中考数学100份试卷分类汇编 代数几何综合

合集下载

人教版数学中考专题:代数几合综合问题含答案

人教版数学中考专题:代数几合综合问题含答案

人教版数学中考专题:代数几合综合问题含答案 Revised by BETTY on December 25,2020中考数学专题:代数几何综合问题一、填空题1. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.2.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是______.二,选择题3.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A. B.B. D.C.D. 4. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()E.F.G.三、解答题H. 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以厘米/秒的速度沿BC向终点C运动.过点P作I.PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).J.(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗请说明理由;K.(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么L.(3)当t为何值时,△EDQ为直角三角形.M.N.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)O.(1)求线段AB的长;当t为何值时,MN∥OC?P.(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值若有最小值,最小值是多少Q.R.7. 条件:如下图,A、B是直线l同旁的两个定点.S.T.问题:在直线l上确定一点P,使PA+PB的值最小.U.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).V.模型应用:W.(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;X.(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;Y.(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB 上的动点,求△PQR周长的最小值.Z.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.9.(1)求N点、M点的坐标;10.(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;11.(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;12.②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.13.14.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. (2018成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y 轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系点F 是否在直线NE上请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.【答案与解析】一、填空题1.【答案】(0,0),(0,10),(0,2),(0,8)2.【答案】(2×3n﹣1,0).【解析】∵点B1、B2、B3、…、Bn在直线y=2x的图象上,∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,∴An Bn=4×3n﹣1(n为正整数).∵OAn =AnBn,∴点An的坐标为(2×3n﹣1,0).故答案为:(2×3n﹣1,0).二、选择题3.【答案】A.【解析】分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD的中心,∴AG=BG=OG=AB=2cm,∴S=APOG=×t×2=t(cm2),②当t≥4时,作OG⊥AB于G,如图2所示:S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A.4.【答案】A.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD==,∵PE∥BC,解得PE=,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=,∴∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=,∴解得t=(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在 Rt△ACD中,∵AC=4,CD=3,∴AD=,∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴ t=(秒).综上所述,当 t=秒或t=秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当时,,,.∵,,∴,即(秒).(2)过点作轴于点,交的延长线于点,∵,∴,.即,.,.,∴.即().由,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36 解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则,解得,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S=﹣.最大9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),yAE =k1x+b1,则,解得:,∴yAE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知xD ﹣xP=xA﹣xQ,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=yD +yQ=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。

中考全国100份试卷分类汇编 代数综合

中考全国100份试卷分类汇编 代数综合

2013中考全国100份试卷分类汇编代数综合2、(2013•攀枝花)如图,抛物线y=ax 2+bx+c 经过点A (﹣3,0),B (1.0),C (0,﹣3). (1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.3、(2013达州压轴题)如图,在直角体系中,直线AB 交x 轴于点A (5,0),交y 轴于点B ,AO 是⊙M 的直径,其半圆交AB 于点C ,且AC=3。

取BO 的中点D ,连接CD 、MD 和OC 。

(1)求证:CD 是⊙M 的切线;(2)二次函数的图象经过点D 、M 、A ,其对称轴上有一动点P ,连接PD 、PM ,求△PDM 的周长最小时点P 的坐标;(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使16QAMPDMSS =?若存在,求出点Q的坐标;若不存在,请说明理由。

4、(2013•天津压轴题)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;t的取值范围.0 35、(2013年江西省压轴题)已知抛物线抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.6、(2013年武汉压轴题)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m 交抛物线2x y =于A 、B 两点.(1)若直线m 的解析式为2321+-=x y ,求A 、B 两点的坐标; (2)①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB成立.(3)设直线l 交y 轴于点C ,若△AOB 的外心在边AB 上,且∠BPC =∠OCP ,求点P 的坐7、(2013•内江压轴题)已知二次函数y=ax 2+bx+c (a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程x 2+4x ﹣5=0的两根. (1)若抛物线的顶点为D ,求S △ABC :S △ACD 的值; (2)若∠ADC=90°,求二次函数的解析式.8、(2013•泸州压轴题)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)9、(2013聊城压轴题)已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.10、(2013•苏州压轴题)如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(﹣1,0).(1)b=+c,点B的横坐标为﹣2c(上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得△PBC 的面积为S.①求S的取值范围;②若△PBC的面积S为整数,则这样的△PBC共有11个.11、(2013•宜昌压轴题)如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x ﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A(t,4),k=(k>0);(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.12、(2013•黄冈压轴题)如图,在平面直角坐标系中,四边形ABCD是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q 也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).13、(2013•荆门压轴题)已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2);(x1<x2)(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想.(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.(平面内两点间的距离公式).14、(2013•黔东南州压轴题)已知抛物线y 1=ax 2+bx+c (a ≠0)的顶点坐标是(1,4),它与直线y 2=x+1的一个交点的横坐标为2. (1)求抛物线的解析式;(2)在给出的坐标系中画出抛物线y 1=ax 2+bx+c (a ≠0)及直线y 2=x+1的图象,并根据图象,直接写出使得y 1≥y 2的x 的取值范围;(3)设抛物线与x 轴的右边交点为A ,过点A 作x 轴的垂线,交直线y 2=x+1于点B ,点P 在抛物线上,当S △PAB ≤6时,求点P 的横坐标x 的取值范围.15、(13年北京7分23)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B 。

各省市中考数学分类汇总代数几何综合题

各省市中考数学分类汇总代数几何综合题

2016中考分类汇总(28)代几综合题(2016安徽)22.如图,二次函数bx=2的图象经过点)4,2(A与)0,6(B.axy+(1)求ba,的值;(2)点C是该二次函数图象上BA,两点之间的一动点,横坐标为)6x.写出四边形OACB的面积S关<x2(<于点C的横坐标x的函数表达式,并求S的最大值.(2016龙东)28.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上,∠OAB=90°且OA=AB,OB、OC的长分别是一元二次方程x2-11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O、B重合),过点P的直线a与y轴平行,直线a交边OA或边AB于点Q,交边OC或边BC于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线a恰好过点C.当0<t<3时,求m 关于t的函数关系式.(3)当m=时,请你直接写出点P的坐标.(2016毕节)如图,已知抛物线bx x y +=2与直线42+=x y 交于A(a,8)、B 两点,点P 是抛物线上A 、B 之间的一个动点,过点P 分别作x 轴、y 轴的平行线与直线AB 交于点C 和点E.(1)求抛物线的解析式;(2)若C 为AB 中点,求PC 的长;(3)如图,以PC,PE 为边构造矩形PCDE ,设点D 的坐标为(m,n ),请求出m,n 之间的关系式。

(2016滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y 轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.二次函数(2016长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°.点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFGH.设点E 运动的时间为t秒.(1)求线段EF的长.(用含t的代数式表示)(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积为S平方单位,求S与t 之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点'O.当'OO∥AD时,t的值为______;当'OO⊥AD时,t的值为______.(第23题)(2016长春)如图,在平面直角坐标系中.有抛物线2y a x h=-.()=-+和2(3)4y a x抛物线2y a x=-+经过原点,与x轴正半轴交于点A,与其对称轴交于(3)4点是抛物线2=-+上一点,且在x轴上方.过点P作x轴的垂线交抛物y a x(3)4线2()=-于点'Q(不与点y a x h=-于点Q.过点Q作PQ的垂线交抛物线2()y a x hQ重合),连结'PQ.设点P的横坐标为m.(1)求a的值.(2)当抛物线2=-经过原点时,设△'y a x h()PQQ与△OAB重叠部分图形的周长为l.①求'PQ QQ 的值. ②求l 与m 之间的函数关系式.(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.(第24题)(2016长沙)如图,直线l :y =-x +1与x 轴,y 轴分别交于A ,B 两点,点P ,Q 是直线l 上的两个动点,且点P 在第二象限,点Q 在第四象限,∠POQ=135°.(1) 求△AOB 的周长;(2) 设AQ=t >0.试用含t 的代数式表示点P 的坐标;(3) 当动点P ,Q 在直线l 上运动到使得△AOQ 与△BPO 的周长相等时,记作∠AOQ=m ,若过点A 的二次函数y =ax 2+bx +c 同时满足以下两个条件:① 6a +3b +2c =0;② 当m ≤x ≤m +2时,函数y 的最大值等于m 2,求二次项系数a 的值.(2016成都)如图,在平面直角坐标系xOy 中,抛物线()213y a x =+-与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H.过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴右侧.(1)求a 的值及点A 、B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否成为菱形?若能,求出点N 的坐标;若不能,请说明理由.(2016达州)如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A 在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CE F 的面积为6.(1)求该抛物线的解析式;(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.【考点】二次函数综合题;二次函数的性质;待定系数法求二次函数解析式;三角形的面积;平行四边形的性质.(2016大庆)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ 的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.【考点】二次函数综合题.顶点坐标公式、二次函数的图象和性质、全等三角形的性质和判定、函数图象上点的坐标与函数解析式的关系,用含a的式子表示点B′的坐标(2016丹东)如图,抛物线bx=2过A(4,0),B(1,3)两点,点C、By+ax关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.(2016德州)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P 的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【点评】此题是二次函数综合题,主要考查了一元二次方程的解法,待定系数法求函数解析式,等腰直角三角形的性质和判定,解本题的关键是判定△BCD 是直角三角形.(2016广安)如图,抛物线y=x 2+bx+c 与直线y=x ﹣3交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC⊥x 轴于点C ,交AB 于点D . (1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P 运动到直线AB 下方某一处时,过点P 作PM⊥AB,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标.(2016鄂州)如图在平面直角坐标系xoy 中,直线y =2x +4与y 轴交于A 点,与x 轴交于B 点,抛物线C 1:c bx x y ++-=241过A 、B 两点,与x 轴另一交点为C 。

中考数学代数综合型问题试题整理汇集(带)

中考数学代数综合型问题试题整理汇集(带)

中考数学代数综合型问题试题整理汇集(带) 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢以下是中国()为您推荐的中考数学代数综合型问题试题整理汇集,希望本篇对您学习有所帮助。

中考数学代数综合型问题试题整理汇集11.以下说法正确的有:①正八边形的每个内角都是135°②与是同类二次根式③长度等于半径的弦所对的圆周角为30°④反比例函数,当x0,所以===-,故A正确;B中有a-3≥0,a≥3,故B正确;因为菱形的对角线互相垂直,所以连接其各边中点得到的四边形是矩形,c也正确.=9,9的算术平方根是3,所以D错误.解答:选D.点评:本题考查的知识点有的性质、算术平方根和中点四边形,运用时,先得=|a|,再根据a得符号去掉绝对值符号,这样会有效减少错误.另外,中点四边形主要与原四边形的对角线有关,原四边形的对角线相等,则中点四边形是棱形;原四边形的对角线互相垂直,则中点四边形是矩形;原四边形的对角线互相垂直且相等,则中点四边形是正方形.反之也成立.8、下列命题:①方程的解是②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中是真命题的有个个个c2个个【解析】:考查方程的解,平方根的意义,三角形全等的判定,中点四边形的性质【解答】:①漏了一个解;4的平方根是,不能用作三角形全等的判定由中点四边形的性质知,中点四边形一定是平行四边形。

正确的命题只有一个。

故选择D【点评】:对相关概念的准确理解和记忆,熟悉相关图形的性质,是解题的关键。

12.如图,一次函数的图象与轴,轴交于A,B两点,与反比例函数的图象相交于c,D两点,分别过c,D两点作轴,轴的垂线,垂足为E,F,连接cF,DE.有下列四个结论:①△cEF与△DEF的面积相等;②△AoB∽△FoE;③△DcE≌△cDF;④.其中正确的结论是A.①②B.①②③c.①②③④D.②③④【解析】根据题意可求得D,c,则F,∴△DEF的面积是:,△cEF的面积是:,∴△cEF的面积=△DEF的面积,故①正确;②即△cEF和△DEF以EF为底,则两三角形EF边上的高相等,故EF∥cD,△AoB∽△FoE,故②正确;DF=cE,四边形cEFD是等腰梯形,所以△DcE≌△cDF,③正确;⑤∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=Ac,∴Ac=BD,故④正确;正确的有4个.【答案】c【点评】本题考查了平行四边形的性质和判定,三角形的面积,全等三角形的判定,相似三角形的判定,检查同学们综合运用定理进行推理的能力,关键是需要同学们牢固掌握课本知识并能综合运用.7.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2-6x+c=0的一个实数根,则c的值为8.④在反比例函数中,若x>0时,y 随x的增大而增大,则k的取值范围是k>2.其中正确命题有个个个个【解析】若式子有意义,则x≥1,①错误;由∠α=27°得∠α的补角是=180°-27=153°,②正确.把x=2代入方程x2-6x+c=0得4-6×2+c=0,解得c=8,③正确;反比例函数中,若x>0时,y随x的增大而增大,得:k-20,即y随x的增大而增大。

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

代数综合题一:对于实数a,b,我们用符号min{a,b}表示a,b两数中较小的数,如min{3,5}=3,因此,min{-1,-2}=________;若{}22min(1),4+=,则x=___________.x x题二:对于实数c,d,我们用符号max{c,d}表示c,d两数中较大的数,如max{3,5}=5,因此,题四:在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y A、B,交抛物线C2:y于点C、D.(1)如图①,原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC 和QD,求△AOB与△CQD面积比为_______.(2)如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F,在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为_______.题七: 设函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,,若互不相等的实数x 1,x 2,x 3,满足y 1=y 2=y 3, 求x 1+x 2+x 3的取值范围.题八: 在平面直角坐标系xOy 中,抛物线y =243x x ++与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C . (1)求直线AC 的表达式;(2)在x 轴下方且垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线AC 交于点N (x 3,y 3),若x 1>x 2>x 3,结合函数的图象,求x 1+x 2+x 3的取值范围.参考答案题一:-2,-3或2.详解:∵-2<-1,∴min{-1,-2}=-2,∵{}22+=,x xmin(1),4当(x+1)2=x2时,解得:x=-0.5,(x+1)2=x2=0.25,这时不可能得出最小值为4,当x>-0.5,(x+1)2>x2,则x2=4,解得x1=2或x2=-2(舍去),当x<-0.5,(x+1)2<x2,则(x+1)2=4,解得x1=-3或x2=1(舍去),∴x=-3或x=2.题二:∵{}22++=,max22,2x x x当x2+2x+2=x2时,解得:x=-1,x2+2x+2=x2=1,这时不可能得出最大值为2,当x>-1,x2+2x+2>x2,则x2+2x+2=2,解得x1=0或x2=-2(舍去),∴x=0.题三:∴C (-3m ,m 2),D (3m ,m 2),∴CD =6m ,∵O 、Q 关于直线CD 对称, ∴PQ =OP ,∵CD ∥x 轴,∴∠DPQ =∠DPO =90°,∴△AOB 与△CQD 的高相等, PQ CD PO AB ⋅⋅2121=mm 64=32.AEM DFMS S=∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =2, 2详解:先作出函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,的图象,如图,不妨设x 1<x 2<x 3,∵y =242x x -+(x ≥0)的对称轴为x =2,y 1=y 2,∴x 2+x 3=4, ∵y =242x x -+(x ≥0)的顶点坐标为(2,-2),令y =-2,代入y =3x +1,解得:x =-1,∴-1<x 1<0,则x 1+x 2+x 3的取值范围是:-1+4<x 1+x 2+x 3<0+4,∴3<x 1+x 2+x 3<4.题八: (1)y =x +3;(2)-8<x 1+x 2+x 3<-7.详解:(1)由y =243x x ++得到:y =(x +3)(x +1),C,∴A (-3,0),B (-1,0),设直线AC 的表达式为:y =kx +b (k ≠0), ∴⎩⎨⎧==+303-b b k ,解得:⎩⎨⎧==31b k ,所以直线AC 的表达式为y =x +3,(2)由y =243x x ++得到:y =(x +2)2-1,∴抛物线y =243x x ++的对称轴是x =-2, 顶点坐标是(-2,-1),∵y 1=y 2,∴x 1+x 2=-4,令y =-1,代入y =x +3,解得:x =-4,∵x 1>x 2>x 3,∴-4<x 3<-3,∴-4-4<x 1+x 2+x 3<-3-4,∴-8<x 1+x 2+x 3<-7.代数几何综合题一:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式及顶点M坐标;(2)在抛物线的对称轴上找到点P,使得△P AC的周长最小,并求出点P 的坐标.题二:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0),B(1,0),与y轴交于点D(0,4),点C(-2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由.题三:在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)=,d(B,⊙O)=.是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.参考答案题一: (1)y =214x --+(),M (1,4);(2)P (1,2). 详解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过A (-1,0)、B (3,0),C (0,3)三点,∴93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得12c=3a b =-⎧⎪=⎨⎪⎩.故抛物线的解析式为222314y x x x =-++=--+(),故顶点M 为(1,4); (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,题二: (1)y =-x 2-3x +4,C (-2,6);(2)△ACE 为等腰直角三角形.详解:(1)∵抛物线经过A 、B 、D 三点,∴代入抛物线解析式可得164004a b c a b c c -+⎧⎪++⎨⎪⎩===,解得134a b c -⎧⎪-⎨⎪⎩===,∴抛物线的解析式为 y =-x 2-3x +4, ∵点C (-2,n )也在此抛物线上,∴n =-4+6+4=6,∴C 点坐标为(-2,6);∴AE2+CE2=20+20=40=AC2,且AE=CE,∴△ACE为等腰直角三角形.。

中考数学模拟题《几何综合》专项测试题(附带参考答案)

中考数学模拟题《几何综合》专项测试题(附带参考答案)

中考数学模拟题《几何综合》专项测试题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。

动态几何问题经常在各地以中考试卷解答压轴题出现也常会出现在选择题最后一题的位置考察知识面较广综合性强可以提升学生的空间想象能力和综合分析问题的能力但同时难度也很大令无数初中学子闻风丧胆考场上更是丢盔弃甲解题思路1 熟练掌握平面几何知识﹕要想解决好有关几何综合题首先就是要熟练掌握关于平面几何的所有知识尤其是要重点把握三角形特殊四边形圆及函数三角函数相关知识.几何综合题重点考查的是关于三角形特殊四边形(平行四边形矩形菱形正方形)圆等相关知识2 掌握分析问题的基本方法﹕分析法综合法“两头堵”法﹕1)分析法是我们最常用的解决问题的方法也就是从问题出发执果索因去寻找解决问题所需要的条件依次向前推直至已知条件例如我们要证明某两个三角形全等先看看要证明全等需要哪些条件哪些条件已知了还缺少哪些条件然后再思考要证缺少的条件又需要哪些条件依次向前推直到所有的条件都已知为止即可综合法﹕即从已知条件出发经过推理得出结论适合比较简单的问题3)“两头堵”法﹕当我们用分析法分析到某个地方不知道如何向下分析时可以从已知条件出发看看能得到什么结论把分析法与综合法结合起来运用是我们解决综合题最常用的办策略3 注意运用数学思想方法﹕对于几何综合题的解决我们还要注意运用数学思想方法这样会大大帮助我们解决问题或者简化我们解决问题的过程加快我们解决问题的速度毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化类比归纳等等模拟预测1 (2024·江西九江·二模)如图 在矩形()ABDC AB AC >的对称轴l 上找点P 使得PAB PCD 、均为直角三角形 则符合条件的点P 的个数是( )A .1B .3C .4D .52 (2024·江西吉安·模拟预测)如图 在平面直角坐标系中 边长为23ABC 的顶点A B ,分别在y 轴的正半轴 x 轴的负半轴上滑动 连接OC 则OC 的最小值为( )A .2B .3C .33D .333 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = 点E 在矩形的边上 则当BEC 的一个内角度数为60︒时 符合条件的点E 的个数共有( )A .4个B .5个C .6个D .7个4 (2023·江西·中考真题)如图 在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为 .5 (2024·江西吉安·二模)如图 在矩形ABCD 中 6,10,AB AD E ==为CD 的中点 点P 在AE 下方矩形的边上.当APE 为直角三角形 且P 为直角顶点时 BP 的长为 .6 (2024·江西九江·二模)如图 在平面直角坐标系中 已知矩形OABC 的顶点()20,0A ()0,8C D 为OA 的中点 点P 为矩形OABC 边上任意一点 将ODP 沿DP 折叠得EDP △ 若点E 在矩形OABC 的边上 则点E 的坐标为 .7 (2024·江西·模拟预测)如图 ABC 中 AB AC = 30A ∠=︒ 射线CP 从射线CA 开始绕点C 逆时针旋转α角()075α︒<<︒ 与射线AB 相交于点D 将ACD 沿射线CP 翻折至A CD '△处 射线CA '与射线AB 相交于点E .若A DE '是等腰三角形 则α∠的度数为 .8 (2024·江西赣州·二模)在Rt ABC △中 已知90C ∠=︒ 10AB = 3cos 5B = 点M 在边AB 上 点N 在边BC 上 且AM BN = 连接MN 当BMN 为等腰三角形时 AM = .9 (2024·江西吉安·模拟预测)如图 在矩形ABCD 中 6,10AB AD == E 为BC 边上一点 3BE = 点P 沿着边按B A D →→的路线运动.在运动过程中 若PAE △中有一个角为45︒ 则PE 的长为 .10 (2024·江西吉安·三模)如图 在ABC 中 AB AC = 30B ∠=︒ 9BC = D 为AC上一点 2AD DC = P 为边BC 上的动点 当APD △为直角三角形时 BP 的长为 .11 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = E 为CD 的中点 连接BE 点P 在矩形的边上 且在BE 的上方 则当BEP △是以BE 为斜边的直角三角形时 BP 的长为 .12 (2024·江西九江·二模)如图 在等腰ABC 中 2AB AC == 30B ∠=︒ D 是线段BC 上一动点 沿直线AD 将ADB 折叠得到ADE 连接EC .当DEC 是以DE 为直角边的直角三角形时 则BD 的长为 .13 (2024·江西·模拟预测)如图 在菱形ABCD 中 对角线AC BD 相交于点O 23AB = 60ABC ∠=︒ E 为BC 的中点 F 为线段OD 上一动点 当AEF △为等腰三角形时 DF 的长为 .14 (2024·江西上饶·一模)如图 在三角形纸片ABC 中 90,60,6C B BC ∠=︒∠=︒= 将三角形纸片折叠 使点B 的对应点B '落在AC 上 折痕与,BC AB 分别相交于点E F 当AFB '为等腰三角形时 BE 的长为 .15 (2024·江西抚州·一模)课本再现(1)如图1 CD 与BE 相交于点,A ABC 是等腰直角三角形 90C ∠=︒ 若DE BC ∥ 求证:ADE 是等腰直角三角形.类比探究(2)①如图2 AB 是等腰直角ACB △的斜边 G 为边AB 的中点 E 是BA 的延长线上一动点 过点E 分别作AC 与BC 的垂线 垂足分别为,D F 顺次连接,,DG GF FD 得到DGF △ 求证:DGF △是等腰直角三角形.②如图3 当点E 在边AB 上 且①中其他条件不变时 DGF △是等腰直角三角形是否成立?_______(填“是”或“否”).拓展应用(3)如图4 在四边形ABCD 中 ,90,BC CD BCD BAD AC =∠=∠=︒平分BAD ∠ 当1,22AD AC == 求线段BC 的长.16 (2023·江西·中考真题)课本再现思考我们知道菱形的对角线互相垂直.反过来对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理小明同学画出了图形(如图1)并写出了“已知”和“求证”请你完成证明过程.已知:在ABCD中对角线BD AC⊥垂足为O.求证:ABCD是菱形.(2)知识应用:如图2在ABCD中对角线AC和BD相交于点O586AD AC BD===,,.①求证:ABCD是菱形②延长BC至点E连接OE交CD于点F若12E ACD∠=∠求OFEF的值.17 (2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处 并绕点O 逆时针旋转 探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1 若将三角板的顶点P 放在点O 处 在旋转过程中 当OF 与OB 重合时 重叠部分的面积为__________ 当OF 与BC 垂直时 重叠部分的面积为__________ 一般地 若正方形面积为S 在旋转过程中 重叠部分的面积1S 与S 的关系为__________(2)类比探究:若将三角板的顶点F 放在点O 处 在旋转过程中 ,OE OP 分别与正方形的边相交于点M N .①如图2 当BM CN =时 试判断重叠部分OMN 的形状 并说明理由②如图3 当CM CN =时 求重叠部分四边形OMCN 的面积(结果保留根号)(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处 该锐角记为GOH ∠(设GOH α∠=) 将GOH ∠绕点O 逆时针旋转 在旋转过程中 GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S 请直接写出2S 的最小值与最大值(分别用含α的式子表示)(参考数据:6262sin15tan1523-+︒=︒=︒=18 (2024·江西吉安·二模)如图 在ABC 和ADE 中 (),AB AC AD AE AD AB ==< 且BAC DAE ∠=∠.连接CE BD .(1)求证:BD CE =.(2)在图2中 点B D E 在同一直线上 且点D 在AC 上 若,AB a BC b == 求AD CD的值(用含a b 的代数式表示).19 (2024·江西九江·二模)初步探究(1)如图1 在四边形ABCD 中 ,AC BD 相交于点O AC BD ⊥ 且ABD CBD S S = 则OA 与OC 的数量关系为 .迁移探究(2)如图2 在四边形ABCD 中 ,AC BD 相交于点O ABD CBD SS = (1)中OA 与OC 的数量关系还成立吗?如果成立 请说明理由.拓展探究(3)如图3 在四边形ABCD 中 ,AC BD 相交于点O 180,ABD CBD BAD BCD S S ∠∠+=︒=△△ 且 33OB OD == 求AC 的长.20 (2024·江西九江·二模)课本再现如图1 四边形ABCD 是菱形 30ACD ∠=︒ 6BD =.(1)求,AB AC 的长.应用拓展(2)如图2 E 为AB 上一动点 连接DE 将DE 绕点D 逆时针旋转120︒ 得到DF 连接EF .①直接写出点D 到EF 距离的最小值②如图3 连接,OF CF 若OCF △的面积为6 求BE 的长.21 (2024·江西赣州·三模)某数学小组在一次数学探究活动过程中经历了如下过程:AB=P为对角线AC上的一个动点以P为直角顶问题提出:如图正方形ABCD中8△.点向右作等腰直角DPM(1)操作发现:DM的最小值为_______ 最大值为_______(2)数学思考:求证:点M在射线BC上=时求CM的长.(3)拓展应用:当CP CM22 (2024·江西赣州·二模)【课本再现】 思考我们知道 角的平分线上的点到角的两边的距离相等 反过来 角的内部到角的两边的距离相等的点在角的平分线上吗?可以发现并证明角的平分线的性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.【定理证明】(1)为证明此逆定理 某同学画出了图形 并写好“已知”和“求证” 请你完成证明过程.已知:如图1 在ABC ∠的内部 过射线BP 上的点P 作PD BA ⊥ PE BC ⊥ 垂足分别为D E 且PD PE =.求证:BP 平分ABC ∠.【知识应用】(2)如图2 在ABC 中 过内部一点P 作PD BC ⊥ PE AB ⊥ PF AC ⊥ 垂足分别为D E F 且PD PE PF == 120A ∠=︒ 连接PB PC .①求BPC ∠的度数②若6PB=23PC=求BC的长.23 (2024·江西吉安·模拟预测)一块材料的形状是锐角三角形ABC下面分别对这块材料进行课题探究:课本再现:(1)在图1中若边120mmBC=高80mmAD=把它加工成正方形零件使正方形的一边在BC上其余两个顶点分别在AB AC上这个正方形零件的边长是多少?类比探究(2)如图2 若这块锐角三角形ABC材料可以加工成3个相同大小的正方形零件请你探究高AD与边BC的数量关系并说明理由.拓展延伸(3)①如图3 若这块锐角三角形ABC材料可以加工成图中所示的4个相同大小的正方形零件则ADBC的值为_______(直接写出结果)②如图4 若这块锐角三角形ABC材料可以加工成图中所示的()3n m≥相同大小的正方形零件求ADBC的值.24 (2024·江西吉安·三模)课本再现 矩形的定义 有一个角是直角的平行四边形是矩形.定义应用(1)如图1 已知:在四边形ABCD 中 90A B C ∠=∠=∠=︒用矩形的定义求证:四边形ABCD 是矩形.(2)如图2 在四边形ABCD 中 90A B ∠=∠=︒ E 是AB 的中点 连接DE CE 且DE CE = 求证:四边形ABCD 是矩形.拓展延伸(3)如图3 将矩形ABCD 沿DE 折叠 使点A 落在BC 边上的点F 处 若图中的四个三角形都相似 求AB BC的值.25 (2024·江西吉安·一模)课本再现在学习了平行四边形的概念后进一步得到平行四边形的性质:平行四边形的对角线互相平分.=(1)如图1 在平行四边形ABCD中对角线AC与BD交于点O 求证:OA OC =.OB OD知识应用=延长AC到E 使得(2)在ABC中点P为BC的中点.延长AB到D 使得BD AC∠=︒请你探究线段BE与线段AP之间的BACCE AB=连接DE.如图2 连接BE若60数量关系.写出你的结论并加以证明.26 (2024·江西九江·二模)问题提出在综合与实践课上 某数学研究小组提出了这样一个问题:如图1 在边长为4的正方形ABCD 的中心作直角EOF ∠ EOF ∠的两边分别与正方形ABCD 的边BC CD 交于点E F (点E 与点B C 不重合) 将EOF ∠绕点O 旋转.在旋转过程中 四边形OECF 的面积会发生变化吗?爱思考的浩浩和小航分别探究出了如下两种解题思路.浩浩:如图a 充分利用正方形对角线垂直 相等且互相平分等性质 证明了OEC OFD ≌ 则OEC OFD S S = OEC OCF OFD OCF OCD OECF S S S S S S =+=+=四边形.这样 就实现了四边形OECF 的面积向OCD 面积的转化.小航:如图b 考虑到正方形对角线的特征 过点O 分别作OG BC ⊥于点G OH CD ⊥于点H 证明OGE OHF ≌△△ 从而将四边形OECF 的面积转化成了小正方形OGCH 的面积.(1)通过浩浩和小航的思路点拨﹐我们可以得到OECF S =四边形__________ CE CF +=__________.类比探究(2)①如图⒉ 在矩形ABCD 中 3AB = 6AD = O 是边AD 的中点 90EOF ∠=︒ 点E 在AB 上 点F 在BC 上 则EB BF +=__________.②如图3 将问题中的正方形ABCD 改为菱形ABCD 且45ABC ∠=︒ 当45EOF ∠=︒时 其他条件不变 四边形OECF 的面积还是一个定值吗?若是 请求出四边形OECF 的面积 若不是 请说明理由.拓展延伸(3)如图4 在四边形ABCD 中 7AB = 2DC = 60BAD ∠=︒ 120BCD ∠=︒ CA 是BCD ∠的平分线 求四边形ABCD 的面积.27 (2024·江西九江·模拟预测)【课本再现】(1)如图1 四边形ABCD 是一个正方形 E 是BC 延长线上一点 且AC EC = 则DAE ∠的度数为 .【变式探究】(2)如图2 将(1)中的ABE 沿AE 折叠 得到AB E ' 延长CD 交B E '于点F 若2AB = 求B F '的长.【延伸拓展】(3)如图3 当(2)中的点E 在射线BC 上运动时 连接B B ' B B '与AE 交于点P .探究:当EC 的长为多少时 D P 两点间的距离最短?请求出最短距离.28 (2024·江西上饶·一模)课本再现:(1)如图1 ,D E 分别是等边三角形的两边,AB AC 上的点 且AD CE =.求证:CD BE =.下面是小涵同学的证明过程:证明:ABC 是等边三角形,60AC BC A ACB ∴=∠=∠=︒.AD CE =()SAS ADC CEB ∴≌CD BE ∴=.小涵同学认为此题还可以得到另一个结论:BFD ∠的度数是______迁移应用:(2)如图2 将图1中的CD 延长至点G 使FG FB = 连接,AG BG .利用(1)中的结论完成下面的问题.①求证:AG BE ∥②若25CF BF = 试探究AD 与BD 之间的数量关系.参考答案考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。

【初三数学】代数几何综合题(含答案)(共15页)

【初三数学】代数几何综合题(含答案)(共15页)

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

中考数学模拟题《代数几何综合问题》专项检测题(附答案)

中考数学模拟题《代数几何综合问题》专项检测题(附答案)

中考数学模拟题《代数几何综合问题》专项检测题(附答案) 学校:___________班级:___________姓名:___________考号:___________两圆一中垂模型讲解【模型】已知点A,B是平面内两点,再找一点C,使得△ABC为等腰三角形.【结论】分类讨论:若AB=AC,,则点 C 在以点 A 为圆心,线段 AB 的长为半径的圆上若BA=BC,,则点 C 在以点 B 为圆心,线段 AB 的长为半径的圆上若CA=CB 则点 C在线段AB 的垂直平分线PQ 上.以上简称“两圆一中垂”.“两圆一中垂”上的点能构成等腰三角形,但是要除去原有的点A,B,还要除去因共线无法构成三角形的点M,N以及线段AB 中点E(共除去5个点),需要注意细节.典例秒杀典例1如图平面直角坐标系中已知A(2 2) B(4 0) 若在x轴上取点 C 使. △ABC为等腰三角形,则满足条件的点C 有( ).A.1个B.2 个C.3个D.4个【答案】D【解析】∵点 A B的坐标分别为(2 2) B(4 0) ∴AB=2√2.①若AC=AB 以 A为圆心 AB长为半径画弧与x 轴有2个交点(含 B点) 即(0 0) (4 0)(舍去)∴满足△ABC是等腰三角形的点C 有1个②若 BC=AB 以B为圆心 BA长为半径画弧与x 轴有2个交点,即满足△ABC是等腰三角形的点C 有2个③若CA=CB,作线段AB的垂直平分线与x轴有 1个交点,即满足△ABC是等腰三角形的点C有1个.综上所述,满足条件的点C共有 4个.故选 D.典例2图象上的一点,连接AO并延长交双曲线的另一分支于点B,P 是x 如图,已知点 A(1,2)是反比例函数y=kx轴上一动点.若△PAB是等腰三角形,则点 P的坐标是 .【答案】(-3 0)或(5 0)或(3 0)或(-5 0)的图象关于原点对称【解析】∵反比例函数y=kx∴A,B两点关于点O对称∴O为AB 的中点且 B(-1 -2)∴当△PAB为等腰三角形时,只有. PA=AB或PB=AB两种情况.设点 P 的坐标为(x 0)∵A(1 2) B(-1 -2)∴AB=√[1−(−1)]2+[2−(−2)]2=2√5,PA=√(x−1)2+22,PB=√(x+1)2+(−2)2故当 PA=AB时√(x−1)2+22=2√5,解得x=--3 或x=5 此时 P点坐标为(-3 0)或(5 0);当 PB=AB 时√(x+1)2+(−2)2=2√5,解得 x=3 或x=-5 此时P点坐标为(3 0)或(-5 0).综上可知点 P的坐标为(-3 0)或(5 0)或(3 0)或(-5 0).典例3如图,抛物线y=x²−2x−3与y轴交于点C,点 D的坐标为(0,-1),抛物线在第四象限内有一点 P,若△PCD 是以CD 为底边的等腰三角形,则点 P 的横坐标为( ).A.1+√2B.1−√2C.√2−1D.1−√2或1+√2【答案】A【解析】令x=0 则y=-3∴点C的坐标为( (0,−3).∵点 D的坐标为(0 -1)×(−1−3)=−2.∴线段CD的中点的纵坐标为12∵△PCD是以CD 为底边的等腰三角形∴点 P 只能在线段CD 的垂直平分线上∴点 P 的纵坐标为-2∴x²−2x−3=−2,解得x1=1−√2,x2=1+√2.∵点 P 在第四象限∴点 P 的横坐标为1+√2.故选 A.小试牛刀1.(★★☆☆☆)如图在平面直角坐标系中AB=2OB,在坐标轴上取一点 P,使得△ABP为等腰三角形,则符合条件的点 P共有( ).A.4个B.5 个C.6个D.7个2.(★★☆☆☆)如图点 A的坐标是(2 2) 若点 P 在x 轴上且△APO是等腰三角形,则点 P的坐标不可能是( ).A.(4 0)B.(1 0)C.(−2√2,0)D.(2 0)(x−√3)2+4上则能3.(★★☆☆☆)已知直线y=−√3x+3与坐标轴分别交于点A B 点 P 在抛物线y=−13使△ABP为等腰三角形的点 P 有( ).A.3个B.4个C.5个D.6 个直击中考的图象交于A(3 4) B(n -1)两点.1.如图所示,一次函数y=kx+b的图象与反比例函数y=mx(1)求反比例函数和一次函数的解析式.(2)在x轴上存在一点C,使△AOC为等腰三角形,求此时点C的坐标.(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.2.已知抛物线y=ax²+bx+c(a≠0)与x轴交于A,B两点(点 A 在点B 的左边),与y轴交于点C(0,−3),顶点 D 的坐标为( (1,−4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得. △EAC为等腰三角形,请直接写出点 E 的坐标.两垂一圆模型讲解【模型】平面内有两点A,B,再找一点C,使得△ABC为直角三角形.【结论】分类讨论:若∠A=90°,则点 C在过点 A 且垂直于 AB 的直线上(除点 A 外);若∠B=90°,则点 C 在过点 B 且垂直于 AB 的直线上(除点 B 外);若∠C=90°,则点 C在以 AB为直径的圆上(除点 A B外).以上简称“两垂一圆”.“两垂一圆”上的点能构成直角三角形,但要除去A,B两点.典例秒杀典例1如图已知点A(-8 0) B(2 0) 点 C在直线y=−3x+4上,则使△ABC是直角三角形的点C 的个数为( ).4A.4B.3C.2D.1【答案】B【解析】如图所示,有三个点满足条件.典例2的图象上,若△PAB为直角三角形,则满足已知抛物线y=x²−9与x轴交于A,B两点,点 P 在函数y=√3x条件的点 P 的个数为( ).A.2B.3C.4D.6【答案】D【解析】令x²−9=0,解得x₁=3,x₂=−3,不妨设A(-3 0) B(3 0)若AB为斜边,则以 O为圆心,OA长为半径作圆,如图1.的图象的交点即为满足条件的点,这样的点有4个,分别是P₁,P₂,P₃,P₄;圆O与y=√3x的图象于点P₆,P₅,交点即为满足条件的点,若以AB为一直角边,则分别过A,B作x轴的垂线,交y=√3x如图2,这样的点有2个.综上所述,满足条件的点 P 有 6 个.故选 D.典例3如图,在平面直角坐标系中,二次函数y=x²+bx+c的图象的对称轴为经过点(1,0)的直线,其图象与x轴交于点A,B,且过点 C(0,−3),,其顶点为 D,在 y轴上有一点 P(点 P 与点 C 不重合),使得△APD是以点 P 为直角顶点的直角三角形,则点 P 的坐标为( ).A.(0 3)B.(0,−3)C.(0 -1)D.(0,−1)或(0,−3)【答案】C【解析】由题意得二次函数图象的对称轴为直线. x=1,则−b=1,b=-22又二次函数的图象过点 C(0,-3)∴--3=c 即c=-3∴二次函数的解析式为y=x²−2x−3.由y=x²−2x−3=(x−1)²−4,得顶点 D的坐标为(1 -4).令x²−2x−3=0,得x₁=3,x₂=−1,则 A(3 0).设 P(0 m)(m≠-3) 由题意得PA=√9+m2,PD=√1+(m+4)2,AD=2√5.∵∠APD=90°∴PA²+PD²=AD²,即(√9+m2)2+(√1+(m+4)2)2=(2√5)2.解得m₁=−1,m₂=−3(不合题意,舍去).∴P(0 -1).故选 C.1.(★★★☆☆)如图所示已知 A(2 6) B(8 -2) C为坐标轴上一点且△ABC是直角三角形,则满足条件的点 C 有( ).A.6 个B.7 个C.8个D.9 个2.(★★★☆☆)已知点 P 为二次函数y=x²−2x−3图象上一点,设这个二次函数的图象与x轴交于A,B两点(A 在B 的右侧),与y轴交于C 点,若△APC为直角三角形且 AC 为直角边,则点 P 的横坐标的值为 .直击中考1.如图 1,抛物线y=ax²+bx+6与 x轴交于点A(-2 0) B(6 0) 与y轴交于点C 顶点为 D 直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2 将△AOE沿直线AD 平移得到△NMP.①当点 M落在抛物线上时,求点 M的坐标②在△NMP 移动过程中,存在点 M使△MBD为直角三角形,请直接写出所有符合条件的点 M的坐标.胡不归模型讲解从前,有一个小伙子在外地当学徒,当他获悉在家乡的老父亲病危的消息后,便立即启程日夜赶路.由于思念心切,他选择了全是沙砾地带的直线路径A-B(如图所示,A是出发地,B是目的地,AC是一条驿道,而驿道靠近目的地的一侧全是沙砾地带),当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子不觉失声痛哭,邻居劝慰小伙子时告诉说,老人在弥留之际不断喃喃地念叨着“胡不归? 胡不归? ……”这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢?倘若有可能,他应该选择怎样的路线呢?这就是风靡千年的“胡不归问题”.【模型】由于在驿道和沙砾地带的行走速度不一样,那么,小伙子有没有可能先在驿道上走一段路程后,再走沙砾地带,虽然多走了路,但反而总用时更短呢?如果存在这种可能,那么要在驿道上行走多远才最省时?【解析】设在沙砾地带的行驶速度为v₁,在驿道上的行驶速度为v₂显然v₁<v₂.不妨假设从 C处进入沙砾地带.设总用时为t,则t=BCv1+ACv2=1v1(BC+v1v2AC).因为 v₁,v₂是确定的,所以只要BC+v1v2AC的值最小,用时就最少.问题就转化为求BC+v1v2AC的最小值.我们可以作一条以C为端点的线段,使其等于v1v2AC,并且与线段CB位于AM 两侧,然后根据两点之间线段最短,不难找到最小值点.怎么作呢?由三角函数的定义,过A点,在 AM的另一侧以A 为顶点,以AM为一边作∠MAN=α,sinα=v1v2,然后作CE⊥AN 则CE=v1v2AC.故当点 B,C,E在一条直线上时,BC+CE的值最小即BC+v1v2AC的值最小,即总用时最少.【问题解决】求形如“PA+kPB”的最值问题,构造射线 AD,使得sin∠DAN=k,即CHAC=k,CH=kAC.将问题转化为求BC+CH 的最小值过 B 点作BH⊥AD交MN于点C 交 AD 于点H 此时BC+CH 取到最小值即BC+kAC的值最小.典例秒杀典例1如图菱形 ABCD中∠ABC=60° 边长为3 P是对角线BD 上的一个动点,则12BP+PC的最小值是( ).A. √3B.32√3 C.3 D.√3+32【答案】B【解析】如图作 PM⊥AB于点M CH⊥AB 于点H.∵四边形ABCD是菱形∴∠PBM=12∠ABC=30∘,∴PM=12PB,∴12PB+PC=PC+PM,根据垂线段最短可知CP+PM的最小值为CH 的长在 Rt△CBH中CH=BC⋅sin60∘=3√32,∴12PB+PC的最小值为3√32,故选 B.典例2如图,△ABC在平面直角坐标系内,点A(0,3 √3) C(2 0).点 B为y 轴上的动点,则12AB+BC的最小值为( ).A.2√3B.52√3C.3√3D.72√3【答案】B【解析】如图,取. D(−3,0),连接AD 作. BE⊥AD,CE′⊥AD交AD于点E′,交 y轴于点B′.∵A(0,3√3),C(2,0),D(−3,0),∴OD=3,OA=3√3,OC=2,CD=5,∴tan∠DAO=ODOA =√33,∴∠DAO=30°,∴EB=12AB,∠ADO=60∘,∴12AB+BC=EB+CB,∴当 E 与E′重合,B与B′重合时,EB+BC的值最小,即最小值为CE'的长.在 Rt△CDE'中 ( CE′=CD⋅sin60∘=5√32,∴12AB+BC的最小值为5√32.故选 B.典例3如图,△ABC中AB=AC=10,tanA=2,BE⊥AC于点 E D 是线段BE 上的一个动点,则CD+√55BD的最小值是( ).A.2√5B.4√5C.5√3D.10【答案】B【解析】如图,作DH⊥AB于点H ( CM⊥AB于点M.∵BE⊥AC,∴∠AEB=90°.∵tanA=BEAE=2,∴设AE=a BE=2a则100=a²+4a²,∴a²=20,解得a=2√5或a=−2√5(舍去)∴BE=2a=4√5.∵AB=AC BE⊥AC CM⊥AB∴CM=BE=4√5(等腰三角形两腰上的高相等).∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH=DHBD =AEAB=√55,∴DH=√55BD,∴CD+√55BD=CD+DH,∴CD+DH≥CM,∴CD+√55BD≥4√5,∴CD+√55BD的最小值为4√5.故选 B.小试牛刀1.(★★★☆☆)如图 △ABC 在平面直角坐标系中 AB=AC A(0 2 √2) C(1 0) D 为射线AO 上一点,一动点 P 从点 A 出发,运动路径为A→D→C ,点 P 在AD 上的运动速度是在CD 上的3倍,要使整个运动时间最少,则点 D 的坐标为( ).A.(0 √2 )B.(0,√22)C.(0,√23)D.(0,√24)2.(★★★☆☆)如图 在△ABC 中 ∠A=90° ∠B=60° AB=2 若 D 是BC 边上的动点 则2AD+CD 的最小值为 .直击中考1.已知抛物线 y =ax²+bx +c 与 x 轴交于A(-1 0) B(5 0)两点 C 为抛物线的顶点 抛物线的对称轴交 x 轴于点D ,连接 BC ,且 tan∠CBD =43,如图所示.(1)求抛物线的解析式.(2)设 P 是抛物线的对称轴上的一个动点.①过点 P 作x 轴的平行线交线段BC 于点 E 过点 E 作EF ⊥PE 交抛物线于点F ,连接FB ,FC ,求△BCF 的面积的最大值 ②连接PB 求 35PC +PB 的最小值.阿氏圆问题模型讲解“阿氏圆”又称为“阿波罗尼斯圆”,如图,已知A,B两点,点P 满足PA : PB=k(k≠1) 则点 P 的轨迹为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型】如图所示⊙O的半径为R 点A B都在⊙O外 P为⊙O上一动点,已知K=25OB,连接PA PB 则当102:25/4B的值最小时,P点的位置如何确定?【解析】如图,在线段OB上截取OC 使OC=25R,连接PO PC 则可说明△BPO与△PCO相似,则有25PB=PC.故本题求PA+25PB的最小值可以转化为求PA+PC的最小值,其中A与C 为定点,P 为动点,故当A,P,C 三点共线时,PA+PC的值最小.典例秒杀典例1如图,正方形ABCD的边长为4,⊙B的半径为2,P 为⊙B上的动点,则PD+12PC的最小值等于( ).A.3B.4C.5D.6【答案】C【解析】如图,在 BC上截取BE=1,连接BP PE DE.∵正方形ABCD的边长为4 ⊙B的半径为2∴BC=CD=4,BP=2,∴EC=3,∴BPBC =BEBP=12,又∠PBE=∠PBE,∴PBECBP,∴PEPC =BEBP=12,∴PE=12PC,∴PD+12PC=PD+PE,∴当D P E三点共线时 PD+PE取得最小值即PD+12PC取得最小值∴PD+12PC的最小值为DE=√DC2+CE2=5.故选 C.典例2问题提出:如图1 在 Rt△ABC中∠ACB=90° CB=4 CA=6 ⊙C的半径为2 P 为圆上一动点连接AP BP 求AP+12BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2 连接CP 在CB 上取点D 使CD=1 连接 PD 则有CDCP =CPCB=12.又∵∠PCD=∠BCP ∴△PCD∽△BCP.∴PDBP =PCBC=12,∴PD=12BP,∴AP +12BP =AP +PD.请你完成余下的思考,并直接写出答案: AP +12BP 的最小值为(2)自主探索:在“问题提出”的条件不变的情况下, 13AP +BP 的最小值为 .(3)拓展延伸:如图3 已知扇形 COD 中 ∠COD =90°,OC =6, OA =3,OB =5,点 P 是 ⌢CD 上一点,求2 2PA +PB 的最小值.【解析】(1)如图 连接AD. ∵AP +12BP =AP +PD,∴要使 AP +12BP 最小,即AP+PD 最小 则点A P D 在同一条直线上 ∴AP +12BP 的最小值为AD 的长,在 Rt △ACD 中 CD=1 AC=6 ∴AD =√AC 2+CD 2=√37, ∴AP +12BP 的最小值为 √37.(2)如图 在 CA 上取点 D 连接 BD 使 CD =23, ∴CD CP=CP CA=13.∵∠PCD=∠ACP ∴△PCD ∽△ACP ∴PD AP =CP CA=13,∴PD =13AP,∴13AP +BP =PD +BP,同(1)的方法得 13AP +BP 的最小值为 BD =√BC 2+CD 2= 23√37.(3)如图 延长OC 到点E 使CE=6 则OE=OC+CE=12 连接 PE OP∵OA =3,∴OAOP =OPOE =12. ∵∠AOP =∠EOP,∴△OAPO △OPE, ∴APEP =OAOP =12,∴EP =2PA,∴2PA +PB =EP +PB,∴当E P B 三点共线时 2PA +PB 取得最小值,为 BE = √OB 2+OE 2=13.小试牛刀1.(★★☆☆☆)如图在Rt△ABC中∠ACB=90°,CB=7,AC=9,,以C为圆心 3为半径作⊙C,P 为⊙C上一动点,连接AP BP 则1AP+BP的最小值为( ).3A.7B.5√2C.4+√10D.2√132.(★★☆☆☆)如图所示已知正方形 ABCD 的边长为4 ⊙B的半径为2,点 P是⊙B上的一个动点,则PD−1PC的最大值为( ).2A.3B.4C.5D.6PA+PB的3.(★★☆☆☆)如图在平面直角坐标系中点A(4 0) B(4 4) 点 P 在半径为 2 的圆 O 上运动,则12最小值是 .直击中考1.如图1,在平面直角坐标系中,直线y=-5x+5与x轴 y轴分别交于A C两点抛物线y=x²+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标(2)若点M为x轴下方抛物线上一动点,连接MA,MB,BC,当点 M运动到某一位置时,四边形AMBC的面积最大,求此时点 M的坐标及四边形AMBC的面积PA的值最小,(3)如图2 若 P点是半径为2的⊙B上一动点连接PC PA 当点 P 运动到某一位置时,PC+12请求出这个最小值,并说明理由.等分面积模型讲解【模型】三角形中的中线等分面积很常见,如图,在△ABC中,取BC的中点D,连接AD,由于左右两个三角形等底同高,故它们的面积相等,即S ABD=AGD,如果在AC边上取一点P,那么如何作线平分面积呢?¯【作法】因为 D 是 BC 的中点S ABD=S ACD,所以要想平分三角形的面积,可作. AE‖PD,连接PE 如图.比较S ABD=S ACD,AED可等量替换为△AEP,因此,得S=S EPC,即完成了面积平分.四边形ABEP典例秒杀典例1已知平面上点O(0 0) A(3 2) B(4 0) 直线. y=mx−3m+2将△OAB分成面积相等的两部分,则m的值为( ).A.1B.2C.3D.4【答案】B【解析】y=mx--3m+2=m(x-3)+2当x=3时 y=2则直线y=mx--3m+2一定过点A(3 2)因为直线 y=mx--3m+2 将△OAB分成面积相等的两部分所以直线y=mx-3m+2一定过OB的中点(2 0)把x=2 y=0代入y=mx-3m+2得0=2m--3m+2解得m=2.故选 B.典例2如图 AB∥DC ED∥BC AE∥BD 那么图中与△ABD面积相等的三角形(不包括△ABD)有( ).A.1个B.2个C.3 个D.4 个【答案】B【解析】∵AB∥DC∴△ABC与△ABD的面积相等.∵AE∥BD∴△BED 与△ABD的面积相等.∵ED∥BC找不到与△ABD等底等高的三角形∴与△ABD面积相等的三角形有△ABC △BED 共2个.故选 B.典例3(1)如图1 梯形 ABCD的对角线交于点O AB∥CD 请写出图中面积相等的三角形(2)如图 2,在平面直角坐标系中,O 是坐标原点,点 A(—2,3) B(2 1).①求点 C的坐标及三角形 AOC 和三角形BOC 的面积②请利用(1)的结论解决如下问题:D 是边OA 上一点,过点 D 作直线DE 平分三角形ABO的面积,并交AB 于点E(要有适当的作图说明).【解析】(1)∵AB∥DC∴S ABD=S ABC,S ADC=S BDC,∴S AOD=S BOC.(2)①∵点 A(-2 3) B(2 1)∴直线AB的解析式为y=−12x+2,∴C(0 2)∴S AOC=12×2×2=2,S Bx=12×2×2=2.②由①可知点 C是线段AB 的中点,则S CA=S OBC.连接CD 过点O作( OE‖CD交AB 于点E 连接DE 则直线DE就是所求作的直线.小试牛刀1.(★★★☆☆)操作体验.(1)如图 1 已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD面积的大小关系.(2)如图2,在平面直角坐标系中,△ABC的边 BC 在 x 轴上已知点A(2 4) B(-1 0) C(3 0) 试确定过点 A 的一条直线l 平分△ABC的面积,请写出直线l的表达式.(3)如图3 在平面直角坐标系中若A(1 4) B(3 2) 则在直线y=−4x+20上是否存在一点C,使直线OC 恰好平分四边形OACB 的面积?若存在,请计算点 C的坐标若不存在,请说明理由.2.(★★★☆☆)已知在梯形ABCD中AB‖CD.(1)如图1 若点 E 为AD 的中点 BE 的延长线交 CD 的延长线于点F,求证:(2)如图2,请过点 B画一条直线将梯形ABCD 的面积平分,并简单说出画法.x+m的图象与x 轴交于点A(−6,0),交 y轴于点 B.3.(★★★☆☆)如图已知一次函数y=43(1)求m的值与点 B 的坐标.(2)在x轴上是否存在点C,使得. △ABC的面积为 16?若存在,求出点C的坐标若不存在,说明理由.(3)一条经过点 D(0,2)和直线AB上一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.直击中考1.在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分.进而,小明继续研究,过四边形的某一顶点的直线能否将该四边形分为面积相等的两部分?他画出了如下示意图(如图1),得到了符合要求的直线AF.小明的作图步骤如下:第一步,连接AC第二步过点 B作BE∥AC交DC 的延长线于点E;第三步,取ED的中点F,作直线AF则直线 AF即为所求.请参考小明思考问题的方法,解决问题:如图2 五边形 ABOCD各顶点坐标为A(3 4) B(0 2) O(0 0) C(4 0) D(4 2).请你构造一条经过顶点 A 的直线将五边形 ABOCD分为面积相等的两部分,并求出该直线的解析式.第 21 页共 21 页。

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)代数综合题是一类综合题,主要包括方程、函数、不等式等内容,需要用到化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等数学思想方法。

解决代数综合题需要注意归纳整理教材中的基础知识、基本技能、基本方法,抓住题意,化整为零,层层深入,各个击破。

同时,需要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,从而达到解决问题的目的。

已知关于x的一元二次方程x-(k+1)x-6=0的一个根是2,求方程的另一根和k的值。

解:设方程的另一根为x1,由韦达定理:2 x1 =-6,∴x1 =-3.由韦达定理:-3+2= k+1,∴k=-2.已知关于x的一元二次方程(k+4)x+3x+k-3k-4=0的一个根为2,求k的值。

解:把x=0代入这个方程,得k-3k-4=0,解得k1=1,k2=-4.因为k+4≠0,所以k≠-4,所以k=1.需要注意需满足k+4的系数不能为0,即k≠-4.已对方程2x+3x-l=0,求作一个二次方程,使它的两根分别是已知方程两根的倒数。

解:设2x+3x-l=0的两根为x1、x2,则新方程的两根为1/x1、1/x2.得到1/x1+1/x2=3,所以新方程为y2-3y-2=0.某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y(件)之间的关系如下表:x(元)xxxxxxxx… y(件)xxxxxxxx…(省略号表示数据继续往下延伸)。

⑴在草稿纸上描点,观察点的分布,建立y与x的恰当函数模型。

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴经观察发现各点分布在一条直线上,∴设y=kx+b(k≠0)。

⑵由题意可知每件产品的销售价应为20元,此时每日销售利润为200元。

1、根据题意可列出函数关系:y=ax^2+bx+c,代入三组数据得到三个方程组成的线性方程组:begin{cases} 8.6=1990a+1990b+c \\ 10.4=1995a+1995b+c \\ 12.9=2000a+2000b+c \end{cases}$$解得:$a=0.45,b=-1792.5,c=xxxxxxx$,所以二次函数为$y=0.45x^2-1792.5x+xxxxxxx$,代入$x=15$得到2005年该市国内生产总值为14.1亿元人民币。

中考数学分类汇编解析:代数几何综合

中考数学分类汇编解析:代数几何综合

中考全国100份试卷分类汇编代数几何综合1、(潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5, 又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB, 令kx -2=1.5,得l 与CD 的交点F(23,27k ), 令kx -2=0,得l 与x 轴的交点E(0,2k ), 根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y 所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NM N M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

中考数学代数综合型问题试题整理汇集(带答案)

中考数学代数综合型问题试题整理汇集(带答案)

中考数学代数综合型问题试题整理汇集(带答案)以下是查字典数学网为您推荐的中考数学代数综合型问题试题整理汇集(带答案),希望本篇文章对您学习有所帮助。

中考数学代数综合型问题试题整理汇集(带答案)11. (2019山东莱芜, 11,3分)以下说法正确的有:①正八边形的每个内角都是135② 与是同类二次根式③长度等于半径的弦所对的圆周角为30④反比例函数,当x0时,y随的x增大而增大A. 1个B. 2个C. 3个D.4个【解析】正八边形的每个内角度数:180 ,①正确= , = ,与是同类二次根式,②正确一条非直径的弦对两个圆周角,分别是一个锐角和一个钝角,长度等于半径的弦所对的圆周角为30错误反比例函数,当x0时,y随的x增大而增大,④正确【答案】C.【点评】掌握基础知识,记住当用的结论如正多边形的各个内角的计算、同类二次根式的识别判断、反比例函数的图象的性质。

对于一些多解问题,要做到思考问题全面.7. (2019山东日照,7,3分)下列命题错误的是 ( )A.若 a1,则(a-1) =-B. 若 =a-3 ,则a3C.依次连接菱形各边中点得到的四边形是矩形D. 的算术平方根是9解析:因为a1,所以1-a0,所以(a-1) = (a-1) = =- ,故A 正确;B中有a-30,a3,故B正确;因为菱形的对角线互相垂直,所以连接其各边中点得到的四边形是矩形,C也正确. =9,9的算术平方根是3,所以D错误.8、(2019深圳市 8 ,3分)下列命题:① 方程的解是② 4的平方根是2③ 有两边和一角相等的两个三角形全等④ 连接任意四边形各边中点的四边形是平行四边形其中是真命题的有( )个A. 4个B. 3个 C 2个 D. 1个【解析】:考查方程的解,平方根的意义,三角形全等的判定,中点四边形的性质【解答】:①漏了一个解;4的平方根是,不能用作三角形全等的判定由中点四边形的性质知,中点四边形一定是平行四边形。

2021中考全国100份试卷分类汇编:几何综合

2021中考全国100份试卷分类汇编:几何综合

2021中考全国100份试卷分类汇编:几何综合2021中考全国100份试卷分类汇编几何综合1、(2021四川南充,6,3分)下列图形中,∠2>∠1()答案:c分析:从相等相反的顶点角度,我们知道∠ 1 =∠ 2在a中,从平行四边形的对角线,我们知道∠ 1 =∠ 2在B中,从相等的相反顶角来看,两条直线的平行等势角相等,我们知道∠ 1 =∠ 在D中,从外角和三角形定理,我们知道C符合∠ 2 >∠ 12,(2022?攀缘花),如图所示,取直角的斜边ab△ ABC,直角侧AC为侧方向△ ABC,并使其等边△ abd和等边△ ace在外,f作为ab的中点,De和ab在G点相交,EF和AC在h点相交,∠ ACB=90°,∠ BAC=30°。

得出以下结论:①ef⊥ac;②四边形adfe为菱形;③ad=4ag;④fh=bd其中正确结论的为①③④(请将所有正确的序号都填上).22(3)cd+ce=oa;(4)ad+be=2op?oc.其中正确的结论有()a、 1 B.2 C.3 d.4个测试点:等腰直角三角形;全等三角形的判定及性质;毕达哥拉斯定理;相似三角形的判断和性质。

分析:结论(1)错误。

因为图中有3对全等三角形;结论(2)正确。

它可以通过全等三角形的性质来判断;结论(3)是正确的。

它可以通过全等三角形和等腰直角三角形的性质来判断。

结论(4)是正确的。

它可以通过相似三角形、全等三角形、等腰直角三角形和勾股定理来判断。

解决方案:结论(1)是错误的。

原因如下:图中有三对全等三角形,即△ AOC≌ △ 中国银行,△ AOD≌ △ 科,△ 鳕鱼≌ △ 英格兰银行,在△ AOD和△ AOD和△ 科,在△ AOD和△ 科,在△ AOD和△ 科,在△ AOD和△ 科,在△ AOD和△ 科,在△ AOD和△ 科\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\△ AOC=s△ ABC,也就是△ ABC等于四边形CDOE面积的两倍。

中考全国120份试卷分类汇编 代数几何综合

中考全国120份试卷分类汇编 代数几何综合

交 于 A 、B 、C 三 点 , 且 AB = 4 , 点 D 2, ⎪ 在 抛 物 线 上 , 直 线 是 一 次 函 数⎩ 4a + 2b + c = 1.5+ = (3 - ) + (2 - ), 解得k = ,中考全国 120 份试卷分类汇编代数几何综合1、(2013 年潍坊市压轴题)如图,抛物线 y = ax 2 + bx + c 关于直线 x = 1 对称,与坐标轴⎛3 ⎫ ⎝ 2 ⎭y = kx - 2(k ≠ 0)的图象,点 O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形 O BDC 的面积,求 k 的值.(3)把抛物线向左平移 1 个单位,再向下平移 2 个单位,所得抛物线与直线交于M 、N 两点,问在 y 轴正半轴上是否存在一定点 P ,使得不论 k 取何值,直线 PM 与 PN 总是关于 y轴对称?若存在,求出 P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线 x=1 对称,AB=4,所以 A(-1,0),B(3,0),⎧a - b + c = 0由点 D(2,1.5)在抛物线上,所以 ⎨,所以 3a+3b=1.5,即 a+b=0.5, 又 - b 1 3= 1 ,即 b=-2a,代入上式解得 a=-0.5,b =1,从而 c=1.5,所以 y = - x 2 + x + .2a 2 21 3(2)由(1)知 y = - x 2 + x + ,令 x=0,得 c(0,1.5),所以 CD//AB, 2 27 3令 kx-2=1.5,得 l 与 CD 的交点 F(, ), 2k 2 2令 kx-2=0,得 l 与 x 轴的交点 E( ,0 ),k根据 S 四边形 OEFC =S 四边形 EBDF 得:OE+CF=DF+BE,2 7 2 7 11即: k 2k k 2k 51 3 1(3)由(1)知 y = - x 2 + x + = - ( x - 1) 2 + 2,2 2 2y 轴作垂线 MM 1、NN 1, 足分别为 M 1、N 1,因为∠MPO=∠NPO,所以 △Rt MPM 1∽△Rt NPN 1, M,又 y 2a OC DB 2 m-1 2 2所以把抛物线向左平移 1 个单位,再向下平移 2 个单位,所得抛物线的解析式为 y = -12x 2假设在 y 轴上存在一点 P(0,t),t >0,使直线 PM 与 PN 关于 y 轴对称,过点 M 、N 分别向 垂所以MM1=NN1 PM 1 , (1)PN1不妨设 M(x M ,y M )在点 N(x N ,y N )的左侧,因为 P 点在 y 轴正半轴上,则(1)式变为 - x M = xNt - y t - y NM =k x M -2, y N =k x N -2,所以(t+2)(x M +x N )=2k x M x N, (2)1 把 y=kx-2(k ≠0)代入 y = - x 2中,整理得 x 2+2kx-4=0,2所以 x M +x N =-2k, x M x N =-4,代入(2)得 t=2,符合条件, 故在 y 轴上存在一点 P (0,2),使直线 PM 与 PN 总是关于 y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函 数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知 识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及 质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识, 解决实际问题的能力。

中考全国数学100份试卷分类汇编 几何体

中考全国数学100份试卷分类汇编 几何体

2013中考全国100份试卷分类汇编几何体1、(绵阳市2013年)把右图中的三棱柱展开,所得到的展开图是( B )[解析]两个全等的三角形,再侧面三个长方形的两侧,这样的图形围成的是三棱柱,一个底面相邻可以是三个长方形,只有B 。

2、(2013年南京)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是答案:B解析:涂有颜色的面在侧面,而A 、C 还原后,有颜色的面在底面,故错;D 还原不回去,故错,选B 。

3、(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( ) A . B . C . D .考点: 展开图折叠成几何体. 分析: 根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出即可. 解答: 解:A 、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B 、剪去阴影部分后,无法组成长方体,故此选项不合题意;C 、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选:C.点评:此题主要考查了展开图折叠成几何体,培养了学生的空间想象能力.4、(2013河南省)如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是【】(A)1 (B)4 (C)5 (D)6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。

【答案】B5、(2013•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()A.B.9C.D.考点:剪纸问题;展开图折叠成几何体;等边三角形的性质.专题:操作型.分析:这个棱柱的侧面展开正好是一个长方形,长为3,宽为3减去两个三角形的高,再用长方形的面积公式计算即可解答.解答:解:∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个正三角形的底面边长为1,高为=,∴侧面积为长为3,宽为3﹣的长方形,面积为9﹣3.故选A.点评:此题主要考查了剪纸问题的实际应用,动手操作拼出图形,并能正确进行计算是解答本题的关键.6、(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是()【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错,D中底面不符合,只有A符合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国120份试卷分类汇编代数几何综合1、(20XX 年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。

2、(绵阳市20XX 年)如图,二次函数y =ax 2+bx +c 的图象的顶点C 的坐标为(0,-2),交x 轴于A 、B 两点,其中A (-1,0),直线l :x =m (m >1)与x 轴交于D 。

(1)求二次函数的解析式和B 的坐标;(2)在直线l 上找点P (P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求点P 的坐标(用含m 的代数式表示); (3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q ,使△BP Q 是以P 为直角顶点的等腰直角三角形?如果存在,请求出点Q 的坐标;如果不存在,请说明理由。

解:(1)①二次函数y=ax 2+bx+c 图象的顶点C 的坐标为(0,-2),c = -2 , - b 2a = 0 , b=0 ,点A(-1,0)、点B 是二次函数y=ax 2-2 的图象与x 轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x 2-2;②点B 与点A(-1,0)关于直线x=0对称,点B 的坐标为(1,0); (2)∠BOC=∠PDB=90º,点P 在直线x=m 上,设点P 的坐标为(m,p ), OB=1, OC=2, DB= m-1 , DP=|p| ,①当△BOC ∽△PDB 时,OB OC = DP DB ,12= |p|m-1 ,p= m-12 或p = 1- m2,点P 的坐标为(m ,m-12 )或(m ,1- m2 );②当△BOC ∽△BDP 时,OB OC = DB DP ,12= m-1|p|,p=2m-2或p=2-2m, 点P 的坐标为(m ,2m-2)或(m ,2-2m );综上所述点P 的坐标为(m ,m-12 )、(m ,1- m2 )、(m ,2m-2)或(m ,2-2m );(3)不存在满足条件的点Q 。

点Q 在第一象限内的抛物线y=2x 2-2上,令点Q 的坐标为(x, 2x 2-2),x>1, 过点Q 作QE ⊥直线l , 垂足为E ,△BPQ 为等腰直角三角形,PB=PQ ,∠PEQ=∠PDB , ∠EPQ=∠DBP ,△PEQ ≌△BDP ,QE=PD ,PE=BD ,① 当P 的坐标为(m ,m-12 )时,m-x = m-12 , m=0 m=12x 2-2- m-12 = m-1, x= 12 x=1与x>1矛盾,此时点Q 不满足题设条件;② 当P 的坐标为(m ,1- m2)时,x-m= m-12 m=- 29 m=12x 2-2- 1- m 2 = m-1, x=- 56 x=1与x>1矛盾,此时点Q 不满足题设条件;③ 当P 的坐标为(m ,2m-2)时,m-x =2m-2 m= 92 m=12x 2-2-(2m-2) = m-1, x=- 52 x=1与x>1矛盾,此时点Q 不满足题设条件; ④当P 的坐标为(m ,2-2m )时,x- m = 2m-2 m= 518 m=12x 2-2-(2-2m) = m-1 x=- 76 x=1与x>1矛盾,此时点Q 不满足题设条件; 综上所述,不存在满足条件的点Q 。

(2013•昆明压轴题)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.,)P=DQ=代入得:﹣﹣﹣(﹣)代入得:,,x+3,或))MP=DQ=代入抛物线解析式得:﹣=x 或,﹣或(﹣﹣((﹣(4、(2013陕西)0)两点.(1)写出这个二次函数的对称轴;(2)设这个二次函数的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AD 、DE 和DB ,当△AOC 与△DEB 相似时,求这个二次函数的表达式。

[提示:如果一个二次函数的图象与x 轴的交点 为)0,(),0,(21x B x A A ,那么它的表达式可表示 为:))((21x x x x a y --=]考点:此题在陕西的中考中也较固定,第(1)问主要考查待定系数法求二次函数的解析式,二次函数与坐标轴的交点坐标,抛物线的对称性等简单问题。

第二问主要考查二次函数综合应用之点的存在性问题;包括最短距离与面积的最值等(等腰三角形,平行四边形,正方形,相似三角形,相似,全等等问题。

考查问题的综合能力要求较高,基本上都是转化为求点的坐标的过程。

(第24题图)解析:本题中(1)由抛物线的轴对称性可知,与x 轴的两个交点关于对称轴对称,易求出对称轴;(2)由提示中可以设出函数的解析式,将顶点D 与E 的坐标表示出来,从而将两个三角形的边长表示出来,而相似的确定过程中充分考虑到分类即可解决此题; 解:(1)对称轴为直线:x=2。

(2)∵A (1,0)、B (3,0),所以设)3)(1(--=x x a y 即a ax ax y 342+-=当x=0时,y=3a ,当x=2时,y=a - ∴C (0,3a ),D(2,-a) ∴OC=|3a|, ∵A (1,0)、E (2,0), ∴OA=1,EB=1,DE=}-a|=|a| 在△AOC 与△DEB 中, ∵∠AOC=∠DEB=90° ∴当EBDEOC AO =时,△AOC ∽△DEB ∴1|||3|1a a =时,解得33=a 或33-=a 当DEEBOC AO =时,△AOC ∽△BED ∴||1|3|1a a =时,此方程无解, 综上所得:所求二次函数的表达式为:3334332+-=x x y 或3334332-+-=x x y5、(2013成都市压轴题)在平面直角坐标系中,已知抛物线21y 2x bx c =-++(b,c 为常数)的顶点为P,等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3),直角顶点B 在第四象限。

(1)如图,若该抛物线过A,B 两点,求抛物线的函数表达式; (2)平(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q. i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上点,当以M,P,Q 三点为顶点的三角形是等腰三角形时,求出所有符合条件的M 的坐标;ii )取BC 的中点N,连接NP,BQ 。

试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;所不存在,请说明理由。

解析:(1)A(0,-1) C(4,3)则|AC |=ABC 为等腰直角三角形 ∴AB=BC=4 ∴B 点(4,-1)将A,B 代入抛物线方程有1116412c b c =-⎧⎪⎨-⨯++=-⎪⎩⇒12c b =-⎧⎨=⎩ ∴21212y x x =-+- (2)当顶点P 在直线AC 上滑动时,平移后抛物线与AC 另一交点Q 就是A 点沿直线AC 滑动同样的单位。

下面给予证明:原抛物线2211(44)1(2)122y x x x =--++=--+ 顶点P 为(2,1) 设平移后顶点P 为(a,a-1),则平移后抛物线21()12y x a a '=--+- 联立y=x-1(直线AC 方程)得Q 点为(a-2,a-3)∴|PQ |=即实际上是线段AP 在直线AC 上的滑动.ⅰ)点M 在直线AC 下方,且M,P,Q 构成等腰直角三角形,那么先考虑使MP,Q 构成等腰直角三角形的M 点的轨迹,再求其轨迹与抛物线的交点以确定M 点.①若∠M 为直角,则M 点轨迹即为AC 下方距AC 为MH 且与AC 平行的直线l 又知|PQ |=,则|MH ||PM |=2直线l 即为AC 向下平移|PM |=2个单位 L:y=x-3 联立21212y x x =-+- 得x=1M 点为()或()②若∠P=或∠Q 为直角,即PQ 为直角边,MQ ⊥PQ 且,MQ=PQ=或MP ⊥PQ,且MP=PQ=,∴M 点轨迹是AC 下方距AC 为AC 平行直线L 直线L 即为AC 向下平移|MP |=4个单位 L:y=x-5 联立21212y x x =-+-得x=4或x=-2 ∴M 点为(4,-1)或(-2,-7)综上所有符合条件的点M 为()(4,-1);(),(-2,-7)ⅱ)知PQ=PQMP BQ+有最大值,即NP+BQ 有最小值如下图,取AB 中点M ,连结QM,NM,知N 为中点∴MN 为AC 边中位线,∴MN ∥AC 且MN=12AC==PQ ∴MN PQ ∴MNPQ 为平行四边形 即PN=QM ∴QB+PN=BQ+MQ此时,作B 点关于AC 对称的点B ′,连B Q ',B M 'B M '交AC 于点H ,易知B Q '=BQ∴BQ+PN=B Q '+MQ ≥B M '(三角形两边之和大于第三边) 仅当Q 与H 重合时,取等号即BQ+PN 最小值存在 且最小值为B M ' 连结A B '知ABB '∆为等腰直角三角形。

相关文档
最新文档