基于卡尔曼滤波器的雷达目标跟踪(完整资料).doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档下载后即可编辑
随机数字信号处理期末大作业(报告)
基于卡尔曼滤波器的雷达目标跟踪
Radar target tracking based on Kalman filter
学院(系):创新实验学院
专业:信息与通信工程
学生姓名:李润顺
学号:21424011
任课教师:殷福亮
完成日期:2015年7月14日
大连理工大学Dalian University of Technology
摘要
雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。
关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB 仿真
- 1 -
1 引言
1.1 研究背景及意义
雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。
鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、β
α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪理论中占据了主导地位。
雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。
1.2 雷达目标跟踪滤波算法研究现状
当运动目标模型建立之后,就要对目标跟踪算法进行设计,这也是雷达跟踪系统中核心的部分。对目标的跟踪最主要的还是对目标的距离信息,方位角信息,高度角信息,以及速度信息进行跟踪,估计和预测目标的运动参数以及运动状态,这样有利于我们针对特定目标拿出特定应对方案。基本的跟踪滤波与预测方法是跟踪系统最基本的要素,也是形成自适应跟踪滤波的前提和基础。这些方法包括线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、β
α-滤波和卡尔曼滤波。其中线性自回归滤波、两点外推滤波、维纳滤波由于限制性强而在现阶段的雷达中很少应用,但是维纳滤波在滤波算法上有着里程碑的标志。现阶段最常用的就是加权最小二乘滤波、β
α-滤波和卡尔曼滤波[1]。
1.2.1 加权最小二乘滤波
采用何种滤波方法,主要取决于事先能掌握多少先验信息。当先验统计特性一无所知时,一般采用最小二乘滤波。如果仅仅掌握测量误差的统计特性,可以采马尔可夫估计,即加权阵为)(1k
R-的最小二乘滤波,其中)(1k
R-是测量噪声的协方差矩阵。
忽略状态噪声的影响,测量噪声)(k
V是均值为0,协方差矩阵为)(k R 的高斯白噪声向量序列;)(k R为对角阵,则加权最小二乘滤波公式为
[])1
k
H
Z
X
k
k
k
k
k
X(1)
k
=k
k
X
k
)
)
(
(
(
/
(ˆ)
)1
/
-
+
(ˆ-
/
(ˆ
)
-
)1/1(ˆ)1/()1/(ˆ---=-k k X k k k k X φ (2)
)()()1/()(1k R k H k k P k K T --= (3)
)1/()()()1/()/(---=k k P k H k k k k P k k P
(4) 其中)(k K 、)/(k k P 和)1/(-k k P 分别为滤波增益矩阵、协方差矩阵和预测协方差矩阵。
1.2.2 βα-滤波
当目标作等速直线运动时,描述目标运动状态X 是两维向量,即T x x X ]',[=,这里的x 和x '分别是位置和速度的分量。设目标状态方程为
)1()1()(-+-=k Gw k X k X φ (5)
其中⎥⎦⎤⎢⎣⎡=101T φ,⎥⎦
⎤⎢⎣⎡=T T G 2/2,式中状态噪声w 为均值为0的高斯白噪声序列。测量方程为
)()()()(k v k X k H k Z += (6)
其中]0,1[=H ,式中)(k v 是0均值的高斯白噪声。βα-滤波方程为
[])1/(ˆ)()()1/(ˆ)/(ˆ--+-=k k X k H k Z k k k X k k X
(7) )1/1(ˆ)1/(ˆ--=-k k X k k X φ (8)
⎥⎦⎤⎢⎣⎡=T k /βα (9)
近几十年来,基于以上滤波算法的变形算法发展非常迅速,尤其是自适应的卡尔曼算法更是占据了现代雷达中跟踪算法的主导地位。