2016年天津市津南区中考数学模拟试卷和解析word版

合集下载

2016年天津市中考数学试卷(word版)及答案

2016年天津市中考数学试卷(word版)及答案

机密★启用前2016年天津市初中毕业生学业测试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

测试时间100分钟。

答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴测试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

测试结束后,将本试卷和“答题卡”一并交回。

祝你测试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-2)-5的结果等于(A)-7 (B)-3(C)3 (D)7(2)sin60 的值等于(A)12(B2(C 3(D3(3)下列图形中,可以看作是中心对称图形的是(A ) (B ) (C ) (D )(4)据2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6 120 000株.将6 120 000用科学记数法表示应为 (A )70.61210⨯ (B )66.1210⨯(C )561.210⨯(D )461210⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6)估计19的值在(A )2和3之间 (B )3和4之间 (C )4和5之间 (D )5和6之间(7)计算11x x x+-的结果为 (A )1 (B )x(C )1x(D )2x x+ (8)方程2120x x +-=的两个根为(A )1226x x =-=, (B )1262x x =-=,(C )1234x x =-=,(D )1243x x =-=,(9)实数a b ,在数轴上的对应点的位置如图所示,把a -,第(5)题abb -,0按照从小到大的顺序排列,正确的是(A )0a b -<<- (B )0a b <-<- (C )0b a -<<- (D )0b a <-<-(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B ′,AB ′和DC 相交于点E ,则下列结论一定正确的是(A )∠DAB ′=∠CAB ′ (B )∠ACD =∠B ′CD (C )AD =AE(D )AE =CE(11)若点A 1(5)y -,,B 2(3)y -,,C 3(2)y ,在反比例函数3y x=的图象上,则123y y y ,,的大小关系是(A )132y y y << (B )123y y y << (C )321y y y << (D )213y y y <<(12)已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,和其对应的函数值y 的最小值为5,则h 的值为(A )1或-5 (B )-1或5 (C )1或-3 (D )1或3 机密★启用前2016年天津市初中毕业生学业测试试卷数 学第(10)题第(9)题EB'B第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。

天津市2016届中考模拟数学试题(二)及答案

天津市2016届中考模拟数学试题(二)及答案

2016 年••天津市中考模拟试卷••• 中考“名师圈题”数学模拟试卷(二)第Ⅰ卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1) 3 + (-5) 的结果是( )(A )-2 (B )2 (C )8 (D )-8(2) 3tan 30°的值为( ) (A )23(B)3 (C )33 (D )233 (3)下列图形中,不是中心对称图形的是( )(4)“H7N9”是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012 米, 0.00000012 用科学记数法表示为( )(A )1.2×10-9 (B )1.2 ×10-8 (C )12×10-8 (D )1.2×10-7 (5)形状相同、大小相等的两个小木块放置于桌面,其俯视图如图所示,则其主视图是下图中的( )(6)如图,圆O 是△ABC 的外接圆,连接 OA,OB,∠OBA=500,则∠C 的度数为( )(A ) 30 (B ) 40 (C ) 50 (D ) 80 (7)设 119-=a , a 在两个相邻整数之间,则这两个整数是( ) (A )1和 2(B ) 2 和 3 (C ) 3 和 4 (D ) 4 和 5(8)不解下列方程,判断下列哪个数是方程32133112--++=+x x x x 的解( ) (A ) x=1 (B)x=-1 C. x =3 (D) x=-3 (9)对于反比例函数xy 1-=,下列说法不正确的是( )(A )图象经过点 (1,-1) (B )图象在第二、四象限(C ) x> 0 时,y 随 x 的增大而增大 (D ) x< 0 时, y 随 x 的增大而减小 (10) 在平面直角坐标系中,已知△EFO 点,以原点 O 为位似中心,相似比为21,把△EFO 缩小,若 E(-4, 2) ,则点 E 的对应点 E ' 的坐标是( )(A )(-2,1) (B )(-8,4) (C )(-8,4)或(8,-4) (D )(-2,1)或(2,-1) 11.二次函数y=x 2-x+m(m 为常数)的图象如图所示,当x=a 时, y<0 .那么当 x=a-1 时,函数值 y 的取值范围是( )(A ) y<0 (B ) 0< y< m (C ) y>m (D ) y= m(12)如图,等腰直角 △ABC 中, AC=BC,∠ACB =900, AF 为△ABC 的角平分线,分别过点 C, B 作 AF 的垂线,垂足分别为 E ,D.以下结论:① CE=DE=BD 22;② AF= 2BD ;③ CE+ EF=AE 21;④212-=AF DF .其中结论正确的序号是( )(A )①②③ (B )①②④ (C )①③④(D )②③④第Ⅱ卷二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)(13)若|x|=7,则x 的值等于____________.(14) 在正比例函数 y=-3mx 中,y 随 x 的增大而增大,则 P(m,5) 在第_____象限.(15) 在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为 1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是 1 的概率为 .(16) 如图,AB 是圆O 的直径,点 C 在圆上,CD ⊥ AB 于点 D , DE// BC ,则图中与△ABC 相似的三角形共 有 个.(17) 如图,圆内接正六边形 ABCDEF 中,AC 、 BF 交于点 M .则 S △ABM : S △AFM 等于 .(18) 如图,在正方形网格中有一边长为 4 的平行四边形 ABCD . (Ⅰ)平行四边形 ABCD 的面积是 ;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为 6 的矩形,画出裁剪线(最多两条),并简述拼接方法.三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)(19)(本小题 8 分)解不等式组⎪⎩⎪⎨⎧<-+≥+)2(121)1(4)2(3x x x 请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ; (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .(20)(本小题 8 分)从 2013 年 1 月 7 日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表..请根据图表中提供的信息解答下列问题:(Ⅰ)求接受调查的总人数;(Ⅱ)填空:m =________,n =_______,扇形统计图中 E 组所占的百分比为_________%;(Ⅲ)若该市人口约有 100 万人,请你估计其中持 D 组“观点”的市民人数.(21)(本小题 10 分)已知 AB 为圆O 的直径, C 为圆 O 上一点,若直线 CD 与圆O 相切于点 C,AD⊥CD,垂足为 D .(Ⅰ)如图①, AB=10,AD = 2 ,求 AC 的长;(Ⅱ)如果把直线 CD 向下平行移动,如图②,直线 CD 交圆O 于C, G 两点,若题目中的其它条件不AD的值.变,且 AG= 4 ,BG=3,求AC(22)(本小题 10 分)如图,已知斜坡 AB 长为 60 2米,坡角(即∠BAC)为 45º, BC⊥ AC.现计划在斜坡中点 D 处挖去部分斜坡,修建一个平行于水平线 AC 的休闲平台 DE 和一条新的斜坡 BE ,若修建的斜坡 BE 的坡比为3 :1 ,求休闲平台 DE 的长是多少米?(结果保留根号).(23)(本小题 10 分)某商场将进价为 2000 元的冰箱以 2400 元售出,平均每天能售出 8 台.市场调查表明:这种冰箱的售价每降低 50 元,平均每天就能多售出 4 台.(Ⅰ)假设每台冰箱降价 x 元,商场每天销售这种冰箱的利润是 y 元,请写出 y 与 x之间的函数表达式;(不要求写自变量的取值范围)(Ⅱ)商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(Ⅲ)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?(24)(本小题 10 分)如图,四边形 OABC 是矩形,点 A , C 的坐标分别为(3,0),(0,1),点 D 是1交折线 OAB 于点 E .线段 BC 上的动点(与端点 B 、 C 不重合),过点 D 作直线b=y+x-2(Ⅰ)当点 E 与点 A 重合时,求点 D 的坐标;(Ⅱ)当点 E 在线段 AB 上时,记△ODE 的面积为 S ,求 S 与 b 的函数关系式;(Ⅲ)当点 E 在线段 OA 上时,若矩形 OABC 关于直线 DE 的对称图形为四边形 O1ABC1,试探究O1ABC1 与矩形 OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.(25)(本小题 10 分)已知二次函数23)2(2)1(2++++=x t x t y 在 x=0 和 x=2 时的函数值相等.(Ⅰ)求二次函数的解析式;(Ⅱ)若一次函数 y= kx+6 的图象与二次函数的图象都经过点 A(-3, m) ,求 m 和 k 的值; (Ⅲ)设二次函数的图象与 x 轴交于点 B, C (点 B 在点 C 的左侧),将二次函数的图象在点 B,C 间的部分(含点 B 和点 C)向左平移 n( n >0)个单位后得到的图象记为 G ,同时将(Ⅱ)中得到的直线 y= kx+6 向上平移 n 个单位.请结合图象回答:平移后的直线与图象 G 有公共点时, n 的取值范围.参考答案一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)(1)A (2)B (3)A (4)D (5)D (6)B(7)C (8)A (9)D (10)D (11)C (12)B二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)1(16)4 (17)1:2(13)7 (14)二(15)16(18)(Ⅰ)24;(Ⅱ).将剪出的边长为 2 个单位长度的小三角形向下平移 4 个单位长度,再将剪出的边长为 4 的等腰直角三角形先向左平移 6 个单位长度,后向下平移 2 个单位长度,就组成了边长为 6 的矩形.(19)(本小题 8 分)解:(Ⅰ) x≥1 ;(Ⅱ) x <3 ;(Ⅳ)-1≤x<3.(20)(本小题 8 分)解:(Ⅰ)总人数是:80÷20%=400(人)(Ⅱ)40;100;15%(Ⅲ)30 (万人)持 D 组“观点”的市民人数为 30 万人25.。

天津市2016年九年级中考数学模拟题及答案

天津市2016年九年级中考数学模拟题及答案

15. 从 -3,-2,-1,0,4
这五个数中随机抽取一个数记为
a,a 的值既是不等式组
2x 3 4 3x 1 11 的解 , 又在
1
y 函数
2x 2 2 x 的自变量取值范围内的概率是

16. 如图,将等边△ ABC的边 AC逐渐变成以 B 为圆心、 BA 为半径的 A⌒C, 长度不变 ,AB 、 BC的长度也
因为函数图像经过点 (4,20),(2.5,7.5)
25 m
3
4m n 20
40
.得 2.5m n 7.5 解得 n
3
25 40 所以线段 CD所表示的 y 与 x 之间的函数表达式为 y2= 3 x- 3 .
25 40 ( 2)线段 CD所表示的 y 与 x 之间的函数表达式为 y2= 3 x- 3 , 令 y2=0, 得 x=1.6. 即小东出发 1.6 h 后 , 小明开始出发. ①当 0≤ x< 1.6 时 ,y1=16, 即 -5x + 20=16,x=0.8 .
25 40 ②当 1.6 ≤ x<2.5 时, y1-y2=16 ,即 -5x +20-( 3 x- 3 )=16, 解得 x=1.3. (舍去)
25 40
③当
2.5 ≤ x≤4 时, y#43;20)=16,x=3.7 3

答 : 小东出发 0.8 h 或 3.7 h 后 , 两人相距 16 km .
. 截至 2016 年 2 月 22 日晚 10 点 , 超过 350 000 名
国内外游客来到夫子庙、老门东和大报恩寺遗址公园等景区观灯赏景
. 将 350 000 用科学记数法表示
为( )
A.0.35 × 106
B.3.5 × 104

2016年天津中考数学试题及答案

2016年天津中考数学试题及答案

机密★启用前2016年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-2)-5的结果等于(A)-7 (B)-3(C)3 (D)7(2)sin60 的值等于(A)12(B(C(D(3)下列图形中,可以看作是中心对称图形的是(A ) (B ) (C ) (D )(4)据2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6 120 000株.将6 120 000用科学记数法表示应为 (A )70.61210⨯ (B )66.1210⨯(C )561.210⨯(D )461210⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6)估计19的值在(A )2和3之间 (B )3和4之间 (C )4和5之间(D )5和6之间(7)计算11x x x +-的结果为 (A )1(B )x(C )1x(D )2x x +(8)方程2120x x +-=的两个根为第(5)(A )1226x x =-=, (B )1262x x =-=, (C )1234x x =-=,(D )1243x x =-=,(9)实数a b ,在数轴上的对应点的位置如图所示,把a -, b -,0按照从小到大的顺序排列,正确的是(A )0a b -<<- (B )0a b <-<- (C )0b a -<<- (D )0b a <-<-(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B ′,AB ′与DC 相交于点E ,则下列结论一定正确的是 (A )∠DAB ′=∠CAB ′ (B )∠ACD =∠B ′CD (C )AD =AE(D )AE =CE(11)若点A1(5)y -,,B2(3)y -,,C3(2)y ,在反比例函数3y x =的图象上,则123y y y ,,的大小关系是(A )132y y y << (B )123y y y << (C )321y y y << (D )213y y y <<(12)已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 (A )1或-5 (B )-1或5 (C )1或-3 (D )1或3第(10)题a b 0第(9)EB'BC机密★启用前2016年天津市初中毕业生学业考试试卷数学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B铅笔)。

2016年天津市中考数学试卷(word版,含答案)

2016年天津市中考数学试卷(word版,含答案)

2016年天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7A.2.sin60°的值等于()A.B.C.D.C.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间C.7.计算﹣的结果为()A.1 B.x C.D.A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣aC.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CED.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.14.计算(+)(﹣)的结果等于2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)第11页(共11页)。

天津市津南区2016年中考数学模拟试卷(含解析)

天津市津南区2016年中考数学模拟试卷(含解析)

2016年天津市津南区中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分)1.计算(﹣3)×9的值是()A.6 B.27 C.﹣12 D.﹣272.cos30°的值为()A.B.C.D.3.下列图标,不能看作中心对称图形的是()A.B.C.D.4.据报载,2016年研究生考试报考人数为1770 000人,其中1770 000用科学记数法表示为()A.0.177×107B.1.77×106C.17.7×105D.177×1045.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.如图,AB是⊙O的弦,BC与⊙O相切于点B,连结OA,若∠ABC=70°,则∠A等于()A.10° B.15° C.20° D.30°8.下列图形中,能用一种图形镶嵌成平面图案的是()A.正六边形 B.正七边形 C.正八边形 D.正九边形9.分式方程的解为()A.x=﹣3 B.x=﹣1 C.x=0 D.x=110.已知点A(﹣3,y1),B(﹣1,y2)在反比例函数y=的图象上,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y211.如图是由火柴棍搭成的几何图案,则第n个图案中的火柴棍的根数为(用含n的式子表示)()A.4n B.2n(n﹣1)C.2n(n+1)D.4n(n+2)12.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)13.计算x8÷x2的结果等于.14.若一次函数的图象经过点(1,1)与(0,﹣1),则这个函数的解析式为.15.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为.16.如图,Rt△ABC中,AB=10,BC=6,E是AC上一点,AE=5,ED⊥AB,垂足为D,则AD的长为.17.如图,点P是正方形ABCD内一点,点P到点A,B和C的距离分别为,1,2,△ABP绕点B旋转至△CBP′,连结PP′,并延长BP与DC相交于点Q,则∠CPQ的大小为(度)18.已知⊙O的半径为r,作⊙O的内接正方形ABCD.(Ⅰ)正方形ABCD的边长为;(Ⅱ)在图中,只用一把圆规画出正方形ABCD的四个顶点,并简要说明四个顶点的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得(Ⅱ)解不等式②,得(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为.20.种菜能手李大叔种植了一批新品种黄瓜,为了考虑这种黄瓜的生长情况,他随机抽查了部分黄瓜藤(单位:株)上长出的黄瓜根数,得到如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)这次共抽查了株黄瓜藤,图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数(结果取整数)21.已知A、B是⊙O上的两点,∠AOB=120°,C是的中点.(Ⅰ)如图①,求∠A的度数;(Ⅱ)如图②,延长OA到点D,使OA=AD,连接DC,延长OB交DC的延长线于点E,若⊙O的半径为1,求DE的长.22.如图,我市某中学课外活动小组的同学要测量海河某段流域的宽度,小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处188米远的B处测得∠CBD=30°,根据这些数据计算出这段流域的河宽和BC的长.(结果精确到1m)23.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如表:型号进价(元/只)售价(元/只)A型10 12B型15 23设小张购进A型文具x只.(Ⅰ)当x为何值时,购进这两种文具的进货款恰好为1320元;(Ⅱ)当x为何值时,销售这批文具所获利润最大,并且所获利润不超过进货价格的40%,最大利润是多少元.24.在Rt△ABO中,∠AOB=90°,OA=,OB=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.(Ⅰ)如图①,当E点恰好落在线段AB上时,求E点坐标;(Ⅱ)在(Ⅰ)问的条件下,将△ODE沿x轴的正半轴向右平移得到△O′D′E′,O′E′、D′E′分别交AB于点G、F(如图②)求证OO′=E′F;(Ⅲ)若点D沿x轴正半轴向右移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,请直接写出y与x的函数关系式.25.已知:抛物线l1:y=﹣x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y轴于点D(0,3).(1)求抛物线l2的函数表达式;(2)P为抛物线l1的对称轴上一动点,连接PA,PC,当∠APC=90°时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.2016年天津市津南区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.计算(﹣3)×9的值是()A.6 B.27 C.﹣12 D.﹣27【考点】有理数的乘法.【分析】利用有理数的乘法法则进行计算,解题时先确定本题的符号.【解答】解:原式=(﹣3)×9=﹣27,故选:D.【点评】本题考查了有理数的乘法,解题的关键是确定运算的符号.2.cos30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:cos30°=.故选:C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.下列图标,不能看作中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析即可.【解答】解:A、是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项正确;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.据报载,2016年研究生考试报考人数为1770 000人,其中1770 000用科学记数法表示为()A.0.177×107B.1.77×106C.17.7×105D.177×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1770 000=1.77×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图为从上往下观察得到的视图,据此找出俯视图.【解答】解:由图可得,俯视图为.故选D.【点评】本题考查了简单组合体的三视图,解答本题的关键是掌握俯视图的概念:俯视图为从上往下观察得到的视图.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【考点】估算无理数的大小.【分析】根据,可以估算出位于哪两个整数之间,从而可以解答本题.【解答】解:∵,即67,故选C.【点评】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.7.如图,AB是⊙O的弦,BC与⊙O相切于点B,连结OA,若∠ABC=70°,则∠A等于()A.10° B.15° C.20° D.30°【考点】切线的性质.【分析】根据切线的性质得:∠CBO=90°,从而求出∠OBA的度数,再由同圆的半径相等,由等边对等角得出结论.【解答】解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠CBO=90°,∵∠ABC=70°,∴∠OBA=90°﹣70°=20°,∵OA=OB,∴∠A=∠OBA=20°,故选C.【点评】本题考查了切线的性质,圆的切线垂直于经过切点的半径,是常考题型,属于基础题;在圆中常运用同圆的半径相等证明线段相等或角相等,要知道这一隐含条件;如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.8.下列图形中,能用一种图形镶嵌成平面图案的是()A.正六边形 B.正七边形 C.正八边形 D.正九边形【考点】平面镶嵌(密铺).【分析】根据几何图形镶嵌成平面的条件:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,即可得出答案.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴正六边形符合题意;故选A.【点评】此题主要考查了平面镶嵌,掌握几何图形镶嵌成平面的条件:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角;用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.9.分式方程的解为()A.x=﹣3 B.x=﹣1 C.x=0 D.x=1【考点】解分式方程.【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1,检验:把x=1代入2x(x+3)=8≠0,所以原方程的解为:x=1.故选D.【点评】本题考查解分式方程的能力,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.10.已知点A(﹣3,y1),B(﹣1,y2)在反比例函数y=的图象上,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y2【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣3,y1),B(﹣1,y2)代入反比例函数y=,求出y1,y2的值,并比较大小即可.【解答】解:∵点A(﹣3,y1),B(﹣1,y2)在反比例函数y=的图象上,∴y1=﹣,y2=﹣1.∵﹣>﹣1,∴y1>y2.故选A.【点评】本题考查的是反比例函数图象上点的2坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图是由火柴棍搭成的几何图案,则第n个图案中的火柴棍的根数为(用含n的式子表示)()A.4n B.2n(n﹣1)C.2n(n+1)D.4n(n+2)【考点】规律型:图形的变化类.【分析】设第n个图案中的火柴棍的根数为a n,根据给定图形找出a1、a2、a3的值,根据数的变化找出变化规律“a n=2n(n+1)”,此题得解.【解答】解:设第n个图案中的火柴棍的根数为a n,观察,发现规律:a1=1×4=4,a2=2×(4+2)=12,a3=3×(4+2+2)=24,∴a n=n•[4+2(n﹣1)]=2n(n+1).故选C.【点评】本题考查了规律型中的图形的变化类,解题的关键是根据图中火柴棍的根数变化找出变化规律“a n=2n(n+1)”.本题属于基础题,难度不大,解决该题型题目时,根据图形的变化找出变化规律是关键.12.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个【考点】二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).【专题】压轴题;图表型.【分析】根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x≥1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.【点评】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.计算x8÷x2的结果等于x6.【考点】同底数幂的除法.【专题】计算题;实数.【分析】原式利用同底数幂的除法法则计算即可得到结果.【解答】解:原式=x8﹣2=x6,故答案为:x6【点评】此题考查了同底数幂的除法,熟练掌握运算法则是解本题的关键.14.若一次函数的图象经过点(1,1)与(0,﹣1),则这个函数的解析式为y=2x﹣1 .【考点】待定系数法求一次函数解析式.【分析】设一次函数的解析式是y=kx+b,把A(1,1)、B(0,﹣1)代入解析式得到方程组,求出方程组的解即可.【解答】解:设一次函数的解析式是y=kx+b,把A(1,1)、B(0,﹣1)代入得:,解方程组得:,∴一次函数的解析式是:y=2x﹣1,故答案为:y=2x﹣1.【点评】本题主要考查对解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,能熟练地运用待定系数法求一次函数的解析式是解此题的关键.15.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为.【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两次抽取的数字都是奇数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次抽取的数字都是奇数的结果数为9,所以随机抽取一张,两次抽取的数字都是奇数的概率==.故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.如图,Rt△ABC中,AB=10,BC=6,E是AC上一点,AE=5,ED⊥AB,垂足为D,则AD的长为 4 .【考点】相似三角形的判定与性质.【分析】直接利用勾股定理得出AC的长,再利用相似三角形的判定与性质得出答案.【解答】解:∵Rt△ABC中,AB=10,BC=6,∴AC==8,∵∠A=∠A,∠ADE=∠C=90°,∴△ADE∽△ACB,∴=,∴=,解得:AD=4.故答案为:4.【点评】此题主要考查了相似三角形的判定与性质,正确得出△ADE∽△ACB是解题关键.17.如图,点P是正方形ABCD内一点,点P到点A,B和C的距离分别为,1,2,△ABP绕点B旋转至△CBP′,连结PP′,并延长BP与DC相交于点Q,则∠CPQ的大小为45 (度)【考点】旋转的性质;正方形的性质.【分析】由旋转性质可得△APB≌△CP′B,则有PB=P′B=1、∠PBA=∠P′BC、PA=P′C=,继而可得∠P′BC+∠PBC=90°、∠BPP′=45°、PP′=,再根据勾股定理逆定理可得△PCP′为直角三角形且∠CPP′=90°,即可得答案.【解答】解:由旋转性质可得△APB≌△CP′B,∴PB=P′B=1,∠PBA=∠P′BC,PA=P′C=,又∵四边形ABCD是正方形,∴∠PBA+∠PBC=90°,∴∠P′BC+∠PBC=90°,即∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′==,∵PP′2+PC2=2+8=10=P′C2,∴△PCP′为直角三角形,且∠CPP′=90°,∴∠CPQ=180°﹣∠BPP′﹣∠CPP′=45°,故答案为:45.【点评】本题主要考查旋转的性质与正方形的性质,根据旋转变换对应边相等、对应角相等及勾股定理逆定理得出两直角三角形是解题的关键.18.已知⊙O的半径为r,作⊙O的内接正方形ABCD.(Ⅰ)正方形ABCD的边长为r ;(Ⅱ)在图中,只用一把圆规画出正方形ABCD的四个顶点,并简要说明四个顶点的位置是如何找到的(不要求证明)作法:①以圆上任意一点E为圆心,以r为半径画圆,交⊙O于C和F,②以F为圆心,以r为半径画圆,与⊙E交于O和G,与⊙O交于另一点A,③作直线OG,交⊙O于D、B,A、B、C、D连成四边形就是所求作的正方形..【考点】作图—复杂作图;正多边形和圆.【分析】(1)连接半径,根据勾股定理求边长即可;(2)以圆上任意取一点为圆心,r为半径画圆,交⊙O于两点,再以其中任意一点为圆心,r为半径画圆,连接两圆的公共点交⊙O于两点,则可得到圆内接正方形.【解答】解:(1)如图1,连接OA、OD,∵四边形ABCD是正方形,∴OA⊥OD,∵OA=OD=r,∴AD==r,∴正方形ABCD的边长为r;故答案为: r;(2)如图2,故答案为:作法:①以圆上任意一点E为圆心,以r为半径画圆,交⊙O于C和F,②以F为圆心,以r为半径画圆,与⊙E交于O和G,与⊙O交于另一点A,③作直线OG,交⊙O于D、B,A、B、C、D连成四边形就是所求作的正方形.【点评】本题考查了圆内接正方形,熟练掌握圆内接正方形的有关概念;明确圆内接正方形的对角线就是外接圆的直径,对于只用一把圆规画出圆内接正方形ABCD,比较复杂,构建三个等圆,达到四等分圆周的结果.三、解答题(本大题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得x≥﹣2(Ⅱ)解不等式②,得x≤1(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为﹣2≤x≤1 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(Ⅰ)解不等式①,得 x≥﹣2,(Ⅱ)解不等式②,得 x≤1(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为﹣2≤x≤1,故答案为x≥﹣2,x≤1,﹣2≤x≤1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.种菜能手李大叔种植了一批新品种黄瓜,为了考虑这种黄瓜的生长情况,他随机抽查了部分黄瓜藤(单位:株)上长出的黄瓜根数,得到如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)这次共抽查了80 株黄瓜藤,图①中m的值为25 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数(结果取整数)【考点】条形统计图;扇形统计图;中位数;众数.【分析】(1)将条形图中各组数据相加可得,再将长有14根花瓜的株树除以总数可得m的值;(2)根据平均数、众数、中位数定义可得.【解答】解:(1)本次抽查的花瓜藤共10+15+20+18+17=80株;长有14根花瓜所占百分比m%=×100%=25%,∴m=25,故答案为:80,25;(2)平均数为:≈14(根),众数为14,中位数为=14.【点评】本题主要考查条形统计图与扇形统计图及平均数、众数、中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,根据图中数据进行计算.特别注意加权平均数的计算方法.21.已知A、B是⊙O上的两点,∠AOB=120°,C是的中点.(Ⅰ)如图①,求∠A的度数;(Ⅱ)如图②,延长OA到点D,使OA=AD,连接DC,延长OB交DC的延长线于点E,若⊙O的半径为1,求DE的长.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】(Ⅰ)连接OC,由∠AOB=120°,C是的中点,易得△AOC是等边三角形,继而求得∠A 的度数;(Ⅱ)由OA=AD,易得△ODE是等腰三角形,OC⊥DE,继而求得答案.【解答】解:(Ⅰ)在图①中连接OC,如图所示.∵∠AOB=120°,C是的中点,∴∠AOC=∠AOB=60°,∵OA=OC,∴△OAC是等边三角形,∴∠A=60°;(Ⅱ)∵△OAC是等边三角形,∴OA=AC=AD,∴∠D=30°,∵∠AOB=120°,∴∠D=∠E=30°,∴OC⊥DE,∵⊙O的半径为1,∴CD=CE=OC=,∴DE=2CD=2.【点评】此题考查了圆周角定理、等边三角形的判定与性质以及三角函数的应用.注意准确作出辅助线是解此题的关键.22.如图,我市某中学课外活动小组的同学要测量海河某段流域的宽度,小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处188米远的B处测得∠CBD=30°,根据这些数据计算出这段流域的河宽和BC的长.(结果精确到1m)【考点】解直角三角形的应用.【分析】先构造出直角三角形,设CE=x,根据锐角三角函数表示出AE,BE,BC,用AB=BE﹣AE建立方程求解即可.【解答】解:如图,过点C作CE⊥AB,e设CE=x,在Rt△ACE中,∠CAE=45°,∴AE=CE=x,在Rt△BCE中,∵∠CAE=30°,∴BE=CE=x,BC=2x,∵AB=188,∴BE﹣AE=x﹣x=188,∴x=≈257m,∴CE=257m,BC=2x=514m,即:这段流域的河宽为257m,BC的长为514m;【点评】此题是解直角三角形的应用,主要考查锐角三角函数,勾股定理,解本题的关键是构造出直角三角形,也是解本题的难点,此题需要用方程的思想解决问题.23.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如表:型号进价(元/只)售价(元/只)A型10 12B型15 23设小张购进A型文具x只.(Ⅰ)当x为何值时,购进这两种文具的进货款恰好为1320元;(Ⅱ)当x为何值时,销售这批文具所获利润最大,并且所获利润不超过进货价格的40%,最大利润是多少元.【考点】一次函数的应用.【分析】(Ⅰ)根据题意可以列出相应的方程,从而可以解答本题;(Ⅱ)根据题意可以得到利润与x的关系式,然后根据所获利润不超过进货价格的40%,列出相应的不等式,从而可以求得最大利润.【解答】解:(Ⅰ)由题意可得,10x+15(100﹣x)=1320,解得,x=36即x=36时,购进这两种文具的进货款恰好为1320元;(Ⅱ)设利润为w元,w=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x,∵所获利润不超过进货价格的40%,∴800﹣6x≤40%[10x+15(100﹣x)]解得,x≥50∴当x=50时,w取得最大值,此时w=800﹣6×50=500,即当x=50时,销售这批文具所获利润最大,并且所获利润不超过进货价格的40%,最大利润是500元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的相关知识解答.24.在Rt△ABO中,∠AOB=90°,OA=,OB=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.(Ⅰ)如图①,当E点恰好落在线段AB上时,求E点坐标;(Ⅱ)在(Ⅰ)问的条件下,将△ODE沿x轴的正半轴向右平移得到△O′D′E′,O′E′、D′E′分别交AB于点G、F(如图②)求证OO′=E′F;(Ⅲ)若点D沿x轴正半轴向右移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,请直接写出y与x的函数关系式.【考点】几何变换综合题.【分析】(1)由题意作辅助线,作EH⊥OB于点H,由BO=4,求得OE,然后求出OH,EH,从而得出点E的坐标;(2)假设存在,由OO′=4﹣2﹣DB,而DF=DB,从而得到OO′=EF;(3)根据题意分三种情况写出解析式即可.【解答】解:(1)作EH⊥OB于点H,tan∠ABO===,∴∠ABO=30°,∵△OED是等边三角形,∴∠EOD=60°.又∵∠ABO=30°,∴∠OEB=90°.∵BO=4,∴OE=OB=2.∵△OEH是直角三角形,且∠OEH=30°∴OH=1,EH=.∴E(1,);(2)∵∠ABO=30°,∠E DO=60°,∴∠ABO=∠DFB=30°,∴D′F=D′B.∴OO′=4﹣2﹣D′B=2﹣D′B=2﹣D′F=E′D′﹣FD′=E′F;(3)当0<x≤2时,△ODE与△AOB重叠部分的面积为△ODE面积=x2,当2<x<4时,△ODE与△AOB重叠部分的面积为四边形GO′DF面积=﹣x2+2x﹣2,当x≥4时,△ODE与△AOB重叠部分的面积为2.【点评】本题考查的是等边三角形的性质、坐标与图形的关系、锐角三角函数的定义以及二次函数解析式的确定,掌握平移规律、熟记锐角三角函数的定义是解题的关键.25.已知:抛物线l1:y=﹣x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y轴于点D(0,3).(1)求抛物线l2的函数表达式;(2)P为抛物线l1的对称轴上一动点,连接PA,PC,当∠APC=90°时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.【考点】二次函数综合题.【专题】综合题.【分析】(1)通过解方程﹣x2+2x+3=0得A(﹣1,0)设交点式y=a(x+1)(x﹣6),然后把D点坐标代入求出a的值即可得到得抛物线l2的解析式;(2)先求出C(0,3)和抛物线y=﹣x2+2x+3的对称轴为直线x=1,则设P(1,t),利用两点间的距离公式和勾股定理得到12+(t﹣3)2+22+t2=10,然后解方程求出t即可得到点P的坐标;(3)抛物线l2与抛物线l1经过的另一个交点为F,如图2,先通过解方程x2﹣x﹣3=﹣x2+2x+3得F(4,﹣5),设M(x, x2﹣x﹣3),则N(x,﹣x2+2x+3),讨论:当﹣1≤x<4时,MN=﹣x2+x+6;当4≤x≤6时,MN=x2﹣x﹣6=(x﹣)2﹣,然后分别利用二次函数的性质求出两种情况下的MN的最大值,再比较大小即可得到点M自点A运动至点E的过程中,线段MN长度的最大值.【解答】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0)设抛物线l2的解析式为y=a(x+1)(x﹣6),把D(0,﹣3)代入得a•1•(﹣6)=﹣3,解得a=,所以抛物线l2的解析式为y=(x+1)(x﹣6),即y=x2﹣x﹣3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3)抛物线y=﹣x2+2x+3的对称轴为直线x=1,设P(1,t),则AC2=12+32=10,PC2=12+(t﹣3)2,PA2=22+t2,∵∠APC=90°,∴PC2+PA2=AC2,即12+(t﹣3)2+22+t2=10,整理得t2﹣3t+2=0,解得t1=1,t2=2,∴点P的坐标为(1,1)或(1,2);(3)抛物线l2与抛物线l1经过的另一个交点为F,如图2,解方程x2﹣x﹣3=﹣x2+2x+3得x1=﹣1,x2=4,则F(4,﹣5),设M(x, x2﹣x﹣3),则N(x,﹣x2+2x+3),当﹣1≤x<4时,MN=﹣x2+2x+3﹣(x2﹣x﹣3)=﹣x2+x+6=﹣(x﹣)2+,此时x=时,MN有最大值;当4≤x≤6时,MN=x2﹣x﹣3﹣(﹣x2+2x+3)=x2﹣x﹣6=(x﹣)2﹣,此时x=6时,MN有最大值21;所以点M自点A运动至点E的过程中,线段MN长度的最大值为21.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数的解析式,会求抛物线与坐标轴的交点坐标;理解坐标与图形的性质,记住两点间的距离公式和勾股定理.。

天津市中考数学word版,有解析.doc

天津市中考数学word版,有解析.doc

2016年天津市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7【解析】(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.2.sin60°的值等于()A.B.C.D.【解析】sin60°=.故选:C.3.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【解析】A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105D.612×104【解析】6120000=6.12×106,故选:B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解析】∵<<,∴的值在4和5之间.故选:C.7.计算﹣的结果为()A.1 B.x C.D.【解析】﹣==1.故选A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3 【解析】x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.故选D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 【解析】∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,故选C.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE【解析】∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以结论正确的是D选项.故选D.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1 D.y2<y1<y3【解析】∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【解析】∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.【解析】(2a)3=8a3.故答案为:8a3.14.计算(+)(﹣)的结果等于2.【解析】原式=()2﹣()2=5﹣3=2,故答案为:2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.【解析】∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个红球、2个绿球和3个黑球,∴从口袋中任意摸出一个球是绿球的概率是=,故答案为:.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).【解析】∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<0,b<0.故答案为:﹣1.17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【解析】在正方形ABCD中,∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.【解析】(Ⅰ)AE==;故答案为:;(Ⅱ)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.【解】(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.【解】(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.【解】(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.【解】过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.【解】(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)【解】(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.【解】(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)。

2016年天津市五区县中考数学一模试卷

2016年天津市五区县中考数学一模试卷

2016年天津市五区县中考数学一模试卷一、选择题(本题共12小题,每小题3分,共36分,) 1.计算(﹣3)×|﹣2|的结果等于( ) A .6B .5C .﹣6D .﹣52.2cos45°的值等于( )A .B .C .D .3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( )A .608×108B .60.8×109C .6.08×1010D .6.08×10115.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .6.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是( )A . cmB . cmC . cmD .1cm7.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是( )A.35°B.55°C.65°D.70°8.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.9.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x2)=196 B.50+50(1+x)+50(1+x)2=196C.50(1+x2)=196 D.50+50(1+x)+50(1+2x)=19610.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()A.2 B.C.D.11.如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x 的取值范围是()A.0<x<2 B.x>2 C.x>2或﹣2<x<0 D.x<﹣2或0<x<212.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac>0;②a+b+c<0;③a=c﹣2;④方程ax2+bx+c=0的根为﹣1.其中正确的结论为()A.①②③ B.①②④ C.①③④ D.①②③④二、填空题(本题共6小题,每小题3分,共18分)13.计算:=.14.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是.15.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).16.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为分.17.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.18.将△ABC放在每个小正方形的边长为1的网格中,点B、C落在格点上,点A在BC的垂直平分线上,∠ABC=30°,点P为平面内一点.(1)∠ACB=度;(2)如图,将△APC绕点C顺时针旋转60°,画出旋转后的图形(尺规作图,保留痕迹);(3)AP+BP+CP的最小值为.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.学习完统计知识后,小兵就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)求该班共有多少名学生;(2)请将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;(4)若全年级共1000名学生,估计全年级步行上学的学生有多少名?21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC 平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.22.如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A 处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )23.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?24.在平面直角坐标系中,一张矩形纸片OBCD按图1所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.请回答:(Ⅰ)如图1,若点E的坐标为(0,4),求点A的坐标;(Ⅱ)将矩形沿直线y=﹣x+n折叠,求点A的坐标;(Ⅲ)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.25.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B 向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t 秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.2016年天津市五区县中考数学一模试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,)1.计算(﹣3)×|﹣2|的结果等于()A.6 B.5 C.﹣6 D.﹣5【考点】有理数的乘法;绝对值.【分析】原式先计算绝对值,再计算乘法运算即可得到结果.【解答】解:原式=(﹣3)×2=﹣6.故选C.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.2cos45°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】将45°角的余弦值代入计算即可.【解答】解:∵cos45°=,∴2cos45°=.故选B.【点评】本题考查特殊角的三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,不是中心对称图形,不符合题意;C、既是中心对称图形又是轴对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:C.【点评】本题考查了轴对称图形与中心对称图形的概念.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.4.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010 D.6.08×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:60 800 000 000=6.08×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到2列正方形的个数依次为2,1,故选:D.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm【考点】正多边形和圆.【专题】应用题;压轴题.【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD==60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.【点评】此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.7.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35°B.55°C.65°D.70°【考点】圆周角定理.【分析】在同圆和等圆中,同弧所对的圆心角是圆周角的2倍,所以∠AOC=2∠D=70°,而△AOC 中,AO=CO,所以∠OAC=∠OCA,而180°﹣∠AOC=110°,所以∠OAC=55°.【解答】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°﹣∠AOC)÷2=110°÷2=55°.故选:B.【点评】本题考查同弧所对的圆周角和圆心角的关系.规律总结:解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解,特别地,当有一直径这一条件时,往往要用到直径所对的圆周角是直角这一条件.8.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】先列举出同时掷两枚质地均匀的硬币一次所有四种等可能的结果,然后根据概率的概念即可得到两枚硬币都是正面朝上的概率.【解答】解:同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=.故选D.【点评】本题考查了用列表法与树状图法求概率的方法:先利用列表法与树状图法表示所有等可能的结果n,然后找出某事件出现的结果数m,最后计算P=.9.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x2)=196 B.50+50(1+x)+50(1+x)2=196C.50(1+x2)=196 D.50+50(1+x)+50(1+2x)=196【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据7月份的表示出8月和九月的产量即可列出方程.【解答】解:∵七月份生产零件50万个,设该厂八九月份平均每月的增长率为x,∴八月份的产量为50(1+x)万个,九月份的产量为50(1+x)2万个,∴50+50(1+x)+50(1+x)2=196.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,解题的关键是能分别将8、9月份的产量表示出来,难度不大.10.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()A.2 B.C.D.【考点】菱形的性质.【分析】因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.【解答】解:∵四边形ABCD是菱形,AC=8,BD=6,∴BO=3,AO=4,AO⊥BO,∴AB==5.∵OH⊥AB,∴AO•BO=AB•OH,∴OH=,故选D.【点评】本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.11.如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x 的取值范围是()A.0<x<2 B.x>2 C.x>2或﹣2<x<0 D.x<﹣2或0<x<2【考点】反比例函数与一次函数的交点问题.【专题】压轴题;探究型.【分析】先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A(2,1),∴B(﹣2,﹣1),∵由函数图象可知,当0<x<2或x<﹣2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<﹣2或0<x<2.故选D.【点评】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值范围是解答此题的关键.12.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac>0;②a+b+c<0;③a=c﹣2;④方程ax2+bx+c=0的根为﹣1.其中正确的结论为()A.①②③ B.①②④ C.①③④ D.①②③④【考点】二次函数图象与系数的关系.【分析】①根据二次函数y=ax2+bc+c的图象与x轴有两个交点,可得△>0,即b2﹣4ac>0,据此判断即可.②根据二次函数y=ax2+bc+c的图象的对称轴是x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,可得与x轴的另一个交点A在点(0,0)和(1,0)之间,所以x=1时,y<0,据此判断即可.③首先根据x=﹣,可得b=2a,所以顶点的纵坐标是=2,据此判断即可.④根据x=﹣1时,y≠0,所以方程ax2+bx+c=0的根为﹣1这种说法不正确,据此判断即可.【解答】解:∵二次函数y=ax2+bc+c的图象与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴结论①正确;∵二次函数y=ax2+bc+c的图象的对称轴是x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,∴结论②正确;∵x=﹣,∴b=2a,∴顶点的纵坐标是=2,∴a=c﹣2,∴结论③正确;∵x=﹣1时,y≠0,∴方程ax2+bx+c=0的根为﹣1这种说法不正确,∴结论④不正确.∴正确的结论为:①②③.故选:A.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题(本题共6小题,每小题3分,共18分)13.计算:=0.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=3﹣4+=0.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是2.【考点】根的判别式.【专题】计算题.【分析】根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.【解答】解:根据题意得:△=b2﹣4(b﹣1)=(b﹣2)2=0,则b的值为2.故答案为:2【点评】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.15.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.16.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为100分.【考点】加权平均数.【分析】利用加权平均数公式即可求解.【解答】解:该生这学期的数学成绩是:,故答案为:100.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.17.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.【考点】三角形中位线定理.【专题】压轴题;规律型.【分析】由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.【解答】解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为:1【点评】本题主要考查了三角形的中位线定理,关键是根据三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半.18.将△ABC放在每个小正方形的边长为1的网格中,点B、C落在格点上,点A在BC的垂直平分线上,∠ABC=30°,点P为平面内一点.(1)∠ACB=30度;(2)如图,将△APC绕点C顺时针旋转60°,画出旋转后的图形(尺规作图,保留痕迹);(3)AP+BP+CP的最小值为.【考点】作图-旋转变换.【分析】(1)根据垂直平分线的性质即可解决问题.(2)根据中心旋转的定义即可画出图形.(3)根据两点之间线段最短即可解决问题.【解答】解(1)∵点A在BC的垂直平分线上,∴AB=AC,∴∠ABC=∠ACB,∵∠ABC=30°,∴∠ACB=30°.故答案为30°.(2)如图△CA′P′就是所求的三角形.(3)如图当B、P、P′、A′共线时,PA+PB+PC=PB+PP′+P′A的值最小,此时BC=5,AC=CA′=,BA′==.故答案为.【点评】本题考查旋转变换、垂直平分线的性质、等腰三角形的性质等知识,解决问题的关键是灵活应用两点之间线段最短,属于中考常考题型.三、解答题(本题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x<2;(Ⅱ)解不等式②,得x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x<2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,将不等式的解集表示在数轴上,即可确定不等式组的解集.【解答】解:解不等式①,得:x<2,解不等式②,得:x≥﹣1,把不等式①和②的解集表示在数轴上如下:故不等式组的解集为:﹣1≤x<2,故答案为:(Ⅰ)x<2;(Ⅱ)x≥﹣1;(Ⅳ)﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,正确将不等式解集表示在数轴上是解答此题的关键.20.学习完统计知识后,小兵就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)求该班共有多少名学生;(2)请将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;(4)若全年级共1000名学生,估计全年级步行上学的学生有多少名?【考点】扇形统计图;条形统计图.【专题】图表型.【分析】(1)乘车的有20人,所占百分比为50%,即可求出该班总人数;(2)根据统计图中的数据求出“步行”学生人数,再补充条形统计图;(3)骑车部分所占百分比为1﹣50%﹣20%,则其对应的圆心角度数可求;(4)总人数×步行上学所占百分比即可求得结果.【解答】解:(1)20÷50%=40名;(2)“步行”学生人数:40×20%=8名;(3)“骑车”部分扇形所对应的圆心角的度数:360°×(1﹣50%﹣20%)=108°;(4)1000×20%=200名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC 平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.22.如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A 处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )【考点】解直角三角形的应用-仰角俯角问题.【分析】利用30°的正切值即可求得AE长,进而可求得CE长.CE减去DE长即为信号塔CD的高度.【解答】解:根据题意得:AB=18,DE=18,∠A=30°,∠EBC=60°,在R t△ADE中,AE===18∴BE=AE﹣AB=18﹣18,在R t△BCE中,CE=BE•tan60°=(18﹣18)=54﹣18,∴CD=CE﹣DE=54﹣18﹣18≈5米.【点评】本题考查了解直角三角形﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形;难点是充分找到并运用题中相等的线段.23.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?【考点】二次函数的应用.【专题】压轴题.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,,解得.故y与x的函数关系式为y=﹣x+180;(2)∵y=﹣x+180,∴W=(x﹣100)y=(x﹣100)(﹣x+180)=﹣x2+280x﹣18000=﹣(x﹣140)2+1600,∵a=﹣1<0,=1600,∴当x=140时,W最大∴售价定为140元/件时,每天最大利润W=1600元.【点评】本题考查的是二次函数的应用,根据题意列出关于k、b的关系式是解答此题的关键.24.在平面直角坐标系中,一张矩形纸片OBCD按图1所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.请回答:(Ⅰ)如图1,若点E的坐标为(0,4),求点A的坐标;(Ⅱ)将矩形沿直线y=﹣x+n折叠,求点A的坐标;(Ⅲ)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.【考点】一次函数综合题.【分析】(Ⅰ)根据已知条件得到OE=AE=4,求得DE=2,根据勾股定理即可得到结论;(Ⅱ)如图,设直线y=﹣x+n,得到OE=n,OF=2n,根据全等三角形的性质得到OE=AE=n,AF=OF=2n,根据相似三角形的性质得到,代入数据即可得到结论;(Ⅲ)根据图象和矩形的边长可直接得出k的取值范围,【解答】解:(Ⅰ)∵点E的坐标为(0,4),∴OE=AE=4,∵四边形OBCD是矩形,∴OD=BC=6,∴DE=2,∴AD==2,∴点A的坐标为(2,6);(Ⅱ)如图2,过点F作FG⊥DC于G∵EF解析式为y=﹣x+n,∴E点的坐标为(0,n),∴OE=n∴F点的坐标为(2n,0),∴OF=2n∵△AEF与△OEF全等,∴OE=AE=n,AF=OF=2n∵点A在DC上,且∠EAF=90°∴∠1+∠3=90°又∵∠3+∠2=90°∴∠1=∠2在△DEA与△GAF中,∴△DEA∽△GAF(AA)∴,∵FG=CB=6∴=∴DA=3∴A点的坐标为(3,6).(Ⅲ)如图3,﹣1≤k≤﹣.∵矩形沿直线y=kx+n折叠,点F在边OB上,①当E点和D点重合时,k的值为﹣1,②当F点和B点重合时,k的值为﹣;∴﹣1≤k≤﹣.【点评】本题主要考查一次函数的性质,矩形的性质,折叠的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.25.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B 向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t 秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)根据二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,应用待定系数法,求出二次函数的解析式即可.(2)首先根据待定系数法,求出BC所在的直线的解析式,再分别求出点P、点Q的坐标各是多少;然后分两种情况:①当∠QPB=90°时;②当∠PQB=90°时;根据等腰直角三角形的性质,求出t的值各是多少即可.(3)首先延长MQ交抛物线于点N,H是PQ的中点,再用待定系数法,求出PQ所在的直线的解析式,然后根据PQ的中点恰为MN的中点,判断出是否存在满足题意的点N即可.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴,解得.∴二次函数的解析式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),∴BC==3,设BC所在的直线的解析式是:y=mx+n,则,解得.∴BC所在的直线的解析式是:y=x﹣3,∵经过t秒,AP=t,BQ=t,∴点P的坐标是(t﹣1,0),设点Q的坐标是(x,x﹣3),∵OB=OC=3,∴∠OBC=∠OCB=45°,则y=×sin45°=×=t,则Q点纵坐标为﹣t,∴x=3﹣t,∴点Q的坐标是(3﹣t,﹣t),,当∠QPB=90°时,点P和点Q的横坐标相同,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),∴t﹣1=3﹣t,解得t=2,即当t=2时,△BPQ为直角三角形.②如图2,,当∠PQB=90°时,∵∠PBQ=45°,∴BP=,∵BP=3﹣(t﹣1)=4﹣t,BQ=,∴4﹣t=解得t=,即当t=时,△BPQ为直角三角形.综上,可得当△BPQ为直角三角形,t=或2.(3)如图3,延长MQ交抛物线于点N,H是PQ的中点,,设PQ所在的直线的解析式是y=px+q,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,﹣t),∴,解得.∴PQ所在的直线的解析式是y=x+,∴点M的坐标是(0,),∵,=﹣,∴PQ的中点H的坐标是(1,﹣),假设PQ的中点恰为MN的中点,∵1×2﹣0=2,﹣=,∴点N的坐标是(2,),又∵点N在抛物线上,∴=22﹣2×2﹣3=﹣3,∴点N的坐标是(2,﹣3),解得t=或t=,∵t<2,∴t=,∴当t<2时,延长QP交y轴于点M,当t=时在抛物线上存在一点N(2,﹣3),使得PQ 的中点恰为MN的中点.【点评】(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了待定系数法求函数解析式的方法,要熟练掌握.。

天津市2016年中考数学试题含答案

天津市2016年中考数学试题含答案

2016年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共3636分,在每小题给出的四个选项中,只有一个是符合题目要求的) (1)计算(-2)-5的结果等于(A )-7(B )-3(C )3(D )7(2)sin60o 的值等于(A )21(B )22 (C )23 (D )3(3)下列图形中,可以看作是中心对称图形的是(A )(B )(C )(D )(4)2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120 000株,将6120 000用科学记数法表示应为(A )0.612×107(B )6.12×106(C )61.2×105(D )612×104(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A )(B )(C )(D )(6)估计6的值在(A )2和3之间 (B )3和4之间 (C )4和5之间(D )5和6之间(7)计算xx x 11-+的结果为(A )1 (B )x (C )x1(D )xx 2+ (8)方程01222=-+x x 的两个根为(A )x 1= -2,x 2=6 (B )x 1= -6,x 2=2 (C )x 1= -3,x 2=4(D )x 1= -4,x 2=3(9)实数a ,b 在数轴上的对应点的位置如图所示,把-a ,-b ,0按照从小到大的顺序排列,正确的是(A )-a < 0 < -b第(5)题图第(9)题图a 0 b(B )0 < -a < -b (C )-b < 0 < -a (D )0 < -b < -a(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B ’,AB ’与DC 相交于点E ,则下列结论一定正确的是(A )∠DAB ’=∠CAB ’ (B )∠ACD=∠B ’CD (C )AD=AE(D )AE=CE(11)若点A (-5,y 1),B (-3,y 2),C (2,y 3)在反比例函数xy 3错误!未找到引用源。

天津市南开区2016届中考数学一模试题(含解析)

天津市南开区2016届中考数学一模试题(含解析)

天津市南开区2016届中考数学一模试题一、选择题1.﹣10+3的结果是()A.﹣7 B.7 C.﹣13 D.132.3tan60°的值为()A.B.C. D.33.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为()A.B.C. D.4.据海关统计,2015年前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A.3.79×102B.0.379×105C.3.79×104D.379×1025.由六个小正方体搭成的几何体如图所示,则它的主视图是()A.B.C. D.6.估计的值()A.在4和5之间 B.在3和4之间 C.在2和3之间 D.在1和2之间7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2)B.(﹣2,1)C.()D.(1,﹣1)8.化简的结果()A.x﹣1 B.x C.D.9.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y310.正六边形的边心距与边长之比为()A.1:2 B.:2 C.:1 D.:211.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.12.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1,给出四个结论:①b2>4ac;②2a﹣b=0;③a+b+c=0;④5a<b.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题13.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为.14.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为.15.关于x的方程(m﹣5)x2+4x﹣1=0有实数根,则m应满足的条件是.16.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.17.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.18.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格解不等式组请结合题意填空,完成本题的解答(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来(4)原不等式组的解集为.20.随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.21.如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.22.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.23.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?24.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(﹣1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.25.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?2016年天津市南开区中考数学一模试卷参考答案与试题解析一、选择题1.﹣10+3的结果是()A.﹣7 B.7 C.﹣13 D.13【考点】有理数的加法.【分析】根据有理数的加法法则,即可解答.【解答】解:﹣10+3=﹣(10﹣3)=﹣7,故选:A.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.2.3tan60°的值为()A.B.C. D.3【考点】特殊角的三角函数值.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为()A.B.C. D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称及轴对称的知识,判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.据海关统计,2015年前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A.3.79×102B.0.379×105C.3.79×104D.379×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将37900用科学记数法表示为:3.79×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.由六个小正方体搭成的几何体如图所示,则它的主视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.估计的值()A.在4和5之间 B.在3和4之间 C.在2和3之间 D.在1和2之间【考点】估算无理数的大小.【专题】存在型.【分析】先估算出的大小,进而可得出结论.【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选B.【点评】本题考查的是估算无理数的大小,先根据题意估算出的取值范围是解答此题的关键.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2)B.(﹣2,1)C.()D.(1,﹣1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC 和△A′B′C′以原点为位似中心,相似比是k,△A BC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,﹣),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,﹣1).故选:D.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.化简的结果()A.x﹣1 B.x C.D.【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=x﹣1,故选A.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.9.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】首先确定反比例函数的系数与0的大小关系,然后根据题意画出图形,再根据其增减性解答即可.【解答】解:∵﹣a2﹣1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y随x的增大而增大,∵x1<0<x2<x3,∴y2<y3<y1.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的函数值的大小,同学们要灵活掌握.10.正六边形的边心距与边长之比为()A.1:2 B.:2 C.:1 D.:2【考点】正多边形和圆.【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设正六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线段OC,则AC=AB=a,于是OC==a,所以正六边形的边心距与边长之比为: a:a=:2.故选:D.【点评】此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.11.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.【考点】旋转的性质.【专题】压轴题.【分析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.【解答】解:∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△P CD中,∵tan∠PCD=tan30°=,∴=tan30°=.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.12.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1,给出四个结论:①b2>4ac;②2a﹣b=0;③a+b+c=0;④5a<b.其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为x=﹣=﹣1可以判定②;由图象与x轴有交点,对称轴为x=﹣=﹣1,与y轴的交点在y轴的正半轴上,可以推出b2﹣4ac>0,即b2>4ac,即可判定①;由x=1时y=0,即可判定③.把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,两边相加整理即可判定④.【解答】解:①∵图象与x轴有交点,对称轴为x=﹣=﹣1,与y轴的交点在y轴的正半轴上,又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,正确;②∵对称轴为x=﹣=﹣1,∴2a=b,∴2a﹣b=0,正确;③∵抛物线的一个交点为(﹣3,))对称轴为x=﹣1,∴另一个交点为(1,0),∴当x=1时,y=a+b+c=0,正确;④把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,两边相加整理得5a﹣b=﹣c<0,即5a<b,正确.故正确的为①②③④,故选D.【点评】解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题13.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为﹣3 .【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,a﹣b=﹣1,∴原式=(a+b)(a﹣b)=﹣3,故答案为:﹣3.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为y=﹣x2﹣2x+5 .【考点】二次函数的性质.【专题】开放型.【分析】由于二次函数的图象开口向下,所以二次项系数是负数,而图象还经过(2,﹣3)点,由此即可确定这样的函数解析式不唯一.【解答】解:∵若二次函数的图象开口向下,且经过(2,﹣3)点,∴y=﹣x2﹣2x+5符合要求.答案不唯一.例如:y=﹣x2﹣2x+5.【点评】此题主要考查了二次函数的性质,解题的关键根据图象的性质确定解析式的各项系数.15.关于x的方程(m﹣5)x2+4x﹣1=0有实数根,则m应满足的条件是m≥1.【考点】根的判别式;一元一次方程的解.【分析】需要分类讨论:①当该方程是一元一次方程时,二次项系数m﹣5=0;②当该方程是一元二次方程时,二次项系数m﹣5≠0,△≥0;综合①②即可求得m满足的条件.【解答】解:①当关于x的方程(m﹣5)x2+4x﹣1=0是一元一次方程时,m﹣5=0,解得,m=5;②当(m﹣5)x2+4x﹣1=0是一元二次方程时,△=16﹣4×(m﹣5)×(﹣1)≥0,且m﹣5≠0,解得,m≥1且m≠5;综合①②知,m满足的条件是m≥1.故答案是:m≥1.【点评】本题考查了一元二次方程根的判别式的应用,解答本题要注意分类讨论,切记不要忽略一元二次方程二次项系数不为零这一隐含条件.16.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.【点评】本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.17.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为80π﹣160 .【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】首先连接AC,则可证得△AEM∽△CFM,根据相似三角形的对应边成比例,即可求得EM与FM的长,然后由勾股定理求得AM与CM的长,则可求得正方形与圆的面积,则问题得解.【解答】解:连接AC,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=6,EF=8,FC=10,∴,∴EM=3,FM=5,在Rt△AEM中,AM==3,在Rt△FCM中,CM==5,∴AC=8,在Rt△ABC中,AB=AC•sin45°=8•=4,∴S正方形ABCD=AB2=160,圆的面积为:π•()2=80π,∴正方形与其外接圆之间形成的阴影部分的面积为80π﹣160.故答案为:80π﹣160.【点评】此题考查了相似三角形的判定与性质,正方形与圆的面积的求解方法,以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.18.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格解不等式组请结合题意填空,完成本题的解答(1)解不等式①,得x≥﹣2(2)解不等式②,得x<1(3)把不等式①和②的解集在数轴上表示出来(4)原不等式组的解集为﹣2≤x<1 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】(1)通过移项可得到x的范围;(2)去分母,再移项可得到x的范围;(3)利用数轴表示解集;(4)利用大小小大中间找;【解答】解:(1)解不等式①,得x≥﹣2,(2)解不等式②,得x<1,(3)把不等式①和②的解集在数轴上表示为:(4)原不等式组的解集为﹣2≤x<1.故答案为x≥﹣2,x<1,﹣2≤x<1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为200 .(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)利用持反对态度的人数和所占百分比进而求出总人数;(2)利用(1)中所求得出持很赞同态度的人数没进而求出所占百分比;(3)利用(1)中所求得出学生家长持“无所谓”态度的扇形圆心角的度数.【解答】解:(1)这次调查的家长总人数为:60÷30%=200(人);故答案为:200;(2)如图所示:持“很赞同”态度的学生家长占被调查总人数的百分比为:(200﹣80﹣20﹣60)÷200×100%=20%;(3)学生家长持“无所谓”态度的扇形圆心角的度数为:×360°=36°.【点评】此题主要考查了扇形统计图和条形统计图的综合应用,利用图形得出正确信息是解题关键.21.如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.【考点】相似三角形的判定与性质;勾股定理;等腰直角三角形;圆心角、弧、弦的关系;圆周角定理.【专题】几何综合题.【分析】(1)根据圆周角的定理,∠APB=90°,P是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.【解答】解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得 ON=,∴AN=OA+ON=9∴在Rt△OPN中,有NP2=0P2﹣ON2=36在Rt△ANP中有PA===3∴PA=3.【点评】本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.22.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设AD=x,得出CD=AD=x,再解Rt△ABD,得出BD==x,再由BD+CD=4,得出方程x+x=4,解方程求出x的值,即为A到岸边BC 的最短距离.【解答】解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)根据图象可设y=kx+b,将(40,160),(120,0)代入,得到关于k、b的二元一次方程组,解方程组即可;(2)根据每千克的利润×销售量=2400元列出方程,解方程求出销售单价,从而计算销售量,进而求出销售成本,与3000元比较即可得出结论.【解答】解:(1)设y与x的函数关系式为y=kx+b,将(40,160),(120,0)代入,得,解得,所以y与x的函数关系式为y=﹣2x+240(40≤x≤120);(2)由题意得(x﹣40)(﹣2x+240)=2400,整理得,x2﹣160x+6000=0,解得x1=60,x2=100.当x=60时,销售单价为60元,销售量为120千克,则成本价为40×120=4800(元),超过了3000元,不合题意,舍去;当x=100时,销售单价为100元,销售量为40千克,则成本价为40×40=1600(元),低于3000元,符合题意.所以销售单价为100元.答:销售单价应定为100元.【点评】本题考查了一次函数的应用以及一元二次方程的应用,利用待定系数法求出y与x的函数关系式是解题的关键.24.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(﹣1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;等腰直角三角形.【专题】压轴题.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1,m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD,根据相似三角形的对应边的比相等,即可求解;(3)分P在第一,二,三象限,三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3,把x=﹣4,y=0代入得:﹣4k+3=0,∴k=,∴直线的解析式是:y=x+3,②P′(﹣1,m),∴点P的坐标是(1,m),∵点P在直线AB上,∴m=×1+3=;(2)∵PP′∥AC,△PP′D∽△ACD,∴=,即=,∴a=;(3)以下分三种情况讨论.①当点P在第一象限时,1)若∠AP′C=90°,P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC,△ACP∽△AOB∴==,即=,∴b=22)若∠P′AC=90°,(如图2),则四边形P′ACP是矩形,则PP′=AC.若△P´CA为等腰直角三角形,则:P′A=CA,∴2a=a+4∴a=4∵P′A=PC=AC,△ACP∽△AOB∴==1,即=1∴b=43)若∠P′CA=90°,则点P′,P都在第一象限内,这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;③当P在第三象限时,∠P′AC为钝角(如图4),此时△P′CA不可能是等腰直角三角形.所有满足条件的a,b的值为:,.【点评】本题主要考查了梯形的性质,相似三角形的判定和性质以及一次函数的综合应用,要注意的是(3)中,要根据P点的不同位置进行分类求解.25.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?【考点】二次函数综合题.【专题】压轴题;数形结合.【分析】(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.【解答】解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣ m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即: =,∴DE=4.(3)①∵点A的坐标为(m,﹣ m2+m),∴点D的坐标为(2m,﹣ m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣ m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣ m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣ m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.【点评】本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.。

天津市2016届中考模拟数学试题(一)及答案详解

天津市2016届中考模拟数学试题(一)及答案详解

三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)
x2 0
(1)
( 19 )(本小题 8 分) 解不等式组 2( x 1) 3(3 x) 0 (2) 请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得

(Ⅱ)解不等式②,得

(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为

( 20 )(本小题 8 分) 为了解八年级学生参加社会实践活动情况 ,教育局随机抽查了某区部分八年
级学生第一学期参加社会实践活动的天数
,并用得到的数据绘制出如下的统计图①和图②
,请根据图
中提供的相关信息 ,解答下列问题:
(Ⅰ)本次接受随机抽样调查的八年级学生人数为
,图①中 a 的值为
( A )( 2 , 3 )
( B)( 2, -3 ) ( C)( -2 , -3 )
( D )( -2 ,3 )
31
( 8 )分式方程
的解为(

2x x 1
( A) x=1
( B) x=2
( C) x= 3
( D ) x=4
3
( 9 )已知反比例函数 y x ,下列结论中,正确的是(

( A)图象经过点( 1 ,-3 )
( D) 44126 ×10 2
( 5 )左图是一个由 4 个相同的正方体组成的立体图形,它的主视图是
(
)
( 6 )估计 6 1 的值在(

( A )2 和 3 之间
( B)3 和 4 之间
( C)4 和 5 之间
( D )5 和 6 之间
( 7 )在平面直角坐标系中 ,把点 A ( 2,-3 )绕原点 O 顺时针旋转 180 0,所得到的对应点 B 的坐标为

2016年天津市中考数学试卷及答案

2016年天津市中考数学试卷及答案

(A)1
(B) x
( 8)方程 x2 2 x 12 0 的两个根为
( B) 3 和 4 之间 ( D) 5 和 6 之间
1
( C)
x
x2
( D)
x
( A ) x 1= -2 , x 2=6
( B) x 1= -6 , x 2=2
( C) x 1= -3 , x 2=4
( D) x 1= -4 , x 2=3
机密★启用前 2016 年天津市初中毕业生学业考试试卷
数学
本试卷分为第Ⅰ 卷(选择题) 、第Ⅱ 卷(非选择题)两部分,第Ⅰ卷为第 1 页至第 3
页,第Ⅱ卷为第 4 页至第 8 页。试卷满分 120 分,考试时间 100 分钟。
答卷前,请你务必将自己的姓名、 考生号、 考点校、 考场号、 座位号填写在 “答题卡 ”
(B)
2
3
( C)
2
( 3)下列图形中,可以 看作是中心对称图 形的是
( D) 3
(A)
(B)
( C)
(D)
( 4)2016 年 5 月 24 日《天津日报》 报道, 2015 年天津外环线内新栽植树木 6120 000 株,
将 6120 000 用科学记数法表示应为 ( A ) 0.612× 107 ( C) 61.2×105
( B) 6.12× 1064 个相同的正方体组成的立体图形,它的主视图是
(A)
(B)
( 6)估ห้องสมุดไป่ตู้ 6 的值在
(C)
( D)
第( 5)题图
( A ) 2 和 3 之间 ( C) 4 和 5 之间
( 7)计算 x 1 1 的结果为 xx
上,并在规定位置粘贴考试用条形码。答题时,务必将答案涂写在

2016年天津市中考数学试卷(含详细答案)

2016年天津市中考数学试卷(含详细答案)

绝密★启用前天津市2016年初中毕业生会考学业考试数学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(2)5--的结果等于()A.7-B.3-C.3D.72.sin60的值等于()A .12B .22C.32D.33.下列图形中,可以看作是中心对称图形的是 ()A B C D4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6 120 000株.将6120000用科学记数法表示应为 ( )A.70.61210⨯B.66.1210⨯C.561.210⨯D.461210⨯5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A B C D6.估计19的值在 ()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.计算11xx x+-的结果为 ()A.1B.xC.1xD.2xx+8.方程2120x x+-=的两个根为 ()A.12x=-,26x=B.16x=-,22x=C.13x=-,24x=D.14x=-,23x=9.实数a,b在数轴上的对应点的位置如图所示.把a-,b-,0按照从小到大的顺序排列,正确的是 ( )A.0a b--<<B.0a b--<<C.0b a--<<D.0b a--<<10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B',AB'与DC相交于点E,则下列结论一定正确的是( )A.DA CB BA∠=∠''B.ACD CB D∠=∠'C.AD AE=D.AE CE=11.若点1()5,A y-,2()3,B y-,3(2,)C y在反比例函数3yx=的图象上,则1y,2y,3y的大小关系是()A.132y y y<<B.123y y y<<C.321y y y<<D.213y y y<<12.已知二次函数2()1y x h=-+(h为常数),在自变量x的值满足13x≤≤的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或5-B.1-或5C.1或3-D.1或3第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在题中的横线上)13.计算3(2)a的结果等于.14.计算(53)(53)+-的结果等于.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共28页)数学试卷第2页(共28页)数学试卷第4页(共28页)16.若一次函数2y x b=-+(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则MNPQAEFGSS正方形正方形的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP PQ PB==,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分8分)解不等式组26,322,xx x+⎧⎨-⎩≥①②≤请结合题意填空,完成本题的解答.(1)解不等式①得;(2)解不等式②得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.(本小题满分8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人能进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.21.(本小题满分10分)在O中,AB为直径,C为O上一点.(1)如图①,过点C作O的切线,与AB的延长线相交于点P,若27CAB∠=,求P∠的大小;(2)如图②,D为AC上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若10CAB∠=,求P∠的大小.数学试卷第3页(共28页)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)22.(本小题满分10分)小明上学途中要经过A ,B 两地,由于A ,B 两地之间有一片草坪,所以需要走路线AC ,CB .如图,在ABC △中,63m AB =,45A ∠=,37B ∠=,求AC ,CB 的长(结果保留小数点后一位).参考数据:sin370.60≈,cos370.80≈,tan370.75≈取1.414.23.(本小题满分10分)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元.(1)设租用甲种货车x 辆(x 为非负整数),试填写下表.(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.24.(本小题满分10分)在平面直角坐标系中,O 为原点,点()4,0A ,点()0,3B 把ABO △绕点B 逆时针旋转,得A BO ''△,点A ,O 旋转后的对应点为A ',O '.记旋转角为α.(1)如图1,若90α=,求AA '的长; (2)如图2,若120α=,求点O '的坐标;(3)在(2)的条件下,边OA 上的一点P 旋转后的对应点为P ',当O P BP ''+取得最小值时,求点P '的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线C :221y x x =-+的顶点为P ,与y 轴的交点为Q ,点1(1,)2F . (1)求点P ,Q 的坐标;(2)将抛物线C 向上平移得抛物线C ',点Q 平移后的对应点为Q ',且FQ OQ ''=. ①求抛物线C '的解析式;②若点P 关于直线Q F '的对称点为K ,射线FK 与抛物线C '相交于点A ,求点A 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共28页)数学试卷第8页(共28页)333=a a.8+53)(55/ 14PQ即为所求.数学试卷第11页(共28页)数学试卷第12页(共28页)(Ⅲ)(Ⅲ)把不等式①和②的解集在数轴上表示为:;7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)54.+∠COP 36︒. (Ⅱ)∵E 为AC 的中点,【解析】如图,过点C 作⊥CD AB ,垂足为D .9 / 1445, tan37︒tan37tan363631+7≈︒︒141427.00⨯=的长约等于38.2cm 【考点】解直角三角形数学试卷 第19页(共28页)数学试卷 第20页(共28页)90得到的, (Ⅱ)如图,根据题意,3cos cos602∠'='︒=B O BC O B ,92+=BC ,点的坐标为339(,)22.。

2016年天津中考数学真题【试题】

2016年天津中考数学真题【试题】
机密★启用前
天津爱智康中考研究数学团队
2016 年天津市初中毕业生学业考试试卷 数学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.试卷满分 120 分.考试时间 100 分钟.考试 结束后,将试卷和答题卡一并交回.
第 I 卷(本卷 12 小题 共 36 分)
注意事项: 1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔
填在“答题卡”上;用 2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.
2.答案答在试卷上无效.每小题选出答案后,用 2B 铅笔把“答题卡”上对应题目的答案标号的信息 点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)在每小题给出的四个选项中,只有一项是符合题 目要求的.
第 II 卷(本卷 13 小题 共 84 分)
二、填空题(本大题 6 个小题,每小题 3 分,共 18 分)用黑色墨水的钢笔或签字笔将答案写在“答题纸” 上
(13)计算 (2a)3 的结果等于
.
(14)计算 ( 5 3)( 5 3) 的结果等于
.
(15)不透明袋子中装有 6 个球,其中有1个红球, 2 个绿球和 3 个黑球,这些除颜色外无
C
A 45 草坪
37
B
(23)
公司有 330 台机器需要一次性运送到某地,计划租用甲、乙两种火车共 8 辆,已知每辆甲种火车一次最
多运送机器 45 台、租车费用为 400 元,每辆乙种火车一次最多运送机器 30 台、租车费用为 280 元。
(I)设租用甲种货车 x 辆( x 为非负整数),试填写下表。

2016届天津市中考模拟(一)数学试卷(带解析)

2016届天津市中考模拟(一)数学试卷(带解析)

绝密★启用前2016届天津市中考模拟(一)数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:162分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、小李驾驶汽车以千米/小时的速度匀速行驶小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程(单位:千米)与行驶时间(单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为( ) A .B .C .D .【答案】D 【解析】试题分析:速度=路程÷时间,根据图象可得:路程=137-50,时间=3-1.5,则v=(137-试卷第2页,共17页50)÷(3-1.5)=58. 考点:函数图象的性质. 2、如图,是的直径,点在上,过点作的切线交的延长线于点,连接,. 若,则的度数是( ) A .B .C .D .【答案】A 【解析】试题分析:根据切线可得∠OCD=90°,根据∠D=50°,则∠COD=40°,根据OA=OC 可得∠A=40°÷2=20°. 考点:圆的基本性质.3、正五边形的每个外角等于( ) A .36°B .60°C .72°D .108°【答案】C 【解析】试题分析:五边形的外角和为360°,则每个外角的度数为360°÷5=72°. 考点:多边形的外角4、在六张卡片上分别写有六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .B .C .D .【答案】B【解析】试题分析:这六个数中无理数为π和,则P(取到无理数)=.考点:概率的计算.5、在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是( ) A.70,80 B.70,90 C.80,90 D.80,100【答案】C 【解析】试题分析:众数是指出现次数最多的一个数;将这组数据按照从小到大进行排列,处于中间的数就是中位数.根据定义可得众数为90,中位数为80. 考点:(1)、中位数的计算;(2)、众数的计算.6、一个几何体的三视图如图所示,则这个几何体是( ) A .圆柱B .球C .圆锥D .棱柱【答案】A 【解析】试题分析:根据三视图可得圆柱的主视图和左视图为矩形,俯视图为圆;球的主视图、左视图和俯视图都是圆;圆锥的主视图和左视图为三角形,俯视图为圆. 考点:三视图.7、2015年元旦期间,北京各大公园接待游客达245 000万人次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年天津市津南区中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)计算(﹣3)×9的值是()A.6 B.27 C.﹣12 D.﹣272.(3分)cos30°的值为()A.B.C.D.3.(3分)下列图标,不能看作中心对称图形的是()A.B.C.D.4.(3分)据报载,2016年研究生考试报考人数为1770 000人,其中1770 000用科学记数法表示为()A.0.177×107B.1.77×106C.17.7×105D.177×1045.(3分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连结OA,若∠ABC=70°,则∠A等于()A.10°B.15°C.20°D.30°8.(3分)下列图形中,能用一种图形镶嵌成平面图案的是()A.正六边形B.正七边形C.正八边形D.正九边形9.(3分)分式方程的解为()A.x=﹣3 B.x=﹣1 C.x=0 D.x=110.(3分)已知点A(﹣3,y1),B(﹣1,y2)在反比例函数y=的图象上,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y211.(3分)如图是由火柴棍搭成的几何图案,则第n个图案中的火柴棍的根数为(用含n的式子表示)()A.4n B.2n(n﹣1)C.2n(n+1)D.4n(n+2)12.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x8÷x2的结果等于.14.(3分)若一次函数的图象经过点(1,1)与(0,﹣1),则这个函数的解析式为.15.(3分)有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为.16.(3分)如图,Rt△ABC中,AB=10,BC=6,E是AC上一点,AE=5,ED⊥AB,垂足为D,则AD的长为.17.(3分)如图,点P是正方形ABCD内一点,点P到点A,B和C的距离分别为,1,2,△ABP绕点B旋转至△CBP′,连结PP′,并延长BP与DC相交于点Q,则∠CPQ的大小为(度)18.(3分)已知⊙O的半径为r,作⊙O的内接正方形ABCD.(Ⅰ)正方形ABCD的边长为;(Ⅱ)在图中,只用一把圆规画出正方形ABCD的四个顶点,并简要说明四个顶点的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得(Ⅱ)解不等式②,得(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为.20.(8分)种菜能手李大叔种植了一批新品种黄瓜,为了考虑这种黄瓜的生长情况,他随机抽查了部分黄瓜藤(单位:株)上长出的黄瓜根数,得到如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)这次共抽查了株黄瓜藤,图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数(结果取整数)21.(10分)已知A、B是⊙O上的两点,∠AOB=120°,C是的中点.(Ⅰ)如图①,求∠A的度数;(Ⅱ)如图②,延长OA到点D,使OA=AD,连接DC,延长OB交DC的延长线于点E,若⊙O的半径为1,求DE的长.22.(10分)如图,我市某中学课外活动小组的同学要测量海河某段流域的宽度,小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处188米远的B处测得∠CBD=30°,根据这些数据计算出这段流域的河宽和BC的长.(结果精确到1m)23.(10分)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如表:型号进价(元/只)售价(元/只)A型1012B型1523设小张购进A型文具x只.(Ⅰ)当x为何值时,购进这两种文具的进货款恰好为1320元;(Ⅱ)当x为何值时,销售这批文具所获利润最大,并且所获利润不超过进货价格的40%,最大利润是多少元.24.(10分)在Rt△ABO中,∠AOB=90°,OA=,OB=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.(Ⅰ)如图①,当E点恰好落在线段AB上时,求E点坐标;(Ⅱ)在(Ⅰ)问的条件下,将△ODE沿x轴的正半轴向右平移得到△O′D′E′,O′E′、D′E′分别交AB于点G、F(如图②)求证OO′=E′F;(Ⅲ)若点D沿x轴正半轴向右移动,设点D到原点的距离为x,△ODE与△AOB 重叠部分的面积为y,请直接写出y与x的函数关系式.25.(10分)已知:抛物线l1:y=﹣x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y 轴于点D(0,3).(1)求抛物线l2的函数表达式;(2)P为抛物线l1的对称轴上一动点,连接PA,PC,当∠APC=90°时,求点P 的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.2016年天津市津南区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)计算(﹣3)×9的值是()A.6 B.27 C.﹣12 D.﹣27【解答】解:原式=(﹣3)×9=﹣27,故选:D.2.(3分)cos30°的值为()A.B.C.D.【解答】解:cos30°=.故选:C.3.(3分)下列图标,不能看作中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项正确;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:B.4.(3分)据报载,2016年研究生考试报考人数为1770 000人,其中1770 000用科学记数法表示为()A.0.177×107B.1.77×106C.17.7×105D.177×104【解答】解:1770 000=1.77×106,故选:B.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.【解答】解:由图可得,俯视图为.故选D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:∵,即67,故选C.7.(3分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连结OA,若∠ABC=70°,则∠A等于()A.10°B.15°C.20°D.30°【解答】解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠CBO=90°,∵∠ABC=70°,∴∠OBA=90°﹣70°=20°,∵OA=OB,∴∠A=∠OBA=20°,故选C.8.(3分)下列图形中,能用一种图形镶嵌成平面图案的是()A.正六边形B.正七边形C.正八边形D.正九边形【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴正六边形符合题意;故选A.9.(3分)分式方程的解为()A.x=﹣3 B.x=﹣1 C.x=0 D.x=1【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1,检验:把x=1代入2x(x+3)=8≠0,所以原方程的解为:x=1.故选D.10.(3分)已知点A(﹣3,y1),B(﹣1,y2)在反比例函数y=的图象上,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y2【解答】解:∵点A(﹣3,y1),B(﹣1,y2)在反比例函数y=的图象上,∴y1=﹣,y2=﹣1.∵﹣>﹣1,∴y1>y2.故选A.11.(3分)如图是由火柴棍搭成的几何图案,则第n个图案中的火柴棍的根数为(用含n的式子表示)()A.4n B.2n(n﹣1)C.2n(n+1)D.4n(n+2)【解答】解:设第n个图案中的火柴棍的根数为a n,观察,发现规律:a1=1×4=4,a2=2×(4+2)=12,a3=3×(4+2+2)=24,∴a n=n•[4+2(n﹣1)]=2n(n+1).故选C.12.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个 B.3个 C.2个 D.1个【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c 开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x≥1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x8÷x2的结果等于x6.【解答】解:原式=x8﹣2=x6,故答案为:x614.(3分)若一次函数的图象经过点(1,1)与(0,﹣1),则这个函数的解析式为y=2x﹣1.【解答】解:设一次函数的解析式是y=kx+b,把A(1,1)、B(0,﹣1)代入得:,解方程组得:,∴一次函数的解析式是:y=2x﹣1,故答案为:y=2x﹣1.15.(3分)有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为.【解答】解:画树状图为:共有36种等可能的结果数,其中两次抽取的数字都是奇数的结果数为9,所以随机抽取一张,两次抽取的数字都是奇数的概率==.故答案为:.16.(3分)如图,Rt△ABC中,AB=10,BC=6,E是AC上一点,AE=5,ED⊥AB,垂足为D,则AD的长为4.【解答】解:∵Rt△ABC中,AB=10,BC=6,∴AC==8,∵∠A=∠A,∠ADE=∠C=90°,∴△ADE∽△ACB,∴=,∴=,解得:AD=4.故答案为:4.17.(3分)如图,点P是正方形ABCD内一点,点P到点A,B和C的距离分别为,1,2,△ABP绕点B旋转至△CBP′,连结PP′,并延长BP与DC相交于点Q,则∠CPQ的大小为45(度)【解答】解:由旋转性质可得△APB≌△CP′B,∴PB=P′B=1,∠PBA=∠P′BC,PA=P′C=,又∵四边形ABCD是正方形,∴∠PBA+∠PBC=90°,∴∠P′BC+∠PBC=90°,即∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′==,∵PP′2+PC2=2+8=10=P′C2,∴△PCP′为直角三角形,且∠CPP′=90°,∴∠CPQ=180°﹣∠BPP′﹣∠CPP′=45°,故答案为:45.18.(3分)已知⊙O的半径为r,作⊙O的内接正方形ABCD.(Ⅰ)正方形ABCD的边长为r;(Ⅱ)在图中,只用一把圆规画出正方形ABCD的四个顶点,并简要说明四个顶点的位置是如何找到的(不要求证明)作法:①以圆上任意一点E为圆心,以r为半径画圆,交⊙O于C和F,②以F为圆心,以r为半径画圆,与⊙E交于O和G,与⊙O交于另一点A,③作直线OG,交⊙O于D、B,A、B、C、D连成四边形就是所求作的正方形..【解答】解:(1)如图1,连接OA、OD,∵四边形ABCD是正方形,∴OA⊥OD,∵OA=OD=r,∴AD==r,∴正方形ABCD的边长为r;故答案为:r;(2)如图2,故答案为:作法:①以圆上任意一点E为圆心,以r为半径画圆,交⊙O于C和F,②以F为圆心,以r为半径画圆,与⊙E交于O和G,与⊙O交于另一点A,③作直线OG,交⊙O于D、B,A、B、C、D连成四边形就是所求作的正方形.三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得x≥﹣2(Ⅱ)解不等式②,得x≤1(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为﹣2≤x≤1.【解答】解:(Ⅰ)解不等式①,得x≥﹣2,(Ⅱ)解不等式②,得x≤1(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为﹣2≤x≤1,故答案为x≥﹣2,x≤1,﹣2≤x≤1.20.(8分)种菜能手李大叔种植了一批新品种黄瓜,为了考虑这种黄瓜的生长情况,他随机抽查了部分黄瓜藤(单位:株)上长出的黄瓜根数,得到如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)这次共抽查了80株黄瓜藤,图①中m的值为25;(Ⅱ)求统计的这组数据的平均数、众数和中位数(结果取整数)【解答】解:(1)本次抽查的花瓜藤共10+15+20+18+17=80株;长有14根花瓜所占百分比m%=×100%=25%,∴m=25,故答案为:80,25;(2)平均数为:≈14(根),众数为14,中位数为=14.21.(10分)已知A、B是⊙O上的两点,∠AOB=120°,C是的中点.(Ⅰ)如图①,求∠A的度数;(Ⅱ)如图②,延长OA到点D,使OA=AD,连接DC,延长OB交DC的延长线于点E,若⊙O的半径为1,求DE的长.【解答】解:(Ⅰ)在图①中连接OC,如图所示.∵∠AOB=120°,C是的中点,∴∠AOC=∠AOB=60°,∵OA=OC,∴△OAC是等边三角形,∴∠A=60°;(Ⅱ)∵△OAC是等边三角形,∴OA=AC=AD,∴∠D=30°,∵∠AOB=120°,∴∠D=∠E=30°,∴OC⊥DE,∵⊙O的半径为1,∴CD=CE=OC=,∴DE=2CD=2.22.(10分)如图,我市某中学课外活动小组的同学要测量海河某段流域的宽度,小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处188米远的B处测得∠CBD=30°,根据这些数据计算出这段流域的河宽和BC的长.(结果精确到1m)【解答】解:如图,过点C作CE⊥AB,e设CE=x,在Rt△ACE中,∠CAE=45°,∴AE=CE=x,在Rt△BCE中,∵∠CAE=30°,∴BE=CE=x,BC=2x,∵AB=188,∴BE﹣AE=x﹣x=188,∴x=≈257m,∴CE=257m,BC=2x=514m,即:这段流域的河宽为257m,BC的长为514m;23.(10分)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如表:型号进价(元/只)售价(元/只)A型1012B型1523设小张购进A型文具x只.(Ⅰ)当x为何值时,购进这两种文具的进货款恰好为1320元;(Ⅱ)当x为何值时,销售这批文具所获利润最大,并且所获利润不超过进货价格的40%,最大利润是多少元.【解答】解:(Ⅰ)由题意可得,10x+15(100﹣x)=1320,解得,x=36即x=36时,购进这两种文具的进货款恰好为1320元;(Ⅱ)设利润为w元,w=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x,∵所获利润不超过进货价格的40%,∴800﹣6x≤40%[10x+15(100﹣x)]解得,x≥50∴当x=50时,w取得最大值,此时w=800﹣6×50=500,即当x=50时,销售这批文具所获利润最大,并且所获利润不超过进货价格的40%,最大利润是500元.24.(10分)在Rt△ABO中,∠AOB=90°,OA=,OB=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.(Ⅰ)如图①,当E点恰好落在线段AB上时,求E点坐标;(Ⅱ)在(Ⅰ)问的条件下,将△ODE沿x轴的正半轴向右平移得到△O′D′E′,O′E′、D′E′分别交AB于点G、F(如图②)求证OO′=E′F;(Ⅲ)若点D沿x轴正半轴向右移动,设点D到原点的距离为x,△ODE与△AOB 重叠部分的面积为y,请直接写出y与x的函数关系式.【解答】解:(1)作EH⊥OB于点H,tan∠ABO===,∴∠ABO=30°,∵△OED是等边三角形,∴∠EOD=60°.又∵∠ABO=30°,∴∠OEB=90°.∵BO=4,∴OE=OB=2.∵△OEH是直角三角形,且∠OEH=30°∴OH=1,EH=.∴E(1,);(2)∵∠ABO=30°,∠EDO=60°,∴∠ABO=∠DFB=30°,∴D′F=D′B.∴OO′=4﹣2﹣D′B=2﹣D′B=2﹣D′F=E′D′﹣FD′=E′F;(3)当0<x≤2时,△ODE与△AOB重叠部分的面积为△ODE面积=x2,当2<x<4时,△ODE与△AOB重叠部分的面积为四边形GO′DF面积=﹣x2+2x﹣2,当x≥4时,△ODE与△AOB重叠部分的面积为2.25.(10分)已知:抛物线l1:y=﹣x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y 轴于点D(0,3).(1)求抛物线l2的函数表达式;(2)P为抛物线l1的对称轴上一动点,连接PA,PC,当∠APC=90°时,求点P 的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.【解答】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0)设抛物线l2的解析式为y=a(x+1)(x﹣6),把D(0,﹣3)代入得a•1•(﹣6)=﹣3,解得a=,所以抛物线l2的解析式为y=(x+1)(x﹣6),即y=x2﹣x﹣3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3)抛物线y=﹣x2+2x+3的对称轴为直线x=1,设P(1,t),则AC2=12+32=10,PC2=12+(t﹣3)2,PA2=22+t2,∵∠APC=90°,∴PC2+PA2=AC2,即12+(t﹣3)2+22+t2=10,整理得t2﹣3t+2=0,解得t1=1,t2=2,∴点P的坐标为(1,1)或(1,2);(3)抛物线l2与抛物线l1经过的另一个交点为F,如图2,解方程x2﹣x﹣3=﹣x2+2x+3得x1=﹣1,x2=4,则F(4,﹣5),设M(x,x2﹣x﹣3),则N(x,﹣x2+2x+3),当﹣1≤x<4时,MN=﹣x2+2x+3﹣(x2﹣x﹣3)=﹣x2+x+6=﹣(x﹣)2+,此时x=时,MN有最大值;当4≤x≤6时,MN=x2﹣x﹣3﹣(﹣x2+2x+3)=x2﹣x﹣6=(x﹣)2﹣,此时x=6时,MN有最大值21;所以点M自点A运动至点E的过程中,线段MN长度的最大值为21.。

相关文档
最新文档