高考数学二轮核心考点突破:专题04-导数的概念与应用(Word版,含答案)

合集下载

高中 导数的概念、运算及应用知识点+例题+练习 含答案

高中 导数的概念、运算及应用知识点+例题+练习 含答案

教学过程【例3】(2013·新课标全国Ⅰ卷改编)设函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.求a,b的值.规律方法已知曲线在某点处的切线方程求参数,是利用导数的几何意义求曲线的切线方程的逆用,解题的关键是这个点不仅在曲线上也在切线上.【训练3】(2013·福建卷改编)设函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值.1.在对导数的概念进行理解时,特别要注意f′(x0)与(f(x0))′是不一样的,f′(x0)代表函数f(x)在x=x0处的导数值,不一定为0;而(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.第2讲导数的应用(一)教学效果分析【例3】(2012·重庆卷)已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.规律方法在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.【训练3】设函数f(x)=x+ax2+b ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)令g(x)=f(x)-2x+2,求g(x)在定义域上的最值.1.求极值、最值时,要求步骤规范、表格齐全,区分极值点与导数为0的点;含参数时,要讨论参数的大小.2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.一个函数在其定义域内最值是唯一的,可以在区间的端点取得.。

高考数学二轮复习导数及其应用多选题知识点及练习题及答案

高考数学二轮复习导数及其应用多选题知识点及练习题及答案

高考数学二轮复习导数及其应用多选题知识点及练习题及答案一、导数及其应用多选题1.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.下列不等式正确的有( ) A2ln 3< B.ln π<C.15< D.3ln 2e <【答案】CD 【分析】 构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e =易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减 所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.3.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<,所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.4.若直线l 与曲线C 满足下列两个条件: (i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x = 【答案】ACD 【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧, A 选项正确;对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos xy x x ==,可得21cos y x'=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos xg x x x=-=-≤',所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >;当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.5.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.6.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+-C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; 对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立,又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)7.已知函数()1ln f x x x x=-+,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++= B .()f x 恰有2个零点C .()f x 既有最大值,又有最小值D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】本题首先可根据()10f -=以及13f判断出A 错误,然后根据当0x >时的函数单调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()121f x f x ⎛⎫= ⎪⎝⎭,根据函数单调性即可证得121=x x ,D 正确.【详解】函数()1ln f x x x x=-+的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x=-+,()2221111x x f x x x x -+-'=--=; 当0x <时,1ln f x x x x,()2221111x x f x x x x -+-'=--=,A 项:1ln 1110f,22111131f,则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;B 项:当0x >时,222215124x x x f xx x ,函数()f x 是减函数,当0x <时,222215124x x x f xx x ,函数()f x 是减函数,因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确; C 项:由函数()f x 的单调性易知,C 错误; D 项:当1>0x 、20x >时, 因为()()120f x f x +=, 所以1222222221111ln lnf x f x x x x fx x x x , 因为()f x 在()0,∞+上为减函数,所以121x x =,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确, 故选:BD. 【点睛】本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.8.已知()2sin x f x x x π=--.( )A .()f x 的零点个数为4B .()f x 的极值点个数为3C .x 轴为曲线()y f x =的切线D .若()12()f x f x =,则12x x π+= 【答案】BC 【分析】首先根据()0f x '=得到21cos xx π-=,分别画出21xy π=-和cos y x =的图像,从而得到函数的单调性和极值,再依次判断选项即可得到答案.【详解】()21cos xf x x π'=--,令()0f x '=,得到21cos x x π-=. 分别画出21x y π=-和cos y x =的图像,如图所示:由图知:21cos xx π-=有三个解,即()0f x '=有三个解,分别为0,2π,π. 所以(),0x ∈-∞,()21cos 0x f x x π'=-->,()f x 为增函数,0,2x π⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=--<,()f x 为减函数, ,2x ππ⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=-->,()f x 为增函数, (),x π∈+∞,()21cos 0xf x x π'=--<,()f x 为减函数.所以当0x =时,()f x 取得极大值为0,当2x π=时,()f x 取得极小值为14π-,当x π=时,()f x 取得极大值为0, 所以函数()f x 有两个零点,三个极值点,A 错误,B 正确.因为函数()f x 的极大值为0,所以x 轴为曲线()y f x =的切线,故C 正确.因为()f x 在(),0-∞为增函数,0,2π⎛⎫ ⎪⎝⎭为减函数, 所以存在1x ,2x 满足1202x x π<<<,且()()12f x f x =, 显然122x x π+<,故D 错误.故选:BC【点睛】 本题主要考查导数的综合应用,考查利用导数研究函数的零点,极值点和切线,属于难题.。

2023高考数学二轮复习专项训练《导数的概念和几何意义》(含答案)

2023高考数学二轮复习专项训练《导数的概念和几何意义》(含答案)

2023高考数学二轮复习专项训练《导数的概念和几何意义》一、单选题(本大题共12小题,共60分)1.(5分)直线y=x与曲线y=e x+m(m∈R,e为自然对数的底数)相切,则m=()A. 1B. 2C. −1D. −22.(5分)与曲线y=x3−5x相切且过原点的直线的斜率为()A. 2B. −5C. −1D. −23.(5分)曲线y=ax2在点P(1,a)处的切线平行于直线y=2x+1,则a=()A. 1B. 12C. −12D. −14.(5分)在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是( )A. 4x-y=0B. 4x-y-4=0C. 2x-y-2=0D. 4x-y=0或4x-y-4=05.(5分)若函数f(x)=1x−3ax的图象在x=1处的切线与直线x+4y=0垂直,则a= ()A. −1B. 1C. −712D. −536.(5分)函数f(x)=−x2+3ln x的图象在x=1处的切线倾斜角为α,则cos2α=()A. 13B. 12C. 23D. 347.(5分)已知函数y=3x在x=2处的自变量的增量为Δx=0.1,则Δy为( )A. -0.3B. 0.6C. -0.6D. 0.38.(5分)曲线在点(1,2)处的切线方程为A. B. C. D.9.(5分)曲线y=12x2−2x在点(1,−32)处的切线的倾斜角为()A. −135°B. 45°C. −45°D. 135°10.(5分)已知曲线C:x2−2x+y2+b=0,且曲线C上一点P(2,2)处的切线与直线ax−y+1=0垂直,则a=()A. 2B. 12C. −12D. −211.(5分)设f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 ,0)处的切线方程为()A. y=xB. y=−xC. y=2xD. y=−2x12.(5分)物体运动方程为s=14t4−3,则t=5时的瞬时速率为()A. 5m/sB. 25m/sC. 125m/sD. 625m/s二、填空题(本大题共5小题,共25分)13.(5分)曲线y=x+lnx−1往点(1,0)处的切线方程为______.14.(5分)已知定义在R上的函数f(x)满足f′(x)>0,且f(f(x)−e x)=e+1,若f(x)⩾ax−a+1恒成立,则实数的取值范围是____________.15.(5分)如果质点A的位移s与时间t满足方程s=2t3,则在t=3时的瞬时速度为____.16.(5分)已知函数f(x)={1x,x∈(0,2]f(x−2),x∈(2,+∞),则f(x)在x=3处的切线方程为______.17.(5分)若函数f(x)=−x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于−1,则Δx的取值范围是____________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=x2−2x−alnx+ax,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设f(x)的极小值点为x0,且f(x0)<a−a24,求a的取值范围.19.(12分)已知函数f(x)=ln x−ax,其中a为非零常数.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处的切线斜率为−1,求f(x)的极值.20.(12分)已知函数f(x)=−x2+x图像上两点A(2,f(2))、B(2+Δx,f(2+Δx)).(1)若割线AB的斜率不大于−1,求Δx的范围;(2)用导数的定义求函数f(x)=−x2+x在x=2处的导数f′(2),并求在点A处的切线方程.21.(12分)已知函数y=23x3−2x2+3,(1)求在点(1,53)处的切线方程,(2)求函数在[−1,3]的最值.22.(12分)已知函数f(x)=e x ln x−ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=−e x+1平行,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.23.(12分)已知函数f(x)=ae x,g(x)=ln(ax)+52,a>0.(Ⅰ)若y=f(x)的图象在x=1处的切线过点(3,3),求a的值并讨论ℎ(x)=xf(x)+m(x2+2x−1)(m∈R)在(0,+∞)上的单调增区间;(Ⅱ)定义:若直线l:y=kx+b与曲线C1:f1(x,y)=0、C2:f2(x,y)=0都相切,则我们称直线l为曲线C1、C2的公切线.若曲线y=f(x)与y=g(x)存在公切线,试求实数a的取值范围.四、多选题(本大题共5小题,共25分)24.(5分)已知函数f(x)=√x−ln x,若f(x)在x=x1和x=x2(x1≠x2)处切线平行,则()A.√x1√x2=12B. x1x2<128C. x1+x2<32D. x12+x22>51225.(5分)函数f(x)的导函数为f′(x),若已知f′(x)的图像如图,则下列说法不正确的是()A. f(x)存在极大值点B. f(x)在(0,+∞)单调递增C. f(x)一定有最小值D. 不等式f(x)<0一定有解26.(5分)关于函数f(x)=a ln x+2x,下列判断正确的是()A. 函数f(x)的图象在点x=1处的切线方程为(a−2)x−y−a+4=0B. x=2a是函数f(x)的一个极值点C. 当a=1时,f(x)⩾ln2+1D. 当a=−1时,不等式f(2x−1)−f(x)>0的解集为(12,1)27.(5分)已知函数f(x)=ax3+x2+axe x,则()A. 若曲线y=f(x)在(0,f(0))处的切线与x+5y=0相互垂直,则a=5B. 若a=0,则函数f(x)的单调递减区间为(−∞,0)∪(2,+∞)C. 若a=0,则函数f(x)有2个极值点D. 若关于x的不等式函数x2+1⩾f(x)在(0,+∞)上恒成立,则实数a的取值范围为(−∞,e-12]28.(5分)函数f(x)={e x−1,x⩽1,ln(x−1),x>1,若函数g(x)=f(x)−x+a只有一个零点,则a的值可以为()A. 2B. −2C. 0D. 1答案和解析1.【答案】C;【解析】解:设切点为(x,y),则x=y,∵y=e x+m,∴y′=e x+m∴e x+m=1,即x+m=0,又e x+m=x,∴e0=x,∴x=1,∴m=−1,故选:C.先求导函数,利用直线y=x与曲线y=e x+m相切,可知切线的斜率为1,即切点处的函数值为1,再利用切点处的函数值相等,即可求出a的值本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解答该题的关键是正确理解导数的几何意义.2.【答案】B;【解析】解:设切点坐标为P(x0,y0),由曲线y=f(x)=x3−5x,得f′(x)=3x2−5,所以过原点的切线斜率为k=f′(x0)=3x02−5,所以切线方程为y−y0=(3x02−5)(x−x0);又切线过原点O(0,0),所以−x03+5x0=−3x03+5x0,解得x0=0,所以y0=0,则P(0,0);所以与曲线y=x3−5x相切且过原点的直线的斜率为k=f′(0)=−5.故选:B.设切点为(x0,y0),求出切线l的斜率为f′(x0),写出切线l的方程,根据且线1过原点求出切点坐标和斜率.该题考查了导数的几何意义与应用问题,也考查了运算求解能力,是基础题.3.【答案】A;【解析】解:y=ax2的导数为y′=2ax,可得曲线在点P(1,a)处的切线斜率为k=2a,由切线平行于直线y=2x+1,可得k=2,即2a=2,解得a=1,故选:A.求得y=ax2的导数,可得切线的斜率,由两直线平行的条件可得a的方程,解方程可得a的值.该题考查导数的几何意义,考查两直线平行的条件,考查方程思想和运算能力,属于基础题.4.【答案】D;【解析】曲线y=x 3+x-2求导可得y′=3x 2+1 设切点为(a ,b)则3a 2+1=4,解得a=1或a=-1 切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x 3+x-2相切的 直线方程是:4x-y-4=0和4x-y=0 故选D 。

高考数学专题复习《导数的概念、意义及运算》知识梳理及典型例题讲解课件(含答案)

高考数学专题复习《导数的概念、意义及运算》知识梳理及典型例题讲解课件(含答案)
考点二 导数的几何意义
命题角度1 导数的几何意义
例2 若点 是函数 图象上任意一点,直线 为点 处的切线,则直线 斜率的范围是( )
A. B. C. D.

变式2 已知函数 , .若曲线 在点 处的切线与直线 垂直,则 的值为___.
命题角度2 求切线方程
切线的斜率
自主评价:4. 函数 <m></m> 在点 <m></m> 处的切线方程为( )A. <m></m> B. <m></m> C. <m></m> D. <m>
C
(4)导函数的概念: 当 时, 是一个唯一确定的数,这样,当 变化时, 就是 的函数,我们称它为 的________(简称______). 的导函数有时也记作 ,即 <m></m> .
复合函数
【常用结论】
3.导数的两条性质
(1)奇函数的导数是偶函数,偶函数的导数是奇函数.
(2)可导函数 的导数为 ,若 为增函数,则 的图象是下凹的;反之,若 为减函数,则 的图象是上凸的.
考点一 求导运算
例1 求下列函数的导数:
(1) ;
解:因为 ,所以 .
(2) ;
(2)导数的概念: 如果当 时,平均变化率 无限趋近于一个确定的值,即 有极限,则称 在 处______,并把这个确定的值叫做 在 处的导数(也称为____________),记作_______或 ,即 .
可导
瞬时变化率
练1:设函数,则A. B. C. D.

(3) 在平面直角坐标系 中,点 在曲线 上,且该曲线在点 处的切线经过点 ( 为自然对数的底数),则点 的坐标是______.

高考数学导数及应用知识点

高考数学导数及应用知识点

高考数学导数及应用知识点导数是高中数学中重要的概念之一,也是高考数学必考的知识点。

掌握导数的概念和应用是理解数学中许多问题的关键。

本文将以“step by step thinking”为主线,逐步讲解导数的基本概念、性质以及常见的应用。

一、导数的概念导数可以理解为函数在某一点上的变化率。

对于给定的函数f(x),在某一点x上的导数表示为f’(x),它的定义如下:f’(x) = lim(h→0)[f(x+h) - f(x)] / h其中,lim表示极限,h表示自变量x的增量。

导数的定义可以理解为当自变量x的增量h趋近于0时,函数f(x)在点x处的变化量与自变量增量的比值。

二、导数的性质 1. 常数函数的导数为0:对于常数函数f(x) = c,其中c为常数,其导数为f’(x) = 0。

因为常数函数在任意一点的函数值都相同,所以其变化率为0。

2. 幂函数的导数:对于幂函数f(x) = x^n,其中n为正整数,其导数为f’(x) = n *x^(n-1)。

幂函数的导数是指数函数。

3. 指数函数的导数:对于指数函数f(x) = a^x,其中a为正实数且不等于1,其导数为f’(x) = ln(a) * a^x。

指数函数的导数是指数函数本身与常数ln(a)的乘积。

4. 对数函数的导数:对于对数函数f(x) = log_a(x),其中a为正实数且不等于1,其导数为f’(x) = 1 / (x * ln(a))。

对数函数的导数是关于自变量的倒数。

5. 三角函数的导数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)。

它们的导数分别为cos(x)、-sin(x)和sec^2(x)。

三、导数的应用导数在数学中有广泛的应用,以下是一些常见的应用场景:1.切线和法线:导数可以用来求曲线上一点处的切线和法线。

切线是曲线在该点处的斜率,即导数;法线则是与切线垂直的直线,其斜率为导数的负倒数。

【新高考数学】导数的概念及计算导数的概念及计算(含答案)

【新高考数学】导数的概念及计算导数的概念及计算(含答案)

【新高考数学】导数的概念及计算【套路秘籍】一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx = 0lim x ∆→ ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ΔyΔx =0limx ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 二.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函3.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. 数f ′(x )=0lim x ∆→ f (x +Δx )-f (x )Δx 称为函数y =f (x )在开区间内的导函数. 【套路修炼】考向一 导数的概念【例1】设)(x f 是可导函数,且3)2()(lim 000=∆∆+-∆-→∆xx x f x x f x ,则=')(0x f 。

导数的定义与几何意义例题和知识点总结

导数的定义与几何意义例题和知识点总结

导数的定义与几何意义例题和知识点总结在数学的广袤天地中,导数无疑是一颗璀璨的明珠。

它不仅在微积分中占据着核心地位,更是解决众多实际问题的有力工具。

让我们一同深入探索导数的定义与几何意义,并通过一些具体的例题来加深对其的理解。

一、导数的定义导数,从本质上来说,描述的是函数在某一点处的变化率。

如果给定一个函数$y = f(x)$,那么在点$x_0$ 处的导数可以表示为:$f'(x_0) =\lim\limits_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}$这个极限值反映了函数在$x_0$ 点处的瞬时变化率。

为了更好地理解导数的定义,我们来看一个简单的例子。

例 1:设函数$f(x) = x^2$,求$f'(2)$。

解:\\begin{align}f'(2)&=\lim\limits_{\Delta x \to 0} \frac{f(2 +\Delta x)f(2)}{\Delta x}\\&=\lim\limits_{\Delta x \to 0} \frac{(2 +\Delta x)^2 2^2}{\Delta x}\\&=\lim\limits_{\Delta x \to 0} \frac{4 + 4\Delta x +(\Delta x)^2 4}{\Delta x}\\&=\lim\limits_{\Delta x \to 0} (4 +\Delta x)\\&= 4\end{align}\二、导数的几何意义导数的几何意义是函数在某一点处切线的斜率。

对于函数$y =f(x)$,在点$(x_0, f(x_0))$处的切线斜率就是$f'(x_0)$。

例如,对于函数$y = x^2$,在点$(1, 1)$处的切线斜率为$f'(1) = 2$。

例 2:求函数$f(x) =\sqrt{x}$在点$(4, 2)$处的切线方程。

(word版)高二数学导数及其应用复习讲义有答案

(word版)高二数学导数及其应用复习讲义有答案

高二数学复习讲义—导数及其应用知识归纳1.导数的概念 函数y=f(x), 如果自变量x 在x 0处有增量x ,那么函数y 相应地有增量 y =f 〔x 0+x 〕 -f 〔x 0〕,比值 y 叫做函数y=f 〔x 〕在x 0x到x 0+x 之间的平均变化率,即y f(x 0 x) f(x 0)。

如果当x0时, x =xy 有极限,我们就说函数 y=f(x)在点x 0处 x可导,并把这个极限叫做f 〔x 〕在点x 0处的导数,记作f ’〔x 0〕或y ’|xx 0。

即f 〔x 0 〕=limy=lim f(x 0 x)f(x 0)。

x 0xx0x说明:〔1〕函数f 〔x 〕在点x 0处可导,是指 x 0时,y 有极限。

如果y不存在极限,x x就说函数在点x 0处不可导,或说无导数。

〔2〕x 是自变量x 在x 0处的改变量,x0时,而y 是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f 〔x 〕在点x 0处的导数的步骤:〔1〕求函数的增量 y =f 〔x 0+x 〕-f 〔x 0〕;〔2〕求平均变化率yf(x 0x)f(x 0);x =x〔3〕取极限,得导数f ’(x 0)=lim y 。

x 0 x 2.导数的几何意义函数y=f 〔x 〕在点x 0处的导数的几何意义是曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率。

也就是说,曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率是f ’〔x 0〕。

/〕〔x -x 0 〕。

相应地,切线方程为y -y 0=f 〔x 0 3.几种常见函数的导数:①C0; ②x nnx n1;③(sinx)cosx ;④(cosx)sinx ;⑤(e x ) e x ;⑥(a x ) a x lna ;4.两个函数的和、差、积的求导法那么法那么1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(u v)' u ' v '. 2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:(uv)' u 'vuv '.假设C 为常数,(Cu)' C 'uCu ' 0Cu ' Cu '. 即常数与函数的积的导数等于常数乘以函数 的导数:(Cu)' Cu '. 法那么 3:两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子的积再除以分母的平方:u‘=u'v uv'v v 2 v0〕。

(完整word版)高二数学导数及其应用复习讲义有答案

(完整word版)高二数学导数及其应用复习讲义有答案

高二数学复习讲义—导数及其应用知识归纳1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤:(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln xxa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。

高考数学二轮复习导数及其应用多选题知识点-+典型题及答案

高考数学二轮复习导数及其应用多选题知识点-+典型题及答案

高考数学二轮复习导数及其应用多选题知识点-+典型题及答案一、导数及其应用多选题1.关于函数()sin x f x e a x =+,(,)x π∈-+∞,下列说法正确的是( )A .当1a =时,()f x 在(0,(0))f 处的切线方程为210x y -+=;B .当1a =时,()f x 存在唯一极小值点0x ,且()010f x -<<;C .对任意0a >,()f x 在(,)π-+∞上均存在零点;D .存在0a <,()f x 在(,)π-+∞上有且只有一个零点. 【答案】ABD 【分析】当1a =时,()sin x f x e x =+,求出(),(0),(0)f x f f '',得到()f x 在(0,(0))f 处的切线的点斜式方程,即可判断选项A ;求出()0,()0f x f x ''><的解,确定()f x 单调区间,进而求出()f x 极值点个数,以及极值范围,可判断选项B ;令()sin 0xf x e a x =+=,当0a ≠时,分离参数可得1sin x x ae -=,设sin (),(,)xxg x x eπ=∈-+∞,求出()g x 的极值最值,即可判断选项C ,D 的真假. 【详解】A.当1a =时,()sin x f x e x =+,所以()cos x f x e x '=+,0(0)cos 02f e '=+=,0(0)01f e =+=,所以()f x 在(0,(0))f 处的切线方程为210x y -+=,故正确;B. 因为()sin 0x f x e x ''=->,所以()'f x 单调递增,又()202f π'-=>,334433()cos 442f e e ππππ--⎛⎫'-=+-=- ⎪⎝⎭,又233442e e e ππ⎛⎫= ⎪⎝>>⎭,即34e π>,则3()04f π'-<,所以存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得0()0f x '=,即 00cos 0x e x +=,则在()0,x π-上()0f x '<,在()0,x +∞上,()0f x '>,所以()f x 存在唯一极小值点0x,因为000000()sin sin cos 4xf x e x x x x π⎛⎫=+=-=- ⎪⎝⎭,03,42x ππ⎛⎫∈-- ⎪⎝⎭,所以03,44x πππ⎛⎫-∈-- ⎪⎝⎭()01,04x π⎛⎫-∈- ⎪⎝⎭,故正确; C.令()sin 0x f x e a x =+=,当0a ≠时,可得1sin x xa e-=,设sin (),(,)x xg x x eπ=∈-+∞,则cos sin 4()x xx x x g x e e π⎛⎫- ⎪-⎝⎭'==,令()0g x '=,解得,,14x k k Z k ππ=+∈≥-当52,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时()0g x '<,当592,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()0g x '>,所以当524x k ππ=+,,1k Z k ∈≥-时,()g x 取得极小值,即35,,...44x ππ=-,()g x 取得极小值,又35 (44)g g ππ⎛⎫⎛⎫-<> ⎪ ⎪⎝⎭⎝⎭,因为在3,4ππ⎡⎤--⎢⎥⎣⎦上,()g x 递减,所以()34342g x g e ππ⎛⎫≥-=- ⎪⎝⎭,所以当24x k ππ=+,,0k Z k ∈≥时, ()g x 取得极大值,即9,,...44x ππ=,()g x 取得极大值,又9 (44)g g ππ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭ ,所以 ()442g x g e ππ⎛⎫≤= ⎪⎝⎭,所以(),x π∈-+∞时,()34422g x e ππ-≤≤,当3412e a π-<-,即4a e >()f x 在(,)π-+∞上不存在零点,故C 错误; D.当412ae π-=,即4a e π=时,1=-y a 与()sin x xg x e =的图象只有一个交点,所以存在0a <,()f x 在(,)π-+∞上有且只有一个零点,故D 正确; 故选:ABD 【点睛】方法点睛:用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.2.设函数cos 2()2sin cos xf x x x=+,则( )A .()()f x f x π=+B .()f x 的最大值为12C .()f x 在,04π⎛⎫- ⎪⎝⎭单调递增 D .()f x 在0,4π⎛⎫⎪⎝⎭单调递减 【答案】AD 【分析】先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误. 【详解】()f x 的定义域为R ,且cos 2()2sin cos xf x x x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故1515y -≤≤,当y =时,有1cos 4ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max y =B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD 【点睛】方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用.3.已知2()ln f x x x =,2()()f x g x x'=,()'f x 是()f x 的导函数,则下列结论正确的是( )A .()f x 在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增.B .()g x 在(0,)+∞上两个零点C .当120x x e <<< 时,221212()()()m x x f x f x -<-恒成立,则32m ≥D .若函数()()h x f x ax =-只有一个极值点,则实数0a ≥ 【答案】ACD 【分析】求出导函数()'f x ,由()0f x '>确定增区间,判断A ,然后可得()g x ,再利用导数确定()g x 的单调性与极值,结合零点存在定理得零点个数,判断B ,构造函数2()()x f x mx ϕ=-,由()ϕx 在(0,)e 上递减,求得m 范围,判断C ,利用导数研究()h x 的单调性与极值点,得a 的范围,判断D . 【详解】()(2ln 1)(0)f x x x x '=+>,令()0f x '>,得1212ln 10ln 2x x x e -+>⇒>-⇒>,故A 正确2ln 1()x g x x+=, 212ln ()x g x x -'=,令()0g x '>得121ln 2x x e <⇒<,()0g x '<得120x e <<, 故()g x 在120,e ⎛⎫ ⎪⎝⎭上为减函数,在12e ⎛⎫+∞⎪⎝⎭上为增函数. 当x →时,()g x →-∞;当x →+∞时,()0g x →且g()0x >()g x ∴的大致图象为()g x ∴只有一个零点,故B 错.记2()()x f x mx ϕ=-,则()ϕx 在(0,)e 上为减函数,()(2ln 1)20x x x mx ϕ'∴=+-≤对(0,)x e ∈恒成立22ln 1m x ∴≥+对(0,)x e ∈恒成立 23m ∴≥32m ∴≥. 故C 正确.2()()ln h x f x ax x x ax =-=-,()(2ln 1)h x x x a =+'-,设()(2ln 1)H x x x =+,()h x 只有一个极值点, ()h x '0=只有一个解,即直线y a =与()y H x =的图象只有一个交点.()2(ln 1)12ln 3H x x x '=++=+,()H x '在(0,)+∞上为增函数,令()0H x '=,得320x e -=,当0(0,)x x ∈时,()0H x '<;当0(,)x x ∈+∞时,()0H x '>.()H x ∴在0(0,)x 上为减函数,在0(,)x +∞上为增函数,332203()21202H x e e --⎡⎤⎛⎫=⨯-+=-< ⎪⎢⎥⎝⎭⎣⎦,0(0,)x x ∈时,322ln 12ln 120x e -+<+=-<,即()0H x <,且0x →时,()0H x →,又x →+∞时,()H x →+∞,因此()H x 的大致图象如下(不含原点):直线y a =与它只有一个交点,则0a ≥.故D 正确. 故选:ACD . 【点睛】关键点点睛:本题考查用导数研究函数的性质,解题关键是由导数确定函数的单调性,得出函数的极值,对于零点问题,需要结合零点存在定理才能确定零点个数.注意数形结合思想的应用.4.阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :2yx 上两个不同点,A B 横坐标分别为1x ,2x ,以,A B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( )A .若AB 过抛物线的焦点,则P 点一定在抛物线的准线上B .若阿基米德三角形PAB 为正三角形,则其面积为4C .若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D .一般情况下,阿基米德三角形PAB 的面积212||4x x S -=【答案】ABC 【分析】设出直线AB 的斜截式方程、点,A B 的坐标,根据导数的几何意义求出切线,PA PB 的方程,进而求出点P 的坐标,将直线AB 的方程和抛物线方程联立,得到一元二次方程以及该方程两根的和、积的关系.A :把抛物线焦点的坐标代入直线AB 的斜截式方程中,根据抛物线的准线方程进行判断即可;B :根据正三角形的性质,结合正三角形的面积公式进行判断即可;C :根据直角三角形的性质,结合直角三角形的面积公式进行判断即可;D :根据点到直线距离公式、两点间距离公式进行求解判断即可.. 【详解】由题意可知:直线AB 一定存在斜率, 所以设直线AB 的方程为:y kx m =+,由题意可知:点221122(,),(,)A x x B x x ,不妨设120x x <<,由2'2yx y x ,所以直线切线,PA PB 的方程分别为:221112222(),2()y x x x x y x x x x -=--=-,两方程联立得:211122222()2()y x x x x y x x x x ⎧-=-⎨-=-⎩, 解得:12122x x x y x x +⎧=⎪⎨⎪=⎩,所以P 点坐标为:1212(,)2x x x x +,直线AB 的方程与抛物线方程联立得:2121220,y kx mx kx m x x k x x m y x=+⎧⇒--=⇒+==-⎨=⎩. A :抛物线C :2y x 的焦点坐标为1(0,)4,准线方程为 14y =-,因为AB 过抛物线的焦点,所以14m =,而1214x x m =-=-,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有||||PA PB =,= 因为 12x x ≠,所以化简得:12x x =-,此时221111(,),(,)A x x B x x -, P 点坐标为:21(0,)x -, 因为阿基米德三角形PAB 为正三角形,所以有||||PA AB =,112x x =-⇒=, 因此正三角形PAB, 所以正三角形PAB的面积为11sin 602224︒==, 故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA PB ⊥时, 所以1212121222121122122114PAPBx x x xx x kk x x x x x x x x ++--⋅=-⇒⋅=-⇒=---, 直线AB 的方程为:14y kx =+所以P 点坐标为:1(,)24k -,点 P 到直线AB 的距离为:=||AB ===,因为12121,4x x k x x +==-,所以21AB k =+, 因此直角PAB的面积为:2111(1)224k ⨯+=≥, 当且仅当0k =时,取等号,显然其面积有最小值14,故本说法正确; D :因为1212,x x k x x m +==-,所以1||AB x x ===-,点P 到直线AB 的距离为:212== 所以阿基米德三角形PAB的面积32121211224x x S x x -=⋅-=, 故本选项说法不正确. 故选:ABC 【点睛】关键点睛:解决本题的关键就是一元二次方程根与系数关系的整体代换应用,本题重点考查了数学运算核心素养的应用.5.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( ) A .1,2a b == B .3,3a b =-=- C .0,2a b >< D .0,0a b <>【答案】ABC 【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得13ax -=-,23a x -= 当x 变化时,()'f x ,()f x 的变化情况如下表:x,3a ⎛⎫--∞- ⎪ ⎪⎝⎭3a-- ,33a a ⎛⎫--- ⎪ ⎪⎝⎭3a- ,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭()'f x+-+()f x极大值 极小值故当3ax -=-,函数()f x 取得极大值2333333a a a a a a f a b b ⎛⎫-----=-+=-+ ⎪ ⎪⎝⎭, 当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图或则需0303a f a f ⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a ab -<<,B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需0303a f a f ⎧⎛-->⎪ ⎪⎝⎨-⎪>⎪⎩,即20332033a a b a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a ab ->>,D 选项,0,0a b <>,不一定满足,故D 不符合题意; 故选:ABC 【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.6.已知函数()1ln f x x x x=-+,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++= B .()f x 恰有2个零点C .()f x 既有最大值,又有最小值D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】本题首先可根据()10f -=以及13f判断出A 错误,然后根据当0x >时的函数单调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()121f x f x ⎛⎫=⎪⎝⎭,根据函数单调性即可证得121=x x ,D 正确. 【详解】函数()1ln f x x x x=-+的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x=-+,()2221111x x f x x x x -+-'=--=;当0x <时,1ln f x x x x,()2221111x x f x x x x -+-'=--=, A 项:1ln 1110f,22111131f,则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;B 项:当0x >时,222215124x x x f xx x ,函数()f x 是减函数,当0x <时,222215124x x x f xx x ,函数()f x 是减函数,因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确;C 项:由函数()f x 的单调性易知,C 错误;D 项:当1>0x 、20x >时, 因为()()120f x f x +=, 所以1222222221111ln lnf x f x x x x fx x x x , 因为()f x 在()0,∞+上为减函数,所以121x x =,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确, 故选:BD. 【点睛】本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.7.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减【答案】ACD 【分析】先求出函数的导数,然后对四个选项进行逐一分析解答即可, 对于选项A :当0,2x π⎛⎫∈ ⎪⎝⎭时,可得()0f x '<,可得()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减;当,2x ππ⎡⎤∈⎢⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]0,π上单调递减可得()()12f x f x >,可得1212sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==,进而作出判断;对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin xg x f x x''==,然后利用导数研究函数()g x '在区间(]0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数()g x 在(]0,π上的单调性,最后作出判断.【详解】()2cos sin x x xf x x -'=, (]0,x π∈,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos xx x<,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以()f x 在区间(]0,π上单调递减,故选项A 正确; 当120x x π<<≤时,()()12f x f x >,所以1212sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==, 所以当(]0,x π∈时,()[)0,1f x ∈,故选项C 正确;对()()cos g x xg x x '=+进行求导可得: 所以有()()()sin g x g x xg x x ''''=+-,所以()()sin xg x f x x''==,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]0,π上单调递增,因为()0g π'=, 从而()()0g x g π''≤=,所以函数()g x 在(]0,π上单调递减,故选项D 正确. 故选:ACD. 【点睛】方法点睛:本题考查导数的综合应用,对于函数()sin xf x x=的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.8.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x ='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误; D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n na a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.。

高考数学二轮复习导数及其应用多选题知识点-+典型题附解析

高考数学二轮复习导数及其应用多选题知识点-+典型题附解析

高考数学二轮复习导数及其应用多选题知识点-+典型题附解析一、导数及其应用多选题1.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x-'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.3.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD 【分析】 用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 2sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意. 故选:ABD 【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.4.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+ C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】 构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误. 【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x '-='<, ∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >; A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小. 故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<, 1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.5.定义在R 上的函数()f x ,若存在函数()g x ax b =+(a ,b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,下列命题中正确的是( )A .函数()2g x =-是函数ln ,0()1,0x x f x x >⎧=⎨⎩的一个承托函数B .函数()1g x x =-是函数()sin f x x x =+的一个承托函数C .若函数()g x ax = 是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]eD .值域是R 的函数()f x 不存在承托函数 【答案】BC 【分析】由承托函数的定义依次判断即可. 【详解】解:对A ,∵当0x >时,()ln (,)f x x =∈-∞+∞, ∴()()2f x g x ≥=-对一切实数x 不一定都成立,故A 错误;对B ,令()()()t x f x g x =-,则()sin (1)sin 10t x x x x x =+--=+≥恒成立, ∴函数()1g x x =-是函数()sin f x x x =+的一个承托函数,故B 正确; 对C ,令()xh x e ax =-,则()xh x e a '=-, 若0a =,由题意知,结论成立, 若0a >,令()0h x '=,得ln x a =,∴函数()h x 在(,ln )a -∞上为减函数,在(ln ,)a +∞上为增函数, ∴当ln x a =时,函数()h x 取得极小值,也是最小值,为ln a a a -, ∵()g x ax =是函数()x f x e =的一个承托函数, ∴ln 0a a a -≥, 即ln 1a ≤, ∴0a e <≤,若0a <,当x →-∞时,()h x →-∞,故不成立,综上,当0a e 时,函数()g x ax =是函数()xf x e =的一个承托函数,故C 正确;对D ,不妨令()2,()21f x x g x x ==-,则()()10f x g x -=≥恒成立, 故()21g x x =-是()2f x x =的一个承托函数,故D 错误. 故选:BC . 【点睛】方法点睛:以函数为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中函数只是基本的依托,考查的是考生创造性解决问题的能力.6.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()x h x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0xe f x e ex-'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.7.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n na a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.8.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确; 任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.9.函数()ln f x x x =、()()f x g x x'=,下列命题中正确的是( ).A .不等式()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减C .若函数()()2F x f x ax =-有两个极值点,则()0,1a ∈D .若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,则m 1≥ 【答案】AD 【分析】对A ,根据()ln f x x x =,得到()()ln 1f x xg x x x'+==,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,将函数()()2F x f x ax =-有两个极值点,()ln 120x a x+=+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2ln 2m g x x x x =-,用导数研究单调性. 【详解】对A ,因为()()()ln 1ln f x x f x x x g x x x'+===、, ()2ln xg x x -'=,令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;令()0g x '<,得()1x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫== ⎪⎝⎭, 故()g x 的图象如下所示:数形结合可知,()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭,故正确;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;对C ,若函数()()2F x f x ax =-有两个极值点,即()2ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+,要满足题意,则需()ln 2100x ax -+=+∞在,有两根, 也即()ln 120x a x+=+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102a <<. 故要满足题意,则102a <<,故错误; 对D ,若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,即22111222ln ln 22m m x x x x x x ->-恒成立, 构造函数()2ln 2m g x x x x =-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即ln 1x m x+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确. 故选:AD. 【点睛】本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.10.(多选题)已知函数31()1x x xe x f x e x x⎧<⎪=⎨≥⎪⎩,,,函数()()g x xf x =,下列选项正确的是( )A .点(0,0)是函数()f x 的零点B .12(0,1),(1,3)x x ∃∈∈,使12()()f x f x >C .函数()f x 的值域为)1e ,-⎡-+∞⎣D .若关于x 的方程[]2()2()0-=g x ag x 有两个不相等的实数根,则实数a 的取值范围是222e e,(,)e 82⎛⎤+∞ ⎥⎝⎦ 【答案】BC 【分析】根据零点的定义可判断A ;利用导数判断出函数在()0,1、()1,3上的单调性性,求出各段上的值域即可判断B ;利用导数求出函数的最值即可判断C ;利用导数求出函数的最值即可判断D. 【详解】对于选项A ,0是函数()f x 的零点,零点不是一个点,所以A 错误. 对于选项B ,当1x <时,()(1)xf x x e '=+,可得, 当1x <-时,()f x 单调递减; 当11x -<<时,()f x 单调递增; 所以,当01x <<时, 0()<<f x e ,当1x >时,4(3)()x e x f x x-'=, 当13x <<时,()f x 单调递减;当3x >时,()f x 单调递增;()y f x =图像所以,当13x <<时, 3()27e f x e << ,综上可得,选项B 正确;对于选项C ,min 1()(1)f x f e=-=-,选项C 正确. 对于选项D ,关于x 的方程[]2()2()0-=g x ag x 有两个不相等的实数根⇔关于x 的方程()[()2]0-=g x g x a 有两个不相等的实数根 ⇔关于x 的方程()20-=g x a 有一个非零的实数根⇔函数()y g x =与2y a =有一个交点,且0x ≠,22,1(),1x xx e x g x e x x⎧<⎪=⎨≥⎪⎩当1x <时,/2()(2)=+xg x e x x ,当x 变化时,'()g x ,()g x 的变化情况如下:x2x <-2-20x -<<0 01x << /()g x +-+()g x极大值 极小值极大值2(2)g e -=,极小值(0)0g =,当1≥x 时,3(2)'()e x g x x-= 当x 变化时,'()g x ,()g x 的变化情况如下: x 112x <<2 2x >/()g x-+()g xe极小值极小值2 (2)4eg=,()y g x=图像综上可得,22424<<eae或2a e>,a的取值范围是222e e,(,)e82⎛⎫+∞⎪⎝⎭,D不正确.故选:BC【点睛】本题考查了利用导数求函数的最值,利用导数研究方程的根,考查了转化与化归的思想,属于难题.。

高考数学二轮复习导数及其应用多选题知识归纳总结附解析

高考数学二轮复习导数及其应用多选题知识归纳总结附解析

高考数学二轮复习导数及其应用多选题知识归纳总结附解析一、导数及其应用多选题1.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e -=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e -'=,()π,πx ∈-,令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x ∴在,4ππ⎛⎫--⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.2.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线 【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=, 则点()ln ,A m m 、122,m B e m -⎛⎫⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m em -=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增, 所以,min112ln 2ln 222AB h ⎛⎫==-=+ ⎪⎝⎭,A 选项正确; ()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'= ⎪⎝⎭,令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e -=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-,所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-, 函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =. 当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.3.下列不等式正确的有( ) A2ln 3< B.ln π<C.15< D.3ln 2e <【答案】CD 【分析】 构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x -'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减 所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.4.对于函数2ln ()xf x x=,下列说法正确的有( ) A .()f x在x =12eB .()f x 有两个不同的零点 C.(2)f f f <<D .若21()f x k x>-在(0,)+∞上有解,则2e k <【答案】ACD 【分析】利用导数求出函数的单调区间,进一步求出函数的极值可判断A ;利用函数的单调性和函数值的范围判断B ;利用函数的单调性比较出函数值的大小关系判断C ;利用不等式有解问题的应用判断D . 【详解】函数2ln ()x f x x =,所以2431ln 212ln ()(0)x x xx x f x x x x⨯-⨯-'==>, 令()0f x '=,即2ln 1x =,解得x =当0x <<()0f x '>,故()f x在上为单调递增函数.当x >()0f x '<,故()f x在)+∞上为单调递减函数.所以()f x在x =12f e=,故A 正确;当0x <<()0f x '>,()f x在上为单调递增函数,因为()10f =,所以函数()f x在上有唯一零点,当x ≥2ln ()0xf x x=>恒成立,即函数()f x在)+∞上没有零点, 综上,()f x 有唯一零点,故B 错误.由于当x >()0f x '<,()f x在)+∞上为单调递减函数,因为2>>>(2)f f f <<,故C 正确;由于21()f x k x >-在(0,)+∞上有解,故221ln 1()x k f x x x +<+=有解,所以2ln 1()max x k x +<,设2ln 1()x g x x +=,则32ln 1()x g x x --'=,令()0g x '=,解得x =当x >()0f x '<,故()f x在)+∞上为单调递减函数.当0x <<时,()0f x '>,故()f x在上为单调递增函数.所以()22max e eg x g e ==-=. 故2ek <,故D 正确. 故选:ACD . 【点睛】方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.5.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2x x aax e ef x a a a -+⎛⎫=⋅=⋅ ⎪⎝⎭,其中a 为非零常数,在此坐标平面上,过原点的直线与悬链线相切于点()()00,T x f x ,则0x a ⎡⎤⎢⎥⎣⎦的值可能为( )(注:[]x 表示不大于x 的最大整数)A .2-B .1-C .1D .2【答案】AC 【分析】求出导数,表示出切线,令0x t a=,可得()()110t tt e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在性定理可得021x a -<<-或012xa<<,即可求出. 【详解】()2x xaae ef x a -+=⋅,()2x x aae ef x --'∴=,∴切线斜率002x x aae ek --=,()0002x x aae ef x a -+=⋅,则切线方程为()0000022x x x x aaaaee e ey a x x --+--⋅=-,直线过原点,()0000022x x x x aaa ae e e ea x --+-∴-⋅=⋅-令0x t a=,则可得()()110t tt e t e --++=, 令()()()11xxh x x e x e -=-++,则t 是()h x 的零点,()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,()()x x h x x e e -'=-+,当0x >时,()0h x '<,()h x 单调递减,()1120h e -=>,()22230h e e -=-+<,()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,且根据单调性可得()h x 仅有这两个零点,021x a ∴-<<-或012xa<<,02x a ⎡⎤∴=-⎢⎥⎣⎦或1. 故选:AC. 【点睛】本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令0x t a=,()()110t t t e t e --++=,求()()()11x xh x x e x e -=-++的零点问题.6.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ). A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴213x x -==≥,B 对, C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a a f x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-, 且3y xy x x =-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.7.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x'<,且()11f =,则下列结论正确的是( ) A .()2f e > B .10f e ⎛⎫> ⎪⎝⎭C .()1,x e ∀∈,()2f x <D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+> ⎪⎝⎭- 【答案】BCD 【分析】令()()ln F x f x x =-,求导得:'1()()0F x f x x'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;【详解】令()()ln F x f x x =-,∴'1()()0F x f x x'=-<, ()F x ∴在(0,)+∞单调递减, (1)1f =,(1)(1)1F f ∴==,对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误; 以B ,111(1)()110eF F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭,故B 正确;对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+,(1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭,1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭,故D 正确; 故选:BCD. 【点睛】根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.8.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是( ). A .2- B .1-C .0D .1【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,.当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>,利用导数法研究其最小值即可. 【详解】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x=++>, 则()222131ln 2ln x x x F x x x x x---'=-+=. 令()ln 2x x x ϕ=--, 因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*)因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>, 所以()03,4x ∈,且002ln 0x x --=, 将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数, 所以713,34t ⎛⎫∈⎪⎝⎭,即()min 1713,41216F x ⎛⎫∈ ⎪⎝⎭.因为k 为整数,所以0k ≤. 故选:ABC 【点睛】本题主要考查函数与不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于较难题.9.(多选题)已知函数31()1x x xe x f x e x x⎧<⎪=⎨≥⎪⎩,,,函数()()g x xf x =,下列选项正确的是( )A .点(0,0)是函数()f x 的零点B .12(0,1),(1,3)x x ∃∈∈,使12()()f x f x >C .函数()f x 的值域为)1e ,-⎡-+∞⎣D .若关于x 的方程[]2()2()0-=g x ag x 有两个不相等的实数根,则实数a 的取值范围是222e e,(,)e 82⎛⎤+∞ ⎥⎝⎦ 【答案】BC 【分析】根据零点的定义可判断A ;利用导数判断出函数在()0,1、()1,3上的单调性性,求出各段上的值域即可判断B ;利用导数求出函数的最值即可判断C ;利用导数求出函数的最值即可判断D. 【详解】对于选项A ,0是函数()f x 的零点,零点不是一个点,所以A 错误. 对于选项B ,当1x <时,()(1)xf x x e '=+,可得, 当1x <-时,()f x 单调递减;当11x -<<时,()f x 单调递增; 所以,当01x <<时, 0()<<f x e ,当1x >时,4(3)()x e x f x x -'=,当13x <<时,()f x 单调递减; 当3x >时,()f x 单调递增;()y f x =图像所以,当13x <<时, 3()27e f x e << ,综上可得,选项B 正确;对于选项C ,min 1()(1)f x f e=-=-,选项C 正确. 对于选项D ,关于x 的方程[]2()2()0-=g x ag x 有两个不相等的实数根⇔关于x 的方程()[()2]0-=g x g x a 有两个不相等的实数根 ⇔关于x 的方程()20-=g x a 有一个非零的实数根⇔函数()y g x =与2y a =有一个交点,且0x ≠,22,1(),1x xx e x g x e x x⎧<⎪=⎨≥⎪⎩当1x <时,/2()(2)=+xg x e x x ,当x 变化时,'()g x ,()g x 的变化情况如下:x2x <-2-20x -<<0 01x << /()g x +-+()g x极大值 极小值极大值24(2)g e -=,极小值(0)0g =,当1≥x 时,3(2)'()e x g x x -=当x 变化时,'()g x ,()g x 的变化情况如下:x 1 12x <<2 2x >/()g x-+()g xe极小值极小值(2)4e g =,()y g x =图像综上可得,22424<<e a e 或2a e >,a 的取值范围是222e e,(,)e 82⎛⎫+∞ ⎪⎝⎭,D 不正确.故选:BC 【点睛】本题考查了利用导数求函数的最值,利用导数研究方程的根,考查了转化与化归的思想,属于难题.10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a cb d -+-的值可能是( ) A .7 B .8C .9D .10【答案】BCD 【分析】由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项. 【详解】由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=-由1121cd c d -=⇒=-+-,令()2g x x =-+ 则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD. 【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

导数的概念与运用含答案

导数的概念与运用含答案

导 数1、导函数的概念:如果函数()f x 在开区间(a,b )内可导,对于开区间(a,b )内的每一个0x ,都对应着一个导数 ()0fx ',这样()f x 在开区间(a,b )内构成一个新的函数,这一新的函数叫做()f x 在开区间(a,b )内的导函数,记作 ()0limx y f x y x∆→∆'='=∆()()limx f x x f x x∆→+∆-=∆,导函数也简称为导数。

2、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ∆=+∆-; (2)求平均变化率()()00f x x f x y xx +∆-∆=∆ ;(3)取极限,得导数()00lim x yf x x→∆'=∆ 。

3、导数的几何意义:曲线()y f x =在点()()0,0P x f x 处的切线的斜率,即曲线()y f x =在点()()0,0P x f x 处的切线的斜率是()0f x ',相应地切线的方程是()()000y y f x x x -='-。

特别提醒:(1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条;4、导数的运算公式及法则:(1)常数函数的导数为0,即0C '=(C 为常数); (2)()()1n n x nx n Q -'=∈,与此有关的如下:()()1122111,2x x x x x x ''-⎛⎫⎛⎫='=-'== ⎪ ⎪⎝⎭⎝⎭;(3) 若(),()f x g x 有导数,则①[()()]()()f x g x f x g x '''±=±;②[()]()C f x Cf x ''= 。

高考数学二轮核心考点突破:专题04-导数的概念与应用(含答案)

高考数学二轮核心考点突破:专题04-导数的概念与应用(含答案)

专题04 导数的概念与应用【自主热身,归纳提炼】1、曲线y =x -cos x 在点⎝ ⎛⎭⎪⎫π2,π2处的切线方程为________. 【答案】2x -y -π2=0 【解析】:因为y ′=1+sin x ,所以k 切=2,所以所求切线方程为y -π2=2⎝⎛⎭⎪⎫x -π2,即2x -y -π2=0.2、在平面直角坐标系xOy 中,若曲线y =ln x 在x =e(e 为自然对数的底数)处的切线与直线ax -y +3=0垂直,则实数a 的值为________.【答案】-e【解析】:因为y ′=1x ,所以曲线y =ln x 在x =e 处的切线的斜率k =y ′x =e =1e.又该切线与直线ax -y +3=0垂直,所以a ·1e =-1,所以a =-e.3、若曲线C 1:y =ax 3-6x 2+12x 与曲线C 2:y =e x 在x =1处的两条切线互相垂直,则实数a 的值为________.【答案】-13e【解析】:因为y ′=3ax 2-12x +12,y ′=e x ,所以两条曲线在x =1处的切线斜率分别为k 1=3a ,k 2=e ,即k 1·k 2=-1,即3a e =-1,所以a =-13e. 4、在平面直角坐标系xOy 中,记曲线y =2x -m x (x ∈R ,m ≠-2)在x =1处的切线为直线l .若直线l 在两坐标轴上的截距之和为12,则实数m 的值为________.【答案】-3或-4【解析】:y ′=2+m x 2,y ′x =1=2+m ,所以直线l 的方程为y -(2-m )=(2+m )(x -1),即y =(2+m )x -2m .令x =0,得y =-2m ;令y =0,x =2m m +2.由题意得2m m +2-2m =12,解得m =-3或m =-4. 5、设f (x )=4x 3+mx 2+(m -3)x +n (m ,n ∈R )是R 上的单调增函数,则实数m 的值为________.【答案】6【解析】:因为f ′(x )=12x 2+2mx +(m -3),又函数f (x )是R 上的单调增函数,所以12x 2+2mx +(m -3)≥0在R 上恒成立,所以(2m )2-4×12(m -3)≤0,整理得m 2-12m +36≤0,即(m -6)2≤0.又因为(m -6)2≥0,所以(m -6)2=0,所以m =6.6、已知函数若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为 .【答案】(5,0)【解析】由,所以,,所以,在上单调递增,即至多有一个交点,要使函数f (x )的图象与x 轴有且只有两个不同的交点,即,从而可得 (-5,0).7、已知点A (1,1)和B (-1,-3)在曲线C :y =ax 3+bx 2+d (a ,b ,d 均为常数)上.若曲线C 在点A ,B 处的切线互相平行,则a 3+b 2+d =________.【答案】:7【解析】 由题意得y ′=3ax 2+2bx ,因为k 1=k 2,所以3a +2b =3a -2b ,即b =0.又a +d =1,d -a =-3,所以d =-1,a =2,即a 3+b 2+d =7.8、已知函数f (x )=ln x -m x (m ∈R )在区间[1,e]上取得最小值4,则m =________.【答案】:-3e9、 曲线f (x )=f ′1e·e x -f (0)x +12x 2在点(1,f (1))处的切线方程为________________. 【答案】:y =e x -12【解析】:因为f ′(x )=f ′1e ·e x -f (0)+x ,故有⎩⎪⎨⎪⎧ f 0=f ′1e ,f ′1=f ′1-f 0+1,即⎩⎪⎨⎪⎧ f 0=1,f ′1=e ,原函数表达式可化为f (x )=e x -x +12x 2,从而f (1)=e -12,所以所求切线方程为y -⎝ ⎛⎭⎪⎫e -12=e(x -1),即y =e x -12. 应注意“在某点处的切线”与“过某点处的切线”的区别,前者表示此点即为切点,后者表示此点不一定是切点,过此点可能存在两条或多条切线.10、已知函数在时取得极值,则a 的值等于 .【答案】:3【解析】 ,根据题意,解得,经检验满足题意,所以a 的值等于3.11.已知三次函数在是增函数,则m 的取值范围是 .【答案】:【解析】 ,由题意得恒成立,∴,∴.12、 若函数在开区间既有最大值又有最小值,则实数a 的取值范围是 . 【答案】:.【解析】 :函数在处取得极小值,在处取得极大值,又因为函数在开区间内既有最大值又有最小值,所以即a 的取值范围是.【问题探究,开拓思维】例1、若直线为曲线的一条切线,则实数的值是 .【答案】:1【解析】: 设切点的横坐标为,由曲线,得,所以依题意切线的斜率为,得,所以切点为,又因为切线过切点,故有,解得.(3) 当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.693 1,ln3≈1.098 6)思路分析 第(2)问,由于问题中含有参变量a ,因此,函数的单调性及单调区间就随着a 的变化而变化,因此,就需要对参数a 进行讨论,要讨论时,注意讨论的标准的确定方式:一是导函数是何种函数;二是导函数的零点是否在定义域内;三是导函数的零点的大小关系如何.第(3)问,注意到2λ≥h (x )有解等价于h (x )min ≤2λ,因此,问题归结为求函数h (x )的最小值,在研究h (x )的最小值时,要注意它的极值点是无法求解的,因此,通过利用极值点所满足的条件来进行消去ln x 来解决问题.另一方面,我们还可以通过观察,来猜测λ的最小值为0,下面来证明当λ≤-1时2λ≥h (x )不成立,即h (x )>-2则可.【解析】:(1) 当a =2时,方程g (e x )=0即为2e x +1ex -3=0,去分母,得 2(e x )2-3e x +1=0,解得e x =1或e x =12,(2分) 故所求方程的根为x =0或x =-ln2.(4分)综上所述,当a <0时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的单调递增区间为(0,+∞);当a >1时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫a -1a ,+∞ .(10分) (3) 解法1 当a =1时,g (x )=x -3,h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0,所以存在唯一x 0∈⎝ ⎛⎭⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,(12分) 当x ∈(0,x 0)时,h ′(x )<0;当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-3)·⎝ ⎛⎭⎪⎫3x 0-1=-x 0-32x 0=6-⎝ ⎛⎭⎪⎫x 0+9x 0. 记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭⎪⎫32,2上单调递增,(14分) 所以r ⎝ ⎛⎭⎪⎫32<h (x 0)<r (2), 即h (x 0)∈⎝ ⎛⎭⎪⎫-32,-12, 由2λ≥-32,且λ为整数,得λ≥0, 所以存在整数λ满足题意,且λ的最小值为0.(16分)解法2 当a =1时,g (x )=x -3,所以h (x )=(x -3)ln x ,由h (1)=0,得当λ=0时,不等式2λ≥h (x )有解,(12分)下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立.显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立,只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立.即证明ln x +2x -3<0.令m (x )=ln x +2x -3, 所以m ′(x )=1x -2x -32=x 2-8x +9x x -32,由m ′(x )=0,得x =4-7,(14分) 当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0.所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.综上所述,存在整数λ满足题意,且λ的最小值为0.(16分)解后反思 研究恒成立问题、存在性问题,其本质就是研究相关函数的最值问题,这样就可以让问题的研究目标具体化.同时,在研究此类问题时,经常可以采用从特殊到一般的方式来帮助我们进行思考。

高考数学二轮复习导数及其应用多选题知识点总结含答案

高考数学二轮复习导数及其应用多选题知识点总结含答案

高考数学二轮复习导数及其应用多选题知识点总结含答案一、导数及其应用多选题1.已知函数1(),()122x x f x e g x n ==+的图象与直线y =m 分别交于A 、B 两点,则( )A .f (x )图像上任一点与曲线g (x )上任一点连线线段的最小值为2+ln 2B .∃m 使得曲线g (x )在B 处的切线平行于曲线f (x )在A 处的切线C .函数f (x )-g (x )+m 不存在零点D .∃m 使得曲线g (x )在点B 处的切线也是曲线f (x )的切线 【答案】BCD 【分析】利用特值法,在f (x )与g (x )取两点求距离,即可判断出A 选项的正误;解方程12()(2)m f lnm g e-''=,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点(C n ,())g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】在函数1(),()122xx f x e g x n ==+上分别取点1(0,1),(2,)2P Q,则||2PQ =,而2ln 2<+(注ln 20.7≈),故A 选项不正确; ()x f x e =,1()22x g x ln =+,则()x f x e '=,1()g x x'=,曲线()y f x =在点A 处的切线斜率为()f lnm m '=, 曲线()y g x =在点B 处的切线斜率为12121(2)2m m g ee--'=,令12()(2)m f lnm g e-''=,即1212m m e-=,即1221m me -=,则12m =满足方程1221m me -=,m ∴∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数1()()()22xx F x f x g x m e ln m =-+=-+-,可得1()x F x e x'=-,函数1()xF x e x'=-在(0,)+∞上为增函数,由于1()20F e '<,F '(1)10e =->,则存在1(,1)2t ∈,使得1()0tF t e t'=-=,可得t lnt =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.∴11()()2222t t min t F x F t e ln m e lnt m ln ==-+-=-++-11132220222t m ln m ln ln m t =+++->+-=++>, ∴函数()()()F x f x g x m =-+没有零点,C 选项正确;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点(C n ,())g n ,则曲线()y f x =在点A 处的切线方程为()lnm y m e x lnm -=-,即(1)y mx m lnm =+-, 同理可得曲线()y g x =在点C 处的切线方程为1122n y x ln n =+-, ∴11(1)22m n n m lnm ln ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得1(1)202m m lnm ln --++=,令1()(1)22G x x x lnx ln =--++,则11()1x G x lnx lnx x x-'=--=-, 函数()y G x '=在(0,)+∞上为减函数,G '(1)10=>,1(2)202G ln '=-<, 则存在(1,2)s ∈,使得1()0G s lns s'=-=,且1s s e =.当0x s <<时,()0G x '>,当x s >时,()0G x '<.∴函数()y G x =在(2,)+∞上为减函数,5(2)02G =>,17(8)20202G ln =-<, 由零点存 定理知,函数()y G x =在(2,)+∞上有零点, 即方程1(1)202m m lnm ln --++=有解. m ∴∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线.故选:BCD . 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,考查了转化思想和数形结合思想,属难题.2.函数ln ()xf x x=,则下列说法正确的是( ) A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<,且()f x 在(0,)e 单调递增ln f f e ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ==== 252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.3.函数()()320ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正确的是( ) A .230b ac ->B .()f x 在区间()12,x x 上单调递减C .若()10af x <,则()f x 只有一个零点D .存在0x ,使得()()()1202f x f x f x +=【答案】ACD 【分析】利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称,可判断D 选项的正误. 【详解】()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.对于A 选项,由题意可知,关于x 的二次方程()23200ax bx c a ++=≠有两个不等的实根,则24120b ac ∆=->,可得230b ac ->,A 选项正确;对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间()12,x x 上单调递增,B 选项错误;对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确; 对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223bx x a +=-,123c x x a=, ()()()()()()()()3232f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤-++=-+-+-++++++++⎣⎦⎣⎦()()()()()(322322322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣()()322223222a t tx b t x ct d =+++++,取3bt a=-,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦32222223333b b b b a b c d fa a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称, 1223bx x a+=-,()()1223b f x f x f a ⎛⎫∴+=- ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.4.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴213x x -==≥,B 对, C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a af x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-, 且3y xy x x =-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.5.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( )A .()()()m x f x g x =-在0x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1-D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x +'∴=+=>,当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误; 对于D ,函数()f x 和()h x的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线方程为(2e y k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2ey =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x 存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.6.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln xf x x=,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3ex y =D .1122y x =- 【答案】AB 【分析】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解. 【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点, 由函数()ln x f x x =,可得()21ln xf x x-'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方; 又由函数()1x g x e-=,可得()1e0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =, 此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合;设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为0201ln x k x -=,又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x e =, 所以21ln 12()e k e e -==,可得切线方程为2x y e =, 又由直线3x y e =与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1, 明显不满足,排除D.故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.7.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2eln h x x =(e 为自然对数的底数),则下列结论正确的是( )A .()()()m x f x g x =-在32x ⎛⎫∈ ⎪⎝⎭内单调递增B .()f x 和()g x 之间存在“隔离直线,且b 的最小值为4C .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是(]4,1-D .()f x 和()h x 之间存在唯一的“隔离直线”e y =-【答案】AD【分析】求出()()()m x f x g x =-的导数,检验在x ⎛⎫∈ ⎪⎝⎭内的导数符号,即可判断选项A ;选项B 、C 可设()f x 、()g x 的隔离直线为y kx b =+,2x kx b ≥+对一切实数x 都成立,即有10∆≤,又1kx b x≤+对一切0x <都成立,20∆≤,0k ≤,0b ≤,根据不等式的性质,求出k 、b 的范围,即可判断选项B 、C ;存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线的方程为(y e k x -=,构造函数求出函数的导数,根据导数求出函数的最值.【详解】对于选项A :()()()21m x f x g x x x =-=-,()212m x x x'=+, 当x ⎛⎫∈ ⎪⎝⎭时,()2120m x x x '=+>, 所以函数()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;故选项A 正确 对于选项BC :设()f x 、()g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 都成立,即有10∆≤,即240k b +≤,又1kx b x≤+对一切0x <都成立,则210kx bx +-≤,即 20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,可得40k -≤≤,同理可得:40b -≤≤,故选项B 不正确,故选项C 不正确;对于选项D :函数()f x 和()h x 的图象在x =()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线的方程为(y e k x -=,即y kx e =-,由()f x kx e ≥-,可得20x kx e -+≥对于x ∈R 恒成立,则0∆≤,只有k =y e =-,下面证明()h x e ≤-,令()2n ()l G x e h x e x e =--=--,()x G x x'=,当x =()0'=G x,当0x <<时,()0'<G x,当x >()0G x '>,则当x =()G x 取到极小值,极小值是0,也是最小值.所以()()0G x e h x =--≥,则()h x e ≤-当0x >时恒成立.所以()f x 和()g x 之间存在唯一的“隔离直线”e y =-,故选项D 正确.故选:AD【点睛】本提以函数为载体,考查新定义,关键是对新定义的理解,考查函数的导数,利用导数求最值,属于难题.8.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x f θ=,()y g θ=,则下列说法正确的是( )A .()x fθ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1f g θθ+≥在02πθ⎛⎤∈ ⎥⎝⎦,上恒成立; D .函数()()22t fg θθ=+的最大值为2.【答案】ACD【分析】 依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos 2θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解.【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=,对于A ,函数()cos f θθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos fθθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫ ⎪⎝⎭为增函数,在,2ππ⎛⎫ ⎪⎝⎭为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确; 对于D ,函数()()222cos sin2t f g θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+, 令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫ ⎪⎝⎭上单调递减,当6πθ=即1sin 2θ=,cos 2θ=时,函数取得极大值1222t =⨯= 又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,所以函数()()22t fg θθ=+,故D 正确.故选:ACD.【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.。

高考数学二轮复习导数及其应用多选题知识点-+典型题含答案

高考数学二轮复习导数及其应用多选题知识点-+典型题含答案

高考数学二轮复习导数及其应用多选题知识点-+典型题含答案一、导数及其应用多选题1.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线 【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=, 则点()ln ,A m m 、122,m B e m -⎛⎫⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m e m -=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增, 所以,min 112ln 2ln 222AB h ⎛⎫==-=+⎪⎝⎭,A 选项正确; ()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'= ⎪⎝⎭,令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e -=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-,所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-, 函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =. 当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.2.关于函数()sin x f x e a x =+,(,)x π∈-+∞,下列说法正确的是( ) A .当1a =时,()f x 在(0,(0))f 处的切线方程为210x y -+=; B .当1a =时,()f x 存在唯一极小值点0x ,且()010f x -<<; C .对任意0a >,()f x 在(,)π-+∞上均存在零点; D .存在0a <,()f x 在(,)π-+∞上有且只有一个零点. 【答案】ABD 【分析】当1a =时,()sin x f x e x =+,求出(),(0),(0)f x f f '',得到()f x 在(0,(0))f 处的切线的点斜式方程,即可判断选项A ;求出()0,()0f x f x ''><的解,确定()f x 单调区间,进而求出()f x 极值点个数,以及极值范围,可判断选项B ;令()sin 0xf x e a x =+=,当0a ≠时,分离参数可得1sin x x ae -=,设sin (),(,)xxg x x eπ=∈-+∞,求出()g x 的极值最值,即可判断选项C ,D 的真假. 【详解】A.当1a =时,()sin x f x e x =+,所以()cos x f x e x '=+,0(0)cos 02f e '=+=,0(0)01f e =+=,所以()f x 在(0,(0))f 处的切线方程为210x y -+=,故正确;B. 因为()sin 0x f x e x ''=->,所以()'f x 单调递增,又()202f π'-=>,334433()cos 442f e e ππππ--⎛⎫'-=+-=- ⎪⎝⎭,又233442e e e ππ⎛⎫= ⎪⎝>>⎭,即34e π>,则3()04f π'-<,所以存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得0()0f x '=,即 00cos 0x e x +=,则在()0,x π-上()0f x '<,在()0,x +∞上,()0f x '>,所以()f x 存在唯一极小值点0x,因为000000()sin sin cos 4xf x e x x x x π⎛⎫=+=-=- ⎪⎝⎭,03,42x ππ⎛⎫∈-- ⎪⎝⎭,所以03,44x πππ⎛⎫-∈-- ⎪⎝⎭()01,04x π⎛⎫-∈- ⎪⎝⎭,故正确; C.令()sin 0x f x e a x =+=,当0a ≠时,可得1sin x xa e-=,设sin (),(,)x xg x x eπ=∈-+∞,则cos sin 4()x x x x x g x e e π⎛⎫- ⎪-⎝⎭'==,令()0g x '=,解得,,14x k k Z k ππ=+∈≥-当52,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时()0g x '<,当592,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()0g x '>,所以当524x k ππ=+,,1k Z k ∈≥-时,()g x 取得极小值,即35,,...44x ππ=-,()g x 取得极小值,又35 (44)g g ππ⎛⎫⎛⎫-<> ⎪ ⎪⎝⎭⎝⎭,因为在3,4ππ⎡⎤--⎢⎥⎣⎦上,()g x 递减,所以()34342g x g e ππ⎛⎫≥-=- ⎪⎝⎭,所以当24x k ππ=+,,0k Z k ∈≥时, ()g x 取得极大值,即9,, (44)x ππ=,()g x 取得极大值,又9 (44)g g ππ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭ ,所以 ()442g x g e ππ⎛⎫≤= ⎪⎝⎭,所以(),x π∈-+∞时,()34422g x e ππ-≤≤,当3412e a π-<-,即34a e π>时,()f x 在(,)π-+∞上不存在零点,故C 错误; D.当412ae -=4a e π=时,1=-y a 与()sin x xg x e =的图象只有一个交点,所以存在0a <,()f x 在(,)π-+∞上有且只有一个零点,故D 正确; 故选:ABD 【点睛】方法点睛:用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.3.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.4.下列不等式正确的有( ) A2ln 3< B.ln π<C.15< D.3ln 2e <【答案】CD 【分析】 构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减 所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.5.对于函数2ln ()xf x x =,下列说法正确的有( ) A .()f x在x =12eB .()f x 有两个不同的零点 C.(2)f f f <<D .若21()f x k x>-在(0,)+∞上有解,则2e k <【答案】ACD 【分析】利用导数求出函数的单调区间,进一步求出函数的极值可判断A ;利用函数的单调性和函数值的范围判断B ;利用函数的单调性比较出函数值的大小关系判断C ;利用不等式有解问题的应用判断D . 【详解】函数2ln ()x f x x =,所以2431ln 212ln ()(0)x x xx x f x x x x⨯-⨯-'==>, 令()0f x '=,即2ln 1x =,解得x =当0x <<()0f x '>,故()f x 在上为单调递增函数.当x >()0f x '<,故()f x 在)+∞上为单调递减函数.所以()f x 在x =12f e=,故A 正确;当0x <<()0f x '>,()f x 在上为单调递增函数,因为()10f =,所以函数()f x 在上有唯一零点,当x ≥2ln ()0xf x x=>恒成立,即函数()f x 在)+∞上没有零点, 综上,()f x 有唯一零点,故B 错误.由于当x >()0f x '<,()f x 在)+∞上为单调递减函数,因为2>>>(2)f f f <<,故C 正确;由于21()f x k x>-在(0,)+∞上有解,故221ln 1()x k f x x x +<+=有解, 所以2ln 1()max x k x +<,设2ln 1()x g x x +=,则32ln 1()x g x x --'=,令()0g x '=,解得x=当x>()0f x '<,故()f x 在)+∞上为单调递减函数. 当0x<<时,()0f x '>,故()f x 在上为单调递增函数. 所以()22max e eg x g e ==-=. 故2ek <,故D 正确. 故选:ACD . 【点睛】方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.6.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<--【答案】ACD【分析】由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】 因为当0x >时,()'()1fx f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1xf xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43(4)+1(3)+1>f f e e,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e ,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确;()()4>1g g ,即4(4)+1(1)+1>f f e e,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确,故选:ACD. 【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.7.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( ) A .1,2a b == B .3,3a b =-=- C .0,2a b >< D .0,0a b <>【答案】ABC 【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得13ax -=-,23a x -= 当x 变化时,()'f x ,()f x 的变化情况如下表:x,3a ⎛⎫--∞- ⎪ ⎪⎝⎭3a-- ,33a a ⎛⎫--- ⎪ ⎪⎝⎭3a- ,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭()'f x+-+()f x极大值 极小值故当3ax -=-,函数()f x 取得极大值2333333a a a a a a f a b b ⎛⎫-----=-+=-+ ⎪ ⎪⎝⎭, 当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图或则需0303a f a f ⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a ab -<<,B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需00f f⎧⎛>⎪ ⎪⎝⎨⎪>⎪⎩,即00b b ⎧>⎪⎪>,即0b >>, D 选项,0,0a b <>,不一定满足,故D 不符合题意;故选:ABC【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.8.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果. 【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=, 因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确;C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->,所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n n a a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>, 所以112n n n a a a ++>,所以D 错误.故选:AB.【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题04 导数的概念与应用
【自主热身,归纳提炼】
1、曲线y =x -cos x 在点⎝ ⎛⎭⎪⎫π2,π2处的切线方程为________. 【答案】2x -y -π2
=0 【解析】:因为y ′=1+sin x ,所以k 切=2,所以所求切线方程为y -π2=2⎝
⎛⎭⎪⎫x -π2,即2x -y -π2=0. 2、在平面直角坐标系xOy 中,若曲线y =ln x 在x =e(e 为自然对数的底数)处的切线与直线ax -y +3=0垂直,则实数a 的值为________.
【答案】-e
【解析】:因为y ′=1x ,所以曲线y =ln x 在x =e 处的切线的斜率k =y ′x =e =1e
.又该切线与直线ax -y +3=0垂直,所以a ·1e
=-1,所以a =-e. 3、若曲线C 1:y =ax 3-6x 2+12x 与曲线C 2:y =e x 在x =1处的两条切线互相垂直,则实数a 的值为________.
【答案】-13e
【解析】:因为y ′=3ax 2-12x +12,y ′=e x ,所以两条曲线在x =1处的切线斜率分别为k 1=3a ,k 2=e ,
即k 1·k 2=-1,即3a e =-1,所以a =-13e
. 4、在平面直角坐标系xOy 中,记曲线y =2x -m x (x ∈R ,m ≠-2)在x =1处的切线为直线l .若直线l 在两坐标轴上的截距之和为12,则实数m 的值为________.
【答案】-3或-4
【解析】:y ′=2+m x 2,y ′x =1=2+m ,所以直线l 的方程为y -(2-m )=(2+m )(x -1),即y =(2+m )x -2m .令x =0,得y =-2m ;令y =0,x =
2m m +2.由题意得2m m +2-2m =12,解得m =-3或m =-4. 5、设f (x )=4x 3+mx 2+(m -3)x +n (m ,n ∈R )是R 上的单调增函数,则实数m 的值为________.
【答案】6
【解析】:因为f ′(x )=12x 2+2mx +(m -3),又函数f (x )是R 上的单调增函数,所以12x 2
+2mx +(m -3)≥0在R 上恒成立,所以(2m )2-4×12(m -3)≤0,整理得m 2-12m +36≤0,即(m -6)2≤0.又因为(m -6)2≥0,所以(m -6)2=0,所以m =6.
6、已知函数
若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为 . 【答案】(5,0)
【解析】由,所以,,所以,()f x 在[]01,
上单调递增,即至多有一个交点,要使函数f (x )的图象与x 轴有且只有两个
不同的交点,即500m m +>⎧⎨<⎩
,从而可得m ∈(-5,0). 7、已知点A (1,1)和B (-1,-3)在曲线C :y =ax 3+bx 2+d (a ,b ,d 均为常数)上.若曲线C 在点A ,B 处的切线互相平行,则a 3+b 2+d =________.
【答案】:7
【解析】 由题意得y ′=3ax 2+2bx ,因为k 1=k 2,所以3a +2b =3a -2b ,即b =0.又a +d =1,d -a =-3,所以d =-1,a =2,即a 3+b 2+d =7.
8、已知函数f (x )=ln x -m x
(m ∈R )在区间[1,e]上取得最小值4,则m =________.
【答案】:-3e
9、 曲线f (x )=f ′1
e
·e x -f (0)x +12x 2在点(1,f (1))处的切线方程为________________. 【答案】:y =e x -1
2
【解析】:因为f ′(x )=f ′1e ·e x -f (0)+x ,故有⎩⎪⎨⎪⎧ f 0=f ′1e ,f ′1=f ′1-f 0+1,即
⎩⎪⎨⎪⎧ f 0=1,f ′1=e ,原函数表达式可化为f (x )=e x -x +12x 2,从而f (1)=e -12
,所以所求切线方程为y -
⎝ ⎛⎭⎪⎫e -12=e(x -1),即y =e x -12. 应注意“在某点处的切线”与“过某点处的切线”的区别,前者表示此点即为切点,后者表示此点不一定是切点,过此点可能存在两条或多条切线.
10、已知函数
在3x =-时取得极值,则a 的值等于 . 【答案】:3
【解析】 ,根据题意'(3)0f -=,解得3a =,经检验满足题意,所以a 的值等于3. 11.已知三次函数
在(,)x ∈-∞+∞是增函数,则m 的取值范围是 .
【答案】:24m ≤≤
【解析】
,由题意得恒成立,∴
,∴24m ≤≤.
12、 若函数
在开区间2(6)a a -, 既有最大值又有最小值,则实数a 的取值范围是 .
【答案】:{2}. 【解析】 :函数()g x 在1x =处取得极小值(1)2g =-,在1x =-处取得极大值(1)2g -=,又因为函数在开
区间2(6)a a -, 内既有最大值又有最小值,所以即a 的取值范围是{2}.
【问题探究,开拓思维】
例1、若直线2y x b =+为曲线e x y x =+的一条切线,则实数b 的值是 .
【答案】:1
【解析】: 设切点的横坐标为0x ,由曲线x y e x =+,得1x
y e '=+,所以依题意切线的斜率为
,得00x =,所以切点为(0,1),又因为切线2y x b =+过切点(0,1),故有120b =⨯+,解
得1b =.
(3) 当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值;若不存在,请说明理由.
(参考数据:ln2≈0.693 1,ln3≈1.098 6)
思路分析 第(2)问,由于问题中含有参变量a ,因此,函数的单调性及单调区间就随着a 的变化而变化,因此,就需要对参数a 进行讨论,要讨论时,注意讨论的标准的确定方式:一是导函数是何种函数;二是
导函数的零点是否在定义域内;三是导函数的零点的大小关系如何.第(3)问,注意到2λ≥h (x )有解等价于h (x )min ≤2λ,因此,问题归结为求函数h (x )的最小值,在研究h (x )的最小值时,要注意它的极值点是无法求解的,因此,通过利用极值点所满足的条件来进行消去ln x 来解决问题.另一方面,我们还可以通过观察,来猜测λ的最小值为0,下面来证明当λ≤-1时2λ≥h (x )不成立,即h (x )>-2则可.
【解析】:(1) 当a =2时,方程g (e x )=0即为2e x +1e x -3=0,去分母,得 2(e x )2-3e x +1=0,解得e x =1或e x =12
,(2分) 故所求方程的根为x =0或x =-ln2.(4分)
综上所述,当a <0时,φ(x )的单调递增区间为⎝ ⎛⎭
⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的单调递增区间为(0,+∞);
当a >1时,φ(x )的单调递增区间为⎝ ⎛⎭
⎪⎫a -1a ,+∞ .(10分) (3) 解法1 当a =1时,g (x )=x -3,h (x )=(x -3)ln x ,
所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭
⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0,所以存在唯一x 0∈⎝ ⎛⎭
⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,(12分) 当x ∈(0,x 0)时,h ′(x )<0;当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-
3)·⎝ ⎛⎭⎪⎫3x 0-1=-x 0-32x 0=6-⎝ ⎛⎭
⎪⎫x 0+9x 0. 记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭
⎪⎫32,2上单调递增,(14分) 所以r ⎝ ⎛⎭
⎪⎫32<h (x 0)<r (2),
即h (x 0)∈⎝ ⎛⎭⎪⎫-32
,-12, 由2λ≥-32
,且λ为整数,得λ≥0, 所以存在整数λ满足题意,且λ的最小值为0.(16分)
解法2 当a =1时,g (x )=x -3,所以h (x )=(x -3)ln x ,
由h (1)=0,得当λ=0时,不等式2λ≥h (x )有解,(12分)
下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立.
显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立,
只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立.
即证明ln x +2x -3<0.令m (x )=ln x +2x -3
, 所以m ′(x )=1x -2x -32=x 2-8x +9x x -32
,由m ′(x )=0,得x =4-7,(14分) 当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0.
所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13
=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.
综上所述,存在整数λ满足题意,且λ的最小值为0.(16分)
解后反思 研究恒成立问题、存在性问题,其本质就是研究相关函数的最值问题,这样就可以让问题的研究目标具体化.同时,在研究此类问题时,经常可以采用从特殊到一般的方式来帮助我们进行思考。

相关文档
最新文档