合并同类项综合练习题17

合集下载

小学数学合并同类项练习题

小学数学合并同类项练习题

小学数学合并同类项练习题解题方法解决数学问题要从基本概念和方法开始,小学数学合并同类项是一个重要的知识点。

合并同类项是指将具有相同字母部分的项相加或相减,并保留各项的字母部分不变。

下面是一些小学数学合并同类项的练习题:题目一:合并同类项将下列各题的同类项合并。

1. 2a + 3b - a + 4b2. 5x + 2y - 3x - y3. 4m - 3n + 2m - n4. 7p + 9q - 2p + 5q题目二:合并同类项并求和将下列各题的同类项合并,并求和。

1. 3a + 5b - 2a + 4b + a2. 2x + 3y - 4x - 2x + y3. 5m - 2n + 3m - n + 4m4. 6p + 7q - 3p + 2q - p题目三:合并同类项并化简表达式将下列各题的同类项合并,并将表达式化简。

1. 2a + 3b - 4a2. 5x + 2y - 3x + x - y3. 4m - 3n + 2m + m - n4. 7p + 9q - 2p - p + q解题步骤对于题目一,我们需要将同类项合并,即将相同字母部分的项相加或相减。

解题步骤如下:1. 找到具有相同字母的项,将它们相加或相减。

2. 保留每个字母项的系数,并将合并后的结果写出。

例如,对于题目一的第一道题:1. 2a + 3b - a + 4b合并同类项:2a - a + 3b + 4b合并系数:(2-1)a + (3+4)b简化表达式:a + 7b依次类推,对其他题目按照相同的步骤进行计算,即可得出答案。

下面是题目一到三的解答:题目一的解答:1. 2a + 3b - a + 4b = a + 7b2. 5x + 2y - 3x - y = 2x + y3. 4m - 3n + 2m - n = 6m - 4n4. 7p + 9q - 2p + 5q = 5p + 14q题目二的解答:1. 3a + 5b - 2a + 4b + a = 2a + 9b2. 2x + 3y - 4x - 2x + y = -4x + 4y3. 5m - 2n + 3m - n + 4m = 12m - 3n4. 6p + 7q - 3p + 2q - p = 2p + 9q题目三的解答:1. 2a + 3b - 4a = -2a + 3b2. 5x + 2y - 3x + x - y = 3x + y3. 4m - 3n + 2m + m - n = 7m - 2n4. 7p + 9q - 2p - p + q = 4p + 10q通过这些练习题,我们可以更好地理解和掌握小学数学合并同类项的知识点。

整式的多项式多项式合并同类项练习题

整式的多项式多项式合并同类项练习题

整式的多项式多项式合并同类项练习题一、简答题1. 什么是整式?整式是含有字母的数及字母的正整数幂、和、积的代数式。

例如,3x²+5xy-2y²就是一个整式。

2. 什么是多项式?多项式是由有限多个单项式相加或相减而成的代数式。

例如,3x²+5xy-2y²就是一个多项式。

3. 什么是合并同类项?合并同类项指将多项式中相同字母的各个单项式合为一个单项式。

例如,将3x²+5xy-2y²中的3x²和-2y²合并为3x²-2y²。

二、计算题1. 计算以下各式中的同类项并合并:a) 2x²+3xy-4y²+5x²-2xy+7y²b) 4a²b-3ab²+2a²b+5ab²c) 6m³n²-2mn²+3m³+4mn²-5m³n²2. 对多项式进行整理化简:a) 3x²+4xy-2x²+3y-5xyb) 2a²b-3ab²+4a²b+ab²-3a²bc) 5m⁴n²-3m⁴+2mn²+4m⁴n²-6mn²三、综合题1. 将下列多项式合并同类项并化简:a) 7x²-3xy+5x²+2y-4xyb) 3a²b-2ab²+4a²b+2ab²-4a²bc) 4m⁴n²-2m⁴+3mn²+2m⁴n²-5mn²2. 求解以下多项式的值:a) 若x=2,计算3x²-5xy+4y²的值b) 若a=3,b=4,计算2a²b-3ab²的值c) 若m=5,n=2,计算4m⁴n²-2m⁴+3mn²的值通过以上练习题的学习,相信大家对整式的多项式合并同类项有了更深入的理解,希朥可以熟练运用相关知识进行解题,提高自己的代数计算能力。

合并同类项练习题及答案

合并同类项练习题及答案

合并同类项练习题及答案【篇一:初一合并同类项经典练习题】、典型例题代数式求值例1 当x?2,y?时,求代数式x2?xy?y2?1的值。

例2 已知x是最大的负整数,y是绝对值最小的有理数,求代数式2x3?5x2y?3xy2?15y3的值。

例3已知合并同类项例1、合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解:(1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号) =2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (及时合并同类项)=2a+8a-8b (去中括号)=10a-8b教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!1 12122?2a?b?3?a?b?2a?b的值。

??5,求代数式a?ba?b2a?b (3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6) =6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2.已知:a=3x2-4xy+2y2,b=x2+2xy-5y2求:(1)a+b (2)a-b (3)若2a-b+c=0,求c。

解:(1)a+b=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)a-b=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2a-b+c=0∴c=-2a+b=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!2=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。

合并同类项50题(有答案)

合并同类项50题(有答案)
(6) 与 ( )
2. 判断下列各题中的合并同类项是否正确,对打√,错打
(1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )
(3)8x ( ) (4) ( )
(5)5ab+4c=9abc ( ) (6) ( )
(7) ( ) (8) ( )
3.与 不仅所含字母相同,而且相同字母的指数也相同的是( )
22.计算:(1) ;
(2)5(m-n)+2(m-n)-4(m-n)。
23.先化简,再求值: ,其中 , .
答案:
1.⑴√⑵ⅹ⑶ⅹ⑷√⑸√⑹ⅹ
2.⑴ⅹ⑵ⅹ⑶ⅹ⑷ⅹ⑸ⅹ⑹ⅹ⑺√⑻ⅹ
3.C 4.B 5.C 6. a b a b 同类项 7.字母 相同字母的次数
-5x2, -7x21
9、k=3
10、2,4
28.已知: ,求 的值。
参考答案
一、选择题
1.D
2.C
3.D
4.A
5.D
6.D
7.C
8.D
9.A
10.C
二、填空题
11. (答案不唯一)
12.4;
13.3
14. ;
15.
16.
三、解答题
17.解: = ( )=
当 时,
18. =
= ( )=
19.解:
原式=
20.原式 ,当 时,原式 ;
21.原式= ;-2;
= x2-x2+3xy +2y2-x2+xy-2y2= 4xy-x2
当x=1,y=3时 4xy-x2=4×1×3-1=11。
22.(1)
A. B. C. D. x
4.下列各组式子中,两个单项式是同类项的是( )

(完整版)100道合并同类项数学题

(完整版)100道合并同类项数学题

1、3ab-4ab+8ab-7ab+ ab2、7x-(5x-5y)-y3、23a3bc2-15ab2c+8 abc-24a3bc2-8abc4、-7x2+6x+13x2-4x-5 x25、2y+(-2y+5)-(3y+2)6、(2x2-3xy+4y2)+(x2 +2xy-3y2) 7、a-(3a-2b+2)+(3a-4b -1)8、-6x2-7x2+15x2-2x29、2x-(x+3y)-(-x-y)-(x-y)10、2x+2y-[3x-2(x-y)]11、5-(1-x)-1-(x-1)12、(4xy2-2x2y)-( 2x2y+ 4xy2)13、已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=14、已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=15、若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为16、一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于17、-(2x2-y2)-[2y2-(x2+2 xy)] 18、若-3a3b2与5a x-1b y+2是同类项,则x=______,y=______.19、(-y+6+3y4-y3)-(2y2-3y3+y4-7)20、化简代数式4x2-[7x2-5x-3(1-2x+ x2)]的结果是___21、3a-(2a-3b)+3(a-2b)-b22、化简代数式x-[y-2x-(x+y)]等于23、[5a2+( )a-7]+[( )a2-4 a+( )]=a2+2a+1.24、3x-[y-(2x+y)]=____ __.25、化简|1-x+y|-|x-y|(其中x <0,y>0)等于26、已知x≤y,x+y-|x-y|=27、已知x<0,y<0,化简|x+y|-|5-x-y|=_____ _.28、4a2n-an -(3an -2a2n)=______.29、若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.30、-5xm-xm-(-7xm)+(-3xm)31、当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]32、当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)33、-2(3x+z)-(-6x)+(-5y +3z)34、-5an-an+1-(-7an+1) +(-3an)35、3a-(2a-4b-6c)+3(-2 c+2b)36、9a2+[7a2-2a-(-a2+3a )]37、当2y-x=5时,5(x-2y)2-3(-x+2y)-1 0038、把(-x-y)+3(x+y)-5(x+y)合并同类项得39、2a-[3b-5a-(2a-7b)]等于40、2ab-9a2-5ab-4a241、当a=2,b=1时,-a2b+3ba2-(-2a2b)等于42、-{[-(x+y)]}+{-[(x+y)]}等于43、当m=-1时,-2m2-[-4m2+(-m2)]等于44、当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于45、-5an-an-(-7an)+(-3 an)等于46、(5a-3b)-3(a2-2b)等于化简47、(4x2-8x+5)-(x3+3x2-6x+2).48、(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).49、-{2a2b-[3abc-(4ab2-a2b)]}.50、(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b)51、(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).52、(3a6-a4+2a5-4a3-1)-( 2-a+a3-a5-a4).53、(4a-2b-c)-5a-[8b-2c -(a+b)].54、(2m-3n)-(3m-2n)+( 5n+m).55、(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).56、xy-(2xy-3z)+(3xy-4 z).57、(-3x3+2x2-5x+1)-(5-6x-x2+x3).58、3x-(2x-4y-6x)+3(-2 z+2y).59、(-x2+4+3x4-x3)-(x2+ 2x-x4-5).60、若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.61、若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A-B.62、2m-{-3n+[-4m-(3m-n)]}.63、5mn2+(-2m2n)+2m n2-m2n64、4(x-y+z)-2(x+y-z)-3 (-x-y-z).65、2(x2-2xy+y2-3)+(-x2 +y2)-(x2+2xy+y2).66、2(a2-ab-b2)-3(4a-2b )+2(7a2-4ab+b2).67、4x-2(x-3)-3[x-3(4-2 x)+8].将下列各式先化简,再求值68、已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b )2×(a-b)2的值.69、已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.70、求(3x2y-2xy2)-(xy2-2x 2y),其中x=-1,y=2.71、当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].72、求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.73、当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.74、已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).综合练习75、去括号:{-[-(a+b)]}-{-[-(a-b)]}.76、去括号:-[-(-x)-y]-[+(-y)-(+x) ].77、已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.78、计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+ 5y)+(-8y2)+(+3y).79、不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy) +(2y3-3y2).80、求2x-2[3x-(5x2-2x+1)] -4x2的值,其中x=-1.81、合并同类项:7x-1.3z-4.7-3.2x-y+ 2.1z+5-0.1y.82、合并同类项:5m2n+5mn2-mn+3 m2n-6mn2-8mn.83、去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].84、化简:2x2-{-3x-[4x2-(3x2-x)+ (x-x2)]}.85、化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.86、计算:(+3a)+(-5a)+(-7a)+( -31a)-(+4a)-(-8a) 87、化简:a3-(a2-a)+(a2-a+1)-( 1-a2+a3).88、将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.89、在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.90、在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].91、在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.92、在括号内填上适当的项:(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.93、计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.94、用竖式计算(-x+5+2x4-6x3)-(3x4 +2x2-3x3-7).95、已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).96、已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).97、已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.98、已知x<-4,化简|-x|+|x+4|-|x-4|.99、.求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03 a+0.53的差与6-0.15a+3.24a2+5.0 7a3的和.100、已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3x y-z2-8xz-2x2的值.。

合并同类项练习题及答案

合并同类项练习题及答案

合并同类项练习题及答案练习题1:合并下列各组数的同类项:1) 5x + 2x + 7x2) 3y + 4y + 6y3) 10a + 12a + 15a4) 2m + 5m + 8m答案1:1) 5x + 2x + 7x = 14x2) 3y + 4y + 6y = 13y3) 10a + 12a + 15a = 37a4) 2m + 5m + 8m = 15m练习题2:合并下列各组数的同类项:1) 2x^2 + 3x^2 + 5x^22) 4y^3 + 2y^3 + 6y^33) 7a^2b + 9a^2b + 12a^2b4) 2m^2n + 5m^2n + 8m^2n答案2:1) 2x^2 + 3x^2 + 5x^2 = 10x^22) 4y^3 + 2y^3 + 6y^3 = 12y^33) 7a^2b + 9a^2b + 12a^2b = 28a^2b4) 2m^2n + 5m^2n + 8m^2n = 15m^2n练习题3:合并下列各组数的同类项:1) 3x^2y + 2xy + 4xy2) 5a^2b^2c + 3ab^2c^2 + ab^2c3) 8m^2n^3 + 5m^2n^4 + 6m^2n^34) 2x^3y^2z + 3xy^2z^2 + x^3yz^2答案3:1) 3x^2y + 2xy + 4xy = 3x^2y + 6xy = 3x^2y + 6xy2) 5a^2b^2c + 3ab^2c^2 + ab^2c = 5a^2b^2c + ab^2c + 3ab^2c^23) 8m^2n^3 + 5m^2n^4 + 6m^2n^3 = 14m^2n^3 + 5m^2n^44) 2x^3y^2z + 3xy^2z^2 + x^3yz^2 = 2x^3y^2z + x^3yz^2 + 3xy^2z^2练习题4:合并下列各组式子的同类项:1) (2x + 5y) + (3x + 4y)2) (4a^2b - 3ab^2) + (ab - 2a^2b)3) (3m^2n^3 + 5mn^2) + (8mn^2 - 2m^2n^3)4) (2x^2 + 3xy - y^2) + (x^2 - 2xy + y^2)答案4:1) (2x + 5y) + (3x + 4y) = 5x + 9y2) (4a^2b - 3ab^2) + (ab - 2a^2b) = ab + 2a^2b - 3ab^2 + 4a^2b3) (3m^2n^3 + 5mn^2) + (8mn^2 - 2m^2n^3) = 5mn^2 + m^2n^34) (2x^2 + 3xy - y^2) + (x^2 - 2xy + y^2) = 3x^2 - 2xy练习题5:合并下列各组式子的同类项:1) 2(3x + 2y) + 3(4x + 3y)2) 4(2a^2 - ab) + 2(ab^2 + 3a^2b)3) 5(3mn^2 + 4m^2n^3) + 3(2m^2n^3 + mn^2)4) 2(2x^2 + xy - y^2) + 3(x^2 - 2xy + y^2)答案5:1) 2(3x + 2y) + 3(4x + 3y) = 6x + 4y + 12x + 9y = 18x + 13y2) 4(2a^2 - ab) + 2(ab^2 + 3a^2b) = 8a^2 - 4ab + 2ab^2 + 6a^2b = 14a^2 + 2ab^2 + 6a^2b3) 5(3mn^2 + 4m^2n^3) + 3(2m^2n^3 + mn^2) = 15mn^2 + 20m^2n^3 + 6m^2n^3 + 3mn^2 = 18mn^2 + 26m^2n^34) 2(2x^2 + xy - y^2) + 3(x^2 - 2xy + y^2) = 4x^2 + 2xy - 2y^2 + 3x^2 - 6xy + 3y^2 = 7x^2 - 4xy + y^2练习题6:合并下列各组式子的同类项:1) 2x(3x + 2y) + 3y(4x + 3y)2) 4a(2a^2 - ab) + 2b(ab^2 + 3a^2b)3) 5mn(3mn^2 + 4m^2n^3) + 3n(2m^2n^3 + mn^2)4) 2x(2x^2 + xy - y^2) + 3y(x^2 - 2xy + y^2)答案6:1) 2x(3x + 2y) + 3y(4x + 3y) = 6x^2 + 4xy + 12xy + 9y^2 = 6x^2 +16xy + 9y^22) 4a(2a^2 - ab) + 2b(ab^2 + 3a^2b) = 8a^3 - 4a^2b + 2ab^3 + 6a^3b = 14a^3 + 2ab^3 + 2a^3b - 4a^2b3) 5mn(3mn^2 + 4m^2n^3) + 3n(2m^2n^3 + mn^2) = 15m^2n^3 +20m^3n^4 + 6m^2n^4 + 3mn^3 = 15m^2n^3 + 26m^3n^4 + 3mn^34) 2x(2x^2 + xy - y^2) + 3y(x^2 - 2xy + y^2) = 4x^3 + 2x^2y - 2xy^2 + 3x^2y - 6xy^2 + 3y^3 = 4x^3 + 5x^2y - 8xy^2 + 3y^3练习题7:合并下列各组式子的同类项:1) 2x^2(3x + 2y) + 3xy(4x + 3y)2) 4a^2(2a^2 - ab) + 2ab(ab^2 + 3a^2b)3) 5mn^2(3mn^2 + 4m^2n^3) + 3m(2m^2n^3 + mn^2)4) 2x^3(2x^2 + xy - y^2) + 3y^2(x^2 - 2xy + y^2)答案7:1) 2x^2(3x + 2y) + 3xy(4x + 3y) = 6x^3 + 4x^2y + 12x^2y + 9xy^2 = 6x^3 + 16x^2y + 9xy^22) 4a^2(2a^2 - ab) + 2ab(ab^2 + 3a^2b) = 8a^4 - 4a^3b + 2a^3b^2 + 6a^4b = 14a^4 + 2a^3b^2 - 4a^3b + 6a^4b3) 5mn^2(3mn^2 + 4m^2n^3) + 3m(2m^2n^3 + mn^2) = 15m^2n^4 + 20m^3n^5 + 6m^3n^4 + 3m^2n^3 = 15m^2n^4 + 26m^3n^5 + 3m^2n^34) 2x^3(2x^2 + xy - y^2) + 3y^2(x^2 - 2xy + y^2) = 4x^5 + 2x^3y - 2x^2y^2 + 3x^2y^2 - 6xy^3 + 3y^4 = 4x^5 + 2x^3y + x^2y^2 - 6xy^3 + 3y^4练习题8:合并下列各组式子的同类项:1) (2x + 3y)(3x - 2y) + (3x + 4y)(4x + 3y)2) (4a^2 - 3ab)(2a^2 + ab) + (ab - 2a^2b)(ab^2 + 3a^2b)3) (3mn^2 + 4m^2n^3)(2m^2n^3 + mn^2) + (8mn^2 -2m^2n^3)(2m^2n^3 + mn^2)4) (2x^2 + 3xy - y^2)(x^2 - 2xy + y^2) + (x^2 - 2xy + y^2)(2x^2 + 3xy - y^2)答案8:1) (2x + 3y)(3x - 2y) + (3x + 4y)(4x + 3y) = 6x^2 - 4xy + 9xy - 6y^2 + 12x^2 + 9xy + 16y^2 = 18x^2 + 24y^22) (4a^2 - 3ab)(2a^2 + ab) + (ab - 2a^2b)(ab^2 + 3a^2b) = 8a^4 - 4a^3b + 6a^3b^2 - 3a^2b^2 - 2a^3b^2 + a^2b^3 + 3a^4b^2 - 6a^3b^2 = 11a^4 -3a^2b^2 + a^2b^33) (3mn^2 + 4m^2n^3)(2m^2n^3 + mn^2) + (8mn^2 -2m^2n^3)(2m^2n^3 + mn^2) = 6m^3n^5 + 2m^2n^4 + 12m^3n^5 +4m^2n^4 + 16mn^4 - 4m^3n^5 + 4m^2n^4 - 8mn^4 = 30m^3n^5 +14m^2n^4 + 8mn^44) (2x^2 + 3xy - y^2)(x^2 - 2xy + y^2) + (x^2 - 2xy + y^2)(2x^2 + 3xy - y^2) = 2x^4 - 4x^3y + 2x^2y^2 + 3x^3y - 6x^2y^2 + 3xy^3 - x^2y^2 +2xy^3 - y^4 + x^2 - 2xy + y^2 = 2x^4 - x^3y - 2x^2y^2 + 5xy^3 + x^2 +y^2。

合并同类项50题(有答案)

合并同类项50题(有答案)

合并同类项专项练习50题(一)之答禄夫天创作一、选择题1 .下列式子中正确的是( )A.3a+2b=5abB.752853x x x =+C.y x xy y x 22254-=-D.5xy-5yx=0 2 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与3 .下列各对单项式中,不是同类项的是( )31B.23n m x y +-与22m n y x +C.213x y 与225yxD.20.4a b 与20.3ab 4 .如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩ B.02a b =⎧⎨=⎩ C.21a b =⎧⎨=⎩ D.11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 14D.2a 和3x 6.下列合并同类项正确的是( )(A)628=-a a ; (B)532725x x x =+ ; (C) b a ab b a 22223=-; (D)y x y x y x 222835-=-- 7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数暗示为A.yxB.x y +x y +x y +9 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的暗示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题11.写出322x y -的一个同类项_______________________.12.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。 13.若2243a b x y x y x y -+=-,则a b +=__________. 14.合并同类项:._______________223322=++-ab b a ab b a 15.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________.16.某公司员工,月工资由m 元增长了10%后达到_______元。 三、解答题17.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .18.化简:)32()54(722222ab b a ab b a b a --+-+.19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a . 20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +;请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x x xy ---+,其中1,22x y =-=. 24.先化简,再求值。(5a2-3b2)+(a2+b2)-(5a2+3b2)其中a=-1 b=1 25.化简求值(-3x2-4y)-(2x2-5y+6)+(x2-5y-1) 其中 x=-3 ,y=-126.先化简再求值:(ab-3a2)-2b2-5ab-(a2-2ab),其中a=1,b=-2。 27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。参考答案一、选择题 1 .D 2 .C 3 .D 4 .A 5 .D 6 .D 7 .C 8 .D 9 .A 10.C二、填空题11.322x y (答案不唯一) 12.4; 13.314.ab b a -25; 15.1- 16.11.m 三、解答题17.解:)4(3)125(23m m m -+--=m m m 31212523-++-( )=134+-m当3-=m 时,2513)3(4134=+-⨯-=+-m18.)32()54(722222ab b a ab b a b a --+-+=2222232547ab b a ab b a b a +-+-=22)35()247(ab b a ++--( )=228ab b a + 19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=; 21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+-()()2254128xy xy x x =-+-24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a2-3b2+a2+b2-5a2-3b2=-5b2+a2 当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y +∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3合并同类项专项练习50题(二)1.判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2 ( ) ⑶bc a 22与-2c ab 2 ( )(4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( ) 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯(1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )(3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( )(7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( )y x 221不但所含字母相同,而且相同字母的指数也相同的是( ) A.z x 221 B. xy 21C.2yx -D. x 2y4.下列各组式子中,两个单项式是同类项的是( )2a b a 2 与b a 2 C. xy与y x 22n 2y5.下列计算正确的是( )222=-x x C. 7mn-7nm=0 D.a+a=2a 2b 与32ab 都含字母,而且都是一次,都是二次,因此-4a 2b 与32ab 是7.所含 相同,而且 也相同的项叫同类项。

合并同类项练习题及答案

合并同类项练习题及答案

合并同类项练习题及答案【篇一:初一合并同类项经典练习题】、典型例题代数式求值例1 当x?2,y?时,求代数式x2?xy?y2?1的值。

例2 已知x是最大的负整数,y是绝对值最小的有理数,求代数式2x3?5x2y?3xy2?15y3的值。

例3已知合并同类项例1、合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解:(1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号) =2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (及时合并同类项)=2a+8a-8b (去中括号)=10a-8b教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!1 12122?2a?b?3?a?b?2a?b的值。

??5,求代数式a?ba?b2a?b (3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6) =6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2.已知:a=3x2-4xy+2y2,b=x2+2xy-5y2求:(1)a+b (2)a-b (3)若2a-b+c=0,求c。

解:(1)a+b=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)a-b=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2a-b+c=0∴c=-2a+b=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!2=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。

初一合并同类项练习题

初一合并同类项练习题

整式训练专题训练1.去括号:(1)a+(-b+c-d);(2)a-(-b+c-d) ;(3)-(p+q)+(m-n);(4)(r+s)-(p-q).2.化简:)(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b);(4)3(5x+4)-(3x-5);!(5)(8x-3y)-(4x+3y-z)+2z;(6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2)。

(9)102+199-99 (10)5040-297-1503…3.已知x+y=2,则x+y+3= ,5-x-y= .4.去括号:(1)a+3(2b+c-d); (2)3x-2(3y+2z).#(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).4.化简:(1)2a-3b+[4a-(3a-b)];(2)3b-2c-[-4a+(c+3b)]+c.|5. 化简2-[2(x+3y)-3(x-2y)]的结果是().去括号:-(2m-3);n-3(4-2m);(1)16a-8(3b+4c);(2)-12(x+y)+14(p+q);%(3)-8(3a-2ab+4);(4)4(rn+p)-7(n-2q).(5)8 (y-x) 2 -12(x-y) 2-4(-y-x) 2-3(x+y) 2+2(y-x) 2;先去括号,再合并同类项:-2n-(3n-1);a-(5a-3b)+(2b-a);-3(2s-5)+6s;1-(2a-1)-(3a+3);;3(-ab+2a)-(3a-b);14(abc-2a)+3(6a-2abc).'9a3-[-6a2+2(a3-23a2) ]; 2 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).\11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么试解释其中的原因.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档