第 5 章 其它成型工艺及模具 设计

合集下载

材料成型工艺教学大纲

材料成型工艺教学大纲

材料成型工艺MaterialFormingTechnology课程编号:07310060学分:6学时:90(其中:讲课学时:78实验学时:12上机学时:0)先修课程:材料成型原理、金属学及热处理、机械设计基础适用专业:材料成型及控制工程教材:《金属材料液态成型工艺》贾志宏编化学工业出版社2008年2月第1版《金属材料焊接工艺》雷玉成主编化学工业出版社,2006年8月第1版《冲压工艺与模具设计》牟林、胡建华主编.北京大学出版社2010年3月第2版开课学院:材料科学与工程学院一、课程的性质与任务:本课程是材料成型与控制工程专业的一门主要专业基础课。

本课程的任务是掌握金属液态成型工艺的方法、金属板料成形技术、焊接电弧及焊接方法等三大部分知识。

通过本课程的学习,了解常见的液态成型、板料成形、焊接工艺方法。

为学习有关专业课程、从事生产技术工作和管理工作打好热加工工艺知识基础;了解热加工的新工艺、新技术、新方法和发展趋势。

二、课程的基本内容及要求第一篇液态成型工艺绪论1基本内容金属液态成型工艺发展历史,液态成型工艺流程。

2教学要求了解铸造产业的发展概况;了解铸造生产的基本流程和工艺种类。

3重难点液态成型工艺的基本类型、流程及发展趋势。

第一章零件结构的铸造工艺性分析1基本内容(1)常用铸造方法的选择;(2)砂型铸造零件结构的工艺性分析;(3)特种铸造零件结构的工艺性分析。

2教学要求(1)了解各种铸造方法的特点;熟悉铸造方法选用的依据(2)掌握砂型铸造零件结构的工艺性分析方法;(3)熟悉特种铸造零件结构的工艺性分析方法。

3重难点铸造工艺性分析的方法和思路。

第二章砂型铸造工艺方案的确定1基本内容(1)工艺设计内容及流程;(2)砂型铸造工艺方案确定的基本原理;2教学要求(1)熟悉铸造工艺设计的依据、内容及流程;(2)掌握砂型铸造工艺方案制定的原理及方法。

3重难点(1)生产纲领、生产条件对工艺方案制定的影响;(2)分型面及浇注位置的确定。

《塑料成型工艺与模具设计》(上册)电子教案完全版

《塑料成型工艺与模具设计》(上册)电子教案完全版

《塑料成型工艺与模具设计》(上册)电子教案完全版第一章:塑料成型工艺概述1.1 塑料成型的基本概念塑料的定义与特性塑料成型的定义与分类1.2 塑料成型工艺流程制品设计模具设计成型设备选择成型工艺参数设定1.3 塑料成型工艺的特点及应用不同塑料的成型特点常见塑料成型工艺的应用领域第二章:塑料材料的性质与选择2.1 塑料的基本性质物理性质化学性质电性能2.2 塑料的成型性能流动性能热性能收缩与翘曲性能2.3 塑料材料的选择塑料选材原则常见塑料材料介绍第三章:塑料成型设备3.1 塑料成型设备分类注射成型机挤出成型机压制成型机吹塑成型机3.2 主要成型设备的工作原理与结构注射成型机的工作原理与结构挤出成型机的工作原理与结构3.3 塑料成型设备的选择与使用设备选择的考虑因素设备的使用与维护第四章:塑料成型模具设计基础4.1 模具的基本结构与分类冷模具热模具4.2 模具设计的基本原则与步骤模具设计的原则模具设计的步骤4.3 模具设计中的关键因素模具尺寸与精度模具的材料与热处理模具的冷却与加热第五章:塑料成型工艺参数设定与调整5.1 成型工艺参数的定义与作用温度压力速度时间5.2 工艺参数的设定与调整方法实验法经验法计算机模拟法5.3 工艺参数的优化与控制工艺参数优化的目的与方法工艺参数的控制与调整技巧第六章:塑料注射成型工艺6.1 注射成型工艺流程注射成型工艺的基本步骤模具的加热和冷却注射成型周期6.2 注射成型参数设定与调整注射压力注射速度模具温度保压时间和冷却时间6.3 常见注射成型问题及解决方案产品变形和翘曲气泡和杂质产品尺寸不准确第七章:塑料挤出成型工艺7.1 挤出成型工艺流程挤出成型工艺的基本步骤挤出机的选择与调整挤出成型参数设定7.2 挤出成型设备与模具挤出成型设备的结构与工作原理挤出成型模具的设计要点7.3 常见挤出成型问题及解决方案产品厚度不均匀表面质量问题产品的强度和韧性不足第八章:塑料压制成型工艺8.1 压制成型工艺流程压制成型工艺的基本步骤压制成型机的选择与调整压制成型参数设定8.2 压制成型模具设计要点压制成型模具的结构与分类模具设计中的关键因素8.3 常见压制成型问题及解决方案产品开裂和变形产品尺寸不准确表面质量问题第九章:塑料吹塑成型工艺9.1 吹塑成型工艺流程吹塑成型工艺的基本步骤吹塑成型机的选择与调整吹塑成型参数设定9.2 吹塑成型设备与模具吹塑成型设备的结构与工作原理吹塑成型模具的设计要点9.3 常见吹塑成型问题及解决方案产品变形和翘曲气泡和杂质产品尺寸不准确第十章:塑料成型工艺的优化与控制10.1 成型工艺的优化方法实验法经验法计算机模拟法10.2 成型工艺的控制技巧工艺参数的实时监测工艺参数的调整技巧10.3 成型工艺的持续改进生产过程中的问题分析与解决新技术和新工艺的应用重点和难点解析重点环节1:塑料的基本性质、成型性能及选材原则解析:了解塑料的基本性质和成型性能对于选择合适的塑料材料进行成型加工至关重要。

第五章冷挤压工艺及模具设计

第五章冷挤压工艺及模具设计
第五章_冷挤压工艺及模 具设计
PPT文档演模板
2020/12/11
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
•5.1 冷挤压工艺
•5.2 冷挤压模具设计 • •5.3 冷挤压模的典型结构
PPT文档演模板
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
•5.1 冷挤压工艺
• 冷挤压是一种先进的少无切削加工工艺之一。它是在 常温下,使固态的金属在巨大压力和一定的速度下,通过模 腔产生塑性变形而获得一定形状零件的一种加工方法。冷挤 压的工艺过程是:先将经处理过的毛坯料放在凹模内,借助 凸模的压力使金属处于三向受压应力状态下产生塑性变形, 通过凹模的下通孔或凸模与凹模的环形间隙将金属挤出。它 是一种在许多行业广泛使用的金属压力加工工艺方法。
• (3) 冷挤压的变形方式 在变形程度相同的条件下, 反挤压的力大于正挤压的力。反挤压的许用变形程度比正挤 压小。
PPT文档演模板
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
• (4) 毛坯表面处理与润滑 毛坯表面处理越好,润滑 越好,许用变形程度也就越大。
• (5) 冷挤压模具的几何形状 冷挤压模具工作部分的 几何形状对金属的流动有很大影响。形状合理时,有利于挤 压时的金属流动,单位挤压力降低,许用变形程度可以大些。
第五章冷挤压工艺及模具设计
冷挤压工艺及模具设计
•5.1.4.2 许用变形程度
• 冷挤压时,一次挤压加工所容许的变形程度,称为许 用变形程度。不同材料有不同的许用变形程度。在工艺上, 每道冷挤压工序的变形程度应尽量小于许用值,使模具承受 的单位挤压力不超过模具材料许用应力(目前一般模具材料 的许用应力为2500~3000N/mm2),确定许用变形程度数值 是冷挤压工艺计算的一个重要依据,因为冷挤压许用变形程 度的大小决定了制件所需的挤压次数。若计算出的冷挤压变 形程度超过许用值、则必须用多次挤压完成,以延长模具寿 命,避免损坏模具。

模压成型工艺

模压成型工艺
第五章 模压成型工艺 compression molding
5、1 模压成型工艺概述 compression molding
模压成型工艺是复合材料生产中最古老而又 富有无限活力的一种成型方法。
它是将一定量的预混料或预浸料加入金属 对模内,经加热、加压固化成型的方法。
模压成型工艺 compression molding
片状模塑料 (SMC )
团状模塑料 (DMC)
种类
块状模塑料 (BMC)
团状模塑料 DMC Dough molding compound
DMC材料于二十世纪60 年代在前西德和英国, 首先得以应用,而后在 70年代和80年代分别在 美国和日本得到了较大 的发展。
团状模塑料 DMC Dough molding compound
团状模塑料(DMC)是由不 饱和聚酯树脂、低收缩添 加剂、填料、固化剂、脱 模剂及着色剂等组成的树 脂糊浸渍短切玻璃纤维所 制成的一种团状模压成型 材料。使用时只需放入模 具中加热、加压,即得所 需产品。
块状模塑料BMC
BMC材料具有质轻、高强、良好的流动性和内 着色性,形状复杂或异型制品可一次成型。
连续法是将SMC配方中的树脂糊分为两部分, 即增稠剂、脱模剂、部分填料和苯乙烯为一部分, 其余组分为另一部分,分别计量、混匀后,送入 SMC机组上设置的相应贮料容器内,在需要时 由管路计量泵计量后进入静态混合器,混合均匀 后输送到SMC机组的上糊区,再涂布到聚乙烯 薄膜上。
(2)玻璃纤维的切割与沉降
(4)收卷 (5)熟化与存放
5、4 模压工艺
模压工艺 compression molding
将定量的模塑料放 入敞开的金属对模中,闭 模后加热使其熔化,再经 加热固化或冷却硬化,脱 模后得到复合材料。

第五章 热固性复合材料成型工艺

第五章 热固性复合材料成型工艺

2009-11-4
21
Dept. Polym. Sci. & Tech.
2009-11-4
22
Dept. Polym. Sci. & Tech.

四、工艺 1、原材料准备
(1) 胶液准备 胶液的主要工艺指标是:胶液粘度;凝胶时间。
胶液粘度:
表征流动特性,粘度控制在0.2~ 0.8Pa.s之间,一般用稀释剂调节
一般2~10mm
2009-11-4
9
Dept. Polym. Sci. & Tech.
玻璃纤维及其织物 二、原材料: 热固性树脂 辅助材料
1、玻璃纤维及其织物
无捻粗纱 无捻粗纱布 短切粗纱布 短切原丝毡 加捻布 玻璃布带
2009-11-4
10
Dept. Polym. Sci. & Tech.
A、玻璃纤维无捻粗纱:将拉丝得到的原纱,平行并股 卷成圆筒形。
Dept. Polym. Sci. & Tech.
2、热固性树脂
要求:
• 能够配制粘度适中的胶液; • 能在室温或较低温度下固化,固化时无低分子物产生; • 无毒或低毒; • 价格便宜,来源广泛。 目前国内大部分手糊制品均用不饱和聚酯树脂,约占 80%,其次是环氧树脂。
2009-11-4
14
Dept. Polym. Sci. & Tech.
1. 预浸料及其制造方法 预浸料是将树脂体系浸涂到纤维或纤维织物上,通过一定 的处理过程后贮存备用的半成品,预浸料是一个总称。 根据实际需要可将预浸料进行如下分类:
⑴ 按照增强材料的纺织形式:预浸带、预浸布、无纺布等; ⑵ 按照纤维的排布方式:单向预浸料、织物预浸料; ⑶按照纤维类型:玻璃纤维预浸料、碳纤维预浸料、有机纤维 预浸料等。

塑料成型工艺及模具设计

塑料成型工艺及模具设计

塑料成型工艺及模具设计随着现代工业的快速发展,塑料制品在工业生产、日用生活、医疗保健等诸多领域得到广泛应用。

但要制成一个优质的塑料制品,离不开塑料成型工艺及模具设计两个重要环节。

塑料成型工艺是将塑料加工成所需形状的工艺过程,其主要工艺流程包括注塑、吹塑、挤塑、压塑等。

其中,注塑是应用最广泛的一种成型工艺,其特点是生产效率高、产品质量稳定、可生产的产品种类多等。

具体地,注塑工艺是通过高压将塑料熔融后注入模具中,并在模具中冷却成型。

注塑机是注塑的基本设备,通过输送系统将塑料颗粒加热熔化,然后将其压入模具中,冷却成型,最后得到我们所需的产品。

模具设计是指为了得到符合产品设计要求的塑料制品而进行的构思、设计、制造、试产等一系列工作。

模具设计的好坏直接影响产品的质量和生产成本。

一个好的模具应当具备以下特点:稳定性好,寿命长,成型精度高等。

在模具设计过程中,必须考虑以下几个方面:一、模具结构设计:在模具的结构设计阶段,应根据塑料制品的要求,先设计出产品的形状和尺寸,在此基础上设计出模具的分型面、流道系统、射出口等,以确保产品形状准确无误,生产效率高。

二、材料选择:模具的材料选择直接影响其性能和使用寿命。

一般模具材料的选择有钢铁、铝合金等,其中以钢铁最为常见。

钢铁模具的优点是强度高、硬度大、磨损性能好等。

三、热处理:模具热处理非常重要,其目的是改变模具材料的物理和化学性质,提高模具的硬度、强度和耐磨性,从而提高模具的使用寿命。

四、制造工艺:模具的制造方法有冷加工和热加工两种,冷加工相对简单,但制作周期长、工艺复杂度低,适用于小批量生产;热加工的制作周期短、生产效率高,但工艺复杂度高,适用于大批量生产。

总之,塑料成型工艺和模具设计是制造优质塑料制品的核心环节。

只有究极掌握这两个技术,才能生产出高品质、高性能、低成本的塑料制品。

塑料成型工艺与磨具设计课后习题答案

塑料成型工艺与磨具设计课后习题答案

第一章答案1.高分子聚合物链结构有哪些特点?根据链结构的不同,高分子聚合物可以分成哪几类?答:高分子聚合物链结构具有以下结构特点(1)高分子呈现链式结构(2)高分子链具有柔性(3)高聚物的多分散性根据链结构的不同,高分子聚合物可以分为高分子近程结构和高分子远程结构。

2.根据聚集态结构的不同,高分子聚合物可以分成哪几类?试阐述其结构特点和性能特点。

答:根据聚集态结构的不同,高分子聚合物可以分成固体和液体,固体又有晶态和非晶态之分。

(1)聚集态结构的复杂性因为高分子链依靠分子内和分子间的范德华力相互作用堆积在一起,可导致晶态和非晶态结构。

高聚物的比小分子物质的晶态有程序差得多,但高聚物的非晶态结构却比小分子物质液态的有序程度高。

高分子链具有特征的堆方式,分子链的空间形状可以是卷曲的、折叠的和伸直的,还可能形成某种螺旋结构。

如果高分子链由两种以上的不同化学结构的单体组成,则化学结构是决定高分子链段由于相容性的不同,可能形成多种多样的微相结构。

复杂的凝聚态结构是决定高分子材料使用性能的直接因素。

(2)具有交联网络结构某些种类的高分子链能够以化学键相互连接形成高分子网状结构,这种结构是橡胶弹性体和热固性塑料所特有的。

这种高聚物不能被溶剂溶解,也不能通过加热使其熔融。

交联对此类材料的力学性能有重要影。

高聚物长来链大分子堆砌在一起可能导致链的缠结,勾结点可看成为可移的交链点。

3.在线型非晶态(无定形)聚合物的热力学曲线上,可以分为哪三种力学状态的区域?温度点0b、0g、0f、0d表征什么意义?答:在线型非晶体态(无定形)聚合物的热力学曲线上,可以分为玻璃态、高弹态、粘流态。

0b称为脆化温度,它是塑料使用的下限温度。

0g称为玻璃化温度,玻璃态和高弹态之间的转变称为玻璃化转变,对应的转变温度即玻璃态温度。

0f称为粘流温度,高弹态与粘流态之间的转变温度称为粘流温度。

0d称为热分解温度,它是塑料使用的上限温度。

4.绝大多数的聚合物熔体都表现为非牛顿流体,试写出非牛顿流体的指数流动规律,并表述其意义。

复合材料第五章复合材料的成型工艺

复合材料第五章复合材料的成型工艺
44
6. 拉挤成型工艺
拉挤成型工艺中,首先将浸渍过树脂 胶液的连续纤维束或带状织物在牵引装置 作用下通过成型模而定型;
45
其次,在模中或固化炉中固化,制成具有 特定横截面形状和长度不受限制的复合材料, 如管材、棒材、槽型材、工字型材、方型材 等。
46
一般情况下,只将预制品在成型模中加热到 预固化的程度,最后固化是在加热箱中完成的。
60
注射成型工艺过程包括加料、熔化、混合、 注射、冷却硬化和脱模等步骤。
加工热固性树脂时,一般是将温度较低的树 脂体系(防止物料在进入模具之前发生固化)与短 纤维混合均匀后注射到模具,然后再加热模具使 其固化成型。
61
在加工过程中,由于熔体混合物的流动 会使纤维在树脂基体中的分布有一定的各向 异性。
层压成型工艺的缺点是只能生产板材, 且产品的尺寸大小受设备的限制。
24
4.喷射成型工艺
将分别混有促进剂和引发剂的不饱和聚 酯树脂从喷枪两侧(或在喷枪内混合)喷 出,同时将玻璃纤维无捻粗纱用切割机切 断并由喷枪中心喷出,与树脂一起均匀沉 积到模具上。
25
当不饱和聚酯树脂与玻璃纤维无捻粗纱 混合沉积到一定厚度时,用手辊滚压,使纤 维浸透树脂、压实并除去气泡,最后固化成 制品。
35
纤维缠绕方式和角度可以通过机械传动或计 算机控制。
缠绕达到要求厚度后,根据所选用的树脂类 型,在室温或加热箱内固化、脱模便得到复合材 料制品。
36
利用纤维缠绕工艺制造压力容器时, 一般要求纤维具有较高的强度和模量, 容易被树脂浸润,纤维纱的张力均匀以 及缠绕时不起毛、不断头等。
37
另外,在缠绕的时候,所使用的芯模应 有足够的强度和刚度,能够承受成型加工过 程中各种载荷(缠绕张力、固化时的热应力、 自重等),满足制品形状尺寸和精度要求以 及容易与固化制品分离等。

第五章压缩成型工艺与模具设计

第五章压缩成型工艺与模具设计

•压缩模类型选用原则
•塑件批量大•—— 固定式模具 •批量中等•—— 固定式或半固定式模具 •小批量或试生产•—— 移动式模具
•水平分型面模具结构简单,操作方便,优先选用。
•流动性差的塑料,塑件形状复杂•——不溢式模具 •塑件高度尺寸要求高,带有小型嵌件•—— 半溢式模具 •形状简单,大而扁平的盘形塑件•—— 溢式压缩模
▪特别适合压制有棉布、玻璃布、长纤维 填充的制品; ▪飞边与分型面垂直分布,便于去除。
5、不溢式压缩模 ➢不溢式压模特点:
▪因溢料量很少,加料精度直接影响制品高度尺寸,要求准确计量; ▪型芯与型腔侧壁摩擦严重,制品脱模易刮擦,改进结构见图所示; ▪不溢式压模必须设脱模机构。
6、半溢式压缩模
➢半溢式压模特点:
6、半溢式压缩模
➢半溢式压模改进: ▪将加料腔制成可移动式,方便挤压面和模具型腔的清理 。
7、多型腔压缩模
➢多型腔压模:如图,可为溢式或半溢式结构,图a)、b) 需对每个型腔单独加料,个别型腔损坏不影响模具工作。
7、多型腔压缩模
➢为方便多腔模加料,可 采用右图所示的加料器 快速加料。
➢多腔共用加料室有利于 缩小模具尺寸,方便加料 ,但边角的型腔易缺料。
第五章压缩成型工艺与 模具设计
2020年7月10日星期五
第五章 压缩成型工艺及模具设计
•成型压缩原理
一、 压缩成型原理及特点
压缩成型原理 压缩成型特点
•压缩成型过程 •原料放入模具 •加热加压使材料成型硬化 •取出塑件
•一、 压缩成型原理:
将塑料加入高温的型腔和加料室,然 后以一定的速度将模具闭合,塑料在热和压 力的作用下熔融流动,并且很快地充满整个 型腔,树脂和固化剂作用发生交联反应,生 成不熔不溶的体型化合物,塑料因而固化, 成为具有一定形状的制品,当制品完全定型 并且具有最佳性能时,即开启模具取出制品.

5.压缩成型工艺及模具设计

5.压缩成型工艺及模具设计


手柄头部件压缩模
(3)半固定式压缩模

上模固定在压机上,下模沿导轨移动,用定位块定位。 也可以将下模固定在压机上。 开合模在机内进行,成型后移出上模或下模,用手工 或机外卸模装置取出塑件。 与移动式压缩模具相比减小了工人劳动强度,并且容 易安放嵌件和加料。为了便于操作,当移动式压缩模 具太重或嵌件较多时,就可以采用此类模具。
用以限制凸模下行的位置 保证最薄的水平飞边,B不宜过大 主要用于半溢式和溢式压缩模

排气溢料槽
排出气体和余料
成型形状复杂塑件及流
动性较差的纤维填料的塑 件时应开设排气溢料槽.
槽深一般为0.2~0.3mm 应开到凸模的上端,使
合模后高出加料腔的上平 面

承压块(面)
保证凸模进入凹模的深度,使凹模不致受挤压而变形或损坏


1)溢式(敞开)压缩模
结构特点:
无加料室,型腔高度即为 制品高度
凸模与凹模无配合部分 有环形挤压面B
优点:
结构简单,成本低
塑件易取出,易排气 安放嵌件方便 加料量无严格要求 凹、凸模无摩擦,模具寿命长
缺点:
合模太快时,塑料易溢出,浪费原料;合模太慢时,易 造成飞边增厚; 凸、凹模配合精度较低; 不适用于压制带状、片状或纤维填料的塑料和薄壁或壁 厚均匀性要求高的塑件。
脱模:当制品完全定型并且具有最佳性能时,
即开启模具取出制品。
2.压缩成型特点
塑料直接加入型腔内,加料时模具是敞开的,即先加料后 合模。
结构简单,无浇注系统,不需复杂的推出机构
耗料少 生产周期长,效率低
不易压制形状复杂的塑件,不易获得尺寸精确的塑件
3.压缩成型工艺

钣金模具成型及工艺讲解

钣金模具成型及工艺讲解

一、拉深变形过程
(二)拉深变形过程及特点(续)
2.金属的流动过程
工艺网格实验
材料转移:高度、厚度发生变化。
3.拉深变形过程
外力
凸缘产生内应力:径向拉应力σ1;切向压应力σ3 凸缘塑性变形:径向伸长,切向压缩,形成筒壁
直径为d高度为H的圆筒形件(H>(D-d)/2) 拉深单元变形动画
二、拉深过程中坯料内的应力与应变状态
(冲压)产品设计
相互关联
冲压成形工艺设计
冲压模具设计
相互影响
造流程图
四、冲模设计与制造的要求
冲压模具设计与制造包括冲压工艺设计、模具设计与模具 制造三大基本工作。
冲压工艺设计是冲模设计的基础和依据。 冲模设计的目的是保证实现冲压工艺。 冲模制造则是模具设计过程的延续,目的是使设计图样,通 过原材料的加工和装配,转变为具有使用功能和使用价值的模 具实体。
冲 模 制 造
冲模设计与制造场景
多工位精密级进模
冲 压 成 形 产 品 示 例 一 日 常 用 品
——
第二章 冲裁工艺与冲裁模设计
第一节 概述
冲裁:利用模具使板料沿着一定的轮廓形状产生分离的一种
冲压工序。
冲裁模:冲裁所使用的模具叫冲裁模,它是冲裁过程必不可少
的工艺装备。凸、凹模刃口锋利,间隙小。
2.筒壁的拉裂
主要取决于:
一方面是筒壁传力区中的拉应力; 另一方面是筒壁传力区的抗拉强度。 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在 底部圆角与筒壁相切处——“危险断面”产生破裂。
防止拉裂:
一方面要通过改善材料的力学性能,提高筒壁抗拉强度; 另一方面通过正确制定拉深工艺和设计模具,降低筒壁所 受拉应力。

第5章 成型工艺

第5章 成型工艺
玻璃纤维无捻粗纱聚酯树脂加热引发剂促进剂静态混合切割喷枪喷射成型模具固化脱模一喷射成型工艺流程喷射成型工艺示意图内混合型喷射外混合型喷射内混合型树脂与引发剂混合后喷出不产生引发剂蒸汽但是喷枪必须及时用溶剂清洗否则喷枪易堵
第5章 复合材料成型工艺
本章主要内容:
5.1 概述
5.2 低压成型工艺 5. 3 层压成型工艺
七、 质量控制
2、制品内气泡太多 原因1: 树脂用量过多 解决办法: 1、控制胶含量 2、注意拌合方式 原因2: 树脂粘度过大 解决办法:1、适当增加稀释剂 2、提高环境温度
原因3: 增强材料选择不当 解决办法: 选用浸透性好的无捻玻璃布
七、 质量控制
3、流胶 原因1: 树脂粘度太小,可加入2~3%的活性氧化硅。
⑵ 材料性能和产品质量要求,如材料的物化性能、产品的强度 及表面粗糙度(光洁度)要求等; ⑷ 企业有可能提供的设备条件及资金;
⑶ 生产批量大小及供应时间(允许的生产周期),批量有区别;
⑸ 综合经济效益,保证企业效益。
举 例:
a. 生产批量大、数量多及外形复杂的小产品——模压 成型; e.g. 机械器件、电子器材等。 b.造型简单的大尺寸制品,批量小——手糊成型、喷 射成型; e.g. 浴盆、汽车部件、胎体外壳、大型储槽等。 c.压力管道及容器——缠绕工艺; d.板材及成型制品——连续成型工艺。


预浸料及其制造方法

预浸料(Prepregs):
纤维或织物预先浸渍树脂,经一定处理后贮存 备用的半成品。只需裁剪后,经一定成型工艺加工 成所需要的制品。

可分为单相预浸料和织物预浸料。
单向预浸料
a喷丝架 平铺 O 在制 品的各个部分。 2 树脂必须适量地均匀地分布在制品的 各个部位,并适当固化。 3 工艺过程中尽量减少气泡,降低孔隙 率,提高制品的致密性。 4 充分掌握所用树脂的工艺性能,制定 合理的工艺规范。

(陶瓷科学与工艺学)第五章1成型-压制成型

(陶瓷科学与工艺学)第五章1成型-压制成型
在卸压时,对减压速度加以控制能防止因受压发生弹性形变的颗粒迅 速反弹,从而产生层裂。
2.3.3加压制度对坯体质量的影响
5、添加剂的选用 (1)减少粉料颗粒间及粉料与模壁之间的摩擦,这种添加物又称润滑剂; (2)增加粉料颗粒之间的粘结作用,这类添加物又称粘合剂; (3)促进粉料颗粒吸附、湿润或变形,通常采用表面活性物质。
第二节 成型与成型前后工艺的关系
5.2.1 成型对粉体的要求 d)颗粒的大小、形状---粉料的拱桥效应(或称桥接) 球形颗粒有利于提高流动性和松装密度。 颗粒粒度分布窄的高于粒度分布宽的松装密度。
等径球体堆积形式及孔隙率 粉料自由堆积的空隙率往往比理论计算值大得多,就是因为实际粉料不是球形,加上表面 粗糙图表,以及附着和凝聚的作用,结果颗粒互相交错咬合,形成拱桥型空间,增大了空 隙率。这种现象称为拱桥效应
第四节 冷等静压成型
5.4.3 等静压成型的缺陷和控制
1)填充不均匀而形成的颈部,这和粉料流动性差有关;
2)粉料填充不均匀或装料的橡胶袋无支撑而导致的不规则表面 3) 湿式等静压中因模具橡胶袋太硬或因粉料压缩性太大而形成的“象脚”形; 4)湿式等静压中因橡胶模具无支撑而形成的“香蕉”行; 5)成型中轴向弹性回弹形成的压缩裂纹,硬粉料更是如此; 6)由于压缩裂纹而形成分层,这来源于不合适的或过厚的橡胶材料或较弱的坯块; 7)不规则表面形状:与密封橡胶袋材料不合适或太厚,坯体强度低或小的角半径有关; 由于不充分的弹性而形成的轴向裂纹。
(陶瓷科学与工艺学)第五章1成型-压 制成型
5 陶瓷坯体的成形
课后习题
1.列举陶瓷坯体的基本成型方法。 2.试分析注浆成型过程中影响泥浆流动性和稳定性因素有哪些? 3.干压成型中,怎样的粉体有利于获得高密度的成型坯体? 4.简述干压制成型过程中坯体易于出现层裂的原因。 5.弹性后效定义 6.简述成型对烧结有哪些影响? 7.简述干燥过程的不同阶段及影响因素。

《塑料成型工艺与模具设计》(上册)电子教案完全版

《塑料成型工艺与模具设计》(上册)电子教案完全版

《塑料成型工艺与模具设计》(上册)电子教案完全版第一章:塑料成型工艺概述1.1 塑料成型的基本概念塑料的定义与特性塑料成型的定义与分类1.2 塑料成型工艺流程塑料原料的准备塑料的加热与塑化塑料的冷却与固化塑料的脱模与后处理1.3 塑料成型工艺参数温度压力速度时间第二章:塑料模具概述2.1 模具的分类与结构模具的分类模具的基本结构2.2 模具的设计原则模具设计的要求与步骤模具设计中的关键参数2.3 模具的材料与制造模具材料的选用原则模具的制造工艺第三章:塑料注射成型工艺与模具设计3.1 注射成型工艺概述注射成型原理与特点注射成型工艺参数3.2 注射模具的结构设计模具的型腔与型芯设计模具的冷却系统设计模具的加热系统设计3.3 注射模具的导向与定位模具的导向设计模具的定位设计第四章:塑料挤出成型工艺与模具设计4.1 挤出成型工艺概述挤出成型的原理与特点挤出成型工艺参数4.2 挤出模具的结构设计模具的口模设计模具的定径套设计模具的切割装置设计模具的导向设计模具的调整方法第五章:塑料吹塑成型工艺与模具设计5.1 吹塑成型工艺概述吹塑成型的原理与特点吹塑成型工艺参数5.2 吹塑模具的结构设计模具的型腔设计模具的吹气系统设计模具的后处理设计5.3 吹塑模具的导向与定位模具的导向设计模具的定位设计第六章:塑料压缩成型工艺与模具设计6.1 压缩成型工艺概述压缩成型的原理与特点压缩成型工艺参数6.2 压缩模具的结构设计模具的型腔设计模具的压柱设计模具的冷却系统设计模具的导向设计模具的定位设计第七章:塑料压注成型工艺与模具设计7.1 压注成型工艺概述压注成型的原理与特点压注成型工艺参数7.2 压注模具的结构设计模具的型腔设计模具的压注系统设计模具的冷却系统设计7.3 压注模具的导向与定位模具的导向设计模具的定位设计第八章:塑料传递成型工艺与模具设计8.1 传递成型工艺概述传递成型的原理与特点传递成型工艺参数8.2 传递模具的结构设计模具的型腔设计模具的传递系统设计模具的冷却系统设计模具的导向设计模具的定位设计第九章:塑料成型工艺与模具设计的计算与模拟9.1 模具设计计算塑料收缩率的计算模具尺寸的计算模具强度的计算9.2 模具设计模拟模具流动分析模具冷却分析模具翘曲分析9.3 模具设计软件介绍模具设计软件的功能与特点模具设计软件的应用实例第十章:塑料成型工艺与模具设计的实践与应用10.1 塑料成型工艺实践成型工艺的操作步骤与注意事项成型过程中的常见问题与解决方法10.2 模具设计应用实例典型模具设计案例分析模具设计在实际生产中的应用10.3 塑料成型工艺与模具设计的未来发展塑料成型技术的发展趋势模具设计技术的创新与突破重点和难点解析重点环节1:塑料成型的基本概念与特性补充和说明:塑料成型的基本概念和特性是理解后续成型工艺与模具设计的基础。

模具成型工艺及模具设计

模具成型工艺及模具设计

模具成型工艺及模具设计一、模具成型工艺1.工艺分析:对产品的形状、结构、材料特性等进行分析,确定合理的加工方案和工艺参数。

2.模具设计:根据产品的形状和尺寸要求,设计合理的模具结构,并确定模具材料和热处理工艺。

3.模具加工:将模具设计图纸转化为实际的模具零件。

模具加工包括粗加工和精加工两个阶段,通常采用数控机床进行加工。

4.装配调试:将模具的各个零件进行装配,并进行调试和修正,确保模具的准确度和工作性能。

5.试模生产:使用已调试好的模具进行试模生产,测试产品的质量和模具的性能。

6.批量生产:批量生产产品,并进行质量控制和工艺调整,确保产品符合要求。

二、模具设计模具设计是模具成型工艺的重要环节,合理的模具设计可以提高产品质量和生产效率。

模具设计需要考虑以下几个方面:1.产品形状与尺寸:根据产品的形状和尺寸要求,设计模具的结构和尺寸。

要注意产品的表面质量、尺寸精度和形状复杂度等因素。

2.模具结构:根据产品的加工工艺和特点,确定模具的结构形式,包括腔型、底座、导向结构、定位装置、冷却系统等。

3.模具材料:根据产品的材料特性和使用要求,选择适合的模具材料。

常用的模具材料有工具钢、合金钢、硬质合金等。

4.热处理工艺:对模具进行适当的热处理,提高模具的硬度、耐磨性和寿命。

5.成本控制:在模具设计过程中,要考虑制造成本和使用成本,努力降低模具制造费用。

6.模具标准件选型:选用标准化的模具零件,可以减少模具设计和制造周期,提高设计效率。

总之,模具成型工艺及模具设计对产品质量和生产效率有着重要影响。

在具体的模具成型工艺和模具设计中,需要根据产品要求和生产环境进行合理的选择和设计,以提高产品品质和生产效率。

塑料成型工艺及模具设计习题与答案

塑料成型工艺及模具设计习题与答案

《塑料成型工艺及模具设计》习题第一章绪论1、塑料制品常用的成型方法有哪些?2、塑料模具的设计与制造对塑料工业的发展有何重要意义?3、塑料模具设计及加工技术的发展方向是什么?4、塑料制品的生产工序是?5、举例说明哪些日用品的加工要用到塑料模具?第二章注塑成型基础一、填空题1、受温度的影响,低分子化合物存在三种物理状态:、、。

2、塑料在变化的过程中出现三种但却不同的物理状态:、、。

3、用于区分塑料物理力学状态转化的临界温度称为。

4、随受力方式不同,应力有三种类型:、和。

5、牛顿型流体包括、和。

6、从成型工艺出发,欲获得理想的粘度,主要取决于对、、这三个条件的合理选择和控制。

7、料流方向取决于料流进入型腔的位置,故在型腔一定时影响分子定向方向的因素是。

8、注射模塑工艺包括、、等工作。

9、注塑机在注射成型前,当注塑机料筒中残存塑料与将要使用的塑料不同或颜色不同时,要进行清洗料筒。

清洗的方法有、。

10、注射模塑成型完整的注射过程括、、、和、。

11、注射成型是熔体充型与冷却过程可为、、和四个阶段。

12、注射模塑工艺的条件是、和。

13、在注射成型中应控制合理的温度,即控制、和温度。

14、注射模塑过程需要需要控制的压力有压力和压力。

15、注射时,模具型腔充满之后,需要一定的时间。

16、内应力易导致制品和、、等变形,使不能获得合格制品。

17、产生内应力的一个重要因素是注射及补料时的。

18、制品脱模后在推杆顶出位置和制品的相应外表面上辉出现,此称为。

19、根据塑料的特性和使用要求,塑件需进行后处理,常进行和处理。

20、塑料在与下充满型腔的能力称为流动性。

二、判断题1、剪切应力对塑料的成型最为重要。

()2、粘性流动只具有弹性效应。

()3、绝大多数塑料熔体素属于假塑性流体。

()4、塑料所受剪切应力作用随着注射压力下降而增强。

()5、分子定向程度与塑料制品的厚度大小无关。

()6、塑料的粘度低则流动性强,制品容易成型。

()7、结晶型塑料比无定型塑料的收缩率小,增加塑料比未增加塑料的收缩大。

第5章、模压成型工艺

第5章、模压成型工艺

第5章、模压成型工艺§5-1、概述定义:将一定量的模压料放入金属对模中,在一定的温度和压力作用下,固化成型制品的一种方法。

工艺过程:加热和加压(高压)物料角度:塑化,流动,固化三阶段。

模具要求:高强度,高精度,耐高温。

树脂在成型过程中的两个特定阶段:(1)粘流阶段:树脂受热熔化,在压力作用下粘裹纤维一起流动至填满模腔的过程。

——即物料塑化、流动阶段。

(2)硬固阶段:树脂发生交联,硬固的过程。

——即物料固化阶段。

工艺分类:是根据增强材料物态和模压料品种(模压方式)分类。

按模压材料物态分类:纤维料模压预混、预浸纤维料加热、加压成型。

(单向、线性)织物模压两向、三向、多向织物浸渍树脂后,加热、加压成型。

(平面)优点:剪切强度明显提高,质量稳定。

缺点:成本高碎布料模压预浸碎布料加热、加压成型。

(多块,小平面)SMC模压SMC片材按制品尺寸、形状、厚度等要求剪裁下料,多层片材叠合加压而成型。

(大面积,多层平面)预成型坯模压短切纤维制成与制品形状和尺寸相似的预成型坯,放入模中,倒入树脂混合物,压力成型。

(大型、深型、高强、异型、体形、均厚度制品)按模压成型方式分类:层压预浸胶布或毡剪成所需形状,层叠后放入金属模内,压制成型。

缠绕预浸的玻纤或布带,缠绕在一定模型上,加热、加压。

(管材)定向铺设单向预浸料(纤维或无维布)沿制品主应力方向铺设,然后模压成型。

§5-2、模压料树脂、增强材料、辅助剂构成模压料的三大块。

§5-2-1、原料1、树脂:酚醛型(镁、氨酚醛,改性聚乙烯醇缩丁醛),环氧型(634,648,F-46),环氧酚醛型(也可列为酚醛型),聚酯型。

2、增强材料:纤维型(玻纤,碳纤,尼龙纤),(形状有纤维状,短切毡,布或绳)3、辅助材料:稀释剂,玻纤表面处理剂,填料,脱模剂及颜料等。

目的:使模压料具有良好的工艺性和制品的特殊要求。

(1)稀释剂:丙酮、乙醇(非活性)用途:降低树脂粘度,改进树脂浸渍性能,有活性与非活性之分。

塑料成型工艺第五章 压注成型

塑料成型工艺第五章 压注成型
树脂应具有较长的适用期,在固化温度下具 有良好的反应性当树脂注射完成后能够快速固化, 以缩短制品的成型周期。
树脂对增强材料有良好的浸润性、匹 配性和黏附性。 树脂应具备低挥发、低收缩率和固化时 放热量少的特点。 2.压注成型用树脂的种类 不饱和聚酯树脂 环氧树脂 双马来酰亚胺树脂 乙烯基酯树脂
二、压注成型用增强材料
1.压注成型对增强材料的要求 2.压注成型增强材料的种类 (1)短切玻璃毡 是通过短切玻璃纤维在传输 带上随机沉积而成,属于非机织增强材料。只 适用于需少量裁剪的简单部件。 (2)连续玻璃纤维毡 由连续玻璃纤维纱不切 断而加入胶粘剂制成的毡状物,平面呈各向同 性。
(3)二维纺织物 由两组或两组以上的纤维纱在 织布机上按一定的经纬纱比例织出的增强材料。 (4)玻璃纤维复合毡 将各层增强片材间用线缝 合形成的复合毡。 三、预成型体的加工 1.工艺要求 (1)浸渍特性 (3) 抗冲刷性 (5)操作性能 (2)纤维的浸透
§5.4 压注成型工艺过程及工艺参数
一、压注成型的工艺过程
预 热 加 加 保 保 卸 热 压 温 压 压 与压缩成型区别是: 压缩:加料—合模 压注:合模—加料
预或 压压 锭塑 料粉
合 模
挤 塑
固 化
开 模
脱 模 清模
制 品
§5.4 压注成型工艺过程及工艺参数
二、压注成型的工艺参数 1.成型压力 经浇注系统压力有消耗,P压注=(2~3)P压缩, 要保证塑料10~30秒内充满型腔。 2.成型温度 为了保证物料具有良好的流动性,料温必须 适当地低于交联温度的10-200C。压注成型时塑料 经过浇注系统能从中获得一部分摩擦热,因而模 具温度一般可比压缩成型时低10-300C。
4、分析充模不满、收缩率大、表面凹陷的原因。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欲提高胀形的极限变形程度,可采用(如图所 示)所示 1.压加强筋 1)用刚性凸模压制加强筋的变形力按式 F KLt 计算 : 2)对在曲柄压力机上用薄料(<1.5)对小工 件(面积<20002)压筋或压筋兼有校形工序 时的变形力按式 F KAt 2 计算:
t 3) 软模胀形的单位压力可按式 p k R 近似计算(不考虑材料厚度变薄) 2.压凹坑 压凹坑时,成形极限常用极限胀形深度表 示,如果是纯胀形,凹坑深度因受材料塑性 限制不能太大 .
n的计算值一般是小数,应进位成整数.
2. 毛坯尺寸的计算 斜口形式:
D d H 1 ~ 1.05[h1 (1 D / d )] 8D sin
2 2
直口形式:
H 1 ~ 1.05[h1 h2
球面形式:
D d D/d (1 D / d )] 8D sin
2 2
1 H h1 (1 D / d ) D 2 d 2 4
b.拉深后再翻边 应先确定翻边高度h,再根据翻边高度确 定预制孔直径D0 和高度h1. 由计算公式:
D d0 t D t h 0.57(r ) (1 m) 0.57(r ) 2 2 2 2 h1 H h r t
2)凸、凹模的形状及尺寸 翻边凸模的形状有平底形、曲面形(球形、 抛物线形等)和锥形,几种常见的翻边凸模 的结构形状(如图所示) 3)凸、凹模的间隙 4)翻边力与压边力 在所有凸模中,圆柱形平底凸模的翻边力最 大 F 1.1 ( D d 0) b 其公式为:
2.变形程度 缩口变形程度用缩口系数ms来表示,其 表达式: d ms D 式中 d—缩口后的直径 D—为缩口前的直径
5.3.2 缩口的工艺计算 1.缩口次数及缩口系数的确定 lg msz 缩口次数由下式确定: n lg msp
m 式中: sz :总缩口系数, sz d / D m msp :平均缩口系数,可先取 msp ms min
b
5.1.3 空心毛坯的胀形 空心毛坯胀形是将空心件或管状坯料胀 出所需曲面的一种加工方法。用这种方法 可以成形高压气瓶、球形容器、波纹管、 自行车三通接头等产品或零件. 刚模胀形(如图所示) 软模胀形(如图所示) 圆柱形空心毛坯胀形时的应力状 态(如图所示)
1.胀形系数 空心毛坯程度 影响极限翻边系数的因素: 1)材料的塑性 2)孔的加工方法 3)预制孔的相对直径 4)凸模的形状
3.孔翻边的模具设计计算 1)预制孔直径 d0 和翻边高度H a. 一次翻边成形 (如图所示)所示是在平板毛坯上一次翻 孔的图. D0与H按下式计算:
d 0 D 2( H 0.43r 0.72t ) H d D D (1 0 ) 0.43r 0.72t (1 m) 0.43r 0.72t 2 D 2
3.缩口力 只有外支承的缩口压力,可按下式估算:
式中: F—缩口力(N) K—速度系数,用曲柄压力机时k=1.15 b—材料的抗拉强度(MPa) —工件与凹模接触的摩擦系数
d 1 F k (1.1Dt 0 b(1 )(1 cot ) ] D cos
0 0 0 0
3.胀形毛坯尺寸的计算 毛坯长度可按下式近似计算:
L0 L[1 (0.3 ~ 0.4 ] h 式中: L 工件的母线长度(mm)
工件的切向延伸率(式5.1.6)
h 修边余量,约为5 ~ 20mm
5.2 翻边(如图所示)
按变形的性质,翻边分为伸长类翻边 和压缩类反边 5.2.1 内孔翻边 1.内孔翻边的变形特点 圆孔翻边及其应力应变分布(如图所 示) 对非圆孔的内孔翻边(如图所示)
K d max d0 式中: k 胀形系数, d 0 毛坯直径 d max 胀形后工件的最大直径 极限胀形系数与工件切向延伸率的关系式为: d 'd 0 K max 1 d 0 K max 1
2. 胀形力 刚模胀形所需压力的计算公式,可根据 力的平衡方程式推导得到,其表达式为:
第 5 章 其他成型工艺及模具 设计
5.1


5.2


5.3


5.1 胀形
胀形的特点: 胀形时变形区在板料方向呈双向拉应 力状态,在板厚方向上是减薄变形,即厚 度减薄而表面积增加. 常用的胀形方法有刚模胀形和以液体、 气体、橡胶等为施力介质的软模胀形.
5.1.1胀形的变形特点与胀形极限变形程度 1.胀形的变形特点(如图所示) 球头凸模胀形平板毛坯时的胀形变形区 及其主应力和主应变图。图中涂黑部分表示 胀形变形区. 2.胀形的极限变形程度 胀形极限变形程度主要取决于材料的塑性 和变形的均匀性 .
5.1.2 平板毛坯的起伏成形(如图所示) 起伏成形的极限的变形程度多用胀形深 度表示,也可以近似地按单向拉伸变形处理, 即:

l1 l 0 l0 100% k 式中:
极 起伏成形的极限变形程度 材料单向拉伸的延伸率
l 0 , l1 胀形变形区变形前后截面的长度 K 形状系数,加强筋k 0.7 ~ 0.75 (半圆筋取最大值,梯形筋取最小值)
t0
5.3 缩口
缩口是将预先成形好的圆筒件或管件 坯料,通过缩口模具将其口部缩小的一种成 形工序 5.3.1 缩口成形的特点与变形程度 1.缩口的成形特点 常见的缩口形式有: 斜口式、直口式和球面式.
缩口属于压缩类成形工序,其变形区的 应力应变特点(如图所示) 变形区由于受到较大切向压应力的作用 易产生切向失稳而起皱,起传力作用的筒壁 区由于受到轴向压应力的作用易产生轴向失 稳而起皱,所以失稳起皱是缩口工序的主要 障碍。
F 2Ht b 式中: F 所需胀形力 t 材料厚度 H 胀形后高度 t 材料厚度
tan 1 2 2 tan
摩擦系数,一般 0.15 ~ 0.20 芯轴锥角,一般 8 , , , . 10 12 15
5.2.2 平面外缘翻边 平面外缘翻边可分为内凹外缘翻边和外 凸外缘翻边(如图所示) 内凹外缘翻边的变形程度用翻边系数Es 表示: b
ES R b
外凸外缘翻边的变形程度用翻边系数Ec表示:
b Ec Rb
5.2.3 变薄翻边 变薄翻边的变形程度用变薄系数表示, 其表达式为: t
K
1
式中k为变薄系数, k=0.4~0.5; t1 — 为工件翻边后竖边的厚度; t0 — 为毛坯厚度
相关文档
最新文档