定性数据分析第三章课后答案
定性数据分析课后答案
第二章课后作业【第 1题】解:由题可知消费者对糖果颜色的偏好情况(即糖果颜色的概率分布),调查者取 500 块糖果作为研究对象,则以消费者对糖果颜色的偏好作为依据,500 块糖果的颜色分布如下表 1.1所示:表 1.1 理论上糖果的各颜色数橙色黄色红色棕色绿色蓝色150100*********由题知r=6 ,n=500,我们假设这些数据与消费者对糖果颜色的偏好分布是相符,所以我们进行以下假设 :原假设: H 0 :类 A i所占的比例为 p i p i 0 (i 1, (6)其中 A i为对应的糖果颜色, p i 0 (i1,...,6)6p i0 1已知,1i则 2 检验的计算过程如下表所示:颜色类别n i np i0( n i np i 0 ) 2 np i 0 A1172150 3.2267A2124100 5.7600A385100 2.2500A44150 1.6200A53650 3.9200A64250 1.2800合计500500218.0567在这里 r 6 。
检验的 p 值等于自由度为 5 的2变量大于等于 18.0567 的概率。
在 Excel 中输入“chidist (18.0567,5) ”,得出对应的p值为 p0.0028762 0.05 ,故拒绝原假设,即这些数据与消费者对糖果颜色的偏好分布不相符。
【第 2题】解:由题可知 ,r=3 , n=200,假设顾客对这三种肉食的喜好程度相同,即顾客选择这三种肉食的概率是相同的。
所以我们可以进行以下假设: 原假设 H 0 : p i1( 1,2,3)i32则 检验的计算过程如下表所示:肉食种类n inp i( n i np i ) 2 np i猪肉 85 66.67 5.03958 牛肉 41 66.67 9.88374 羊肉 74 66.670.80589合计200200215.72921在这里 r 3 。
检验的 p 值等于自由度为 2 的2变量大于等于 15.72921 的概率。
第三章 定性数据的 检验
3
? ? 假 如设果三H0类成的立观,察我次们数希分望别在为样本n1中, n喜2和欢n每3 一,品i?1 牌ni 的? n顾。
从而
c
?
?
2
?
(k
? 1)
对例3.1来说,k ? 3 ,当? ? 0.05 时,??2(k ?1)? ?02.05(2)? 5.991
? 2 ? (61 ? 50)2 ? (53 ? 50)2 ? (36 ? 50)2 ? 6.52
50
50
50
? 由于? 2 ? 6.52 ? 5.991,因此拒绝零假设。
由假设检验的一般原理知, c的值可由给定的显
著性水平 ? 确定,即c满足 P(? 2 ? c) ? ?
关于统计量 ? 2的分布,英国统计学家 Karl Pearson
给出下面的定理:
设总体中的每一个个体属于且只属 A1, A2 , , Ak
,k个类之一。总体中属于 k个类的比例为 p1, p 2 , , pk
即认为顾客对这三种品牌矿泉水的喜好确实存 在差异。
利用统计分析软件SPSS13.0可以大大简 化计算过程,下面用统计软件对例3.1进行分析。
?1.按要求录入数据; ?2.选择 Data ? weightCase 对数据进行加权; ?3.选择 Analyze ? Non ? parametricTest ? Chi ? square 进行非参数检验
3.1 多项分布与? 2 分布
?收集分类数据的目的是分析在每个类中 数据的分布。例如,我们为了估计消费 者中喜欢三种牙膏中每一种的比例,则 统计购买者三种牙膏的顾客购买每一种 的人数。在这里仅仅是根据牙膏的种类 来分类,我们称之为一维分类或一向分 类。下面通过例子来介绍一向分类数据 的分析。
定性数据分析第三章课后答案
第三章课后习题作业9、对72个可疑患者用两种不同的方法进行检测,检测结果如下:问:检测方法1阳性和阴性的比例是否与检测方法2阳性和阴性的比例相同? 解:(1)提出原假设根据题意,我们假设检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
即:原假设:011:,H p p ++= 备选假设:011:H p p ++≠(2)选择检验统计量如果边缘齐性检验问题的原假设成立时,因为121122211221,p p p p p --==,可见参数个数为2,并且似然函数为2221121122211211)21()()()()()(),(121112112212111211n n n n n n n n p p p p p p p p p L --==++所以11p 、12p 和2112p p =极大似然估计分别为n n p1111ˆ=、n n p 2222ˆ=和n n n p p2)(ˆˆ21122112+==。
从而得到边缘齐性检验问题的2χ检验统计量和似然比检验统计量)ln(2Λ-,它们分别为:2χ检验统计量:211222112212122)(ˆ)ˆ(n n n n p n p n n i j ij ij ij +-=-=∑∑==χ似然比检验统计量:⎪⎪⎭⎫⎝⎛+++-=⎪⎪⎭⎫⎝⎛-=Λ-∑∑==212112211221121221212ln 2ln 2ˆln 2)ln(2n n n n n n n n n p n n i j ijijij它们都有渐近2χ分布,其自由度都是4-2-1=1。
(3)计算检验统计量和p 值,并作出决策则McNemar 2χ检验统计量和似然检验统计量)ln(2Λ-的值分别为:3918)918(22=+-=χ 05818.392918ln 9182918ln 182)ln(2=⎪⎭⎫ ⎝⎛⋅++⋅+-=Λ-我们在Excel 中分别输入“)1,3(chidist =”和“)1,05818.3(chidist =”,可得到2χ检验统计量和似然检验统计量)ln(2Λ-的p 值分别为:083264517.0)3)1((2=≥=χP p 080331601.0)05818.3)1((2=≥=χP p由于p 值都不小,我们不能拒绝原假设,从而认为检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
定性数据分析第三章课后答案
第三章课后习题作业9、对72个可疑患者用两种不同的方法进行检测,检测结果如下:问:检测方法1阳性和阴性的比例是否与检测方法2阳性和阴性的比例相同? 解:(1)提出原假设根据题意,我们假设检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
即:原假设:011:,H p p ++= 备选假设:011:H p p ++≠(2)选择检验统计量如果边缘齐性检验问题的原假设成立时,因为121122211221,p p p p p --==,可见参数个数为2,并且似然函数为2221121122211211)21()()()()()(),(121112112212111211n n n n n n n n p p p p p p p p p L --==++所以11p 、12p 和2112p p =极大似然估计分别为n n p1111ˆ=、n n p 2222ˆ=和n n n p p2)(ˆˆ21122112+==。
从而得到边缘齐性检验问题的2χ检验统计量和似然比检验统计量)ln(2Λ-,它们分别为:2χ检验统计量:211222112212122)(ˆ)ˆ(n n n n p n p n n i j ij ij ij +-=-=∑∑==χ似然比检验统计量:⎪⎪⎭⎫⎝⎛+++-=⎪⎪⎭⎫⎝⎛-=Λ-∑∑==212112211221121221212ln 2ln 2ˆln 2)ln(2n n n n n n n n n p n n i j ijijij它们都有渐近2χ分布,其自由度都是4-2-1=1。
(3)计算检验统计量和p 值,并作出决策则McNemar 2χ检验统计量和似然检验统计量)ln(2Λ-的值分别为:3918)918(22=+-=χ 05818.392918ln 9182918ln 182)ln(2=⎪⎭⎫ ⎝⎛⋅++⋅+-=Λ-我们在Excel 中分别输入“)1,3(chidist =”和“)1,05818.3(chidist =”,可得到2χ检验统计量和似然检验统计量)ln(2Λ-的p 值分别为:083264517.0)3)1((2=≥=χP p 080331601.0)05818.3)1((2=≥=χP p由于p 值都不小,我们不能拒绝原假设,从而认为检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
统计学习方法习题
《统计学》一、单项选择题(在每小题的3个备选答案中选出正确答案,并将其代号填在题干后面的括号内。
每小题1分,共14分)1、对正态总体均值进行区间估计时,其它条件不变,置信水平1??越小,则置信上限与置信下限的差()①、越大②、越小③、不变2、若某总体次数分布呈轻微左偏分布,则成立的有()①、x> me>mo②、x<me<mo ③、x>mo>me3、方差分析中的原假设是关于所研究因素( )①、各水平总体方差是否相等②、各水平的理论均值是否相等③、同一水平内部数量差异是否相等4、某年某地区甲乙两类职工的月平均收入分别为1060元和3350元,标准差分别为230元和680元,则职工月平均收入的离散程度( )①、甲类较大②、乙类较大③、两类相同5、某企业2004年与2003年相比,各种产品产量增长了8%,总生产费用增长了 15%,则该企业2004年单位成本指数为()①、187.5% ②、7% ③、106.48%6、.研究如何对现象的数量特征进行计量、观察、概括和表述的理论和方法属于( )①、应用统计学②、描述统计学③、推断统计学7、若各个标志值都扩大2倍,而频数都减少为原来的1/3,则平均数()①、扩大2倍②、减少到1/3 ③、不变8、在处理快艇的6次试验数据中,得到下列最大速度值:27、38、30、37、35、31.则最大艇速的均值的无偏估计值为()①、32.5 ②、33 ③、39.69、某地区粮食作物产量年平均发展速度:1998~2000年三年平均为1.03,2001~2002年两年平均为1.05,试确定1998~2002五年的年平均发展速度()10、若两个变量的平均水平接近,平均差越大的变量,其( )①、平均值的代表性越好②、离散程度越大③、稳定性越高 11、季节指数刻画了时间序列在一个年度内各月或季的典型季节特征。
报告中定性数据的有效分析方法
报告中定性数据的有效分析方法一、什么是定性数据定性数据是指用文字、描述或标签等形式来表示的数据,与定量数据相对。
它主要关注事物的属性、特征或品质,并不能直接用数字进行度量。
在报告中,定性数据的分析常常涉及到对调查问卷、访谈记录或文本材料等进行细致观察和深入理解。
二、定性数据的整理与分类1. 数据整理定性数据的第一步是进行数据整理。
这一步通常包括:将数据输入电子表格中,对材料进行注释,检查和纠正可能出现的错误,并将数据按照一定的方式排序,以便更好地进行分析。
2. 数据分类定性数据的下一步是进行数据分类。
分类可以根据不同的属性、特征或品质进行,以帮助我们更好地理解数据的结构和特点。
可以采用基于主题的分类、基于情感的分类或者基于目标的分类等。
三、定性数据的内容分析方法1. 文本内容分析文本内容分析是一种针对定性数据的常用方法。
它基于对文本材料的深入理解和解释,通过对语言的分析来揭示隐藏在文字背后的信息。
在报告中,可以使用文本内容分析方法来提取和总结调查问卷或访谈记录的主题、观点或趋势,并加以解释和讨论。
2. 语义网络分析语义网络分析是一种将文本数据转化为图形结构的分析方法。
它通过构建和分析词语之间的关系网络来揭示数据之间的联系。
在报告中,可以使用语义网络分析方法来探索和呈现调查问卷或访谈记录中的潜在关系和相互影响。
四、定性数据的模式识别方法1. 主题模式识别主题模式识别是一种通过对定性数据进行归类和总结,识别出数据中的主题和模式的方法。
它通过对数据的频次、相对比例和相关关系进行统计分析,从而揭示数据中隐藏的结构。
2. 情感模式识别情感模式识别是一种通过对定性数据中的情感内容进行识别和分析,揭示数据中蕴含的情感态度和情绪的方法。
它可以通过对文本表达的情感词汇、语气和语境等进行分析,得出调查对象的情感倾向或态度。
五、定性数据的质性验证方法1. 基于质性的逻辑验证基于质性的逻辑验证是一种通过对定性数据进行逻辑推理和验证的方法。
统计学课后简答题答案
第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论.解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法.推断统计;它是研究如何利用样本数据来推断总体特征的统计方法.统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的.(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值.统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的.实验数据:在实验中控制实验对象而收集到的数据.统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据.时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据.第二章思考题什么是二手资料使用二手资料应注意什么问题与研究内容有关,由别人调查和试验而来已经存在,并会被我们利用的资料为“二手资料”.使用时要进行评估,要考虑到资料的原始收集人,收集目的,收集途径,收集时间使用时要注明数据来源.比较概率抽样和非概率抽样的特点,指出各自适用情况概率抽样:抽样时按一定的概率以随机原则抽取样本.每个单位别抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽到的概率.技术含量和成本都比较高.如果调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样.非概率抽样:操作简单,时效快,成本低,而且对于抽样中的统计学专业技术要求不是很高.它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备.它同样使用市场调查中的概念测试(不需要调查结果投影到总体的情况).除了自填式,面访式和式还有什么搜集数据的办法试验式和观察式等第三章思考题数据预处理内容数据审核(完整性和准确性;适用性和实效性),数据筛选和数据排序.分类数据和顺序数据的整理和图示方法各有哪些分类数据:制作频数分布表,用比例,百分比,比率等进行描述性分析.可用条形图,帕累托图和饼图进行图示分析.顺序数据:制作频数分布表,用比例,百分比,比率.累计频数和累计频率等进行描述性分析.可用条形图,帕累托图和饼图,累计频数分布图和环形图进行图示分析.数据型数据的分组方法和步骤分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组.分组步骤:1确定组数2确定各组组距3根据分组整理成频数分布表第4章数据的概括性度量一组数据的分布特征可以从哪几个方面进行测度数据分布特征可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或集中的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态.怎样理解平均数在统计学中的地位平均数在统计学中具有重要的地位,是集中趋势的最主要的测度,主要适用于数值型数据,而不适用于分类数据和顺序数据.简述四分位数的计算方法.四分位数是一组数据排序后处于25%和75%位置上的值.根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数.第七章思考题估计量:用于估计总体参数的随机变量估计值:估计参数时计算出来的统计量的具体值评价估计量的标准:无偏性:估计量抽样分布的数学期望等于被估计的总体参数有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数置信区间:由样本统计量所构造的总体参数的估计区间第8章思考题假设检验和参数估计有什么相同点和不同点答:参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同.参数估计讨论的是用样本统计量估计总体参数的方法,总体参数μ在估计前是未知的.而在参数假设检验中,则是先对μ的值提出一个假设,然后利用样本信息去检验这个假设是否成立.什么是假设检验中的显着性水平统计显着是什么意思答:显着性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率和风险.统计显着等价拒绝H0,指求出的值落在小概率的区间上,一般是落在或比更小的显着水平上.什么是假设检验中的两类错误答:假设检验的结果可能是错误的,所犯的错误有两种类型,一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概论用β表示,所以也称β错误或取伪错误.第10章思考题什么是方差分析它研究的是什么答:方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显着影响.它所研究的是非类型自变量对数值型因变量的影响.要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法答:作两两比较十分繁琐,进行检验的次数较多,随着增加个体显着性检验的次数,偶然因素导致差别的可能性也会增加.而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设.方差分析包括哪些类型它们有何区别答:方差分析可分为单因素方差分析和双因素方差分析.区别:单因素方差分析研究的是一个分类型自变量对一个数值型因变量的影响,而双因素涉及两个分类型自变量.第13章思考题简述时间序列的构成要素.时间序列的构成要素:趋势,季节性,周期性,随机性利用增长率分析时间序列时应注意哪些问题.(1)当时间序列中的观察值出现0或负数时,不宜计算增长率;(2)不能单纯就增长率论增长率,要注意增长率与绝对水平的综合分析;大的增长率背后,其隐含的绝对值可能很小,小的增长率背后其隐含的绝对值可能很大.简述平稳序列和非平稳序列的含义.1.平稳序列(stationary series)基本上不存在趋势的序列,各观察值基本上在某个固定的水平上波动或虽有波动,但并不存在某种规律,而其波动可以看成是随机的2.非平稳序列 (non-stationary series)是包含趋势、季节性或周期性的序列,它可能只含有其中的一种成分,也可能是几种成分的组合.因此,非平稳序列又可以分为有趋势的序列、有趋势和季节性的序列、几种成分混合而成的复合型序列.第14章思考题解释指数的含义.答:指数最早起源于测量物价的变动.广义上,是指任何两个数值对比形成的相对数;狭义上,是指用于测定多个项目在不同场合下综合变动的一种特殊相对数.实际应用中使用的主要是狭义的指数.加权综合指数和加权平均指数有何区别与联系加权综合指数:通过加权来测定一组项目的综合变动,有加权数量指数和加权质量指数.使用条件:必须掌握全面数据(数量指数,测定一组项目的数量变动,如产品产量指数,商品销售量指数等)(质量指数,测定一组项目的质量变动,如价格指数、产品成本指数等)拉式公式:将权数的各变量值固定在基期.帕式公式:把作为权数的变量值固定在报告期.加权平均指数:以某一时期的总量为权数对个体指数加权平均.使用条件:可以是全面数据、不完全数据.因权数所属时期的不同,有不同的计算形式.有:算术平均形式、调和平均形解释零售价格指数、消费价格指数、生产价格指数、股票价格指数.答:零售价格指数:反映城乡商品零售价格变动趋势的一种经济指数.消费价格指数:反映一定时期内消费者所购买的生活消费品价格和服务项目价格的变动趋势和程度的一种相对数.生产价格指数: 测量在初级市场上出售的货物(即在非零售市场上首次购买某种商品时) 的价格变动的一种价格指数.股票价格指数:反映某一股票市场上多种股票价格变动趋势的一种相对数,简称股价指数.其单位一般用“点”(point)表示,即将基期指数作为100,每上升或下降一个单位称为“1点”.。
定性数据分析——卡方检验
定性数据分析——卡方检验卡方检验(Chi-square test)是统计学中用于检验两个定性变量之间关联性的方法。
它可以帮助我们确定两个变量之间的差异是由于随机因素导致的还是由于真实的关联性。
卡方检验的基本原理是,通过比较实际观察到的频数与期望频数之间的差异来判断变量之间是否存在关联。
在卡方检验中,我们首先要计算期望频数,即假设两个变量之间没有关联时,我们预计每个组别内的频数应该是多少。
然后,我们计算实际观察到的频数与期望频数之间的差异,并将这些差异加总得到一个卡方值。
最后,我们将卡方值与自由度相结合,使用卡方分布表来确定检验结果是否具有统计学意义。
卡方检验可以分为两种类型:拟合优度检验(goodness-of-fit test)和独立性检验(independence test)。
拟合优度检验用于确定观察到的频数是否与预期的频数相匹配。
它在比较一个变量的分布与一个预先给定的理论分布之间的差异时非常有用。
例如,我们可以使用卡方检验来检验一个骰子是否公平,即骰子的六个面是否具有相等的概率。
独立性检验用于确定两个变量之间是否存在关联。
它可以帮助我们确定两个变量是否独立,即它们的分布是否相互独立。
例如,我们可以使用卡方检验来确定男性和女性之间是否存在偏好其中一种产品的差异。
在进行卡方检验时,我们需要满足一些前提条件。
首先,两个变量必须是独立的,即每个观察值只能属于一个组别。
其次,每个组别中的观察值必须相互独立。
最后,期望频数应该足够大,通常要求每个组别的期望频数大于5卡方检验的结果通常以p值的形式呈现。
p值表示观察到的差异是由于随机因素导致的可能性。
如果p值小于预先设定的显著性水平(通常为0.05),则我们可以拒绝原假设,即认为变量之间存在关联。
在实际应用中,卡方检验可以帮助我们解决许多问题。
例如,我们可以使用卡方检验来确定广告宣传对购买行为的影响,消费者对不同品牌的偏好程度,或者员工对不同工作条件的满意度。
第三章 定性数据
的渐近分布为N(0,1)
原假设H0:p1=p2成立时,记p1=p2=p
n11 / n1 n21 / n2 ~ N (0,1),其中: p(1 p)(1/ n1 1/ n2 )
n11 n21 n1 n1 n11 n2 n21 n1 n2 ˆ ˆ ˆ p p1 p2 n1 n2 n n n1 n n2 n n
C ov( X , Y ) E ( XY ) E ( X ) E (Y ) (a1 a2 )(b1 b2 )( p11 p1 p1 )
其中,a1,a2和b1,b2分别是属性A和B的分类(取值) 当A与B不相关时,有: Cov(X,Y)=0 可见,四格表中属性A与B无关也就是相互独立。
§3.2 独立性检验
3.2.1 独立与不相关 设属性A把总体分成A1和A2两类,属性B把总体 分成B1和B2两类。考虑一个四格表,其中的频数 换成相应的概率.
属性之间独立与不相关
两个相互独立的随机变量一定不相关,但不相关不一定
独立。 这里相关指线性相关 四格表中属性A与B相互独立等价于不相关。 根据前面的频数分布表可以得到概率四格表:
单侧给定的四格表的检验
例3.1的解:
H 0 : p1 p2或肺癌患者与吸烟相互独立 H1 : p1 p2或肺癌患者吸烟比例高于健康人 106 (60 11-32 3) U 3.1086 92 14 63 43
在给定的显著性水平(0.05)下,显然大于临界值,应该拒 绝原假设。 相应的P-值为0.00094,可以得到同样的结论。
表3.8 概率四格表
B1
B2
合计
A1 A2 合计
p11 p21 p+1
数据分析方法课后答案
数据分析方法课后答案【篇一:数据的分析练习题及答案】、选择题:(每题3分,共15分)1.小明家要买台电脑,下面是甲、乙、丙三种电脑近几年来的销量,如果小明想买一台近期比较流行的电脑,他应买()a.甲b.乙c.丙2.小李是个彩票迷,为了能得奖,他特意询问了前15天的中奖号码分别是:519、、706、328、556、768、215、435、741、624、307、821、696、741、471、285. 你认为这样的观点是否合理()a.不合理b.合理3.小靖想买双好的运动鞋,于是她上网查找有关资料,得到下表:她想买一双价格在300-600元之间,且她喜欢白色、红白相间、浅绿或淡黄色, 并且防水性能很好,那么她应选()a.甲b.乙c.丙d.丁4.为了计算植树节时本班同学所种植的30棵树苗的平均高度, 三位同学先将所有树苗的然后,他们分别这样计算这30棵树苗的平均高度:130130列式正确的是()a.(1)b.(1)和(2);c.(1)和(3)d.(2)和(3)5.某班在一次物理测试中的成绩为:100分7人,90分14人,80分17人,70分8人, 60分2人,50分2人.则该班此次测试的平均成绩为() a.82分b.62分c.64分d.75分二、填空题:(每题4分,共20分)6.一次知识竞赛中,36名参赛选手的得分情况为:5人得75分,8人得80分,6 人得85分,8人得90分,7人得95 分, 2 人得100 分, 要计算他们的平均得分, 可列算式:_____________.(1)7.某校九年级6个班级的学生的人数和平均体重如下表:要计算全校学生的平均体重,可列算式________,平均体重约为__________.8.某家庭搬进新居后,又添置了新的家用电器,为了了解用电量的大小, 该家庭在6月初连续几天观察电表的度数,如下表所示:9.为了解我国14岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60m; 从南方抽取了200个男孩,平均身高为1.50m;若北方14岁男孩数与南方14岁男孩数的比为3:2,由此可推断我国14岁男孩的平均身高约为______m.10.小明先用5千米/时的速度行驶3小时后,又用4千米/时的速度行驶5小时到达目的地,则小明的平均速度为________. 三、解答题:(每题9分,共54分)11.某同学对他在本学期的自我检测成绩进行了统计:95分的有12次,90 分的有10次,85分的有15次,80分的有3次,75分的有1次,65分的有3次.试计算该同学本学期自我检测的平均成绩..12.超市里要举行转盘摇奖活动,转盘如图所示,买满100元可摇奖一次,有人说:如果大家都摇到自行车,那么超市岂不是亏本了?如果你是超市决策者,会不会因此而改变有奖销售的方案呢?说说你的理由?自行车300元洗洁精2.80元酱油5.0元西红柿2.00元墨水3.50元13.请你根据上表比较这两个国家的数据,你能得出什么结论?14.由于水资源贫乏,节约用水非常重要,请你调查一下,本班每位学生所在家庭的月人均用水量,并据此制作频数分布图,同时估计一下当地家庭的月人均用水量.15.爸爸给小明一串钥匙,共有4把,小明决定先试试哪把是防盗门的钥匙. 请你用模拟实验方法估计一下,他第1次试开就成功的机会有多大?16.转动如图所示的转盘两次,每次指针都指向一个数字. 如果两次所指的数字之积是质数,游戏者a得10分;乘积不是质数,游戏者b得10分.你认为这个游戏公平吗?如果你认为这个游戏不公平,你愿意做游戏者a还是游戏者b?为什么?31246517.有人对记忆和遗忘的规律进行研究,人在记忆过某些知识后, 在不同时间段对其进行测试,结果如下表:分析测试结果,在图中绘制曲线图,并回答遗忘在数量上的变化规律.记忆效果1%记忆的保持曲线图答案:一、1.b 2.a 3.d 4.d 5.a148?50?49.8?46?50.2?55?49.5?48?51?52?50.3?547., 49.8kg50?46?55?48?52?54358.387.75 9.1.56 10.千米/时8三、144所以,美国的吸烟总人数和每天吸烟的总数都大于日本,但吸烟人口占总人口的比例小于日本.14.列出调查表,对本班学生实事求是地进行调查以获得真实的信息.15.可用4个相同的球,1个白的,3个黑的,每次抽1个,则第1次抽到白球的概率为所求概率,1为. 41516.不公平,愿做b 解:乘积是质数的概率是,乘积不是质数的概率是, 游戏不公平,故66愿做b.17.遗忘曲线表明了遗忘在数量上的变化规律,遗忘的数量随时间的前进而递增;这种递增先快后慢,在识记后的短时间内特别迅速,然后逐渐缓慢下来.二、6.记忆效果1%/d记忆的保持曲线图【篇二:定性数据分析第三章课后答案】9、对72个可疑患者用两种不同的方法进行检测,检测结果如下:问:检测方法1阳性和阴性的比例是否与检测方法2阳性和阴性的比例相同?解:(1)提出原假设根据题意,我们假设检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
数据分析方法课后答案
数据分析方法课后答案【篇一:数据的分析练习题及答案】、选择题:(每题3分,共15分)1.小明家要买台电脑,下面是甲、乙、丙三种电脑近几年来的销量,如果小明想买一台近期比较流行的电脑,他应买()a.甲b.乙c.丙2.小李是个彩票迷,为了能得奖,他特意询问了前15天的中奖号码分别是:519、、706、328、556、768、215、435、741、624、307、821、696、741、471、285. 你认为这样的观点是否合理()a.不合理b.合理3.小靖想买双好的运动鞋,于是她上网查找有关资料,得到下表:她想买一双价格在300-600元之间,且她喜欢白色、红白相间、浅绿或淡黄色, 并且防水性能很好,那么她应选()a.甲b.乙c.丙d.丁4.为了计算植树节时本班同学所种植的30棵树苗的平均高度, 三位同学先将所有树苗的然后,他们分别这样计算这30棵树苗的平均高度:130130列式正确的是()a.(1)b.(1)和(2);c.(1)和(3)d.(2)和(3)5.某班在一次物理测试中的成绩为:100分7人,90分14人,80分17人,70分8人, 60分2人,50分2人.则该班此次测试的平均成绩为() a.82分b.62分c.64分d.75分二、填空题:(每题4分,共20分)6.一次知识竞赛中,36名参赛选手的得分情况为:5人得75分,8人得80分,6 人得85分,8人得90分,7人得95 分, 2 人得100 分, 要计算他们的平均得分, 可列算式:_____________.(1)7.某校九年级6个班级的学生的人数和平均体重如下表:要计算全校学生的平均体重,可列算式________,平均体重约为__________.8.某家庭搬进新居后,又添置了新的家用电器,为了了解用电量的大小, 该家庭在6月初连续几天观察电表的度数,如下表所示:9.为了解我国14岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60m; 从南方抽取了200个男孩,平均身高为1.50m;若北方14岁男孩数与南方14岁男孩数的比为3:2,由此可推断我国14岁男孩的平均身高约为______m.10.小明先用5千米/时的速度行驶3小时后,又用4千米/时的速度行驶5小时到达目的地,则小明的平均速度为________. 三、解答题:(每题9分,共54分)11.某同学对他在本学期的自我检测成绩进行了统计:95分的有12次,90 分的有10次,85分的有15次,80分的有3次,75分的有1次,65分的有3次.试计算该同学本学期自我检测的平均成绩..12.超市里要举行转盘摇奖活动,转盘如图所示,买满100元可摇奖一次,有人说:如果大家都摇到自行车,那么超市岂不是亏本了?如果你是超市决策者,会不会因此而改变有奖销售的方案呢?说说你的理由?自行车300元洗洁精2.80元酱油5.0元西红柿2.00元墨水3.50元13.请你根据上表比较这两个国家的数据,你能得出什么结论?14.由于水资源贫乏,节约用水非常重要,请你调查一下,本班每位学生所在家庭的月人均用水量,并据此制作频数分布图,同时估计一下当地家庭的月人均用水量.15.爸爸给小明一串钥匙,共有4把,小明决定先试试哪把是防盗门的钥匙. 请你用模拟实验方法估计一下,他第1次试开就成功的机会有多大?16.转动如图所示的转盘两次,每次指针都指向一个数字. 如果两次所指的数字之积是质数,游戏者a得10分;乘积不是质数,游戏者b得10分.你认为这个游戏公平吗?如果你认为这个游戏不公平,你愿意做游戏者a还是游戏者b?为什么?31246517.有人对记忆和遗忘的规律进行研究,人在记忆过某些知识后, 在不同时间段对其进行测试,结果如下表:分析测试结果,在图中绘制曲线图,并回答遗忘在数量上的变化规律.记忆效果1%记忆的保持曲线图答案:一、1.b 2.a 3.d 4.d 5.a148?50?49.8?46?50.2?55?49.5?48?51?52?50.3?547., 49.8kg50?46?55?48?52?54358.387.75 9.1.56 10.千米/时8三、144所以,美国的吸烟总人数和每天吸烟的总数都大于日本,但吸烟人口占总人口的比例小于日本.14.列出调查表,对本班学生实事求是地进行调查以获得真实的信息.15.可用4个相同的球,1个白的,3个黑的,每次抽1个,则第1次抽到白球的概率为所求概率,1为. 41516.不公平,愿做b 解:乘积是质数的概率是,乘积不是质数的概率是, 游戏不公平,故66愿做b.17.遗忘曲线表明了遗忘在数量上的变化规律,遗忘的数量随时间的前进而递增;这种递增先快后慢,在识记后的短时间内特别迅速,然后逐渐缓慢下来.二、6.记忆效果1%/d记忆的保持曲线图【篇二:定性数据分析第三章课后答案】9、对72个可疑患者用两种不同的方法进行检测,检测结果如下:问:检测方法1阳性和阴性的比例是否与检测方法2阳性和阴性的比例相同?解:(1)提出原假设根据题意,我们假设检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
统计学第3、4章知识点与习题(含答案)
第三章数据资料的统计描述:统计表和统计图第一节定性资料的统计描述知识点:1、统计分组就是根据统计研究的需要,将统计总体按照一定的标志区分为若干组成部分的一种统计方法。
2、定性数据的频数、频率、百分数、累计频数、累积频率的概念及计算。
3、定性数据频数分布表示方法主要有条形图、扇形图。
第二节定量数据的统计描述知识点:1、定量数据频数分布表的编制:(1)整理原始资料;(2)确定变量数列的形式;(3)编制组距式变量数列。
应注意的问题:确定组距,确定组限。
考查的区间式分组数据按“上组限不在组内”的原则确定。
2、定量数据的频数、频率、百分数、累积频数、累计频率的概念及计算。
3、定量数据频数分布表示方法主要有直方图、折线图和曲线图三种。
第三节探索性数据分析——茎叶图知识点:1、基本茎叶图的理解及编制第四节相关表与相关图知识点:1、相关表,反映定性变量与定量变量之间的相关关系。
2、散点图,反映两个定量变量之间的相关关系。
根据散点图判断两个变量的相关关系。
第四章数据资料的统计描述:数值计算第一节集中趋势知识点:关于单值式分组和区间式分组数据的1、平均数的计算,包括算术平均数,几何平均数,调和平均数2、众数的计算3、中位数、四分位数的计算4、(补充知识点)平均数、众数、中位数三者之间的关系5、百分位数的计算6、截尾均值的计算第二节离散测度知识点:1、极差的计算2、关于单值式分组和区间式分组数据的四分位数差的计算3、关于单值式分组和区间式分组数据的方差、标准差的计算4、变异系数的计算5、(补充知识点)偏度、峰度的含义及计算第三节协方差与相关系数知识点:1、样本协方差的含义及计算2、相关系数的含义及计算第四节相对位置测度与奇异点知识点:1、数据的标准化处理2、奇异点的诊断:利用契比雪夫定理和经验规则第五节探索性分析——5点描述与箱线图知识点:1、5点描述法的理解2、箱线图的理解与运用第三章习题:一、填空题1、在对数据资料进行统计描述时,______反映了各个组中每一项目出现的次数,______反映了各个组中项目发生的比例。
定性数据的统计分析
混合方法研究是一种将定量和定性研究相结合的方法,这种方法可以综
合利用定量和定性的优势,提高研究的全面性和准确性。
感谢您的观看
THANKS
新闻报道内容分析是对新闻
总
报道中的文本内容进行深入
结
分析和解读,以了解新闻事 件的发展趋势和影响。
词
对新闻报道进行分类、
数 据
筛选和整理,确保数据
收
质量。
集
将内容分析结果以图表、 数
报告等形式展示,为企
据 预
业或政府机构提供决策处Fra bibliotek支持。
理
从新闻网站、媒体平台
内 容
等途径收集相关新闻报
分
道。
析
利用文本挖掘技术对新闻报
指非数值型数据,如文字、符号、图片等
分类
按照数据的性质和用途,将定性数据分为类别、顺序、等级和符号等类型
02
定性数据收集方法
访谈法
总结词
通过与研究对象进行面对面的交流,深入了解其观点、态度和经历。
详细描述
访谈法是一种常用的定性数据收集方法,通过与研究对象进行面对面的交流,可以深入了解其观点、态度和经历。 访谈可以采用开放式或半开放式的问题形式,以便获取更具体的信息。访谈过程中应注意建立互信关系,并尊重 被访谈者的隐私和意愿。
03
定性数据分析方法
内容分析法
总结词
内容分析法是一种对文本内容进行客观、系统和定量描述的技术。
详细描述
内容分析法通过对文本内容进行编码、分类和统计,以揭示文本中隐含的意义、 趋势和模式。它广泛应用于新闻媒体、社交媒体、学术文献等领域,帮助研究者 深入了解文本信息的内涵和影响。
主题分析法
报告中的定性数据整理和分析技巧
报告中的定性数据整理和分析技巧1. 什么是定性数据?2. 定性数据整理的方法和技巧3. 定性数据分析的步骤和工具4. 如何编写报告并运用定性数据分析结果5. 定性数据的有效性和可靠性评估6. 定性数据整理和分析的一些注意事项1. 什么是定性数据?定性数据是指那些不能被量化、描述主观性较强的数据。
它通常是基于观察、访谈、问卷等方法获取的,例如人们对某个事物的感受、意见、偏好等。
定性数据对于理解社会、心理、文化等问题、获取深入的信息是非常重要的。
2. 定性数据整理的方法和技巧定性数据整理的方法和技巧包括:(1)数据整理和分类:将收集到的定性数据按照特定的主题或类别进行整理和分类,以便进行后续的分析。
(2)数据转录和文本化:将访谈、观察等非文字型的定性数据转化为文本,便于后续的整理和分析。
(3)数据编码和标注:对整理好的定性数据进行编码和标注,以便于后续的分析和比较。
(4)数据清洗和验证:对整理好的定性数据进行清洗和验证,确保数据的准确性和可靠性。
3. 定性数据分析的步骤和工具定性数据分析的步骤和工具包括:(1)数据预处理:对整理好的定性数据进行预处理,包括去除重复数据、删除无效数据等,以减少后续分析的误差。
(2)数据归纳和总结:对整理好的定性数据进行归纳和总结,提取其中的主要信息和特征。
(3)数据分析方法:使用适当的数据分析方法进行定性数据分析,如主题分析、内容分析、语境分析等。
(4)数据可视化:将定性数据分析的结果进行可视化,如使用图表、图像等形式展示数据的关系、趋势、差异等。
4. 如何编写报告并运用定性数据分析结果在编写报告时,应注意以下几点:(1)有效传达目的和结果:在报告中明确写出所研究的问题、目的和研究方法,并清晰地呈现定性数据分析的结果和结论。
(2)充分呈现定性数据:在报告中使用适当的引用、例证等方式充分呈现定性数据,以支持研究的结论和观点。
(3)精炼语言表达:使用简洁、准确的语言表达,避免冗长和模糊的叙述,使报告更具可读性和可理解性。
现代统计分析方法与应用课件 第三章 定性数据的 检验
2019/1/30
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
4
收集分类数据的目的是为了分析在各个类中数据 的分布。例如,我们为了估计消费者中喜欢三种 牙膏中每一种的比例,则统计购买这三种品牌牙 膏的顾客购买每一种的人数。在这里仅仅是根据 牙膏的种类来分类,我们称之为一维分类或一向 分类。而顾客的投资倾向与职业的关系中,分类 是按投资倾向和职业两个方向进行分类,我们称 之为二向分类或列联表。在本节,我们先分析一 向分类。下面通过例子来介绍一向分类数据的分 析。
2019/1/30
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
6
多项分布是二项分布的推广,可以看成是多项试 验得到的分布。多项试验有如下一些性质: 1.多项试验由n个相同的试验所组成。 2.每个试验的结果落在k组的某一组中。
4.试验是独立的。
2019/1/30
中国人民大学六西格玛质量管理研究中心
第 3章
2 定性数据的 检验
2 §3.1 多项分布与 检验
§3.2 列联表分析 §3.3 一致性检验 §3.4 拟合优度检验
2019/1/30
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
1
第 3章
2 定性数据的 检验
• 随着市场经济在中国的深入发展,信息调 查产业日益火暴。在市场调查及社会、经 济和管理等领域的热点问题研究中,经常 会碰到不可计量的定性指标变量。如顾客 对某种商品的包装喜好、观众对电视节目 的喜好、产品的合格与不合格等,这些变 量因受多方面影响而呈现出多样性。
中国人民大学六西格玛质量管理研究中心
目录 上页 下页 返回 结束
定性数据统计分析课后练习题含答案
定性数据统计分析课后练习题含答案1. 问题描述一项研究调查了 100 名学生的职业意向,结果发现54人有医生的职业意向,23人希望成为工程师,11人希望成为演员,5人有投行的意向,7人希望成为教师。
请使用适当的统计方法回答以下问题。
2. 题目1.在这100个学生中,有多少人有IT行业的职业意向?2.有多少比例的学生有医生的职业意向?3.有多少比例的学生没有教师和医生的职业意向?4.哪个职业的意向最高?3. 答案1.IT行业的职业意向人数是5人。
解析:根据题目给出的数据,5人有投行的意向,而我们知道投行常常被归类为金融或者IT行业,所以可以推断出这5人中肯定包含有IT行业的职业意向。
2.有医生职业意向的学生比例是 $\\frac{54}{100} = 0.54$。
解析:根据题目给出的数据,有医生职业意向的学生人数为 54,而总样本数为100,所以比例为54/100=0.54。
3.没有教师和医生职业意向的学生比例是 $\\frac{23+11+5}{100} =0.39$,即 $39\\%$。
解析:根据题目给出的数据,有医生职业意向的有54人,有工程师职业意向的有23人,有演员职业意向的有11人,一共这三类职业意向的学生人数为54+23+11=88,而总样本数为100,所以没有这三类职业意向的学生人数为100−88=12,所以比例为12/100=0.12,即 $12\\%$,所以没有教师和医生职业意向的学生比例为1−0.54−0.12=0.34,即$34\\%$。
4.医生职业意向的比例最高,为 $54\\%$。
解析:根据题目给出的数据,有医生职业意向的学生人数为 54,有工程师职业意向的学生人数为 23,有演员职业意向的学生人数为 11,有投行的意向的学生人数为 5,有教师职业意向的学生人数为 7。
因此,医生职业意向的人数最多,比例为 $54\\%$。
定性数据的分析——卡方检验
2 ) 理论频数计算公式
TRC
nR nC n
T频RC数表;示列联表中第R行第C列交叉格子的理论
nR表示该格子所在的第R行的合计数; nC表示该格子所在的第C列的合计数; n表示总例数。
例10-1 用磁场疗法治疗腰部扭挫伤患者 708人,其中有效673例。用同样疗法治 疗腰肌劳损患者347人,有效312例。观 察结果如表10-6所示。
χ2检验连续性校正公式为
2 ( A T 0.5)2 T
四格表χ2检验连续性校正公式*
2 ( ad bc 0.5n)2 n
(a b)(c d)(a c)(b d )
例10-4 某医生用复合氨基酸胶囊治疗肝硬 化病人,观察其对改善某实验室指标的 效果,见表10-7。
分组 B1
B2
合计
A1
a
b
a+b
A2
c
d
c+d
合计 a+c
b+d
a+b+c+d
案例1 治疗肺炎新药临床试验 用某新药治疗肺 炎病,并选取另一常规药作为对照药,治疗结果 如下:采用新药治100例,有效 60例;采用对照 药治40例,有效 30例。
试问:1) 列表描述临床试验结果;
2)两种药物疗效有无差别?
相应地此时率的标准误估计值按下式计算:
S p ˆ p
p(1 p) n
(10 2)
• 式中,Sp为率的标准误的估计值;p为样本率。
二、率的区间估计
总体率的点估计是计算样本的率,很简单, 但计算得到的样本率不等于总体率,它们 间存在差异。因此,我们还需要知道总体 率大概会在一个什么样的区间范围,即所 谓总体率的可信区间估计。
报告中的定性数据的分析和解释要点
报告中的定性数据的分析和解释要点一、定性数据的概念和类型1.1 定义与解释1.2 定性数据的分类及特点二、确定分析的目的和范围2.1 分析目的的明确化2.2 分析范围的设定三、数据的收集与整理3.1 数据收集方法的选择3.2 数据整理的步骤和方法四、定性数据的主题归纳和编码4.1 定性数据的主题归纳方法4.2 定性数据的编码方法五、定性数据的分析方法5.1 文本分析方法5.2 内容分析方法5.3 按类别分析方法5.4 模式识别方法六、定性数据的解释和呈现6.1 定性数据的解释过程6.2 定性数据的呈现方式6.3 定性数据的合理解释一、定性数据的概念和类型1.1 定义与解释定性数据是指以文字、图片、录音等非数值形式来表达的数据信息。
相对于定量数据而言,定性数据更加灵活多变,能够捕捉到更多的细节和情感。
定性数据具有一定的主观性,需要通过分析和解释来获得有意义的结论。
1.2 定性数据的分类及特点根据数据来源和表达方式,定性数据可以分为主观描述性数据和客观描绘性数据。
主观描述性数据主要包括个人观点、情感态度等,反映了被调查者的主观感受;客观描绘性数据主要包括观察记录、图片等客观存在的事实,反映了被调查对象的客观存在状态。
定性数据的特点是非数值化表达,具有较高的主观性和复杂性。
二、确定分析的目的和范围2.1 分析目的的明确化在进行定性数据的分析和解释之前,需要明确研究或报告的目的。
是为了了解被调查者的观点和意见,还是为了发现某一特定主题下的问题等。
不同的分析目的会对后续的分析方法和解释方式产生影响。
2.2 分析范围的设定根据分析目的,确定分析的范围是十分重要的。
范围的设定要充分考虑数据的规模和质量,同时也要考虑到分析的可行性和可靠性。
确定范围可以有助于提高分析的效率和准确性。
三、数据的收集与整理3.1 数据收集方法的选择定性数据的收集方法有访谈、观察、问卷等多种形式。
在选择数据收集方法时,要根据研究的目的和范围来确定合适的方法。
统计学第三版课后答案
统计学第三版课后答案第一章1.什么是统计学?统计学是一门研究如何收集、分析和解释数据的学科。
它涉及到收集数据的方法、数据的描述和分析、以及通过数据来进行推断和预测。
2.数据可以分为哪两种类型?数据可以分为定量数据和定性数据。
定量数据是可以用数字表示的,例如身高、体重等;定性数据是描述性的,例如颜色、性别等。
3.描述性统计与推论统计有什么区别?描述性统计是对收集到的数据进行总结、整理和展示的过程,主要通过统计指标如平均数、中位数等来描述数据的特征。
推论统计则是通过对样本数据进行推断,从而对整个总体进行推断和预测。
4.什么是样本?样本是从总体中选取出来的一部分个体。
通过对样本进行统计分析,我们可以对整个总体进行推断和预测。
5.什么是抽样误差?抽样误差是指由于样本选择的随机性所导致的样本统计量与总体参数之间的差异。
第二章1.总体和样本的区别是什么?总体是指研究对象的全体个体,而样本是从总体中选取出来的一部分个体。
2.简单随机抽样和分层抽样的区别是什么?简单随机抽样是指每个个体被抽中的概率相等且相互独立的抽样方法,适用于总体中各个个体之间没有明显分层的情况。
而分层抽样是将总体分为若干层次,然后从每个层次中分别抽取样本,适用于总体中各个层次之间存在明显差异的情况。
3.什么是系统抽样?系统抽样是指根据某种规则,从总体中以一定间隔选取样本的抽样方法。
例如,每隔k个个体选取一个个体作为样本。
4.方便抽样和判断抽样的特点是什么?方便抽样是指通过方便快捷的方法选取样本,例如通过问卷调查、网络调研等。
方便抽样的特点是样本选择的随机性不足,很容易导致样本与总体之间存在偏差。
判断抽样则是基于研究者的判断来选取样本,因此也可能存在主观性和偏见。
5.什么是多阶段抽样?多阶段抽样是指将总体分为若干个阶段,先从每个阶段中按一定方法抽取较小的样本,然后再从这些小样本中抽取最终的样本。
第三章1.什么是频率?频率是指某个数值或范围在样本或总体中出现的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章课后习题作业
9、对72个可疑患者用两种不同的方法进行检测,检测结果如下:
问:检测方法1阳性和阴性的比例是否与检测方法2阳性和阴性的比例相同? 解:
(1)提出原假设
根据题意,我们假设检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
即:
原假设:011:,H p p ++= 备选假设:011:H p p ++≠
(2)选择检验统计量
如果边缘齐性检验问题的原假设成立时,因为121122211221,p p p p p --==,可见参数个数为2,并且似然函数为
2221121122211211)21()()()()()(),(121112112212111211n n n n n n n n p p p p p p p p p L --==++
所以11p 、12p 和2112p p =极大似然估计分别为n n p
1111ˆ=、n n p 2222ˆ=和n n n p p
2)(ˆˆ21122112+==。
从而得到边缘齐性检验问题的2χ检验统计量和似然比检验统计量)ln(2Λ-,它们分别为:
2
χ检验统计量:211222112212
1
22
)(ˆ)ˆ(n n n n p n p n n i j ij ij ij +-=-=∑∑==χ
似然比检验统计量:
⎪⎪⎭⎫
⎝⎛+++-=⎪⎪⎭
⎫
⎝⎛-=Λ-∑∑==21211221122112122
1212ln 2ln 2ˆln 2)ln(2n n n n n n n n n p n n i j ij
ij
ij
它们都有渐近2χ分布,其自由度都是4-2-1=1。
(3)计算检验统计量和p 值,并作出决策
则McNemar 2χ检验统计量和似然检验统计量)ln(2Λ-的值分别为:
39
18)918(2
2
=+-=
χ 05818.392918ln 9182918ln 182)ln(2=⎪⎭⎫ ⎝
⎛
⋅++⋅+-=Λ-
我们在Excel 中分别输入“)1,3(chidist =”和“)1,05818.3(chidist =”,可得到2χ检验统计量和似然检验统计量)ln(2Λ-的p 值分别为:
083264517.0)3)1((2=≥=χP p 080331601.0)05818.3)1((2=≥=χP p
由于p 值都不小,我们不能拒绝原假设,从而认为检测方法1阳性和阴性的比例与检测方法2阳性和阴性的比例是相同。
13、某肿瘤学专家在11年里对4万多个中年人的生活方式进行了观察。
发现在喜爱腌制食品的男性中,每500人中就有1人患胃癌。
这是很少吃腌制食品男性的两倍。
令A 表示患胃癌,B 表示喜爱腌制食品。
B 作为A 的风险因素,试求其相对危险度和优比。
解:由题意知,A 表示患胃癌,B 表示喜爱腌制食品,则相应的概率四格表为:
(1)相关概念
①相对危险度是指有风险因素的危险程度与无风险的危险程度之比,在本题则是指喜爱腌制食品的男性中患胃癌的概率与很少吃腌制食品男性中患胃癌的概率之比;
②优比是指两个优势的比,本题中优比是指在喜爱腌制食品的男性中患胃癌与不患胃癌的概率比比上很少吃腌制食品男性中患胃癌与不患胃癌的概率所得的结果。
(2)根据题意列出相应关系式 ①用C 表示相对危险度,则有
)|()|(B A P B A P C =
②用θ表示优比,则有
)
|()|()
|()|(B A P B A P B A P B A P =
θ
(3)计算结果
由题喜爱腌制食品的男性中,每500人中就有1人患胃癌,他是很少吃腌制食品男性的两倍,我们可以知道
001
.021
5001)|(002.0500
1
)|(=⨯===
B A P B A P
①则相对危险度为
2001.0002.0)|()|(===B A P B A P C
②由四格表知
2
12111)|()|(++==p p B A P p p B A P
且有2221212111,++=+=+p p p p p p 所以优比为
002004008
.2001.0999
.0998.0002.0001
.01001.0002.01002
.011)()()|()|()|()|(2
122121
1111121222121111111222212
121
111
=⨯=--=--=--===++++++++++++++θθp p p p p p p p p p p p p p p p p p p p p p p p p p B A P B A P B A P B A P
由此可知优比与相对危险度相差很小。