解】设直线,l m ,平面,αβ,①,l m αα⊂⊂,且//,//l m ββ;l 与m 不相交时不能得出//αβ.②,l m αβ⊂⊂且//;l m α与β可能相交.③,l m αβ⊥⊥,且//l m ;能得出//αβ.④//,//l m αβ,且//l m .可能得出α与β相交.故答案为:③.【点睛】本题主要考查空间直线和平面位置关系的判定,意在考查学生对这些知识的理解掌握水15.如图,在棱长为2的正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点(包括边界),且11//A F D AE 平面,则11FA FB ⋅u u u v u u u v的最小值为____.【答案】12【解析】【分析】 根据题意1111ABCD A B C D -,可知2211111111111()||||FA FB FB B A FB FB B A FB FB ⋅=+⋅=+⋅=u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r ,即求21||FB u u u r 的最小值.在侧面11BCC B 内找到满足1//A F 平面1D AE 且21||FB u u u r最小的点即可.【详解】 由题得21111111()||FA FB FB B A FB FB ⋅=+⋅=u u u r u u u r u u u r u u u u r u u u r u u u r ,取1BB 中点H ,11B C 中点G ,连结1A G ,1A H ,GH ,11//A H D E Q ,∴1//A H 平面1D AE ,1//GH AD Q ,//GH ∴平面1D AE ,∴平面1//GA H 平面1D AE ,1//A F 平面1D AE ,故F ⊂平面1GA H ,又F ⊂平面11BCC B ,则点F 在两平面交线直线GH 上,那么1FB 的最小值是1FB GH ⊥时,11=1B G B H =,则211||=2FB u u u r 为最小值. 【点睛】本题考查空间向量以及平面之间的位置关系,有一定的综合性.三、解答题16.如图,在四棱锥P ABCD -中,AD CD ⊥,//AB CD ,E ,F 分别为棱PC ,CD的中点,3AB =,6CD =,且AC =(1)证明:平面//PAD 平面BEF .(2)若四棱锥P ABCD -的高为3,求该四棱锥的体积.【答案】(1)见解析(2)9【解析】【分析】(1)根据3AB =,6CD =可知2CD AB =,由//AB DF 可证明//BF AD ,又根据中位线可证明//EF PD 即可由平面与平面平行的判定定理证明平面//PAD 平面BEF . (2)利用勾股定理,求得DC .底面为直角梯形,求得底面积后即可由四棱锥的体积公式求得解.【详解】(1)证明:因为F 为CD 的中点,且2CD AB =,所以DF AB =.因为//AB CD ,所以//AB DF ,所以四边形ABFD 为平行四边形,所以//BF AD .在PDC ∆中,因为E ,F 分别为PC ,CD 的中点,所以//EF PD ,因为EF BF F =I ,PD AD D ⋂=,所以平面//PAD 平面BEF .(2)因为AD CD ⊥,所以AC ==又AC =所以2AD =. 所以四边形ABCD 的面积为()123692⨯⨯+=, 故四棱锥P ABCD -的体积为13993⨯⨯=. 【点睛】本题考查了平面与平面平行的判定,四棱锥体积的求法,属于基础题.17.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是1AD ,1BD B C ,的中点. 求证:(1)MN ∥平面11CC D D ;(2)平面MNP P 平面11CC D D .【答案】证明见解析【解析】【分析】(1)连接1,AC CD ,根据线面平行的判定定理,即可证明结论成立;(2)连接1BC ,1C D ,先由线面平行的判定定理,得到PN P 平面11CC D D ,再由(1)的结果,结合面面平行的判定定理,即可证明结论成立.【详解】(1)如图,连接1,AC CD .∵四边形ABCD 是正方形,N 是BD 的中点,∴N 是AC 的中点.又∵M 是1AD 的中点,∴1//MN CD .∵MN ⊄平面11CC D D ,1CD ⊂平面11CC D D ,∴//MN 平面11CC D D .(2)连接1BC ,1C D ,∵四边形11B BCC 是正方形,P 是1B C 的中点,∴P 是1BC 的中点.又∵N 是BD 中点,∴1PN C D P .∵PN ⊄平面111,CC D D C D ⊂平面11CC D D ,∴PN P 平面11CC D D .由(1)知MN ∥平面11CC D D ,且MN PN N ⋂=,∴平面//MNP 平面11CC D D .【点睛】本题主要考查证明线面平行与面面平行,熟记线面平行的判定定理以及面面平行的判定定理即可,属于常考题型.18.如图,在三棱柱111ABC A B C -中,D 、P 分别是棱AB ,11A B 的中点,求证:(1)1AC ∥平面1B CD ;(2)平面1APC P 平面1B CD .【答案】(1)见证明;(2)见证明【解析】【分析】(1)设1BC 与1B C 的交点为O ,连结OD ,证明1OD AC P ,再由线面平行的判定可得1AC ∥平面1B CD ;(2)由P 为线段11A B 的中点,点D 是AB 的中点,证得四边形1ADB P 为平行四边形,得到1AP DB P ,进一步得到AP ∥平面1B CD .再由1AC ∥平面1B CD ,结合面面平行的判定可得平面1APC P 平面1B CD .【详解】证明:(1)设1BC 与1B C 的交点为O ,连结OD ,∵四边形11BCC B 为平行四边形,∴O 为1B C 中点,又D 是AB 的中点,∴OD 是三角形1ABC 的中位线,则1OD AC P ,又∵1AC ⊄平面1B CD ,OD ⊂平面1B CD ,∴1AC ∥平面1B CD ;(2)∵P 为线段11A B 的中点,点D 是AB 的中点,∴1AD B P P 且1AD B P =,则四边形1ADB P 为平行四边形,∴1AP DB P ,又∵AP ⊄平面1B CD ,1DB ⊂平面1B CD ,∴AP ∥平面1B CD .又1AC ∥平面1B CD ,1AC AP P =I ,且1AC ⊂平面1APC ,AP ⊂平面1APC , ∴平面1APC P 平面1B CD .【点睛】本题考查直线与平面,平面与平面平行的判定,考查空间想象能力与思维能力,是中档题.19.如图,在正方体1111ABCD A B C D -中,P 、Q 分别是平面11AA D D 、平面1111D C B A 的中心,证明:(1)1//D Q 平面1C DB ;(2)平面1//D PQ 平面1C DB .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)证明1//D Q DB 即可.(2)根据(1)中的结论再证明11//D P C B 即可.【详解】(1)由1111ABCD A B C D -是正方体,可知,1//D Q DB ,∵1D Q ⊄平面1C DB ,DB ⊂平面1C DB ,∴1//D Q 平面1C DB .(2)由1111ABCD A B C D -是正方体,可知,11//D P C B ,∵1D P ⊄平面1C DB ,1C B ⊂年平面1C DB ,∴1//D P 平面1C DB ,由(1)知,1//D Q 平面1C DB ,又111D Q D P D =I , ∴平面1//D PQ 平面1C DB .【点睛】本题主要考查了线面平行与面面平行的证明,属于基础题.20.如图,矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,2,1EP BP AD AE ====,,//,,AE EP AE BP G F ⊥分别是,BP BC 的中点.求证:平面//AFG 平面PCE ;【详解】因为G 是BP 的中点,2BP =,所以112PG BP ==. 又因为1AE =, //AE BP ,所以//AE PG ,且AE PG =,所以四边形AEPG 是平行四边形,所以//AG EP .又因为AG ⊄平面,PCE EP ⊂平面PCE ,所以//AG 平面PCE . 因为G F 、分别是BP BC 、的中点,所以//FG PC .又因为PC ⊂平面,PCE FG ⊄平面PCE ,所以//FG 面PCE 又因为,AG FG G AG ⋂=⊂平面,AFG FG ⊂平面AFG , 所以平面//AFG 平面PCE .。

高二数学人教A版必修二 第二章 2.2.2 平面与平面平行的判定(同步课件1)

高二数学人教A版必修二 第二章 2.2.2 平面与平面平行的判定(同步课件1)

对于①:一个平面内有两条直线都与另外一个平面
平行,如果这两条直线不相交,而是平行,那么
第十六页,编辑于星期一:点 五十一分。
这两个平面相交也能够找得到这样的直线存在. 对于②:一个平面内有无数条直线都与另外一个平面
平行,同①.
对于③:一个平面内任何直线都与另外一个平面平行, 则这两个平面平行.这是两个平面平行的定义. 对于④:一个平面内有两条相交直线都与另外一个平 面平行,则这两个平面平行.这是两个平面平行的判
2.反过来,如果一个平面内的所有直线都和另一个平面平 行,那么这两个平面平行.
启示
线面平行
转化
面面平行
第五页,编辑于星期一:点 五十一分。
课堂探究1
1.三角板ABC的一条边BC与桌面平行,如图①三角板 ABC所在的平面与桌面α平行吗?

解析:不平行
第六页,编辑于星期一:点 五十一分。
2.当三角板ABC的两条边BC,AB都平行桌面α时,
(4)过平面外一点,只可作1个平面与已知平面平行 ( )√
第二十三页,编辑于星期一:点 五十一分。
(5)设a,b为异面直线,则存在平面α,β,使
a a,b ,且a / / .
( √)
α
a
b β
Hale Waihona Puke 第二十四页,编辑于星期一:点 五十一分。
【提升总结】 1.应用定理时,“内”、“交”、“平行”三个条件
2.2.2 平面与平面平行的判定
第一页,编辑于星期一:点 五十一分。
活动板房各个面是怎样拼在一 起的,它们都有什么关系呢?
第二页,编辑于星期一:点 五十一分。
木工师傅用气泡式水准仪在桌面上交叉放两次,如 果水准仪的气泡都是居中的,就可以判定这个桌面 和水平面平行,这是什么道理?

湖南省永州市道县第一中学高中数学《2.2. 2 平面与平面平行的判定》学案 新人教A版必修2

湖南省永州市道县第一中学高中数学《2.2. 2 平面与平面平行的判定》学案 新人教A版必修2

学习目标1. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.学习过程一、课前准备(预习教材P 56~ P 57,找出疑惑之处)复习1:直线与平面平行的判定定理是______________________________________________________.复习2:两个平面的位置关系有___种,分别为_______和_______.讨论:两个平面平行的定义是两个平面没有公共点,怎样证明两个平面没有公共点呢?你觉得好证吗?二、新课导学※ 探索新知探究:两个平面平行的判定定理问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外一个平面平行,那么这两个平面就平行呢?试试:在长方体中,回答下列问题⑴如图6-1,AA AA B B '''⊂面,AA '∥面BB C C '',则面AA B B ''∥面BB C C ''吗?图6-1⑵如图6-2,AA '∥EF ,AA '∥DCC D ''面,EF ∥DCC D ''面,则A ADD ''面∥DCC D ''面吗?图6-2⑶如图6-3,直线A C ''和B D ''相交,且A C ''、B D ''都和平面ABCD 平行(为什么),则平面A B C D ''''∥平面ABCD 吗?图6-3反思:由以上3个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.如图6-4所示,α∥β.图6-4反思:⑴定理的实质是什么?⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢?※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证:平面11AB D ∥1CB D .图6-5例2 如图6-6,已知,a b是两条异面直线,平面α过a,与b平行,平面β过b,与a平行,求证:平面α∥平面β小结:证明面面平行,只需证明线线平行,而且这两条直线必须是相交直线.※动手试试练. 如图6-7,正方体中,,,,M N E F分别是棱A B'',A D'',B C'',C D''的中点,求证:平面AMN∥平面EFDB.三、总结提升※学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※知识拓展判定平面与平面平行通常有5种方法⑴根据两平面平行的定义(常用反证法);⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习);⑷两个平面同时平行于第三个平面,则这两个平面平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一个平面内的两条直线,则这两个平面平行(判定定理的推论).学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 平面α与平面β平行的条件可以是( ).A.α内有无穷多条直线都与β平行B.直线a 与,αβ都平行,且不在α和β内C.直线a α⊂,直线b β⊂,且a ∥β,b ∥αD.α内的任何直线都与β平行2. 经过平面α外的一条直线a 且与平面α平行的平面( ).A.有且只有一个B.不存在C.至多有一个D.至少有一个3. 设有不同的直线,a b ,及不同的平面α、β,给出的三个命题中正确命题的个数是( ). ①若a ∥α,b ∥α,则a ∥b ②若a ∥α,α∥β,则a ∥β③若,a αα⊂∥β,则a ∥β.A.0个B.1个C.2个D.3个4. 如果两个平面分别经过两条平行线中的一条,则这两个平面的位置关系是________________.5. 若两个平面都平行于两条异面直线中的每一条,则这两平面的位置关系是_______________.课后作业1. 如图6-8,在几何体ABC A B C '''-中,1∠+2180∠=°,34180∠+∠=°,求证:平面ABC ∥平面A B C '''.图6-82. 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9。

《直线与平面平行的判定》教案-人教A版高中数学必修二

《直线与平面平行的判定》教案-人教A版高中数学必修二

《直线与平面平行的判定》教案一、教学内容分析本节选自教材《基础模块》下第九章,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析任教的学生在年级段属中上程度,学生学习兴趣较高,学生已经学习完空间直线与直线的位置关系以及直线与直线平行,并掌握直线与直线平行的判断方法.在日常生活中积累了许多线面平行的素材,和直观判断的方法,但对这些方法是否正确合理缺乏深入理性的分析.在空间想象和逻辑论证等方面的能力有待于再进一步学习中提高.学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。

培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点教学重点:直线与平面平行的判定定理.教学难点:直线与平面平行的判定定理验证和应用六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

高中数学 第二章《2.2 直线、平面平行的判定及其性质》课件3 新人教A版必修2

高中数学 第二章《2.2 直线、平面平行的判定及其性质》课件3 新人教A版必修2

说明理由.
(2)设E、F分别是A1B和B1C的中点,求证直线
EF//平面ABCD.
D1
C1
M A1
D
E
A
G
B1 F C
H B
小结
直线与平面平行的判定定理可简述为
“线线平行,则线面平行”
思想方法
通过直线间的平行,推证直线与平面平 行,即将直线与平面的平行关系(空间问题) 转化为直线间的平行关系(平面问题).
A α
M βB
C
N E
D
l
练习1
如果三个平面两两相交,那么它们的交线 位置如何?

γ l
α
β γα
ab l a
相交于一条交线 三条交线两两平行
三条交线相交 于一点
应用举例
练习2 一条斜线和两个平行平面相交,求证它和两
个平面所成的角相等.
小结
1. 知识小结 几个结论和性质的应用
2. 思想方法
面面平行
( )-网校通名校系列资料上,下精品资料! •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/62021/9/62021/9/6Sep-216-Sep-21
•12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/62021/9/62021/9/6Monday, September 06, 2021 13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/62021/9/62021/9/62021/9/69/6/2021
D′

人教版A版高中数学必修2教学设计:2.2.2平面与平面平行的判定

人教版A版高中数学必修2教学设计:2.2.2平面与平面平行的判定

《2.2.2平面与平面平行的判定》教学设计一、教学目标:1、知识与技能(1)理解并掌握平面与平面平行的判定定理。

(2)等价转化思想在解决问题中的运用。

(3)通过解决问题,进一步培养学生观察,发现的能力和空间想象能力。

2、情感态度与价值观(1)渗透问题相对论的观点。

(2)培养学生逻辑思维能力,养成学生办事仔细认真的习惯及合情合理的探究精神。

二、教学重、难点:1.重点:平面和平面平行的判定定理的探索过程及应用。

2.难点:平面和平面平行的判定定理的探究发现及其应用。

三、教学方法:启发式、互动式、引导式相结合的教学方法四、教学过程:(一)温故知新1.线面平行的判定方法有几种?(1)定义法:若直线与平面无公共点,则直线与平面平行.(2)判定定理:证明面外直线与面内直线平行.2.判定定理体现了什么样的转化思想?线线平行 线面平行。

空间问题平面化(二)提出问题1.空间两个不同平面的位置关系有哪几种情况?平行与相交2.平面与平面平行的定义是什么?如何判断两平面平行?根据定义,判断平面与平面平行的关键是什么?有什么简单办法?析:如果两个平面没有公共点,我们就说这两个平面互相平行;判定两个平面平行可依定义,看它们的公共点如何?(三)探求新知1.知识探究一:平面与平面平行的背景分析思考1:若两个平面平行,那么其中一个平面内的直线与另一个平面位置关系如何?为什么? 生:如果两个平面平行,那么在其中一个平面内的所有直线一定都和另一个平面平行.这是因为如果有一条直线和另一平面有公共点,这个点也必是这两个平面的公共点,那么这两个平面就不可能平行了。

思考2: 若一个平面内的所有直线都与另一个平面平行,那么这两个平面会平行?生:会。

否则这两个平面相交,那么一平面内线就不可能平行于另一个平面了。

归纳:判定两个平面平行的问题可转化为直线与平面平行的问题来解决,那么最少需要几条直线 与平面平行呢?2.知识探究二:平面与平面平行的判定思考3:平面β内有一条直线与平面α平行,α、β平行吗?请举例说明。

高一数学 人教A版必修2 第二章 2.2.1、2直线与平面平行、平面与平面平行的判定 课件

高一数学 人教A版必修2 第二章  2.2.1、2直线与平面平行、平面与平面平行的判定 课件

(1)直线EG∥平面BDD1B1;
证明 如图,连接SB.
∵点E,G分别是BC,SC的中点,
∴EG∥SB.
又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,
∴EG∥平面BDD1B1.
证明
(2)平面EFG∥平面BDD1B1. 证明 连接SD. ∵点F,G分别是DC,SC的中点, ∴FG∥SD. 又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1, ∴FG∥平面BDD1B1. 又EG∥平面BDD1B1, 且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G, ∴平面EFG∥平面BDD1B1.
证明
反思与感悟 解决线面平行与面面平行的综合问题的策略 (1)立体几何中常见的平行关系是线线平行、线面平行和面面平行,这三 种平行关系不是孤立的,而是相互联系、相互转化的. (2) 线线平行 ―判――定―→ 线面平行 ―判――定―→ 面面平行
所以平行关系的综合问题的解决必须灵活运用三种平行关系的判定定理.
第二章 §2.2 直线、平面平行的判 定及其性质
2.2.2 平面与平面平行的判定
学习目标
1.通过直观感知、操作确认,归纳出平面与平面平行的判定定理. 2.掌握平面与平面平行的判定定理,并能初步利用定理解决问题.
问题导学
知识点 平面与平面平行的判定定理
思考1 三角板的两条边所在直线分别与平面α平行,这个三角板所在平 面与平面α平行吗? 答案 平行.
证明
Байду номын сангаас
命题角度2 以柱体为背景证明线面平行 例3 在三棱柱ABC-A1B1C1中,D,E分别是棱BC,CC1的中点,在线 段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.
解答
引申探究 将本例改为在三棱柱ABC-A1B1C1中,若M为AB的中点, 求证:BC1∥平面A1CM. 证明 如图,连接AC1交A1C于点F, 则F为AC1的中点. 又因为M是AB的中点,连接MF, 所以BC1∥MF. 因为MF⊂平面A1CM,BC1⊄平面A1CM, 所以BC1∥平面A1CM.

2.2.平面与平面平行的判定-人教A版必修二教案

2.2.平面与平面平行的判定-人教A版必修二教案

2.2.平面与平面平行的判定-人教A版必修二教案一、知识点概述在学习平面几何时,我们需要了解如何判定两个平面是否平行。

本知识点将介绍如何根据平面的特征来判断两个平面是否平行,为学习平面几何打下坚实的基础。

二、教学目标1.掌握平面与平面平行的定义;2.学会使用平面特征来判断两个平面是否平行;3.培养学生观察分析能力,发现平面之间的特征相似性。

三、教学内容与方法1. 平面与平面平行的定义平面是空间中任意点的集合,平面是无限大的。

两个平面如果有公共的平行直线,则这两个平面是平行的。

平面与平面平行的定义是判断两个平面是否有公共的平行直线。

2. 平面平行的判定方法•方法1:如果两个平面分别与第三个平面平行,则这两个平面平行。

•方法2:如果两个平面分别与一条直线垂直,则这两个平面平行。

•方法3:如果一个平面与一条直线垂直,并且另一个平面与这条直线平行,则这两个平面平行。

3. 教学方法本知识点的教学方法主要包括:•讲解法:通过教师讲解,结合实例让学生理解平行定义及其判定方法。

•教学练习法:通过多种练习,让学生掌握平行定义及其判定方法,并提高学生的应用能力。

•讨论法:通过教师和学生的讨论,发现和总结规律,提高学生的思维能力。

四、教学步骤与内容1. 教学步骤•步骤1:引入知识,了解平面概念;•步骤2:讲解平面与平面平行的定义;•步骤3:讲解平面平行的判定方法;•步骤4:通过实例进行练习;•步骤5:总结本课程知识点,梳理课程框架。

2. 详细内容步骤1:引入知识,了解平面概念教师利用课件,将平面图形进行展示,以引起学生兴趣,然后对平面概念进行讲解。

步骤2:讲解平面与平面平行的定义教师利用平面图形展示平面与平面平行的定义,将不同类型定义通过实例进行举例讲解。

步骤3:讲解平面平行的判定方法教师重点讲解平面与一条直线垂直,并且另一个平面与这条直线平行的方法,并结合实例进行讲解。

步骤4:通过实例进行练习教师设计多个不同类型练习题,让学生掌握平面与平面平行的判定方法,并提高学生的应用能力。

平面与平面平行的判定(优质课)

平面与平面平行的判定(优质课)

2.2.2 平面与平面平行的判定
高一数学(人教A版· 必修Ⅱ)
问题3 平面α内有两条相交直线 a , b 平行平面β, 则α∥ β吗?
C B
动手 体验

A
当三角板ABC的两条边BC、AB都 平行桌面时,△ABC所在的平面 是否平行桌面?
2.2.2 平面与平面平行的判定
高一数学(人教A版· 必修Ⅱ)
同理 B1D1∥平面C1BD
P R A1
D1
又 AD1 B1 D1 D1
C1 B1
面面平行
∴平面AB1D1∥平面C1BD.
Q
2.2.2 平面与平面平行的判定
高一数学(人教A版· 必修Ⅱ)
牛刀小试
已知,如图,在四棱锥P-ABCD中, AD//BC,BC=2AD,点E、F分别是BC、PB 的中点. 求证:平面AEF//平面PDC.
符号语言
线不在多 贵在相交 //

P
a b

图形语言 转化
面面平行
线面平行
2.2.2 平面与平面平行的判定
高一数学(人教A版· 必修Ⅱ)
三、例题分析
例1 判断下列命题是否正确,并说明理由. (1)若平面 内的两条直线分别与平面 平行,则 与 平行; × (2)若平面 内有无数条直线分别与平面 平行,则 与 平行; × (3)平行于同一直线的两个平面平行;× (4)两个平面分别经过两条平行直线,这两个平面平 行; × (5)过已知平面外一条直线,必能作出与已知平面平 行的平面. ×
符号语言
线不在多 贵在相交 //

P
a b

图形语言 转 化 线面平行
面面平行
2.2.2 平面与平面平行的判定

高中数学人教A版必修二2.2.2 平面与平面平行的判定 教案

高中数学人教A版必修二2.2.2 平面与平面平行的判定 教案

学科数学授课年级高一授课教师课题平面与平面平行的判定授课日期课标要求认识和理解空间中面面平行的有关性质和判定。

教学背景分析教学内容分析平面与平面问题是高考考查的重点之一,求解的关键是把平面与平面问题转化为直线与平面问题、直线与直线问题来解决,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。

学情分析空间三位问题的拓展,让学生在越来越复杂的立体几何问题中探寻清晰的思路,是解决问题的关键。

教学目标1、知识与技能理解并掌握两平面平行的判定定理;能用判定定理证明两平面互相平行.2、过程与方法(1)让学生经历直观感知、探究归纳平面与平面平行的判定定理的过程,培养学生的几何直觉、探索发现和归纳概括能力。

(2)通过两平面平行判定定理的应用,提高学生的观图能力,化归转化能力和逻辑推理能力.3、情感、态度与价值观通过学生自主的学习过程,激发学生学习数学的兴趣和自信心,培养学生的数学信念和探求新知的精神.重、难点分析重点平面与平面平行的判定定理及其应用.难点平面与平面平行证明思路的探求及证明思路的逻辑严谨、条理清晰的表述.教学方法引导探究式教学工具多媒体三角板教学过程教学内容师生互动设计意图温故知新1.判定直线与平面平行的方法有哪些?①根据定义,即直线与平面没有公共点②直线与平面平行的判定定理:(文字语言)如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线与这个平面平行(图形语言) (符号语言)定理简述:线线平行,则线面平行师:判定线面平行的方法有哪些?生1:定义法师:哪位同学补充一下生2:判定定理生3:符号语言师:回答的很好。

复习既达到巩固旧知的作用,同时也为这节课的学习做好准备2. 两个不重合的平面位置关系有哪几种?(平行)(相交)师:两个不重合的平面位置关系有哪几种?生:平行和相交师:回答的很好创设情境孕育新知1、你知道建筑师是如何检验屋顶平面与水平面是平行的吗?2、一个木匠师傅要从A处锯开一个三棱锥木料,要使截面和底面平行,想请你帮他画线,你会画吗师:提出问题,激发学生的学习兴趣,引出本节课的课题书写课题“平面与平面平行的判定”通过设疑,诱发学生的学习动机,激发学生主动探究问题的欲望,同时也明确了本节课研究内容师生协助探究新知问题1:如果一个平面内的所有直线都平行于另一个平面,那么这两个平面是否平行呢?(直观感知)师:提出问题1生1:平行师:给我们的启示:①两个平面平行的问题,可以转化为一个平面内的直线与另一个平面平行的问题,即:面面平行转化为线面平行②无限转化为有限学生是学习的主体,教师是引导者,引导学生思考和动手操作。

2020年高中数学 2.2.2 平面与平面平行的判定(1)教案 新人教A版必修2 .doc

2020年高中数学 2.2.2 平面与平面平行的判定(1)教案 新人教A版必修2 .doc

同学们,现在看完书并解决以下几个 问题: (1)平面与平面平行的判定定理是什 么? (2)平面与平面平行的判定定理体现 一种什么思想? 一会儿找学生回答. 刚才几个同学回答的对吗?请讨论 . 另外,同学们需要注意两个方面: 1.平面与平面平行的判定定理告诉 我们,只要一个平面内两条相交直线 与另一平面平行,两平面平行; 2.平面与平面平行的判定定理体现
接下来,考验大家的时候到了,请同 学们独立思考完成题目,之后学习小 组互相交流,看自己能否得到准确答 案. 这两个题目有一定难度,要认真思
两边的中点 G 是空间四边形对角线 AC 的中点; 考. 求证平面 EFG//平面 BCD 分析:第 1 题要证明平面与平面平行,
D F G E B
二、知新 (自主学习 合作探究展 示能力) (35 分钟)
进而转化为直线间平行关系(平面问题).


了转化与化归的数学思想,即将平面 与平面平行关系(空间问题)转化为 直线与平面的平行关系. 现在我们看多媒体(出示课件 2-1)
平面与 平面平 行的判 定
学生思考直线与平面平行的判定定理及应用 . 举例说明它的应用并在练习本上写出来,教师 巡回指导,然后小组讨论,之后,各个学习小 组选一名学生代表回答,之后老师出示《课件 2-1》. 如果一个平面内的两条相交直线与另一个平 面内的两条相交直线分别平行,则两个平面平
同学们,前边我们学习了平面与与平 面的平行的判定定理,那么怎样运用 它来判断空间中两个平面平行呢? 能否把平面与平面平行进一步转化 为直线与直线平行呢? 答案是肯定的. 请大家思考这个问题的证明.
行.
请独立思考,一会儿,找同学回答. 回答的很好, 请看多媒体(出示《课件 2-1》 )
例题解 答

高中数学 2.2平面与平面平行判定与性质教案 新人教A版必修2

高中数学 2.2平面与平面平行判定与性质教案 新人教A版必修2

活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.问题①引导学生回忆两平面的位置关系.问题②面面平行可转化为线面平行.问题③借助模型锻炼学生的空间想象能力.问题④引导学生进行语言转换.问题⑤引导学生找出应用平面与平面平行的判定定理容易忽视哪个条件.问题⑥引导学生画图探究,注意考虑问题的全面性.问题⑦注意平行与异面的区别.问题⑧引导学生进行语言转换.问题⑨作辅助面.问题⑩引导学生自己总结,把握面面平行的性质.讨论结果:①如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1②由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了.另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面.由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?③如图2,如果一个平面内有一条直线与另一个平面平行,两个平面不一定平行.图2例如:AA′⊂平面AA′D′D,AA′∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.如图3,如果一个平面内有两条直线与另一个平面平行,两个平面也不一定平行.图3例如:AA′⊂平面AA′D′D,EF⊂平面AA′D′D,AA′∥平面DCC′D′,EF∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.如图4,如果一个平面内有两条相交直线与另一个平面平行,则这两个平面一定平行.图4例如:A′C′⊂平面A′B′C′D′,B′D′⊂平面A′B′C′D′,A′C′∥平面ABCD,B′D′∥平面ABCD;直线A′C′与直线B′D′相交.可以判定,平面A′B′C′D′∥平面ABCD.④两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:若a⊂α,b⊂α,a∩b=A,且a∥α,b∥β,则α∥β.图形语言为:如图5,图5⑤利用判定定理证明两个平面平行,必须具备:(Ⅰ)有两条直线平行于另一个平面;(Ⅱ)这两条直线必须相交.尤其是第二条学生容易忽视,应特别强调.⑥如图6,借助长方体模型,我们看到,B′D′所在的平面A′C′与平面AC平行,所以B′D′与平面AC没有公共点.也就是说,B′D′与平面AC内的所有直线没有公共点.因此,直线B′D′与平面AC内的所有直线要么是异面直线,要么是平行直线.图6⑦直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.因为,直线B′D′与平面AC内的所有直线要么是异面直线,要么是平行直线,只要过B′D′作平面BDD′B′与平面AC相交于直线BD,那么直线B′D′与直线BD平行.如图7.图7⑧两个平面平行的性质定理用文字语言表示为:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行的性质定理用符号语言表示为:⇒⎪⎭⎪⎬⎫=⋂=⋂baγβγαβα//a∥b.两个平面平行的性质定理用图形语言表示为:如图8.图8⑨应用面面平行的性质定理的难点是:过某些点或直线作一个平面.⑩应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”应用示例思路1例1 已知正方体ABCD—A1B1C1D1,如图9,求证:平面AB1D1∥平面BDC1.图9活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视学生的解答,发现问题及时纠正,并及时评价.证明:∵ABCD—A1B1C1D1为正方体,∴D1C1∥A1B1,D1C1=A1B1.又∵AB∥A1B1,AB=A1B1,∴D1C1∥AB,D1C1=AB.∴四边形ABC1D1为平行四边形.∴AD1∥BC1.又AD1⊂平面AB1D1,BC1⊄平面AB1D1,∴BC1∥平面AB1D1.同理,BD∥平面AB1D1.又BD∩BC1=B,∴平面AB1D1∥平面BDC1.例2 证明两个平面平行的性质定理.解:如图11,已知平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,求证:a∥b.图11。

[2020高中数学]新课标人教A版高中数学必修2教案完整版

[2020高中数学]新课标人教A版高中数学必修2教案完整版

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征. (2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察.根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容.(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥.2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果.在此基础上得出棱柱的主要结构特征.(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行.概括出棱柱的概念.4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示.5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示.7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示.8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括.9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体.10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考.1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题.4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用.3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得.作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图.3.三视图与几何体之间的相互转化.(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法.4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流.(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图.2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图.1.2.2 空间几何体的直观图(1课时)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图.(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点.2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图.3.情感态度与价值观(1)提高空间想象力与直观感受.(2)体会对比在学习中的作用.(3)感受几何作图在生产活动中的应用.二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图.三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程.2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画.2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容.(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评.画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.强调斜二测画法的步骤.练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查.2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点.教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法.3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图.教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事.(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图.教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系.4.平行投影与中心投影投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点.5.巩固练习,课本P16练习1(1),2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17 练习第5题2.课外思考课本P16,探究(1)(2)1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法.(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系.(3)培养学生空间想象能力和思维能力. 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状.(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系. 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响.从而增强学习的积极性. 二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算 难点:台体体积公式的推导 三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标.2、教学用具:实物几何体,投影仪 四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类.(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容.2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求? (3)教师对学生讨论归纳的结果进行点评. 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系.(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解.如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系.(s ’,s 分别我上下底面面积,h 为台柱高) 4、例题分析讲解(课本)例1、 例2、 例3 5、巩固深化、反馈矫正 教师投影练习1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 . (答案:m a ππ332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积. (答案:2325cm 3)6、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式.用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握. 7、评价设计习题1.3 A 组1.3§1.3.2 球的体积和表面积一. 教学目标1. 知识与技能错误!未找到引用源。

高中数学 2.2.3平面与平面平行的性质全册精品教案 新人教A版必修2

高中数学 2.2.3平面与平面平行的性质全册精品教案 新人教A版必修2

第三课时平面与平面平行的性质一、教学目标:1、知识与技能掌握两个平面平行的性质定理及其应用2、过程与方法学生通过观察与类比,借助实物模型理解及其应用3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。

二、教学重点、难点重点:平面与平面平等的性质定理难点:平面与平面平等的运用三、教学方法讲录结合线线平等探索新知平面和平面平行的性质1.思考:(1)两个平面平行,那么其中一个平面内的直线与另一个面具有什么关系?(2)两个平面平行,其中一个平面内的直线与另一个平面内的直线具有什么关系?(2)两个平面平行,其中一个平面内的直线与另一平面内的直线在什么条件下不平行?2.例1 如图,已知平面α,β,γ满足//αβ,aαγ=,bβγ=,证:a∥b.证明:因为r aα=,r bβ=,所以aα⊂,bβ⊂.又因为//αβ,所以a、b没有公共点,又因为a、b同在平面γ内,所以a∥b.3.定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.上述定理告诉我们,可以由平面与平面平行得出直线与直线平行.师:请同学们思考:两个平面平行,那么其中一个平面内的直线与另一面具有什么关系?生:借助长方体模型可以发现,若平面AC和平面A′C′平行,则两面无公共点,那么出就意味着平面AC内任一直线BD和平面A′C′也无公共点,即直线BD和平面A′C′平行.师:用式子可表示为//αβ,aα⊂⇒//αβ.用语言表述就是:如果两个平面平行,那么其中一个平面内的直线平行于另一平面.(板书)生:由问题知直线BD与平面A′C′平行. BD与平面A′C′没有公共点. 也就是说,BD与平面A′C′内的所有直线没有公共点. 因此,直线BD与平面A′C′内的所有直线要么是异面直线,要么是平行直线.生:由问题2知要两条直线平行,只要他们共面即可.师:我们把刚才这个结论用符号表示,即是例5的证明.师生共同完成并得出性质定理.师引导学生得出结论:两个平行平面的判定定理与性质定理的作用,要害都集中在“平行”二字上,判定定理解决的问题是:在什么样的条件下两个平面平行.性质定理说明的问题是:在什么样的条件下两条直线平行,前者给出了判定两个平面平行的一种方法,后者给出了判定两条直线平行的一种新教材常常要将面面平行转化为线面平行讨论,但没有给出结论,故补充,只是不作太多强调.加深对知识的理解方法.师下面以例题说明性质定理在解决问题时作用.典例分析例 2 夹在两个平行平面间的平行线段相等,如图α∥β,AB∥CD,且A∈α,C∈α,B∈β,D∈β,求证:AB= CD.证明:如图,AB∥CD,AB、CD确定一个平面γACαγ=,BDβγ=//////AC BDAB CD AB CDαβ⇒⎫⎬⇒=⎭例3如图,已知平面//αβ,AB、CD是异面直线,且AB分别交,αβ于A、B两点,CD分别交,αβ于C、D两点.M、N分别在AB、CD上,且AM CNMB ND=.求证:MN∥β证明:如图,师投影例2并读题,学生写出已知求证并作图(师投影)师生共同讨论,边分析边板书.师:要证两线段相等,已知给的条件又是平行关系,那么证两线段所在四边形是平行四边形,进而说明两线段相等是解决问题常选用的一条途径.师投影例3并读题分析:满足怎样的条件的直线与平面平行(线线平行或面面平),我们能在平面β内找到一条直线与MN平行吗?能找一个过MN且与β平行的平面吗?这样的直线和平面有何特征!证明二:利用过MN的平面AMN在平面β找与MN平行的直线(如图)连AN设交β于E,连结DE,巩固所学知识,培养学生书写表达能力和分析问题解决问题的能力.构建知识体系,培养学生思维的灵活归纳总结1.平面和平面平行的性质 2.线线平行线面平行面面平行学生先归纳,教师给予补充完善回顾、反思、归纳知识,提高自我整合知识能力.课后作业2.2 第三课时 习案学生独立完成固化知识 提升能力备选例题例1 如图,设平面a ∥平面β,AB 、CD 是两异面直线,M 、N 分别是AB 、CD 的中点,且A 、C ∈α,B 、D ∈β.求证:MN ∥α .【证明】连接BC ,取BC 的中点E ,分别连接ME 、NE , 则MN ∥AC ,∴ME ∥平面α, 又NE ∥BD ,∴NE ∥β,又ME ∩NE = E ,∴平面MEN ∥平面α, ∵MN ⊂平面MEN .∴MN ∥α.【评析】要证“面面平面”只要证“线面平面”,要证“线面平行”,只要证“线线平面”,故问题最终转化为证线与线的平行.例2 ABCD 是矩形,四个顶点在平面α内的射影分别为A ′、B ′、C ′、D ′,直线A ′B ′与C ′D ′不重合,求证:A ′B ′C ′D ′是平行四边形.【证明】如图.∵A ′、B ′、C ′、D ′分别是A 、B 、C 、D 在平面α内的射影.∴BB ′⊥α,CC ′⊥α, ∴BB ′∥CC ′.∵CC ′平面CC ′D ′D ,BB ′ 平面CC ′D ′D ,∴BB ′∥平面CC ′D ′D . 又∵ABCD 是矩形,∴AB ∥CD ,CD平面CC ′D ′D ,∴AB ∥平面CC ′D ′D∵AB ,BB ′是平面ABB ′A ′ 内的两条相交直线, ∴平面ABB ′A ′∥平面CC ′D ′D .又α∩平面ABB ′A ′=A ′B ′,α∩平面CC ′D ′D = C ′D ′,∴A ′B ′∥C ′D ′.同理,B ′C ′∥A ′D ′,∴A ′B ′C ′D ′是平行四边形. 【评析】在熟知线面平行、面面平行的判定与性质之后,空间平等问题的证明,紧紧抓住“线线平行⇔线面平行面面平行”之间的互相转化而完成证明.≠ ⊂≠ ⊂≠ ⊂。

高中数学(2.2.4平面与平面平行的性质)示范教案新人教A版必修2

高中数学(2.2.4平面与平面平行的性质)示范教案新人教A版必修2

平面与平面平行的判断平面与平面平行的性质整体设计教课剖析空间中平面与平面之间的地点关系中,平行是一种特别重要的地点关系,它不单应用较多,并且是空间问题平面化的模范. 空间中平面与平面平行的判断定理给出了由线面平行转化为面面平行的方法;面面平行的性质定理又给出了由面面平行转变为线线平行的方法,所以本节在立体几何中据有重要地位. 本节要点是平面与平面平行的判断定理及其性质定理的应用 .三维目标1. 经过图形研究平面与平面平行的判断定理及其性质定理.2. 娴熟掌握平面与平面平行的判断定理和性质定理的应用.3.进一步培育学生的空间想象能力, 以及逻辑思想能力 .要点难点教课要点 : 平面与平面平行的判断与性质.教课难点 : 平面与平面平行的判断.课时安排1课时教课过程导入新课思路 1. ( 情境导入 )大家都见过蜻蜓和直升飞机在天空翱翔,蜻蜓的翅膀能够看作两条平行直线,当蜻蜓的翅膀与地面平行时,蜻蜓所在的平面能否与地面平行?直升飞机的全部螺旋桨与地面平行时,可否判断螺旋桨所在的平面与地面平行?由此请大家研究两平面平行的条件.思路 2. ( 案例导入 )三角板的一条边所在直线与桌面平行,这个三角板所在的平面与桌面平行吗?三角板的两条边所在直线分别与桌面平行,状况又怎样呢?下边我们议论平面与平面平行的判断问题.推动新课新知研究提出问题①回想空间两平面的地点关系 . ②欲证线面平行可转变为线线平行,欲判断面面平行可怎样转变?③找出适合空间模型加以说明 .④用三种语言描绘平面与平面平行的判断定理.⑤应用面面平行的判断定理应注意什么?⑥利用空间模型研究:假如两个平面平行,那么一个平面内的直线与另一个平面内的直线拥有什么地点关系?⑦回想线面平行的性质定理,联合模型研究面面平行的性质定理.⑧用三种语言描绘平面与平面平行的性质定理.⑨应用面面平行的性质定理的难点在哪里?⑩应用面面平行的性质定理口诀是什么?活动:先让学生着手做题后再回答,经教师提示、点拨,对回答正确的学生实时夸奖,对回答不正确的学生提示指引考虑问题的思路.问题①指引学生回想两平面的地点关系.问题②面面平行可转变为线面平行.问题③借助模型锻炼学生的空间想象能力.问题④指引学生进行语言变换.问题⑤指引学生找出应用平面与平面平行的判断定理简单忽略哪个条件.问题⑥指引学生绘图研究,注意考虑问题的全面性.问题⑦注意平行与异面的差别.问题⑧指引学生进行语言变换.问题⑨作协助面.问题⑩指引学生自己总结,掌握面面平行的性质.议论结果:①假如两个平面没有公共点,则两平面平行若α∩β =, 则α∥β .假如两个平面有一条公共直线,则两平面订交若α∩β =AB,则α与β订交.两平面平行与订交的图形表示如图 1.图 1②由两个平面平行的定义可知:此中一个平面内的全部直线必定都和另一个平面平行. 这是由于在这些直线中,假如有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不行能平行了.另一方面,若一个平面内全部直线都和另一个平面平行,那么这两个平面平行,不然,这两个平面有公共点,那么在一个平面内经过这点的直线就不行能平行于另一个平面.由此将判断两个平面平行的问题转变为一个平面内的直线与另一个平面平行的问题,但事实上判断两个平面平行的条件不需要一个平面内的全部直线都平行于另一平面,究竟要多少条直线(且直线与直线应具备什么地点关系)与另一面平行,才能判断两个平面平行呢?③如图 2, 假如一个平面内有一条直线与另一个平面平行,两个平面不必定平行.图 2比如: AA′平面AA′ D′ D,AA′∥平面 DCC′ D′ ; 可是 , 平面AA′D′ D∩平面DCC′ D′=DD′ .如图 3, 假如一个平面内有两条直线与另一个平面平行,两个平面也不必定平行.图 3word可是 , 平面 AA′ D′ D∩平面 DCC′ D′ =DD′ .如图 4, 假如一个平面内有两条订交直线与另一个平面平行,则这两个平面必定平行.图 4比如: A′ C′平面A′ B′ C′ D′ ,B′D′平面A′ B′ C′ D′ ,A′C′∥平面ABCD,B′D′∥平面ABCD;直线 A′ C′与直线 B′D′订交 .能够判断 , 平面 A′ B′ C′ D′∥平面 ABCD.④两个平面平行的判断定理:假如一个平面内有两条订交直线都平行于另一个平面,那么这两个平面平行.以上是两个平面平行的文字语言,此外面面平行的判断定理的符号语言为:若 aα,bα,a∩ b=A,且a∥α ,b∥β,则α∥β.图形语言为:如图5,图 5⑤利用判断定理证明两个平面平行,一定具备:( Ⅰ ) 有两条直线平行于另一个平面;( Ⅱ ) 这两条直线一定订交.特别是第二条学生简单忽略,应特别重申.⑥如图 6, 借滋长方体模型,我们看到, B′ D′所在的平面 A′ C′与平面 AC平行,所以 B′ D′与平面 AC没有公共点 . 也就是说, B′ D′与平面 AC内的全部直线没有公共点 . 所以,直线 B′ D′与平面AC内的全部直线要么是异面直线,要么是平行直线.图 6⑦直线与平面平行的性质定理用文字语言表示为:假如一条直线和一个平面平行,经过这条直线的平面和这个平面订交,那么这条直线和交线平行 .由于,直线 B′D′与平面 AC内的全部直线要么是异面直线,要么是平行直线,只需过 B′D′作平面 BDD′ B′与平面 AC订交于直线 BD,那么直线 B′ D′与直线 BD平行 .如图 7.图 7⑧两个平面平行的性质定理用文字语言表示为:假如两个平行平面同时和第三个平面订交,那么它们的交线平行.//两个平面平行的性质定理用符号语言表示为:a a∥ b.b两个平面平行的性质定理用图形语言表示为:如图8.图 8⑨应用面面平行的性质定理的难点是:过某些点或直线作一个平面.⑩应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线 . ”应用示例思路 1例 1已知正方体ABCD— A1B1C1D1,如图 9, 求证:平面AB1 D1∥平面 BDC1.图 9活动:学生自己思虑或议论,再写出正确的答案. 教师在学生中巡视学生的解答,发现问题实时纠正 , 并实时评论 .证明:∵ ABCD— A1B1C1D1为正方体,∴D1C1∥ A1B1,D 1C1=A1B1.又∵ AB∥ A1B1,AB=A1B1,∴D1C1∥ AB,D1C1=AB.∴四边形ABC1D1为平行四边形.∴AD1∥ BC1.又 AD1平面AB1D1,BC1平面AB1D1,∴BC1∥平面 AB1D1.同理, BD∥平面 AB1D1.又 BD∩ BC1=B,∴平面 AB1D1∥平面 BDC1.变式训练如图 10, 在正方体 ABCD—EFGH中, M、N、P、Q、R 分别是 EH、 EF、BC、CD、AD的中点,求证:平面 MNA∥平面 PQG.图 10证明:∵ M、 N、P、Q、 R 分别是 EH、 EF、BC、CD、AD的中点,∴ MN∥ HF,PQ∥ BD.∵BD∥ HF, ∴MN∥ PQ.∵PR∥ GH,PR=GH;MH∥ AR,MH=AR,∴四边形RPGH为平行四边形,四边形ARHM为平行四边形.∴AM∥ RH,RH∥ PG.∴AM∥ PG.∵MN∥ PQ,MN平面PQG,PQ平面PQG,∴ MN∥平面PQG.同理可证, AM∥平面 PQG.又直线 AM与直线 MN订交,∴平面 MNA∥平面 PQG.评论:证面面平行,往常转变为证线面平行,而证线面平行又转变为证线线平行,所以要点是证线线平行 .例 2证明两个平面平行的性质定理.解:如图 11, 已知平面α、β、γ知足α∥β, α∩γ =a, β∩γ =b, 求证 :a ∥b.图 11证明:∵平面α∥平面β,∴平面α和平面β没有公共点.又 aα,bβ ,∴直线 a、b 没有公共点 .又∵α∩γ =a,β∩γ =b,∴aγ,bγ.∴ a∥ b.变式训练假如两个平面分别平行于第三个平面,那么这两个平面相互平行.解:已知α∥β,γ∥β,求证:α∥γ.证明:如图 12,作两个订交平面分别与α、β、γ交于a、c、 e 和 b、 d、 f,图 12a // c//a // e a //b // d // .c // eb // fb ////d // f评论: 欲将面面平行转变为线线平行,先要作平面.知能训练已知: a 、b 是异面直线, a平面α ,b平面β, a ∥β, b ∥α .求证:α∥β .证明: 如图 13, 在 b 上任取点 P ,明显 P a. 于是 a 和点 P 确立平面γ,且γ与β有公共点P.图 13设γ∩β =a ′,∵ a ∥β,∴ a ′∥ a. ∴a ′∥α . 这样β内订交直线 a ′和 b 都平行于α,∴α∥β .拓展提高1. 如图 14,两条异面直线AB 、 CD 与三个平行平面α、β、γ分别订交于A 、E 、B 及C 、 F 、D ,又 AD 、BC 与平面的交点为 H 、 G.图 14求证: EHFG 为平行四边形 .平面 ABCAC 证明: 平面 ABCEG//AC ∥ EG.同理 ,AC ∥ HF.AC // EG EG ∥ HF. 同理 ,EH ∥ FG.故 EHFG 是平行四边形 .AC // HF讲堂小结知识总结: 利用面面平行的判断定理和面面平行的性质证明线面平行 .方法总结: 见到面面平行 , 利用面面平行的性质定理转变为线线平行 , 本节是 “转变思想” 的典型素材 . 作业课本习题 2.2 A组 7、 8.设计感想面面关系是直线与平面关系中比较复杂的关系,它是学生学习的一个难点,也是高考考查的要点,所以它在立体几何中据有比较重要的地位. 本节采用了大批的经典习题作为素材,关于学生学好面面平行的判断与性质必定会有很大的帮助,本节的引入也标新立异,相信这是一节大家喜爱的出色课例.。

平面与平面平行的判定教案新人教A版必修2

平面与平面平行的判定教案新人教A版必修2

课题:平面与平面平行的判断课型:新讲课一、教课目的:1、知识与技术理解并掌握两平面平行的判断定理。

2、过程与方法让学生经过察看实物及模型,得出两平面平行的判断。

3、感情、态度与价值观进一步培育学生空间问题平面化的思想。

二、教课要点、难点要点:两个平面平行的判断。

难点:判断定理、例题的证明。

三、学法与教课器具1、学法:学生借助实物,经过察看、类比、思虑、商讨,教师予以启迪,得出两平面平行的判断。

2、教课器具:投影仪、投电影、长方体模型四、教课思想(一)创建情形、引入课题指引学生察看、思虑教材第57 页的察看题,导入本节课所学主题。

(二)研探新知① 议论:两个平面平行,此中一个平面内的直线和另一个平面有什么地点关系?一个平面内有两条直线平行于一个平面,这两个平面有什么地点关系?②将议论的结论用符号语言表示:aβ,bβ,a∩ b=P,a∥α,b∥α,则β∥α。

③以长方体模型为例,研究面面平行的状况.④ 提出判断定理:一个平面内有两条订交直线都平行于另一个平面,那么这两个平面平行。

a ,b ,a I b A☆图形语言、文字语言、符号语言∥ ,∥// ;a b☆思想:线面平行→面面平行.⑤ 议论:水平器判断水平平面的方法及其原理。

⑥ 出示例:平行于同一个平面的两个平面相互平行。

剖析结果→此后待证→结论利处→ 变问:垂直于同一条直线的两个平面呢?⑦议论: A.假如一个平面内有两条订交直线分别平行于另一个平面内的两条订交直线,那么这两个平面能否平行?B.平面α上有不在同向来线上的三点到平面β的距离相等,则α与β的地点关系是如何的?试证明你的结论。

2.教课例题:①例 1:在长方体ABCD-A1B1C1D1, 求证:平面AB1D1 ∥平面C1BD.剖析:如何找线线平行→线面平行→面面平行?师生共练,重申证明格式变式:还可找出一些什么面面平行的例子?并说证明思路.小结:证明思想.两个平面平行的判断定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
问题①引导学生回忆两平面的位置关系.
问题②面面平行可转化为线面平行.
问题③借助模型锻炼学生的空间想象能力.
问题④引导学生进行语言转换.
问题⑤引导学生找出应用平面与平面平行的判定定理容易忽视哪个条件.
问题⑥引导学生画图探究,注意考虑问题的全面性.
问题⑦注意平行与异面的区别.
问题⑧引导学生进行语言转换.
问题⑨作辅助面.
问题⑩引导学生自己总结,把握面面平行的性质.
讨论结果:①如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.
两平面平行与相交的图形表示如图1.
图1
②由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了.
另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面.
由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?
③如图2,如果一个平面内有一条直线与另一个平面平行,两个平面不一定平行.
图2
例如:AA′⊂平面AA′D′D,AA′∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.
如图3,如果一个平面内有两条直线与另一个平面平行,两个平面也不一定平行.
图3
例如:AA′⊂平面AA′D′D,EF⊂平面AA′D′D,AA′∥平面DCC′D′,EF∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.
如图4,如果一个平面内有两条相交直线与另一个平面平行,则这两个平面一定平行.
图4
例如:A′C′⊂平面A′B′C′D′,B′D′⊂平面A′B′C′D′,A′C′∥平面ABCD,B′D′∥平面ABCD;直线A′C′与直线B′D′相交.
可以判定,平面A′B′C′D′∥平面ABCD.
④两个平面平行的判定定理:
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:
若a⊂α,b⊂α,a∩b=A,且a∥α,b∥β,则α∥β.
图形语言为:如图5,
图5
⑤利用判定定理证明两个平面平行,必须具备:
(Ⅰ)有两条直线平行于另一个平面;
(Ⅱ)这两条直线必须相交.
尤其是第二条学生容易忽视,应特别强调.
⑥如图6,借助长方体模型,我们看到,B′D′所在的平面A′C′与平面AC平行,所以B′D′与平面AC没有公共点.也就是说,B′D′与平面AC内的所有直线没有公共点.因此,直线B′D′与平面AC内的所有直线要么是异面直线,要么是平行直线.
图6
⑦直线与平面平行的性质定理用文字语言表示为:
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
因为,直线B′D′与平面AC内的所有直线要么是异面直线,要么是平行直线,只要过B′D′作平面BDD′B′与平面AC相交于直线BD,那么直线B′D′与直线BD平行.
如图7.
图7
⑧两个平面平行的性质定理用文字语言表示为:
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
两个平面平行的性质定理用符号语言表示为:⇒





=

=

b
a
γ
β
γ
α
β
α//
a∥b.
两个平面平行的性质定理用图形语言表示为:如图8.
图8
⑨应用面面平行的性质定理的难点是:过某些点或直线作一个平面.
⑩应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”
应用示例
思路1
例1 已知正方体ABCD—A1B1C1D1,如图9,求证:平面AB1D1∥平面BDC1.
图9
活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视学生的解答,发现问题及时纠正,并及时评价.
证明:∵ABCD—A1B1C1D1为正方体,
∴D1C1∥A1B1,D1C1=A1B1.
又∵AB∥A1B1,AB=A1B1,
∴D1C1∥AB,D1C1=AB.
∴四边形ABC1D1为平行四边形.
∴AD1∥BC1.
又AD1⊂平面AB1D1,BC1⊄平面AB1D1,
∴BC1∥平面AB1D1.
同理,BD∥平面AB1D1.
又BD∩BC1=B,∴平面AB1D1∥平面BDC1.
例2 证明两个平面平行的性质定理.
解:如图11,已知平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,求证:a∥b.
图11。

相关文档
最新文档