几何概型1

合集下载

3.3几何概型(1)

3.3几何概型(1)

在 这 两个问题中 基 本 事 件有无限多个,虽然 , 类似于古典概型的 等可能性" 还存在着, 但是 " 显然不能用古典概型的 方法求解.怎么办呢? 考虑第一个问题, 如图, 记"剪得两段绳长都不 小于1 m " 为事件 A. 1 1
3 把经绳子三等分于是 , 当剪断位置处在中间一 段上时, 事件 A 发生.
1 12.22 P B 4 0.01. 1 1222 4
122cm
1 1222 cm2的大圆内, 4
从上面的分析可以看到对于一个随机试验 我们将每 , , 个基本事件理解为从某 个特定的几何区域内随 机地取 一点, 该区域中每一点被取到 的机会都一样 而一个随 ; 机事件的发生则理解为 恰好取到上述区域内的 某个指 定区域中的点这里的区域可以是线段 . 、平面图形、立 体图形等.用这种方法处理随机试 , 称为几何概型 验 geometric probabilit y mod el . 一般地, 在几何区域D中随机地取一点, 记事件" 该点落在 其内部一个区域 d 内"为事件 A, 则事件 A 发生的概率 d 的测度 P A . D 的测度 这里要求D的测度不为0, 其中 测度"的意义依D确定,当 " D分别是线段、平面图形 和立体图形时 相应的 测度" , " 分别是长度、面积和体 积等.
答 豆子落入圆内的概率为 . 4

例 2 在 1 L高产小麦种子中混入一 粒带麦锈 病的种子, 从中随机取出 mL, 含有麦锈病种 10 子的概率是多少 ? 分析 病种子在这1 L 种子中的分布可以看作 是 随 机的 , 取得的10 mL 种子可视作区域 d , 所 有种子可视为区域 D .

几何概型1

几何概型1

练1. 在[0,3]上任意取出一个数, 取出的数在[0,1]上的概率为多少?
练2:某轻轨车站每隔 分钟有一辆 :某轻轨车站每隔5分钟有一辆 轻轨车通过, 轻轨车通过,乘客随机地来到车站 候车,求乘客候车时间不大于3分钟 候车,求乘客候车时间不大于 分钟 的概率. 的概率
例2:一海豚在水池中自由游戈, :一海豚在水池中自由游戈, 水池为长30米 水池为长 米,宽20米的长方 米的长方 形.求此刻海豚嘴尖离岸边不超 求此刻海豚嘴尖离岸边不超 米的概率. 过2米的概率 米的概率
思考题:向面积为 的三角形 思考题:向面积为S的三角形 ABC内任意投一点 , 内任意投一点P, 内任意投一点
S 则三角形PBC的面积小于 则三角形 的面积小于 2 的概率是多少? 的概率是多少?
作业: 在等腰 作业:1.在等腰 Rt∆ABC 中, 在斜边AB 上取一点 ,则AM 上取一点M, 在斜边 的长小于AC长的概率是多少? 的长小于 长的概率是多少? 长的概率是多少 2,课本习题 ,
几何概型
问题1:房间的纱窗破了一个小洞, 问题 :房间的纱窗破了一个小洞, 假设一只蚊子随机飞向纱窗, 假设一只蚊子随机飞向纱窗,估计 这蚊子从小洞中穿过的概率。 这蚊子从小洞中穿过的概率。 问题2:某同学在早上7:00—7:30到 问题2:某同学在早上7:00—7:30到 学校7:30 开始上课,求他到校 开始上课, 校,学校 后等候上课的时间不多于10分钟的 后等候上课的时间不多于 分钟的 概率。 概率。
(试验结果在一个区域内均匀分布 试验结果在一个区域内均匀分布) 试验结果在一个区域内均匀分布
构成事件A的区域 长度 (面积或体积 ) P ( A) = 试验的全部结果所构的 区域 长度 (面积或体积 )

几何概型

几何概型

(2)特点
①无限性:在每次随机试验中,不同的试验结
果有无穷多个,即基本事件有_无__限__多__个__;
②等可能性:在这个随机试验中,每个试验结
果出现的可能性相等,即基本事件发生是
_等__可__能__的__.
你能说说几何 概型与古典概 型的区别吗?
探究一、与长度有关的几何概型
例1 取一根长度为3m的绳子,拉直后在任意位置剪断,那 么剪得两段的长度都不小于1m的概率有多大?
1
1
A.4
B.3
C.21
D.23
解析:选 D.假设在扇形中∠AOC=∠BOC′=15°, 则∠COC′=60°,当射线落在∠COC′内时符合题 意,故所求概率为 P=6900°°=23.
7.向 面 积 为 S的 A B C 内 任 投 一 点 P ,求 P B C 的 面 积
小 于 S的 概 率
结 论
探究三、与体积有关的几何概型
如果试验的结果构成的区域的几何度量可用体积
表示,则其概率的计算公式为:
P (A )全 部 构 结 成 果 事 所 件 构 A 的 成 区 的 域 区 体 域 积 体 积
几何概型的概率计算
P (A ) 全 部 构 结 成 果 事 所 件 构 A 的 成 区 的 域 区 长 域 度 长 ( 度 面 ( 积 面 或 积 体 或 积 体 ) 积 )
2
答 案 :3
A
4
B
C
已 知 正 三 棱 锥 S A B C 的 底 面 边 长 为 4 , 高 位 3 , 在 正 三 棱 锥 内 任 取 一 点 P , 使 得 V 1V 的 概 率 是 多 少
2 P A B C S A B C
课堂小结
1.古典概型与几何概型的区别. 相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个.

几何概型(1)

几何概型(1)

注: (1)古典概型与几何概型的区别在于: 几何概型是无限多个等可能事件的情况, 而古典概型中的等可能事件只有有限多个; (2)D的测度不为0,当D分别是线段、平面图形、立体图形时,相应的 “测度”分别是长度、面积和体积. (3)区域应指“开区域” ,不包含边界点;在区域 D 内随机取点是 指:该点落在 D 内任何一处都是等可能的,落在任何部分的可能性只 与该部分的测度成正比而与其性状位置无关.
不同:古典概型要求基本事件有有限个,
几何概型要求基本事件有无限多个.
2.几何概型的概率公式. 构成事件A的区域测度(长度、面积、体积等) 试验的全部结果所构成的区域测度(长度、面积、体积等)
P(A)=
3.几何概型问题的概率的求解.
建构数学
对于一个随机试验,我们将每个基本事件理解为从某个特定 的几何区域内随机地取一点,该区域中的每一个点被取到的机会 都一样,而一个随机事件的发生则理解为恰好取到上述区域内的 某个指定区域中的点.这里的区域可以是线段、平面图形、立体 图形等.用这种方法处理随机试验,称为几何概型. 几何概型的特点: (1)基本事件有无限多个; (2)基本事件发生是等可能的.
如何求几何概型的概率? 1m 1m
3m
1 P(B)= 3
1 12.2 2 4 0.01 1 1222 4
P(A)=
0.1 0.1 P(C)= 1
一般地,在几何区域D中随机地取一点,记“该点落在其内部一 个区域d内”为事件A,则事件A发生的概率:
P(A)
d的测度 . D的测度
P(A)=
取出种子的体积 10 1 所有种子的体积 1000 100
答:含有麦锈病种子的概率为0.01.
3.在1万平方公里的海域中有40平方公里的大陆贮藏着石油.假 如在海域中任意一点钻探,钻到油层面的概率是多少? 4.如右下图,假设你在每个图形上随机撒一粒黄豆,分别计算它

第35课时7.3.1几何概型(1)

第35课时7.3.1几何概型(1)

第一会所sis001 第一会所sis001 第35课时7.3.1 几何概型学习要求1、了解几何概型的概念及基本特点;2、熟练掌握几何概型的概率公式;3、正确判别古典概型与几何概型,会进行简单的几何概率计算.【课堂互动】自学评价试验1 取一根长度为3m 的绳子,拉直后在任意位置剪断.剪得两段的长都不小于1m 的概率有多大?试验2 射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫"黄心".奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm .运动员在70m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.射中黄心的概率为多少? 【分析】第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的"等可能性",但是显然不能用古典概型的方法求解.【解】实验1中,如下图,记"剪得两段的长都不小于1m "为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的13,于是事件A 发生的概率1()3P A =.实验2中,如下图,记"射中黄心"为事件B ,由于中靶心随机地落在面积为2211224c m π⨯⨯的大圆内,而当中靶点落在面积为22112.24c m π⨯⨯的黄心内时,事件B 发生,于是事件B 发生的概率为22112.24()0.0111224P B ππ⨯⨯==⨯⨯.【小结】1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型. 2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. 3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D =的测度的测度.说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积. (3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.【精典范例】例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;第一会所sis001 第一会所sis001 (2)如图所示,图中有一个12等分的圆盘,甲乙两人玩游戏,向圆盘投掷可视为质点的骰子,规定当骰子落在阴影区域时,甲获胜,否则乙获胜,求甲获胜的概率. 【分析】本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关. 【解】(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中骰子落在阴影区域时有无限多个结果,而且不难发现“骰子落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.例2取一个边长为2a 的正方形及其内切圆(如右图),随机向正方形内丢一粒豆子,求豆子落入圆内的概率.("测度"为面积) 【分析】由于是随机丢豆子,故可认为豆子落入正方形内任一点的机会都是均等的,于是豆子落入圆中的概率应等于圆面积与正方形面积的比. 【解】记"豆子落入圆内"为事件A ,则22()44aP A aππ===圆面积正方形面积.答:豆子落入圆内的概率为4π.思维点拔:1、几何概型的意义也可以这样理解: 向区域G 中任意投掷一个点M ,点M 落在G 内的部分区域g ”的概率P 定义为:g 的度量与G 的度量之比,即:g P =的度量的度量G .2、我们可以通过实验计算圆周率π的近似值.实验如下:向如图所示的圆内投掷n 个质点,计算圆的内接正方形中的质点数为m ,由几何概型公式可知:2S m n S π==正方形圆,即 2n mπ=.追踪训练1、求例1中(2)的概率. 解:由例1(2)分析可知:1()2d P A D ==的面积的面积.2、若[2,2],[2,2]x y ∈-∈-,则点(,)x y 在圆面222x y+≤内的概率是多少?解:448P π==⨯3、靶子由三个半径分别为R,2R,3R 的同心圆组成,如果你向靶子随机地掷一个飞镖,命中半径分别为R 区域,2R 区域,3R 区域的概率分别为123,,P P P ,则123::P P P =____1:3:5__.。

《几何概型》教学设计1

《几何概型》教学设计1

《几何概型》教学设计教学目标:1、学生能够正确区分几何概型及古典概型两者的区别;2、学生初步掌握并运用几何概型解决有关概率的基本问题;3、提高学生自主探究问题、解决问题的能力;4、渗透数学学习的基本思维:猜想验证思想、以旧引新思想等;5、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;教学重点与难点:重点:几何概型的特点及其几何概型学习的思维过程; 难点:几何概型的判断及其概率公式的选择教学方法:“学生为主体,教师为主导”的探究性学习模式 板书设计:教学过程:【知识回顾】古典概型的特点及其概率公式:(1)1(2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。

古典概型包含基本事件的个数、事件的概率公式:基本事件的总数课题:几何概型1、几何概型的定义:2、几何概型的特点:-------- 问题分析区域或学生解答区3、几何概型的概率公式:4、几何概型与古典概型的区别【课前练习】(赌博游戏):甲乙两赌徒掷色子,规定掷一次谁掷出6点朝上则谁胜,请问甲、乙赌徒获胜的概率谁大?学生分析:色子的六个面上的数字是有限个的,且每次都是等可能性的,因而可以利用古典概型;学生求解:1;6p =甲16p =乙。

(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?① ②学生分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;2、利用B 区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B 区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角351 BN B NB NNBB NB法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积【问题猜想】⑴两个问题概率的求法一样吗?若不一样,请问可能是什么原因导致的? ⑵你是如何解决这些问题的? ⑶有什么方法确保所求的概率是正确的? 学生对比分析:⑴ (赌博游戏):色子的六个面上的数字是有限个的,且每次投掷都是等可能性的,因而可以利用古典概型;转盘游戏:指针指向的每个方向都是等可能性的,但指针所指的方向却是无限个的,因而无法利用古典概型。

§3.3.1-1几何概型(一)

§3.3.1-1几何概型(一)
§3.3.1-1几何概型(一)
重庆市万州高级中学 曾国荣 wzzxzgr@
§3.3.1-1几何概型(一)
复习 1、古典概型有哪两个基本特点? (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等(等可能性).
2013-8-15
重庆市万州高级中学 曾国荣 wzzxzgr@
2013-8-15 重庆市万州高级中学 曾国荣 wzzxzgr@ 14
60 50 1 P( A) , 60 6
§3.3.1-1几何概型(一)
练习:某路口红绿灯的时间设置为:红灯40秒,绿 灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到 哪一种灯的可能性最大?遇到哪一种灯的可能性最 小?根据什么? 遇到红灯,绿灯,黄灯的概率各是多少?为什么?
2013-8-15 重庆市万州高级中学 曾国荣 wzzxzgr@ 6
§3.3.1-1几何概型(一)
问题:有两个转盘,甲乙两人玩转盘游戏.规定当指 针指向B区域时,甲获胜,否则乙获胜.在两种情况下 分别求甲获胜的概率是多少? B N B N N
B
N B
B
N
B
与扇形的弧长(或面积或圆心角)有关,与扇 形区域所在的位置无关.
2013-8-15
重庆市万州高级中学 曾国荣 wzzxzgr@
4
§3.3.1-1几何概型(一)
问题:有两个转盘,甲乙两人玩转盘游戏.规定当指 针指向B区域时,甲获胜,否则乙获胜.在两种情况下 分别求甲获胜的概率是多少? B N B N N
B
N B
B
N
B
以左边转盘为游戏工具时,甲获胜的概率为1/2 以右边转盘为游戏工具时,甲获胜的概率为3/5
2013-8-15

几何概型1

几何概型1

练一练:
1.某人午休醒来,发觉表停了,他打开收音机想听电 台整点报时,求他等待的时间短于10分钟的概率.
解:记“等待的时间小于10分钟”为事件A, 打开收音机的时刻位于[50,60]时间段内则事件 A发生.
由几何概型的求概率公式得 P(A)=(60-50)/60=1/6 即“等待报时的时间不超过10分钟”的概率为1/6.
例3:一海豚在水池中自由游弋,水池长30m,宽20m的 长方形,求此刻海豚嘴尖离岸小于2m的概率.
30m
20m2mFra bibliotek解:设事件A“海豚嘴尖离岸边小于2m”(见阴影部分)
d的测度 = P(A)= D的测度
30 20 26 16 184 0.31 30 20 600
答:海豚嘴尖离岸小于2m的概率约为0.31.
2 1 事件A发生的概率P( A) 8 4
例2:取一个边长为2a的正方形及其内切圆(如图),随机 地向正方形内丢一粒豆子,求豆子落入圆内的概率. 解:记“豆子落入圆内”为事件A,则
圆面积 a 2 P(A)= 2 正 方 形 面 积 4a 4
答:豆子落入圆内的概率为

4
撒豆试验:向正方形内撒n颗豆子,其中有m颗落在圆 内,当n很大时,频率接近于概率. m m 4m P( A) . n 4 n n
1
P(B)=3/8
课堂小结

1.古典概型与几何概型的区别.
相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个.

2.几何概型的概率公式.
d的测度(长度、面积 、体积) P(A) . D的测度(长度、面积 、体积)
(第一课时)

第十章 第六节 几何概型1

第十章  第六节  几何概型1

答案:C
返回
4.(2012· 长沙模拟)已知平面区域Ω={(x,y)|x2+y2≤1},M= x≥0 x,yy≥0 x+y≤1 ,若在区域Ω上随机投一点P,则点P落
在区域M的概率为:________.
返回
1 解析:易求得平面区域Ω的面积为π,而区域M的面积为2,因此点 1 P落在区域M内的概率为2π.
返回
返回
一、几何概型的定义 如果每个事件发生的概率只与构成该事件区域的
长度 ( 面积 或 体积 )成比例,则称这样的概率模型
为几何概率模型,简称为 几何概型 .
返回
五、几何概型的概率公式
在几何概型中,事件A的概率的计算公式如下:
构成事件A的区域长度面积或体积 P(A)= . 试验的全部结果所构成的区域长度面积或体积
返回
返回
1.(教材习题改编)在长为6 m的木棒AB上任取一点P,使点 P到木棒两端点的距离都大于2 m的概率是 1 A.4 1 C.2 1 B.3 2 D.3 ( )
返回
解析:将木棒三等分,当P位于中间一段时,到两端A、B的 2 1 距离大于2 m,∴P=6=3.
答案: B
返回
2.有一杯2升的水,其中含一个细菌,用一个小杯从水 中取0.1升水,则此小杯中含有这个细菌的概率是
1 答案:2π
返回
[冲关锦囊] 与面积有关的几何概型判断的关键是抓住事件在区 域上发生具有等可能性,然后利用其与整体事件所对应 的面积的比值来计算事件发生的概率.
返回
[精析考题] [例3] (2011· 广州第一次综合测试)有一个底面圆的半径 为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在
这个圆柱内随机取一点P,则点P到点O的距离大于1的

第5讲 几何概型

第5讲 几何概型

第5讲 几何概型一、知识梳理 1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)常用结论在几何概型中,如果A 是确定事件,(1)若A 是不可能事件,则P (A )=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P (A )=0不能推出A 是不可能事件.(2)若A 是必然事件,则P (A )=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P (A )=1不能推出A 是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A.因为P (A )=38,P (B )=14,P (C )=13,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.答案:133.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.答案:1-π4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (3)随机模拟方法是以事件发生的频率估计概率.( ) (4)与面积有关的几何概型的概率与几何图形的形状有关.( ) 答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K选用的几何测度不准确导致出错.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析:由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f (x )=6+x -x 2的定义域为D ,在区间[-4,5]上随机取一个数x ,则x ∈D的概率是________.【解析】 由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 【答案】 59与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A 包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是( )A.14 B .13C.12D .23解析:选A.令t =2x,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎨⎧Δ≥0t 1+t 2>0t 1t 2>0⇒a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故P=14,选A.2.如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为________.解析:设OA =3,则AB =33,所以AP =3,由余弦定理可求得OP =3,∠AOP =30°,所以扇形AOC 的面积为3π4,扇形AOB 的面积为3π,从而所求概率为3π43π=14.答案:14与面积有关的几何概型(多维探究) 角度一 与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为( )A.π24+9π B .4π24+9πC.π18+9πD .4π18+9π(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x =2交抛物线y 2=4x 于A ,B 两点.点A ,B 在y 轴上的射影分别为D ,C .从长方形ABCD 中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为( )A.12 B .13C.23D .25【解析】 (1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32-22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为4π24+9π.故选B.(2)在抛物线y 2=4x 中,取x =2,可得y =±22,所以S 矩形ABCD =82,由阿基米德理论可得弓形面积为43×12×42×2=1623,则阴影部分的面积为82-1623=823.由概率比为面积比可得,点位于阴影部分的概率为82382=13.故选B.【答案】 (1)B (2)B角度二 与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为( )A.π3 B .π12C.π24D .3π32【解析】 因为集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB .直线x +y =0与直线x -y =0垂直,故∠AOB =π2.联立⎩⎪⎨⎪⎧x +y =0,2x -y -3=0,得点A (1,-1),联立⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,得点B (3,3).OA =12+(-1)2=2,OB =32+32=32,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的14圆,即扇形OCD ,所以由几何概型得点到坐标原点的距离不大于1的概率P =S 扇形OCDS △AOB =14×π×1212×2×32=π12.故选B. 【答案】 B角度三 与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2 B .4π3C.2π2 D .2π3【解析】 由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2⎠⎛0πsin x d x =-2cos x ⎪⎪⎪π0=4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3,故选B.【答案】 B角度四 与随机模拟相关的几何概型从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n m B .2n mC.4m nD .2m n【解析】 设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =π41=m n ,所以π=4mn,故选C.【答案】 C求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕点O 旋转,则小华随机向标靶投飞镖射中阴影部分的概率是( )A.13 B .14C.19D .17解析:选D.如图,连接OB ,OA ,可得△OBM 与△OAN 全等,所以S 四边形MONB =S △AOB=12×2×1=1,即正方形ABCD 和OPQR 重叠的面积为1.又正方形ABCD 和OPQR 构成的标靶图形面积为4+4-1=7,故小华随机向标靶投飞镖射中阴影部分的概率是17,故选D.2.(一题多解)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2,在圆O 内,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,…点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则该点取自阴影部分的概率为( )A .4π-6 3B .1-332πC .π-332D .332π解析:选B.法一:依题意,得阴影部分的面积S =6×[16(π×22)-12×2×2×32]=4π-63,所求概率P =4π-63π·22=1-332π,故选B.法二:依题意得阴影部分的面积S =π×22-6×12×2×2×32=4π-63,所求概率P=4π-63π·22=1-332π,故选B.与体积有关的几何概型(师生共研)已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ­ABC <12V S ­ABC 的概率是 ( )A.34 B .78C.12D .14【解析】 由题意知,当点P 在三棱锥的中截面以下时,满足V P ­ABC <12V S ­ABC ,故使得V P ­ABC <12V S ­ABC 的概率:P =大三棱锥的体积-小三棱锥的体积大三棱锥的体积=78.【答案】 B与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥P -ABCD 的所有顶点都在球O 的球面上,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P -ABCD 内部的概率为________.解析:把四棱锥P -ABCD 扩展为正方体,则正方体的体对角线的长是外接球的直径R ,即23=2R ,R =3,则四棱锥的体积为13×2×2×2=83,球的体积为43×π(3)3=43π,则该点取自四棱锥P -ABCD内部的概率P =8343π=239π.答案:239π2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为________.解析:因为V F­AMCD=13×S四边形AMCD×DF=14a3,V ADF­BCE=12a3,所以它飞入几何体F-AMCD内的概率为14a312a3=12.答案:12[基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.12B.13C.25D.35解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=610=35.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1-36B.1-3π6C.1-33D.1-3π3解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为12×3×π3×12=π2,△ABC的面积S=12×22×sin 60°=3,则阴影部分的面积S=3-π2,则对应的概率P=3-π23=1-3π6.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B .π12C.π4D .1-π12解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD 为菱形,C 为EF 的中点,EC =CF =3,BE =DF =4,BE ⊥EF ,DF ⊥EF .若在几何图形中任取一点,则该点取自Rt △BCE 的概率为( )A.19 B .18C.17D .16解析:选D.因为EC =3,BE =4,BE ⊥EC ,所以BC =5.又由题可知BD =EF =6,AC =2BE =8,所以S △BCE =S △DFC =12×3×4=6,S四边形ABCD =12AC ·BD =24.由几何概型概率公式可得,所求概率P =624+6+6=16,即该点取自Rt △BCE 的概率为16.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BCAC =5-12≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在△ABC 内任取一点M ,则点M 落在△APQ 内的概率为( )A.5-12 B .5-2 C.5-14D .5-22解析:选B.所求概率为S △APQ S △ABC =PQ BC =BQ -BP BC =5-12BC -⎝⎛⎭⎪⎫1-5-12BC BC =5-2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y =1x ,y =-1x ,y =x ,y =-x 及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是14.答案:147.已知平面区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1},现向该区域内任意掷点,则该点落在曲线y =sin 2x 下方的概率是________.解析:y =sin 2x =12-12cos 2x ,所以⎠⎛0π⎝⎛⎭⎫12-12cos 2x d x =⎝⎛⎭⎫12x -14sin 2x ⎪⎪⎪π0=π2,区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y =sin 2x 下方的概率是π2π=12.答案:128.已知O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,则点P到点C的距离大于14的概率为________.解析:因为O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,所以⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2.如图,不等式组⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2对应的平面区域为正方形OEFG及其内部,|CP|>14对应的平面区域为阴影部分.由⎩⎪⎨⎪⎧x-2y=0,2x+y=2解得⎩⎨⎧x=45,y=25,即E⎝⎛⎭⎫45,25,所以|OE|=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255,所以正方形OEFG的面积为45,则阴影部分的面积为45-π16,所以根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.答案:1-5π649.如图所示,圆O的方程为x2+y2=4.(1)已知点A 的坐标为(2,0),B 为圆周上任意一点,求AB ︵的长度小于π的概率; (2)若N (x ,y )为圆O 内任意一点,求点N 到原点的距离大于2的概率. 解:(1)圆O 的周长为4π,所以AB ︵的长度小于π的概率为2π4π=12.(2)记事件M 为N 到原点的距离大于2,则Ω(M )={(x ,y )|x 2+y 2>2},Ω={(x ,y )|x 2+y 2≤4},所以P (M )=4π-2π4π=12.10.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .所有基本事件为(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1),共12个基本事件.其中A ={(0,0),(2,1)},包含2个基本事件.则P (A )=212=16,即向量a ∥b 的概率为16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y .基本事件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1所表示的区域, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,如图,区域B 为图中的阴影部分去掉直线x -2y =0上的点, 所以,P (B )=12×⎝⎛⎭⎫12+32×23×2=13,即向量a ,b 的夹角是钝角的概率是13.[综合题组练]1.(2020·安徽合肥模拟)已知圆C :x 2+y 2=4与y 轴负半轴交于点M ,圆C 与直线l :x -y +1=0相交于A ,B 两点,那么在圆C 内随机取一点,则该点落在△ABM 内的概率为( )A.378π B .374πC.328πD .324π解析:选A.由图可知,由点到直线距离公式得|OC |=|1|2=22,则|AB |=222-⎝⎛⎭⎫222=14,同理可得|MD |=|0+2+1|2=322,所以S △MAB =12|AB |·|MD |=372,由几何概型知,该点落在△ABM 内的概率为S △MAB S 圆=372π×22=378π,故选A.2.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14 B .13C.23D .12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.3.两位同学约定下午5:30~6:00在图书馆见面, 且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.答案:344.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P =2S ′S =2π36π=118.答案:1185.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.6.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎨⎧(a ,b )⎪⎪⎪⎩⎨⎧⎭⎬⎫a +b -8≤0,a >0,b >0,构成所求事件的区域为如图所示的三角形BOC 部分.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.。

高中数学几何概型 (1)优秀课件

高中数学几何概型 (1)优秀课件

达车站的时刻落在线段T1T上时,事件发生,区域D
的测度为15,区域d的测度为5。
所以
P(A)D d的 的测 测 15 度 度 51 3
答:侯车时间大于10 分钟的概率是1/3.
变式:假设题设条件不变,求候车时间不 超过10分钟的概率.
分析:
T1
T
T2
P(A)D d的 的测 测11度 度 0532
练一练
与长度成比例
(1)在区间〔0,10〕内的所有实数中随机取一个实数a,
那么这个实数a>7的概率为
.
假设满足2≤a≤5呢?
(2) 在1万平方千米的海域中有40平方千米的与大面陆积架成储比藏例 着石油,如果在海域中任意点钻探,钻到油层面的概率 .
与体积成比例
(3) 在1000mL的水中有一个草履虫,现从中任取出 2mL水样放到显微镜下观察,发现草履虫的概率.
y
时刻分别为 x 及 y〔分钟〕, 那 30
么0 x 30 0 y 30
二人会面 x y 10 10
2
30
(30 10)2
5
p
2
30
9
10
x
30
2.甲乙两船都要在某个泊位停靠6小时,假定他 们在一昼夜的时间段中随机到达,试求这两艘
中至少有一艘在停泊时必须等待的概率。
解:设甲到达的时间为x,乙为y,那么
几何概型
问题:图中有两个转盘.甲乙两人玩转盘游戏,规定当指 针指向B区域时,甲获胜,否那么乙获胜.在两种情况下 分别求甲获胜的概率是多少?
3
1

2
5
事实上,甲获胜的概率与字母B所在扇形区域的 圆弧的长度有关,而与字母B所在区域的位置无关. 因为转转盘时,指针指向圆弧上哪一点都是等可能 的.不管这些区域是相邻,还是不相邻,甲获胜的概 率是不变的.

几何概型(1)

几何概型(1)

例2.一海豚在水池中自由游弋,水池为长20m, 宽20m的正方形,求此刻海豚嘴尖离岸边 不超过2m的概率? 解:用几何概型计算概率,阴影部分表示 事件A“海豚嘴尖离岸边不超过2m”. 20m
∵S正方形ABCD=20×20=400 =256(m2)
B
A (m2)
2m
C
A`
C`
S正方形A`B`C`D`=(20-4)×(20-4)
2 1 p( A) 400 200
答:随机取出2ml水样发现大肠杆菌的 概率是
1 200
练习3
在棱长为3的正方体内任意取一个点,
求这个点到各面的距离 A) 3 3 27
3
1
例4.甲乙两人相约上午8点到9点在某地 会面,先到者等候另一人20分钟,过时 离去,求甲乙两人能会面的概率.
0≤x≤60 0≤y≤60 -20≤x-y≤20
2 2
y 60
60 - 40 5 20 P (A ) = = 2 60 9 O
20
60
x
练习4
甲、乙两人约定在6时到7时之间在某处会 面,那么两人当中一个人要等另一个人半 个小时以上的概率?
30≤x-y x-y ≤-30
30 1 p( A) 2 60 4
6
练习1
在两根相距8m的木杆间系一根绳子,并 在绳子上挂一个警示灯,求警示灯与两杆 的距离都大于3m的概率? 解:记事件A为“警示灯与两杆的距离都
大于3m”,则A的长度为8-3-3=2(m),
2 1 整个事件的长度为8m,则 p( A) 8 4
即警示灯与两杆的距离都大于3m的概率 为1/4.
⑵、取一根长度为3米的绳子,拉直 后在任意位置剪断,那么剪得两段的 长都不小于1米的概率有多大?

古典概型与几何概型

古典概型与几何概型

古典概型与几何概型一、古典概型 1、定义(1)样本空间的元素只有有限个; (2)每个基本事件发生的可能性相同。

比如:抛掷一枚均匀硬币的试验,抛掷一枚均匀骰子的试验,从一副扑克牌中随机抽取一张。

称具备条件(1)、(2)的实验称为等可能概型,考虑到它在概率论早期发展中的重要地位,又把它叫做古典概型。

2、古典概型中事件概率的计算设{}ωωωn ,,, 21=Ω ,由古典概型的等可能性,得}{}{}{21n P P P ωωω=== 又由于基本事件两两互不相容;所以},{}{}{}{121n P P P P ωωω ++=Ω=.,,2,1,1}{n i n P i ==ω若事件A 包含m 个样本点,即{}ωωωi i i A m,,,21 =, 则有 :中元素个数中元素个数Ω=A P(A)基本事件总数发生的基本事件数使A =n m= 1.(2010佛山一模)已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281 据此估计,该射击运动员射击4次至少击中3次的概率为 ( ) A .0.85 B .0.8192 C .0.8 D . 0.752.(2007·广东)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是A .310B .15C .110D .1123.(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 .4.(2009·安徽文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________。

【绝对经典】几何概型1

【绝对经典】几何概型1

3.3.1几何概型编撰人:王惠卿张纹境审核人:高一数学组包科领导签字:【教学目标】1.理解并掌握几何概型的定义;会求简单的几何概型试验的概率.2通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别.3.通过学习,让学生体会生活和学习中与几何概型有关的实例,增强学生解决实际问题的能力.【教学重点】几何概型概念的理解和公式的运用。

【教学难点】几何概型的应用。

【使用说明】请在15分钟之内自主预习课本135-136页的内容,并完成学案上自主学习部分,准备老师检查;小组成员合作完成课堂检测部分,提出问题,交科代表转交老师。

一、知识梳理1上节课我们认识了概率论中的新朋友古典概型,下面让我们来回顾一下,古典概型的概率计算公式;古典概型具有哪些特点呢?2.判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(3)取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率二、预习引导1.下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黑色区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?2.由上面的1、2问,你能得到概率的另一个新朋友是谁吗?它的名字是什么?3.几何概型的定义是什么?命运掌握在自己手中。

命运掌握在自己手中。

4.几何概型的特点:?5.几何概型的公式?三、预习自测1.取一根长为4m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1m 的概率是多少?2.有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率?3.取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.?命运掌握在自己手中。

4.将一个长与宽不等的长方形水平放置,长方形对角线将其分成四个区域.在四个区域内涂上红、蓝、黄、白四种颜色,并在中间装个指针,使其可以自由转动.对于指针停留的可能性,下列说法正确的是( )A .一样大 B. 黄、红区域大 C. 蓝、白区域大5.某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率?通过预习自测的四道题总结几何概型主要用于解决与长度、面积、体积有关的题目外,还解决和哪些量有关的题目。

高中数学_几何概型

高中数学_几何概型

几何概型知识图谱几何概型知识精讲一.几何概型1.定义:如果每个事件发生的概率只与构成该事件的区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型几何概型,可以将每个基本事件看成从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会一样;这里区域可以是线段、平面图形、立体图形等.2.特点:(1)结果的无限性,即在一次试验中,所有可能出现的结果(基本事件)的个数可以是无限的,且全体结果可用一个有度量的几何区域来表示;(2)等可能性,每个基本事件的发生的可能性是均等的.二.几何概型的计算公式几何概型中,事件A的概率定义为:()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三点剖析一.方法点拨1.几何概型与古典概型的联系与区别在古典概型及几何概型中,基本事件的发生都是等可能的;在古典概型中基本事件的个数是有限的,而在几何概型中基本事件的个数是无限的.2.几何概型求解的一般步骤(1)首先要判断几何概型,尤其是判断等可能性,这方面比古典概型可能更难于判断;(2)把基本事件转化为与之对应的区域;(3)计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积、体积等);(4)利用公式代入求解.3.几何概型的应用要把实际问题转化成几何概型,精读问题,注意适当选择观察角度,抓住关键词,把问题转化为数学问题,几何概型问题解决的关键是构造出事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.注意分辨清楚属于一维、二维或三维问题.尤其是二维问题一直是考试的重点.一维情形例题1、将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为()A.1 2B.15C.25D.35例题2、在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.1 6B.13C.23D.45例题3、在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为_________.例题4、如图,在三角形AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,求△AOC为钝角三角形的概率.()A.0.6B.0.4C.0.2D.0.1随练1、某公交车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,那么一个乘客候车时间不超过6分钟的概率为____.随练2、平面上有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是()A.1 4B.13C.12D.23随练3、在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.1 6B.13C.23D.45二维情形例题1、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π例题2、二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.例题3、设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:(1)硬币落下后完全在最大的正方形内的概率;(2)硬币落下后与网格线没有公共点的概率.例题4、小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是____(用数字作答).随练1、分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.7 10B.310C.35D.25随练2、设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为____.随练3、小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.三维情形例题1、在500mL的水中有一个细菌,现从中随机取出2mL水样放到显微镜下观察,则发现这个细菌的概率是()A.0.004B.0.002C.0.04D.0.02例题2、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点O 在底面ABCD 中心,在正方体ABCD-A 1B 1C 1D 1内随机取一点P 则点P 与点O 距离大于1的概率为()A.12π B.1-12π C.6π D.1-6π随练1、1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是()A.0.01 B.0.19 C.0.1 D.0.2随练2、一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18 B.116 C.127 D.38拓展1、在区间[﹣4,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为34,则实数m 的值为________2、一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.3、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S 的概率是()A.13 B.12 C.34 D.144、在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与281cm 之间的概率为()A.56 B.12 C.13 D.165、已知圆O :x 2+y 2=4(O 为坐标原点),点P (1,0),现向圆O 内随机投一点A ,则点P 到直线OA 的距离小于12的概率为()A.23 B.12 C.13 D.166、在区间[0,1]上随机取两个数m ,n ,求关于x 的一元二次方程x 2n 有实根的概率.7、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A.425 B.825 C.1625 D.24258、已知函数:f (x )=x 2+bx+c ,其中:0≤b≤4,0≤c≤4,记函数f (x )满足条件:(2)12(1)3f f ≤⎧⎨-≤⎩的事件为A ,则事件A 发生的概率为()A.58 B.516 C.38 D.129在棱长为a的正方体-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为()A.22B.22C.16D.16π。

第二十九讲 几何概型学案 (1)

第二十九讲 几何概型学案 (1)

几_何_概_型1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下:P (A )=构成事件A 的区域长度 面积或体积试验的全部结果所构成的区域长度 面积或体积.课前练习:1.设A (0,0),B (4,0),在线段AB 上任投一点P ,则|PA |<1的概率为( ) A.12B.13C.14D.15解析:选C 满足|PA |<1的区间长度为1,故所求其概率为14.2.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13.3.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.4-π2B.π-22C.4-π4D.π-24解析:选B 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22. 4.有一杯2升的水,其中含一个细菌,用一个小杯从水中取0.1升水,则此小杯中含有这个细菌的概率是________.解析:试验的全部结果构成的区域体积为2升,所求事件的区域体积为0.1升,故P =0.05.答案:0.055.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠YOT 内的概率为________.解析:如题图,因为射线OA 在坐标系内是等可能分布的,则OA 落在∠yOT 内的概率为60360=16.答案:161.几何概型的特点:几何概型与古典概型的区别是几何概型试验中的可能结果不是有限个,它的特点是试验结果在一个区域内均匀分布,故随机事件的概率大小与随机事件所在区域的形状位置无关,只与该区域的大小有关.2.几何概型中,线段的端点、图形的边界是否包含在事件之内不影响所求结果. 典例精讲:1.与长度有关的几何概型[例1] (2011·湖南高考)已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. [自主解答] (1)根据点到直线的距离公式得d =255=5;(2)设直线4x +3y =c 到圆心的距离为3,则|c |5=3,取c =15,则直线4x +3y =15把圆所截得的劣弧的长度和整个圆的周长的比值即是所求的概率,由于圆半径是23,则可得直线4x +3y =15截得的圆弧所对的圆心角为60°,故所求的概率是16.[答案] 5 16由题悟法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.确定点的边界位置是解题的关键.以题试法1.(1)(2012·福建四校联考)已知A 是圆上固定的一点,在圆上其他位置上任取一点A ′,则AA ′的长度小于半径的概率为________.(2)在Rt △ABC 中,∠BAC =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB ≥90°的概率为________.解析:(1)如图,满足AA ′的长度小于半径的点A ′位于劣弧BA C 上,其中△ABO 和△ACO 为等边三角形,可知∠BOC =2π3,故所求事件的概率P =2π32π=13.(2)如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD =12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率P =BD BC =122=14.答案:(1)13 (2)142.与面积有关的几何概型[例2](1)(2012·湖北高考)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2π B.12-1π C.2πD.1π(2)已知不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,x ≤a a >0表示平面区域M ,若点P (x ,y )在所给的平面区域M 内,则点P 落在M 的内切圆内的概率为( )A.2-1 4π B .(3-22)π C .(22-2)π D.2-12π [自主解答] (1)法一:设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2,则OD =DA=DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝ ⎛⎭⎪⎫π4-12×1×1=1,所以整体图形中空白部分面积S 2=2.又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.法二:连接AB ,设分别以OA ,OB 为直径的两个半圆交于点C ,令OA =2. 由题意知C ∈AB 且S 弓形AC =S 弓形B C =S 弓形O C , 所以S 空白=S△OAB =12×2×2=2.又因为S 扇形OAB =14×π×22=π,所以S 阴影=π-2.所以P =S 阴影S 扇形OAB =π-2π=1-2π. (2)由题知平面区域M 为一个三角形,且其面积为S =a 2.设M 的内切圆的半径为r ,则12(2a +22a )r =a 2,解得r =(2-1)a .所以内切圆的面积S 内切圆=πr 2=π[(2-1)·a ]2=(3-22)πa 2.故所求概率P =S 内切圆S=(3-22)π. [答案] (1)A (2)B 由题悟法:求解与面积有关的几何概型首先要确定试验的全部结果和构成事件的全部结果形成的平面图形,然后再利用面积的比值来计算事件发生的概率.这类问题常与线性规划[(理)定积分]知识联系在一起.以题试法2.(2012·湖南联考)点P 在边长为1的正方形ABCD 内运动,则动点P 到顶点A 的距离|P A |≤1的概率为( )A.14B.12C.π4D .π解析:选C 如图,满足|PA |≤1的点P 在如图所示阴影部分运动,则动点P 到顶点A 的距离|PA |≤1的概率为S 阴影S 正方形=14×π×121×1=π4.3.与体积有关的几何概型[例3] (1)(2012·烟台模拟)在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12B .1-π12 C.π6D .1-π6(2)一只蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中始终保持与正方体玻璃容器的6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一个位置的可能性相同,那么蜜蜂飞行是安全的概率为( )A.18B.116C.127D.38[自主解答] (1)点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球的外部.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. (2)由题意,可知当蜜蜂在棱长为10的正方体区域内飞行时才是安全的,所以由几何概型的概率计算公式,知蜜蜂飞行是安全的概率为103303=127.[答案] (1)B (2)C由题悟法与体积有关的几何概型是与面积有关的几何概型类似的,只是将题中的几何概型转化为立体模式,至此,我们可以总结如下:对于一个具体问题能否应用几何概型概率公式,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.以题试法3.(2012·黑龙江五校联考)在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率是________.解析:如图,三棱锥S —ABC 的高与三棱锥S —APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM 、BN 分别为△APC 与△ABC 的高,所以V S —APC V S —ABC =S △APC S △ABC =PM BN ,又PM BN =AP AB ,所以AP AB >13时,满足条件.设AD AB =13,则P 在BD 上,所求的概率P =BD BA =23.答案:23课后作业:1.在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A.13 B.2π C.12D.23解析:选A 由-12<sin x <12,x ∈⎣⎢⎡⎦⎥⎤-π2,π2,得-π6<x <π6.所求概率为π6-⎝ ⎛⎭⎪⎫-π6π2-⎝ ⎛⎭⎪⎫-π2=13.2.(2012·辽宁高考)在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.45解析:选C 设AC =x cm ,CB =(12-x )cm,0<x <12,所以矩形面积小于32 cm 2即为x (12-x )<32⇒0<x <4或8<x <12,故所求概率为812=23.3.在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为( ) A.12B.23C.34D.14解析:选C 要使该函数无零点,只需a 2-4b 2<0, 即(a +2b )(a -2b )<0. ∵a ,b ∈[0,1],a +2b >0, ∴a -2b <0. 作出⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a -2b <0的可行域,易得该函数无零点的概率P =1-12×1×121×1=34.4.已知函数f (x )=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f (x )≥0的概率是( )A.13B.12C.23D.34解析:选C 由∀x ∈[0,1],f (x )≥0得⎩⎪⎨⎪⎧f 0 ≥0,f 1 ≥0,有-1≤k ≤1,所以所求概率为1- -1 1- -2 =23. 5.在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.12解析:选A 如图,线段AB 长为5米,线段AC 、BD长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6.一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )A.π12B.π10C.π6D.π24解析:选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB 2+BC2=CA 2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7.(2012·郑州模拟)若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.解析:∵y =x 与y =-x 互相垂直,∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12. 答案:π128.(2012·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +2 2h +1 =14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3. 答案:39.(2012·宜春模拟)投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P (A )=⎝ ⎛⎭⎪⎫12212=14. 答案:1410.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P 1=14π×224×4=π16.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解:(1)集合M 内的点形成的区域面积S =8.因x 2+y 2=1的面积S 1=π,故所求概率为P 1=S 1S =π8.(2)由题意|x +y |2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S 2=4,所求概率为P =S 2S =12.12.(2012·长沙模拟)已知向量a =(-2,1),b =(x ,y ). (1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a·b =-1有-2x +y =-1,所以满足a·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6,且-2x +y <0};画出图形,矩形的面积为S 矩形=25,阴影部分的面积为S阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.。

几何概型 (1)

几何概型 (1)
绿


绿 绿 绿 红
情景1:
情景2:
转盘游戏
(研究指针位置)
面积
一个路口的红绿灯,红灯亮的时间为 30秒,黄灯亮的时间为5秒,绿灯亮的 时间为40秒,当你到达路口时,遇到 红灯和绿灯的概率那个大?为什么?
长度

A
1、几何概型是怎样定义的? 事件A理解为区域Ω 的某一子区域A,A的概率只与子 区域A的几何度量(长度、面积、体积)成正比,而与A的 位置和形状无关. 满足以上条件的试验称为几何概型. 2、在几何概型中,事件A的概率是怎么定义的?
0
A ( x, y) | y x,6.5 x 7.5,7 y 8 1 1 1 7 即图中的阴影部分,面积为: S A 1 2 2 2 8
6.5
7.5
x(送报人到
这是个几何概型,所以
SA 7 P( A) S 8
课堂小结
1.几何概型的特点. 2.几何概型的概率公式.
几何概型可以看作是古典概型的推广
例 某公共汽车站每 隔15分钟有一辆汽 车到达,乘客到达 车站的时刻是任意 的,求一个乘客到 达车站后候车时间 大于10 分钟的概率?
例 某公共汽车站每隔15分钟有一辆汽车到达, 乘客到达车站的时刻是任意的,求一个乘客到达 车站后候车时间大于10 分钟的概率? 分析:把时刻抽象为点,时间抽象为线段,故可 以用几何概型求解。 T1 T T2 解:设上辆车于时刻T1到达,而下一辆车于时刻 T2到达,线段T1T2的长度为15,设T是T1T2上的点, 且T1T=5,T2T=10,如图所示:·
(2)每个基本事件出现 现的可能性相等.

两种概型、概率公式的联系 1.古典概型的概率公式:

几何概型(1)课件

几何概型(1)课件

解:P(A)= μA/μΩ=2/500=0.004
5


古典概型与几何概型的异同点
古典概型—— 有限性、等可能性. 几何概型—— 无限性、等可能性.
6
一、与长度有关的几何概型问题
例1 已知函数 y=x2-x-2, x∈[-5,5],那么任 取一点x0∈[-5,5],求使f(x0)≤0的概率。
而只有 r< OM a 时硬币不与平行线相碰. 所以
M O
L1
L2
r , a 的长度 a r P( A) 0,a 的长度 a
8
二、与面积有关的几何概型问题
例3:一海豚在水池自由游弋,水池长30m,宽20m的长 方形.求此刻海豚嘴尖离岸边不超过2m的概率.
解: μΩ=30×20=600(m2) μA=600-26×16 =184(m2) P(A)=μA/μΩ =184/600 =23/75
解: 记“使f(x0)≤0”的事件为A 显然当x0∈[-1,2]时, 总有f(x0)≤0成立.
-5 -1
y
o
2
5
x
A 2 (1) 3 p( A) 5 (5) 10
7
一、与长度有关的几何概型问题
例2: 平面上有一些彼此相距2a的平行线,把一枚半 径r<a的硬币任意地掷在这个平面上,求硬币不 与任一条平行线相碰的概率。 解: 记“硬币不与任一条平行线相碰”为事件 A 由于 OM 0,a 即Ω的几何度量 2a
10
C
M N
AOLeabharlann B三、与体积有关的几何概型问题
例3:在1升高产小麦种子中混入了一粒带麦锈病 的种子,从中随机取出1毫升,则取出的种 子中含有麦锈病的种子的概率是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
8
3.在区间(0,1)内任取一个数 ,能使方程 a 1 x 2ax 0有两个相异的实根的概 率为() D 2 1 1 2 2 ( A) ( B) (C ) ( D)1 2 4 2 2
2
思考题
1 15 2 在集合P m 关于x的方程x m x m 0至多有一个实根 中, 2 4 任取一个元素x,使得式子lg x有意义的概率是()

A
归纳几何概型的特点: (1)无限性:试验中所有可能出现的结果 (基本事件)有无限多个; (2)等可能性:每个结果(基本事件) 发生具有等可能性。
概率类型
基本事件个数 每个基本事件发生的可能性
概率公式
古典 概型 几何 概型
有限个 无限个
相同 相同
m P( A) n
A P( A)

A
3 ( A) 8
3 ( B) 4
(C )0
( D)1
归纳小结 布置作业
本节核心内容是几何概型特点及概率 求法,易错点是容易找 错、求错几何度量。要求在做解答题时要有规范的步骤和必要 的文字说明,在平时的学习中养成良好的学习习惯!
①书面作业:课本 习题3-3 A 4;B 1,
②课外思考:在等腰直角 ABC 中,过直角顶点C在 ACB 内部任作一条射线CM,与线段AB交于点M,求 AM AC 的概率.
利用古典概型的概率公式求概率的步骤:
m P( A) n
①判定是否为古典概型;②设事件A并计算基本事件总数 n和事件A包含的基本事件个数m;③套用公式 m P(A)= 计算结果. n
情景二:射箭比赛的箭 靶涂有五个彩色得分环, 从外向内分别为白色、 黑色、蓝色、红色,靶 心是金色。金色靶心叫 “黄心”。奥运会的比 赛靶面直径为122cm,靶 心直径为12.2cm.运动员 在70m外射箭。假设射箭 都能中靶,且射中靶面 内任一点都是等可能的, 那么运动员射中黄心的 概率为多少?
复习回顾
◆1.古典概型的两大特征是什么?
◆2.古典概型的概率公式是什么?
在 回 顾 中 展 望 在 展 望 中 提 高 ,
◆3.求古典概型概率的规范解题步骤是什么? (1)有限性:在一次试验中,可能出现的结果只有有限个, 即只有有限个不同的基本事件; (2) 等可能性:每个基本事件发生的可能性是相等的.
练习1:图中有两个转盘,甲乙两人玩转 盘游戏,规定当指针指向B区域时,甲 获胜,否则乙获胜.在两种情况下分别 求甲获胜的概率是多少?
1 (1) 2 3 ( 2) 5
2.取一个边长为2a的正方形及其内切 圆如图,随机向正方形内丢一粒豆子, 豆子落入圆内的概率为 4
2a
变式:向半径为R的圆内任意投掷 一点,求此点落在圆内接正方形 2 内的概率为
30m

针对练习:《成才之路》P 157, 7 ◆例2:平面上画了一些彼此相距2a的平行线,把一枚
半径r<a的硬币任意掷在这一平面上,求硬币不与任一条 平行线相碰的概率. M
◆解:设事件A=“硬币不与任一条
平行线相碰”,为了确定硬币的位置, 由硬币中心O向靠得最近的平行线作 垂线OM,则 0 OM a,只有当 r OM a 时硬币不与平行线 相碰, 如右图, 可用区间长度表示几何度量.

定义:事件A理解为区域 的某一子区域A,A的概率只与 子区域A的几何度量(长度、面积或体积等)成正比,而与A 的位置和形状无关,满足以上条件的试验称为几何概型。 A 在几何概型中,事件A的概率定义为: P( A) 其中 表示区域 的几何度量, A 表示子区域A的几何度量.
r
r
O r r O r O
r
O r
2a
A
2a, A 2a 2r A 2a 2r a r P( A) 2a a
灵活应用
1.奥运会的比赛靶面直径 为122cm,靶心直径为 12.2cm.运动员在70m外 射箭。假设射箭都能中 靶,且射中靶面内任一 点都是等可能的,那么 运动员射中黄心的概率 为多少?
a
2a
O
O
r O A
a, A a r;
A a r P( A) a
思路二
Mபைடு நூலகம்
M
M
◆解:设事件A=“硬币不与任一条
平行线相碰”,为了求事件A的概率, 只需研究硬币不与两条平行线中任何 一条相碰即可,由于硬币的位置由硬币 中心决定,如右图,则事件A可用 图中的阴影来表示,可用宽度来表示 几何度量,
2R
π
典型例题 ◆例1:一海豚在水池中自由游弋,水池为长30m,
宽为20m的长方形。求此海豚嘴尖离岸边不超过 2m 的概率. A
◆解:设事件A=“海豚嘴尖 规 20m 离岸边不超过2m”, 范 如右图,则事件A可用 解 图中的阴影的面积表示, 2m 题 2 30 20 600(m ) 步 A 30 20 2616 184(m 2 ) 骤 规 184 23 范 故P ( A) 600 75 解 请同学们归纳求几何概型 题 步 概率的规范步骤, 骤 并与古典概型步骤作比较!
引例:
例1 如图,转盘上有8个面
积相等的扇形,转动转盘,求 转盘停止转动时指针落在阴影1 P ( A) 部分的概率. 2 例2 在500mL的水中有一个草履虫, 现从中随机取出2mL水样放在显微镜下 观察,求发现草履虫的概率. 1
P ( A) 250

例3:取一根长度为3米的绳子,拉直后在任意 位置剪断,那么剪得的两段长都不小于1米的概 1 率有多大? P ( A) 3
分析:记“射中黄心“为事件A,由于中靶点随机地落在 12.2 2 2 122 2 2 ) cm ( 面积为 ) cm 的靶面上,而中靶点落在面积( 2 2 1
的黄心内时,事件A发生, P( A)

A

100
2、如图是一个边长为1的正方形木板,上面画着一个
边界不规则的地图,板上的点是雨点打上的痕迹(雨点 3 落在何处是等可能的),则这个地图的面积为
相关文档
最新文档