3.8 图形的位似(二)教学设计
数学九年级下册《位似(2)》教案
初中20 -20 学年度第一学期教学设计一、复习回顾1、前面我们学过哪些图形变换? 平移、轴对称、旋转、位似2、在平面直角坐标系中,⊿ABC 的三个顶点A 、B 、C 的坐标分别为A (2,1)、B(3,2)、C (-1,2)。
(1)将⊿ABC 向右平移3个单位后的对应点的坐标是 ; (2)将⊿ABC 沿x 轴翻折后对应点的坐为 ;(3)将⊿ABC 沿y 轴翻折后对应点的坐标为 (4)以坐标原点O 为旋转中心,旋转180°后的对应点的坐标为 。
二 探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B (6,0).以原点O 为位似中心,相似比为,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现?31FEABCD(2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】位似变换中对应点的坐标的变化规律:]在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k三 例题讲解例1、在平面直角坐标系中, 有两点(6,3),B(6,0),以原点O 为位似中心,相似比为,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现? 答:例2、将⊿ABC 三个顶点的坐标A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将三角形⊿ABC 放大,观察对应点的坐标的变化,你有什么发现? 答:四、当堂训练1、某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,则小鱼上的点(a ,b )对应大鱼上的点( ) A B C D2、在平面直角坐标系中,o 为坐标原点,若点A 的坐标为,点B 的坐标为。
1)将⊿A OB 沿x 轴向左平移1个单位长度后得到⊿; 2)将⊿AOB 绕原点旋转180°后得到⊿;3)将⊿AOB 沿着x 轴翻折后得到⊿;4)以O 点为位似中心,按比例尺2:1将⊿AOB 放大后得到⊿; 中考链接3、如图,在 ABCD 中,F 是AD 延长线上一点,连接BF 交DC 于点E ,则图中的位似三角形共有 对.五、总结反思六、本节课你有什么收获?31)02(),12()0,2(),1,2(,,或-''--''''B A B A )4,12(),24(),64()4,12(),2,4(),6,4(--''--''--''''C B A C B A ,,或),(b 2a 2-)2,(b a --)2,2(b a --),2(b a --)(4,3)(0,4111B O A 222B O A 333B O A 444B O A。
九年级数学《图形的位似》教学设计
《图形的位似》教学设计平山县外国语中学荣彦国一、教学目标1、知识目标:(1)了解图形的位似概念,会判断简单的位似图形和位似中心。
(2)理解位似图形的性质,掌握以坐标原点为位似中心的位似变换的性质。
2、能力目标:(1)能利用位似将一个图形放大或缩小,解决一些简单的实际问题。
(2)培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。
(3)发展学生的合情推理能力和初步的逻辑推理能力。
3、情感目标:(1)通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。
(2)进一步体验合作互助、解决难题的情感,感受数学创造的乐趣,增进学好数学的信心。
二、教学重点和难点教学重点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
教学难点:在直角坐标系中,以原点为位似中心的位似变换的性质涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,不容易被理解,是本节教学的难点。
三、教学过程(2)在平行四边形ABCD中,△ABO与△CDO与正方形A′B′C′D′分别是AC,AB,AD从中,我们可以看到,OA△ ABO∽△A′B′O,则ABCD的位似图形,并把ABCD的边长放大3三、设计理念1、培养学习兴趣图形的位似是相似形的延伸和深化。
位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形。
从教材编排的一些素材看,不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值。
2、培养探究精神新课标的理念,数学教育要面向全体学生,人人都能获得必需的数学。
图形的位似,作为新增的内容,以其丰富的社会背景为素材展示给我们,使我们感受到数学创造的乐趣,但它对后续学习的知识联系不是很大,所以我认为,本节课的教学内容应以教材的编排为准,概念、性质、应用等让学生容易接受就好,水到渠成,不必要拓展和深化。
图形的位似2
《图形的位似》教学设计教学目标:1.掌握位似图形的概念和性质;2.会判定位似图形;3.会利用位似将一个图形放大和缩小教学重点:理解位似图形的概念和性质与作图教学难点:利用位似将一个图形放大或缩小教学过程:一.课前延伸:1.我们已经学习了图形的哪些变换?2•相似图形对应边的比都等于___________ ,周长的比等于 ______ ,面积的比等于 ____________二.课内探究:一、创设情境构建新知观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?问:已知:如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?根据学生回答情况,引导概括。
定义:如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心•二•如何判断是否位似图形?判断下列各对图形是不是位似图形,如果是,请指出位似中心1. (1)正五边形ABCDE与正五边形A B‘ C D; E(2)等边三角形ABC与等边三角形A B‘ C2•判断下面的正方形是不是位似图形?问题5.如何利用位似把图形放大或缩小?1.如图,已知△ ABC和点0.以0为位似中心,求作△ ABC的位似图形, 并把△ ABC 的边长扩大到原来的两倍变式训练1、1.如果?OAB和?OCD是位似图形,那么AB // CD吗?为什么?2.以点0为位似中心做位似比为1:2的位似图形3.如图,已知△ ABC和点0.以0为位似中心,求作△ ABC的位似图形, 并把△ ABC 的边长缩小为原来的一半d三、当堂检测 1.下列说法正确的是()A.相似形是位似图形B.两个正三角形是位似图形C.位似图形是全等形D.两个图形是位似图形,则这两个图形一定相似2.已知五边形ABCDE 与五边形A1B1C1D1E1是位似图形,且它们对应边的比为1:2,则五边形ABCDE 与五边形A1B1C1D1E1的周长之比为,面积之比为.3•如下图所示,△ ABC与厶A'B'C'是位似图形.⑴写出图中平行的线段;(2)直线AA',BB',CC'有怎样的位置关系?(3)找出它们的位似中心。
图形的位似教案
图形的位似教案一、教学目标1.了解图形的位似性质;2.能够通过观察图形判断是否为位似图形;3.能够通过比较图形的特征进行位似判断;4.能够应用位似性质解决实际问题。
二、教学内容图形的位似性质三、教学重点1. 图形的位似判断;2. 位似图形的特征比较。
四、教学难点位似判断的策略及应用。
五、教学过程Step1 导入新课教师拿出两个形状相似的图形,请学生观察并比较两个图形的相似之处。
引导学生思考:你们能说说两个图形有什么相似的地方?Step2 学习位似性质的定义教师引导学生讨论出位似性质的定义:如果两个图形的边可以分别成比例,且对应边之间的夹角相等,那么这两个图形就是位似图形。
Step3 学习位似性质的判断方法教师给出两对图形,让学生观察并判断其是否为位似图形。
通过讨论,引导学生总结出判断位似性质的方法:比较对应边之间的夹角是否相等,以及对应边的比值是否相等。
Step4 学习位似图形的特征比较教师给出一些图形,并让学生进行位似判断。
通过比较图形的特征,如边长,角度等,引导学生进行位似判断。
Step5 案例分析教师给出一些实际问题,让学生通过位似性质解决问题,如计算高楼外墙的项目量、计算太阳能板的面积等。
通过解答实际问题,让学生更好地理解位似性质的应用。
六、课堂小结通过本节课的学习,我们了解了图形的位似性质,并学会了通过比较对应边之间的夹角及比值进行位似判断。
同时,我们也学会了通过位似性质解决实际问题。
七、课后作业1.完成课堂练习题;2.整理图形的位似性质及应用的笔记。
《8 图形的位似》word版 公开课一等奖教案 (2)
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!4.8 图形的位似教学目标:1.了解位似多边形2.了解位似图形的性质和以坐标原点为位似中心的位似变换的性质。
3.能利用位似将一个图形放大或缩小。
教学重点:位似图形的性质和应用教学难点:在直角坐标系中,以原点为位似中心的位似变换性质不容易被理解教学过程:(一)情境引入生活中,见过这样的图形么?(找关于位似变换的图片:书柜,小区里的一牌楼,水花)这些图片有什么特点?除了相似,这里面还蕴含着怎样的数学奥秘呢?学生活动预设:各组图片相似。
(二)新知讲解我们以这组四边形为例,来研究一下。
除了相似,还有其他特点么?如果两个相似多边形每组对应点所在的直线都经过同一点,那么这样的两个多边形叫做位似多边形。
这个点叫做位似中心。
位似多边形与相似多边形有什么区别和联系?学生回答预设:这组位似多边形每组对应边所在的直线都经过同一点。
位似多边形是特殊的相似变换. 板演:果两个相似多边形每组对应点所在的直线都经过同一点,那么这样的两个多边形叫做位似多边形。
这个点叫做位似中心。
位似多边形是特殊的相似变换.辨一辨:(3)等边三角形ABC 与 等边三角形A 'B 'C '(2)正四形ABCD 与 正四形A 'B 'C 'D '(1)正五边形ABCDE 与 正五边形A 'B 'C 'D 'E 'P122页做一做1.判断下列各对图形哪些是位似图形,哪些不是?B'A'C'BA'B'ABC'D'E'B'A'DCD'C'AC OE A B CD根据什么?①是否相似?②每组对应边所在的直线是否都经过同一点? (三) 例题讲解 活动一:若三角形ABC 与三角形'''C B A 的位似比为2,则可得出哪些结论分析:还有其他结论么?'OA OA等于多少?为什么'OA OA等于3?根据什么?AOBC'B'A'你能发现对应点到位似中心的距离之比与位似比之间有什么关系? 你能把你的发现概括成命题的形式吗?活动二:如图,已知△ABC 和点O 。
图形的位似教案
图形的位似教案教案标题:图形的位似教案教学目标:1. 理解图形的位似概念,并能够运用位似的性质解决相关问题。
2. 能够识别和描述位似图形的特征。
3. 能够使用比例关系计算位似图形的边长、面积和体积。
教学重点:1. 图形的位似概念和特征的理解。
2. 运用位似的性质解决相关问题。
3. 使用比例关系计算位似图形的边长、面积和体积。
教学准备:1. 教师准备:投影仪、电脑、幻灯片、白板、白板笔。
2. 学生准备:教科书、练习册、尺子、计算器。
教学过程:引入(5分钟):1. 利用幻灯片展示两个位似图形的例子,并引导学生观察并讨论它们之间的相似之处。
2. 引导学生思考图形的位似概念,并解释位似图形的定义和性质。
探究(15分钟):1. 将学生分成小组,每组给予一组位似图形的卡片。
2. 学生自主探究位似图形的特征,如边长比例、角度比例等,并记录下自己的观察结果。
3. 每个小组派一名代表向全班汇报他们的观察结果,并与其他小组进行讨论和比较。
讲解(10分钟):1. 教师通过幻灯片和白板,总结和讲解位似图形的特征和性质。
2. 强调位似图形的边长比例、面积比例和体积比例的关系。
练习(15分钟):1. 学生个人或小组完成教科书上的位似图形练习题。
2. 学生互相检查答案,并向教师提问和讨论解题过程中的困惑。
拓展(10分钟):1. 提供更复杂的位似图形问题,要求学生运用位似的性质进行解答。
2. 引导学生思考位似图形在实际生活中的应用,如地图缩放、建筑设计等。
总结(5分钟):1. 教师对本节课的内容进行总结,并强调位似图形的重要性和应用。
2. 学生回答教师提出的总结问题,检查他们对位似图形的理解程度。
作业:1. 教师布置位似图形的练习题作业,要求学生运用位似的性质解答。
2. 学生完成作业后,将答案写在练习册上,并在下节课前提交。
教学反思:本节课通过引入、探究、讲解、练习等环节,使学生逐步理解和掌握图形的位似概念和性质。
在教学过程中,学生通过小组合作和个人练习,培养了他们的观察、分析和解决问题的能力。
位似图形(2)教学设计
动手操作探索新知利用新知解决问题梳理反思总结收获巩固检测布置作业活动二:探索1在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.观察对应点之间的坐标的变化,你有什么发现?在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.探索2在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2画它的位似图形.放大后对应点的坐标分别是多少?在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,将△ABC放大.做一做在平面直角坐标系中, 四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为1/2的位似图形.在直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(3,6),C(-3,3)。
已知四边形O’A’B’C‘与四边形OABC是以原点O为位似中心的位似四边形,且相似比是3:2,请写出四边形O’A’B’C’各个顶点的坐标。
与四边形OABC相比,四边形O‘A’B‘C’相比,四边形O‘A’B‘C’对应顶点的坐标发生了什么变化?在平面直角坐标系中,如果位似变换是以让学生小组观察图形,并各自附以简单的语言说明。
引导学生用自己的语言说出位似图形的在平面直角坐标系里的坐标特点。
引导学生先动手画图,再观察图形变化及与原图形的关系,最后将图形变化与坐标变化联系起来。
学生可能仅从知识上说明,老师可以适当补充。
有直观的图形体会数学与实际的关联性,数学知识不是孤立的。
说明:关于坐标原点位似的图形的坐标特征。
目的是让学生体会数学的严谨性和数形结合的数学思想。
目的是使学生抓住特性,解决实际问题。
《图形的位似》示范教学方案第2课时
第四章图形的相似4.8 图形的位似第2课时一、教学目标1.巩固位似多边形的有关概念;能利用位似将一个图形放大或缩小.2.在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条变在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的.二、教学重点及难点重点:位似图形的定义、性质与作图;利用位似将一个图形放大或缩小.难点:将放大或缩小的图形与原图形进行比较,归纳位似放大或缩小图形的规律.三、教学用具多媒体课件、直尺或三角板.四、相关资源《坐标系中的位似》动画,《平面直角坐标系中的位似》微课.五、教学过程【复习引入】1.位似多边形的概念一般地,如果两个相似多边形任意一组对应顶点P,P'所在的直线都经过同一点O,且有OP'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.2.位似图形的性质(1)位似图形的对应顶点的连线经过位似中心;(2)位似图形的对应边互相平行(或在同一条直线上);(3)位似图形的对应顶点到位似中心(在不重合的情况下)的距离之比等于相似比.师生活动:教师出示问题,学生思考、讨论并回答问题.设计意图:通过复习上节课图形的位似,为本节课的学习做好铺垫。
【探究新知】1.如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).将点O,A,B的横坐标、纵坐标都乘2,得到三个点,以这三个点为顶点的三角形与△OAB位似吗?如果位似,指出位似中心和相似比.如果将点O,A,B的横坐标、纵坐标都乘-2呢?师生活动:教师出示问题,学生思考、讨论、动手画图.解:如下图所示,将点O,A,B的横坐标、纵坐标都乘2或-2,所得到的三角形都与原△OAB位似,位似中心均为点O,相似比均为2.2.如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(4,2),B(8,6),C(6,10),D(-2,6).将点A,B,C,D的横坐标、纵坐标都乘12,得到四个点,以这四个点为顶点的四边形与四边形ABCD位似吗?如果位似,指出位似中心和相似比.如果将点A,B,C,D的横坐标、纵坐标都乘12呢?师生活动:教师出示问题,学生思考、讨论、动手画图,最后教师总结.解:如下图所示,将点A,B,C,D的横坐标、纵坐标都乘12或12,所得到的四边形与原四边形ABCD位似,位似中心均为点O,相似比均为12.结论在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k.设计意图:进一步帮助教师及时反馈学生的学习效果,提高学生综合运用知识的能力.此图片是动画缩略图,本资源为《坐标系中的位似》知识探究,通过交互式动画的方式,,可以吸引学生的学习兴趣,增加教学效果,适用于《坐标系中的位似》的教学.若需使用,请插入【数学探究】坐标系中的位似.【典例精析】例在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(6,0),B(3,6),C(-3,3).以原点O为位似中心,画出四边形OABC的位似图形,使它与四边形OABC 的相似比是2∶3.师生活动:教师出示例题,分析、引导学生画图.分析:为了使画出的四边形与原四边形的相似比为2∶3,可以将原四边形每个顶点的横坐标、纵坐标都乘23,或都乘23.解:如图,有两种画法.画法一:将四边形OABC各顶点的坐标都乘23,得O(0,0),A'(4,0),B'(2,4),C'(-2,2);在平面直角坐标系中描出点A',B',C',用线段顺次连接点O,A',B',C',O,则四边形OA'B'C'就是符合要求的四边形.画法二:将将四边形OABC各顶点的坐标都乘23,得O(0,0),A''(-4,0),B''(-2,-4),C''(2,-2);在平面直角坐标系中描出点A'',B'',C'',用线段顺次连接点O,A'',B'',C'',O,则四边形OA''B''C''也是符合要求的四边形.设计意图:让学生亲自操作、画图,组内交流,研究解决问题的方法,使其对新知识的把握更准确到位,让学生在数学学习的过程中,体验获得成功的乐趣,在探索过程中体会分类讨论的数学思想.本图片是微课的首页截图,本微课资源讲解了图形在平面直角坐标系中的位似,并通过讲解实例巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】平面直角坐标系中的位似.【课堂练习】1.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为12,把△EFO缩小,则点E的对应点E'的坐标是().A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)2.如图,已知点E(-4,2),点F(-1,-1),以点O为位似中心,相似比为1︰2,把△EFO缩小,则点E的对应点的坐标是().A .(-2,1)B .(2,-1)或(-2,-1)C .(2,-1)D .(-2,1)或(2,-1)3.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1︰.若点A 的坐标为(0,1),则点E 的坐标是________.4.如图,正方形OEFG 和正方形ABCD 是位似图形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是__________.5.如图,梯形ABCD 的四个顶点分别为A (0,6),B (2,2),C (4,2),D (6,6).按下列要求画图.(1)在平面直角坐标系中,以原点O 为位似中心,在O 点同侧,画出一个梯形A 1B 1C 1D 1,使它与梯形ABCD 的相似比为; (2)画出位似图形A 1B 1C 1D 1向下平移5个单位长度后的图形A 2B 2C 2D 2.参考答案1.D .2.D .3.).4.(-2,0).5.解:(1)如图梯形A 1B 1C 1D 1;(2)如图梯形A 2B 2C 2D 2.师生活动:教师找几名学生板演,讲解出现的问题.设计意图:进一步巩固所学知识,加深对所学知识的理解.六、课堂小结1.位似多边形的概念一般地,如果两个相似多边形任意一组对应顶点P ,P'所在的直线都经过同一点O ,且12有OP'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.2.位似图形的性质(1)位似图形的对应顶点的连线经过位似中心;(2)位似图形的对应边互相平行(或在同一条直线上);(3)位似图形的对应顶点到位似中心(在不重合的情况下)的距离之比等于相似比.3.在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计4.8图形的位似(2)1.位似多边形的概念2.位似图形的性质。
最新版初中数学教案《图形的位似》精品教案(2022年创作)
图形的位似教学目标【知识与能力】1、理解图形的位似概念.2、会利用作位似图形的方法把一个图形进行放大或缩小.3、掌握直角坐标系中图形的位似变化与对应点坐标变化的规律.【过程与方法】利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识.【情感态度价值观】开展学生的合情推理能力和初步的逻辑推理能力.教学重难点【教学重点】图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.【教学难点】直角坐标系中图形的位似变化与对应点坐标的关系.课前准备多媒体课件教学过程一、创设情景,构建新知1、位似图形的概念以下两幅图有什么共同特点?通过对图的观察能从生活中找到一种感觉吗?〔像一种什么镜头〕图片的形状相同,而且每组对应顶点都在由同一点出发的一条射线上.如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.例如上图中的任何两个五角星都是位似图形,点O是它们的位似中心;放电影时,胶片与屏幕的画面也是位似图形,光源就是它们的位似中心.2、引导学生观察位似图形以下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,并判断哪些是位似图形,哪些不是位似图形?为什么?每个图形中的两个四边形不仅相似,而且各对应点所在的直线都经过同一点.所以都是位似图形.各对应点所在的直线都经过同一点的相似图形是位似图形.其相似比又叫做它们的位似比.显然,位似图形是相似图形的特殊情形.它们的对应边互相平行〔或在同一条直线上〕. 例题解析例1 如图1-30〔书本第27页〕,△ABC 与点O .以点O 为位似中心,画出△A'B'C',使它与△ABC 是位似图形,并且相似比为3:2.二、应用新知1、作位似图形如图,请以坐标原点O 为位似中心,作ABCD 的位似图形,并把ABCD 的边长放大3倍.分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O 和ABCD 的各顶点,并把线段延长〔或反向延长〕到原来的3倍,就得到所求作图形的各个顶点.作法:如下列图1、连结OA ,OB ,OC ,OD .2、分别延长OA ,OB ,OC ,OD 到G ,C ,E ,F ,使3OG OC OE OF OA OB OC OD ====. 3、依次连结GC ,CE ,EF ,FG .四边形GCEF 就是所求作的四边形.如果反向延长OA ,OB ,OC ,OD ,就得到四边形G′C′E′F′,也是所求作的四边形.4、直角坐标系中图形的位似变化与对应点坐标变化的规律想一想:1、四边形GCEF 与四边形G ′C ′E ′F ′具有怎样的对称性?2、怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的位似图形? 比较图形中各对应点的坐标,我们还不难发现如果多边形有一个顶点在坐标原点,有一条边在x 轴上,那么将这个多边形的顶点坐标分别扩大〔或缩小〕相同的倍数,所得到的图形与原图形式位似图形,坐标原点是它们的位似中心.例2 如课本第29页图1-35,四边形OABC 的顶点坐标分别为〔0,0〕,〔2,0〕,〔4,4〕,〔-2,2〕.(1)如果四边形O′A′B′C′与四边形OABC 位似,位似中心是原点,它的面积等于四边形OABC 面积的94倍,分别写出点A′,B′,C′的坐标.(2)画出四边形OA′B′C′三、课堂小结今天你学会了什么?如果两个多边形不仅相似,而且对应顶点所在直线相交于一点,那么这两个多边形叫做位似图形形.这个点叫做位似中心.2.推论如果多边形有一个顶点在坐标原点,有一条边在x轴上,那么将这个多边形的顶点坐标分别扩大〔或缩小〕相同的倍数,所得到的图形与原图形式位似图形,坐标原点是它们的位似中心.三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活泼课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,答复课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条〔用硬纸条代替〕假设干、小钉假设干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后答复得出了什么?教师根据学生们的答复进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户翻开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.以下列图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.〔1〕〔4〕〔6〕中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。
人教版数学九年级下册27.3《位似(2)》教学设计
人教版数学九年级下册27.3《位似(2)》教学设计一. 教材分析人教版数学九年级下册27.3《位似(2)》是位似变换这一章节的延续,主要介绍了位似变换的概念、性质及其在实际问题中的应用。
本节课的内容对于学生来说是一个重要的拓展,它不仅要求学生掌握位似变换的基本性质,还要求学生能够将位似变换应用到实际问题中,提高他们解决问题的能力。
二. 学情分析九年级的学生已经掌握了相似变换的基础知识,对于变换的概念和性质有一定的理解。
但是,对于位似变换在实际问题中的应用,他们可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高他们的应用能力。
三. 教学目标1.知识与技能目标:使学生掌握位似变换的概念、性质及其在实际问题中的应用。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们解决问题的能力。
四. 教学重难点1.重点:位似变换的概念、性质及其在实际问题中的应用。
2.难点:如何将位似变换应用到实际问题中,提高解决问题的能力。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助他们理解位似变换的概念和性质。
2.实例分析法:教师通过具体的实例,让学生了解位似变换在实际问题中的应用。
3.小组讨论法:学生分组讨论,共同解决问题,提高他们的合作能力。
六. 教学准备1.教具:多媒体课件、黑板、粉笔。
2.学具:教材、练习题、笔记本。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似变换的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件展示位似变换的定义和性质,让学生初步了解位似变换。
3.操练(10分钟)教师提出一些实际问题,让学生运用位似变换的知识进行解决。
教师引导学生分组讨论,共同解决问题。
4.巩固(5分钟)教师针对学生解决问题的过程进行讲评,纠正错误,巩固位似变换的知识。
初二数学:《图形的位似》教案设计解析
初二数学:《图形的位似》教案设计解析今天小编就为大家精心整理了一篇有关初二数学:《图形的位似》教案设计解析的相关内容,以便帮助大家更好的复习。
《图形的位似》教学反思《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。
在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。
探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。
但是,这节课也存在很多不足之处:1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。
2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。
3、评价形式过于单调。
一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。
4、小组合作时个别学生没有真正动起来。
5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。
6、学生证明位似图形时证明过程还是不够严谨。
7、缺少了位似图形在生活中的应用。
改进措施:1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。
2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。
3、通过各种途径评价学生,让自己的评价活泼多样。
譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。
4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。
图形的位似教案
第 4 周第 1 课时总第 15 课时课题:2.3图形的位似(1)学习目标1、熟记位似图形的概念、性质。
2、知道利用位似的性质可以将一个图形放大或缩小。
3、会画一个简单图形的位似图形。
学习重点 位似图形的概念、性质。
学习难点 利用位似性质作图。
学习过程一、预习交流小组交流课前预习部分的内容,并提出不能解决的问题,老师根据情况讲解。
二、精讲点拨1、说一说:相似图形与位似图形之间的关系。
2、观察大屏幕有五个图形,每个图形中的四边形ABCD 和四边形A1B1C1D1 都是相似图形。
分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?特点:(1)两个图形相似:ABC D B 1A 1C 1D 1B 1C 1D 1AB CD A 1B 1C 1D 1ABCDABCDA 1B 1C 1D 1 AB CDC 1A 1 D 1B 1 (1) (2)(3)(4)(5)(2)每组对应点所在的直线交于一点。
议一议观察上图中的五个图形,回答下列问题:(1) 在各图形中,位似图形的位似中心与这两个图形有什么位置关系? (2)在各图中,任取一对对应点,度量这两个点到位似中心的距离。
它们的比与位似比有什么关系?再换一对对应点试一试。
(每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)位似图形对应点到位似中心的距离之比等于相似比。
由此得出:位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。
三、拓展延伸例1如图D ,E 分别是AB ,AC 上的点。
(1)如果DE ∥BC,那么△ADE 和△ABC 位似图形吗?为什么?(2)如果△ADE 和△ABC 是位似图形,那么DE ∥BC 吗?为什么?小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?四、系统总结学生谈谈自己的收获 五、限时作业(10分钟) 教后反思:ABCDE第 4 周第 2 课时总第16 课时课题:2.3图形的位似(2)学习目标1、会在直角坐标系内作一个图形的位似图形。
《图形的位似》教学设计
《图形的位似》教学设计经历观察.操作.分析等数学活动过程,通过详细实例认识中心对称,知道中心对称的性质.⒈中心对称的涵义⒉中心对称的性质.⒊成中心对称的图形的画法⒈中心对称的性质.⒉成中心对称的图形的画法通过详细的中心对称实例,让学生经历观察.操作.分析等数学活动,从而让学生认识中心对称,知道中心对称的性质,最后通过画图操作,进一步加深对性质的理解,同时掌握利用中心对称的根本性质作图的技能.利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转180 ,能与另一个重合吗?⒈ 引出概念:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点说一说:观察你生活的周围各处,指出几个中心对称的现象,并加以数学描述。
【设计说明:通过对生活中的中心对称现象的描述,加深了对中心对称的理解,锻练了用数学语言进展表达的能力】⒉ 探索活动活动一用一张透明纸覆盖在图3-5上,描出四边形ABCD。
用大头针钉在点O处,将四边形ABCD绕点O旋转180度问题一:四边形ABCD与四边形关于点O成中心对称吗?问题二:在图3-5中,分别连接关于点O的对称点A和、B 和、C和、 D和。
你发现了什么?成中心对称的2个图形,对称点的连线都经过对称中心,并且被对称中心平分【设计说明:让学生在操作与观察的根底上,发现中心对称的两个图形具有(一般地)旋转的一切性质,且具有特殊的性质——对称点连线经过对称中心,且被对称中心平分】活动二中心对称与轴对称进展类比轴对称中心对称有一条对称轴——直线有一个对称中心——点图形沿对称轴对折(翻转180度)后重合图形绕对称中心旋转180度后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分。
【设计说明:中心对称与轴对称都是指两个图形按某种规那么运动能互相重合的特殊位置关系,教学中,将他们进展类比,进一步加深对中心对称的理解】练一练课本98页练习1【设计说明:学习概念后,把概念直接运用到题目中,这是一个从一般到特殊的过程,也是数学学习的一大特点。
北师大版九年级上册数学 4.8 图形的位似(二)教学设计
第四章图形的相似8.图形的位似(二)一、学生知识状况分析九年级的学生正处于由形象思维向抽象思维的过渡阶段,经过沉淀,已经积累了一定的学习数学的方法和经验。
他们具备一定的探究能力,也喜欢动手探究。
本节课是第三章第九节图形的放大与缩小的第二课时,在上一课时学习了位似图形及相关概念后,学生动手将一些简单图形进行了放大或缩小,会利用橡皮筋等方法做近似的放大图形,已获得一些相关的知识经验和体验,这些知识的储备为本节课的学习奠定了基础。
学生日常生活中经常见到放大与缩小的实例,对本课的学习有一定的兴趣。
同时,在以往的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的经验,以及归纳知识的能力。
在此基础上,本节课主要探讨在直角坐标系中多边形与其位似图形之间的关系。
二、教学任务分析基于学生已经学过相似、位似等有关知识,并能将某一简单图形按一定比例放大或缩小,本节课将多边形放到直角坐标系中,探讨通过直角坐标系,如何寻找它关于原点O的位似图形并确定相似比,如何将一个多边形放大或缩小。
同时,也要探讨在直角坐标系中,给出相似比,如何确定一个已知多边形关于原点O 的位似图形。
通过具有挑战性的内容,促使学生进一步理解位似的相关概念,熟练掌握利用直角坐标系将一个图形按比例放大或缩小,进而能初步归纳出规律,形成有关技能,发展思维能力。
本节课将观察、动手操作等实践活动贯穿于教学活动的始终。
同时,有意识地培养学生积极的情感和态度。
为此,本节课的教学目标是:(一)知识目标1、在直角坐标系中,感受以O为位似中心的多边形的坐标变化与相似比之间的关系.2、经历以O为位似中心的多边形的坐标变化与相似比之间关系的探索过程,发展形象思维能力和数形结合意识。
3、通过实例进一步理解位似图形及相关概念和性质。
(二)能力目标1、能熟练准确地利用图形的位似在直角坐标系中将一个图形放大或缩小;2、经历探究平面直角坐标系中,以O为位似中心的多边形的坐标变化与相似比之间关系的过程,领会所学知识,归纳作图步骤,总结规律,并较熟练地进行应用。
北师大版九年级上册8图形的位似第四章:图形的位似课时二课程设计
北师大版九年级上册8图形的位似第四章:图形的位似课时二课程设计1. 课程目标本课程旨在提高学生对“图形的位似”的理解和计算能力。
通过本课程的学习,学生将掌握以下几个方面的知识:1.知道什么是“图形的位似”,并且知道它们之间的关系;2.掌握如何计算两个相似图形之间的边长比;3.能够利用相似图形的性质解决实际问题。
2. 课程内容本节课程主要包括以下几个方面的内容:1.复习上课内容,进一步巩固相似图形的基本概念;2.介绍相似图形的边长比的概念及计算方法;3.给出一些实际问题,让学生根据相似图形的性质进行解决。
3. 课程安排第一部分:引入(10分钟)•介绍本节课程内容及目标;•复习上次课的内容,回忆相似图形的基本概念。
第二部分:知识讲解(25分钟)1.什么是相似图形?2.相似图形的边长比是什么?3.如何计算相似图形的边长比?4.相似图形的性质有哪些?第三部分:实例演示(20分钟)1.给出一些实际问题,让学生根据相似图形的性质进行解决。
例1:某人站在一棵树下,他的头部到树顶距离为1.6米,他的身高为1.8米。
另一棵树的高度是3.6米,他站在树下时,他的头顶距离那棵树最高点的距离为多少?例2:如果一个人的影子长度是2米,同一时刻一根3米高的杆子的影子长度是多少?第四部分:练习(25分钟)•完成课本上的练习题。
第五部分:小结(5分钟)•温习本课程重点;•总结本节课程内容。
4. 课程效果评估课程效果评估主要通过学生的课堂表现、练习和课后作业完成情况进行评估。
5. 课后作业•按照上课所学的知识,完成课后作业;•阅读有关相似图形的相关材料,为下次授课做好准备。
6. 总结本节课程主要介绍了相似图形的边长比的概念及计算方法,以及相似图形的一些性质及应用。
通过本课程的学习,学生可以更好地理解相似图形及其应用,提高了他们的计算和解决实际问题的能力。
位似教案(教学设计)
位似【教学目标】知识与技能:1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。
3.会用图形的坐标的变化来表示图形的位似变换,并掌握点的坐标变化的规律。
4.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换。
过程与方法:通过设置问题情境,建立数学概念,解释、应用与拓展,引导学生观察,验证,推理,交流,探究位似变换和图形缩放及在直角坐标系中位似变换中对应点的坐标变化规律。
让学生了解相似与轴对称、平移、旋转都是图形之间的基本变换,总结四种变换的异同。
情感、态度与价值观:发展学生的探究能力,养成学生动脑动手的学习习惯,增强数学应用意识与能力。
【教学重点】1.位似图形的有关概念、性质与作图。
2.用图形的坐标的变化来表示图形的位似变换。
【教学难点】利用位似将一个图形放大或缩小及其点的坐标变化的规律。
【教学流程】一、情境引入观察:在日常生活中,照相机把人物的影像缩小到底片上,它们有什么特征?引出课题:这节课来探究这类问题。
二、观察探究(一)概念图中有相似多边形吗?如果有,这种相似有什么特征?每幅图中的两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这个点叫做位似中心。
这时的相似比又叫位似比。
追问:位似图形有什么性质呢?(二)利用位似可以将一个图形放大或缩小如何把图1中的四边形ABCD缩小到原来的。
分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2。
作法一:①在四边形ABCD 外任取一点O ;②过点O 分别作射线OA ,OB ,OC ,OD ;③分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′使得;④顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到四边形A ′B ′C ′D ′,如图2。
图形的位似教学设计2
九年级·数学·上册·总第()课时·授课时间:年月日教学课题:§图形的位似(2)课型:新授课
教学目标:1、复习位似图形定义
2、能利用图形的位似将一个图形放大或缩小.
3、能熟练准确地利用图形的位似将一个图形放大或缩小.
教学重点:利用位似将一个图形放大或缩小.
教学方法:引导、点拨、合作交流
学情分析:
B′C′对应顶点的坐标发生了什么变化?
四、测┉┉┉┉练习巩固、当堂检测
(一)练习检测:
1、下列说法正确吗?为什么?
(1)如图4-59所示,分别在△ABC的边AB、AC上取点D、E,使DE∥BC,那么△ADE是△ABC缩小后的图形.
图4-59
(2)如图4-60所示.分别在△ABC的边AB、AC的延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形.
(3)如图4-61所示:分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形.
2、三角形的顶点坐标分别是A(2,2),B(4,2),C(6,4),试将△ABC缩小,使缩小后的△DEF与△ABC对应边比为1∶2.
图4-60
3、如图,在直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(-2,3).画出四边形OABC以O为位似中心的位似图形,使它与四边形OABC的相似比是2:1.
如图4-61
(二)归纳总结:
1、回顾位似图形、位似中心、相似比的定义。
2、在直角坐标系中,以O为位似中心的两个位似多边形的坐标和相似比之间有什么关系?(三)课后作业
A类:习题:1、2、3
B类:习题:1、2、。
2022年《图形的位似》参考优秀教案
图形的位似【教学目标】1.通过“观察——操作——思考〞的活动过程,认识位似图形。
2.会利用位似的性质将一个图形放大或者缩小。
【教学重点】掌握位似图形的性质,利用位似图原理将一个图形放大或缩小。
【教学难点】利用位似图原理将一个图形放大或缩小。
1.“两边成比例且夹角相等的两个三角形相似〞的判定方法的证明;2.能恰当地运用判定方法判定三角形是否相似【活动一】探索位似图形的定义1.如图,点O和△ABC.分别在OA、OB、OC的反向延长线上取点A′、B′、C′,使画△A′B′C′。
观察:通过刚刚的操作,你发现了什么?。
,分别在线段OA、OB、OC、OD上取点A′、B′、C′D′,使,画四边形A′B′C′D′。
观察:通过刚刚的操作,你发现了什么?。
位似形多边形:如果两个多边形不仅相似,而且对应顶点所在直线相交于一点,那么这两个多边形叫做位似形,这个点叫做位似中心。
利用位似可以按所给相似比把一个图形放大或缩小。
【活动二】探索位似形的性质1.上述图形中,△ABC与△A′B′C′是位似形,这两个三角形相似吗?它们的对应边有怎样的位置关系?为什么2.上述图形中,四边形ABCD与四边形A′B′C′D′是位似形,这两个四边形相似吗?它们的对应边有怎样的位置关系?为什么性质:〔1〕两个位似形一定是相似形,相似形不一定是位似形;〔2〕各对对应点所在的直线都经过同一点;〔3〕位似形的对应线段所在直线平行或经过位似中心;〔4〕各对对应顶点到位似中心的距离之比等于相似比。
【练习】解决下面问题:1.以下说法中,错误的选项是〔A.位似图形一定是相似图形; B.相似图形不一定是位似图形; C.位似图形上任意一对对应点到位似中心的距离之比等于位似比;D.位似图形中每组对应点所在的直线必互相平行.2.如图,△ABC与△A′B′C′是位似图形,且位似比是1:2,假设AB=2cm,那么A′B′=,请在图中画出位似中心O.【试一试】例1为位似中心,把△ABC按相似比2:1放大〔即所画图形与原图形的相似比为2:1〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容易将一开始总结出来的方法用在这两个问题上。课件展示作图的步骤及过
程,不仅能吸引学生的注意力,同时,让学生学会听课,观察,对比。通过仔
细观察,对比自己的作图过程,掌握在直角坐标系中做多边形位似图形的方
法,并能对作图方法进行初步归纳(用自己的语言描述)。通过问题(4),引导
对于在作图中出现的问题要及时给予解决。教材给出的例题都是多边形其中一
个顶点为原点。有的学生会提出疑问:是不是平面直角坐标系中只有这样的多
边形才会满足结论?或者在学生自己设计时,会出现原点不是多边形顶点的图
形。教师要及时抓住这些学生资源,引发学生思考,引导学生探究,有必要可
课件展示一例,最终形成统一结论。并鼓励和表扬学生的质疑精神和求变思
例放大或缩小,本节课将多边形放到直角坐标系中,探讨通过直角坐标系,如
何寻找它关于原点 O 的位似图形并确定相似比,如何将一个多边形放大或缩
小。同时,也要探讨在直角坐标系中,给出相似比,如何确定一个已知多边形
关于原点 O 的位似图形。通过具有挑战性的内容,促使学生进一步理解位似的
3、将较好的学生作图进行展示,并由学生说明作图的步骤和判断方法。
4、由学生总结自己的发现。
活动目的:
让学生在活动中能够举一反三,触类旁通、善于发现、勤于探究,敢于质
疑,学会总结,形成自主学习的良好学习习惯。
注意事项:
这一环节一定要让学生亲自动手,教师要特别关注学生的动手操作过程,
学生初步发现规律。
注意事项:
教师可以通过小组合作的形式完成前三个问题,给学生充分的思考、交
流、展示的时间。第四个问题让学生完全独立完成,加深理解,掌握作图方
法,并进一步归纳出规律(学生用自己的语言描述即可)。
第三环节:做一做
活动内容:
(1)在直角坐标系中,四边形 OABC 的顶点坐标分别为 O(0,0),A
流主动参与的意识,在独立思考的同时能够认同他人。
教学重点:
通过探究得到平面直角坐标系中多边形坐标变化与其位似图形的关系,并
能应用该结论将一个多边形放大或缩小。
教学难点:
通过位似的相关概念和性质判断直角坐标系中两个多边形是否位似;比较
放大或缩小后的图形与原图形的坐标与相似比,总结规律。
间的关系.
2、经历以 O 为位似中心的多边形的坐标变化与相似比之间关系的探索过
程,发展形象思维能力和数形结合意识。
3、通过实例进一步理解位似图形及相关概念和性质。
(二)能力目标
1、能熟练准确地利用图形的位似在直角坐标系中将一个图形放大或缩小;
积累了一定的学习数学的方法和经验。他们具备一定的探究能力,也喜欢动手
探究。本节课是第三章第九节图形的放大与缩小的第二课时,在上一课时学习
了位似图形及相关概念后,学生动手将一些简单图形进行了放大或缩小,会利
用橡皮筋等方法做近似的放大图形,已获得一些相关的知识经验和体验,这些
知识的储备为本节课的学习奠定了基础。学生日常生活中经常见到放大与缩小
予肯定,不足之处给予纠正,补充。
教师说明:除利用前面已经用过的作图、“橡皮筋”等方法外,在计算机
上,借助一些软件也可以很方便地将一个图形放缩,如有条件,可以试试。
下面我们一起研究,当位似图形与直角坐标系碰面,将碰撞出怎样神奇的
数学知识。(从而引入新课)
活动目的:
(3)如果位似,指出位似中心和相似比。
(4)如果将点 O,A,B 的横、纵坐标都乘以-2 呢?
1、学生根据提示,自己在直角坐标系中画出△O′A′B′;
2、先分组讨论,猜测结论并验证问题(2)(3)。教师对于学生的验证方法
进行简单的评述。注意,此处应给学生充分的思考和交流时间和空间,让学生
将上节课所学的位似的相关概念充分理解消化,并能够运用在这几个问题之
中。
3、教师总结作图步骤及判断方法(课件展示)。
4、待课件展示后,教师引导学生独立完成问题(4),并能仿照刚才的过程
自己提出问题并解决。
样求两个位似图形的相似比?一定要给学生足够的思考和交流时间。学生在此
时归纳总结出方法,接下来的学习将会顺利很多。对于作图法和“橡皮筋”法
只需简单描述即可,此处不必让学生动手操作。
第二环节:动手操作,探求新知
活动内容:
课件展示:在直角坐标系中,△OAB 三个顶点的坐标分别为 O(0,0),A
三、教学过程分析
本节课设计了七个教学环节:第一环节:复习引入;第二环节:动手操作,探
求新知;第三环节:做一做;第四环节:议一议;第五环节:巩固练习;第六
环节:课堂小结;第七环节:布置作业。
第一环节:复习引入
活动内容:
提问:
1、什么是位似图形?
的实例,对本课的学习有一定的兴趣。同时,在以往的数学学习中,学生已经
经历了很多合作学习的过程,具有了一定的经验,以及归纳知识的能力。在此
基础上,本节课主要探讨在直角坐标系中多边形与其位似图形之间的关系。
二、教学任务分析
基于学生已经学过相似、位似等有关知识,并能将某一简单图形按一定比
1
(5,0),B(5,3),C(2,4).将点 O,A,B,C 的横、纵坐标都乘 ,得到四个
2
2、经历探究平面直角坐标系中,以 O 为位似中心的多边形的坐标变化与相
似比之间关系的过程,领会所学知识,归纳作图步骤,总结规律,并较熟练地
进行应用。
3、通过学习,进一步培养学生应用已有知识解决数学问题的能力,培养学
生逆向思维和类比思想,发展有条理的思考和语言表达能力。
2、如何判断两个图形是否位似?
3、怎样求两个位似图形的相似比?
4、如何将画在纸上的一个图片放大,使放大前后对应线段的比为 1:2?
你有哪些方法?
让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给
本节课的内容需要大量用到判断两个图形是否位似以及求相似比,而通过
直角坐标系确定一个多边形的位似图形,其实也是将多边形放大或缩小的方法
之一。通过复习,回顾位似图形的相关知识,为新课的进行做好铺垫。
注意事项:
复习时间不宜过长,但是对于问题 2、如何判断两个图形是否位似?3、怎
第四章 图形的相似
8.由形象思维向抽象思维的过渡阶段,经过沉淀,已经
维。
第四环节:议一议
活动内容:
课件展示:在直角坐标系中,四边形 OABC 的顶点坐标分别为 O(0,0),A
(6,0),B(3,6),C(-3,3).已知四边形 O′A′B′C′与四边形 OABC 是以原
(三)情感与价值观目标
1、有意识地培养学生学习数学的积极情感,激发学生对图形学习的好奇
心,形成多角度、多方法想问题的学习习惯;
2、通过对问题的研究,激发学生对数学学习的好奇心与求知欲,能积极参
与数学学习活动,进一步培养学生动手操作的良好习惯。
3、通过师生的共同活动,促使学生在学习过程中培养良好的情感、合作交
5、待学生完成问题(4)后,引导学生总结:将△OAB 的横、纵坐标分别
乘 2 和-2,得到的两个不同的三角形都是△OAB 的位似图形,位似中心都是原
点 O,相似比都是 2,它们关于原点成中心对称。
活动目的:
(3,0),B(2,3).
按要求完成下列问题:
(1)将点 O,A,B 的横、纵坐标都乘以 2,得到三个点 O′,A′,B′,请你
在坐标系中找到这三个点。
(2)以这三个点为顶点的三角形与△OAB 位似吗?为什么?
k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比
为
∣k∣.)
1、请同学们自己完成问题(1)
2、让学生动手在直角坐标系中自己创作一个多边形,并将横纵坐标都乘以
一个数,得到新坐标,画出新多边形,判断两个多边形是否为位似图形,并求
出位似中心和相似比。此过程教师巡视学生的操作,并适时给予必要的指导。
点,以这四个点为顶点的四边形与四边形 OABC 位似吗?如果位似,指出位似中
心和相似比.
(2)你能自己在直角坐标系中创作一个多边形,仿照上面的的要求操作,
得到相同的结论吗?
(3)通过前面的探究,你发现了什么?
(在直角坐标系中,将一个多边形每个顶点的横、纵坐标都乘以同一个数
相关概念,熟练掌握利用直角坐标系将一个图形按比例放大或缩小,进而能初
步归纳出规律,形成有关技能,发展思维能力。本节课将观察、动手操作等实
践活动贯穿于教学活动的始终。同时,有意识地培养学生积极的情感和态度。
为此,本节课的教学目标是:
(一)知识目标
1、在直角坐标系中,感受以 O 为位似中心的多边形的坐标变化与相似比之