一元微积分期末复习题目

合集下载

微积分复习题集带参考答案(二)

微积分复习题集带参考答案(二)

微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

清华大学一元微积分

清华大学一元微积分

x→+∞
x→+∞
∃M > 0 ,使得 x ≥ M 之后 f (x) ≥ a / 2 ,从而 ∀K > M
∫ ∫ +∞ |
f
(x) | dx

K
|
f
(x) | dx

a
(K

M)
2
0
M
+∞
∫ 而 K > M 的任意性与 f (x)dx 绝对收敛矛盾。这说明只有 lim f (x) = 0 。 x→+∞ 0
+∞
∫ 证明:由已知 f ′(x)dx 绝对收敛,从而收敛,所以
0
A
+∞
∫ ∫ lim f (A) = f (0) + lim f '(x)dx = f (0) + f '(x)dx 存在。
A→+∞
A→+∞
0
0
如果 lim f (x) ≠ 0 ,不妨令 lim f (x) = a > 0 ,则由极限保序性
0
0 ⎝2⎠
2.计算上半心形线:
⎧x
⎨ ⎩ ) cosθ = a(1 + cosθ ) sinθ
,0
≤θ

π
,绕
x
轴旋转一周所得到的旋转体的体积V

解: dx = −a[(1 + cosθ )sinθ + cosθ sinθ ]dθ
π
π
∫ ∫ 所以 V =| πy 2 (θ )dx(θ ) |= πa3 | (1 + cosθ )2 sin 2 θ (1 + 2 cosθ )d (cosθ ) |

高数(一元函数微积分)试卷含答案

高数(一元函数微积分)试卷含答案

《高等数学》(一元微积分)考试试卷试卷类型:闭卷 考试时间:120分钟 试卷总分:100分 一、填空题:(共5小题,每小题2分,共10分) 1. 函数5()(3)(4)(5)x f x x x x -=---无穷型间断点是 34x x ==, ;2. 曲线()2132x f x x x -=-+的水平渐近线有 0y = ;3. 定积分141(sin +)d x x x x -=⎰23;4. 设方程23210x xy y -+-=确定函数()y y x =,则d d x yx-=32; 5.不定积分(x x x =⎰ 5321235x x C ++ .二、单项选择题: (共5小题,每小题2分,共10分) 1.若函数2sin x 是()f x 的一个原函数,则()f x =(C ). (A) 2sin x C + (B) 22sin x x (C) 22cos x x (D) 2sin x 2. 函数()3f x x=在[0,3]上满足拉格朗日中值定理中的ξ=(C ). (A)(D) 以上都不对 3.设)(x f 在[]b a ,上连续,且t x 与无关,则( B ) (A )()d ()d bbaatf x t t f x t =⎰⎰ (B )()d ()d bbaatf x x t f x x =⎰⎰(C )()d ()d b b aatf x x f x t x =⎰⎰ (D) ()d ()d b baaf tx x t f x x =⎰⎰4. 下列广义积分收敛的个数是( B ). (1)211d x x +∞⎰;(2)31d ln x x x +∞⎰;(3)1211d x x -⎰;(4)10x ⎰ (A) 1 (B) 2 (C) 3 (D) 4 5.曲线21e x y += 在(,0)-∞内是( A ).(A )凹曲线 (B )凸曲线 (C )增加曲线 (D )有界曲线.三、判断题:(正确的填对,错误的填错):(共5小题,每小题2分,共10分) 1.一切初等函数在其定义域内连续( 错 );2.区间上连续函数一定存在最大值与最小值( 错 );3.闭区间上连续函数一定可积( 对 );4.函数()f x 在点0x 连续是在点0x 可导的必要条件(对 );5. 若()f x 连续,则21()d ()d 2a axf x x f u u =⎰⎰( 错 ).四、计算下列各题:(共7小题,每小题5分,共35分) 1.求极限 3lim()3xx x x →∞+-, 解 36663366lim()=lim(1+)=lim(1+)333x xx x x x x x x e x x x --→∞→∞→∞+=---.2. 求极限2030lim(cos 1)t t xt t-→+⎰.解: 原式2301lim 2tt x t -→==⎰200112sin()1lim 2233t t t t t --→→-==-. .3.设20,()1x x f x e ax bx →=---是2x 的高阶无穷小,求,a b .解 由220012lim0,lim 012x x x x e ax bx e ax b b x x→→-----==⇒=, 021lim 022x x e a a →-=⇒=.4.已知1ln1xy x-=+,求d y ; 解 221(1)(1)21(1)11x x y x x x x-+---'==-+-+,22d =d 1y x x--.5. 设sin 1cos .x t t y t =-⎧⎨=-⎩,求d d y x 与22d d yx .解d sin =d 1cos y tx t-, 222d sin 11=1cos 1cos d (1cos )y t t t x t -'=---().6. 求不定积分sin cos d sin cos x xx x x-+⎰.解 原式22(sin cos )11d d(sin cos )(sin cos )(sin cos )sin cos x x x x x C x x x x x x'+=-=-+=++++⎰⎰ . 7. 求定积分120e d x x x -⎰.解 12201e d =13e )4x x x ---⎰(五、解答下列各题(共3小题,每小题10分,共30分).1.试问a 为何值时,函数3()2023f x x ax =++在1x =处取得极值?它是极大值还是极小值?并求此极值.解 因为2()3f x x a '=+.函数()f x 在1x =处取得极值,则(1)0f '=,得3a =-.由()6f x x ''=,得(1)60f ''=>,故函数3()2023f x x ax =++在1x =处取得极小值,此极小值为2021.2. 设函数1sin ,0,()0,0.x x f x xx ⎧≠⎪=⎨⎪=⎩(2)220,()2sin cos ()2sin cos x f x x x x x x x x x'≠=+⋅-=-.3.设抛物线2(0),y x x =≥与直线1,0y x ==所围图形为D , (1)求D 的面积;(2)求图形D 绕x 轴旋转一周所得旋转体的体积.六、证明题(共1小题,5分,) .证明方程5310x x -+=在0,1()内至少有一个实根.证明 令5()=31f x x x -+,由于()f x 在[0,1]上连续,且(0)=10,(1)10f >=-<,则零点存在定理。

(整理)一元微积分数学函数题库有答案

(整理)一元微积分数学函数题库有答案

一元微积分学数学(1) 函数一、 填空题: 1. 函数 y=arcsin 92-x定义域是:310103-≤≤-⋃≤≤x x2.设y=f (x)的定义域是[0,1],则复合函数f (sinx)的定义域是:z k k x k ∉+≤≤,22πππ.3.函数33+=x y 的值域是 0≤y ≤+∝ . 4.函数)1,0(11≠>+-=a a ax ax y 的反函数是:axa xy +-=1. 5.函数12+-=x y 在区间 ]0,(-∞ 内是单调增加的.在区间)0[∞+,内是单调减少.6.设21)1(x x xf ++=,(x>o ),则)(x f =x x 211++.7.设1)(-=x x x f ,则))(((x f f f =1-x x, ))((x f f = x . 8.函数⎪⎩⎪⎨⎧+∞<<≤≤<<-∞=x x x x x y x 4,241,1,2的反函数y=⎪⎩⎪⎨⎧+∞<≤≤≤<<-∞.16,log ,161,,1,2x x x x x x.二.选择题:1. 在同一直角坐标系中,函数 与它的反函数说代表的曲线具有的性质是(D )(A) 关于y 轴对称; (B) 关于x 轴对称; (C)重合; (D) 关于直线y=x 对称. 2.下列几对函数中,)(x f 与)(x g 相同的是(C ).(A )2lg )(x x f =与x x g lg 2)(= (B )x x f =)(与2)(x x g = (C )2)(x x g =与2)(x x g = (D )1)(=x f 与xxx g =)( 3.已知的定义域为则的定义域是(C ) (A )[-a,3a] (B) [a,3a] (C) {a} (D) {-a} 4.如果1)(-=x xx g ,那么))(1(x f f 的表达式是(B )(A) x-1 (B)1-x (C)xx 1- (D) 都不是 三.设函数)(x f y =是线性函数,已知,3)1(,1)0(-==f f 求此函数. 解:设f(x)=ax+b,则有0+b=1, a+b=-3,解得a= -4,b=1.四.证明函数1)(2+=x xx f 在它的整个定义域内是有界.证明:f(x)的定义域为R.xx x x1112+=+因为2111,21≤+≥+xx xx 所以所以: 函数1)(2+=x xx f 在它的整个定义域内是有界 五.试讨论函数21121)(+-=x x f 的奇偶性.解:21121)(+-=x x f21121)(+-=--x x f211211+-=x 212211+-=xx 21212+-=x x 2121211+-+-=xx 212111+-+-=x21211--=x )(x f -= 所以 21121)(+-=xx f 偶函数. 一元微积分学题库(2) 数列的极限一.判断题:1.如果数列{n u }以A 为极限,那么在数列{n u }增加或去掉有限项之后,说形成的新数列{n u }仍以阿A 为极限. ( T )2.如果0lim =∞→n n n v u ,则有0lim =∞→n n u 或0lim =∞→n n v ( F )3.如果a a n n =∞→lim ,且存在自然数N ,当n>N 时恒有n a <0,则必有a<0. ( F )4.如果n n a ∞→lim ,n n b ∞→lim 均不存在,则有)(lim n n n b a +∞→必不存在. ( F )一元微积分学题库(3) 函数的极限,无穷大,无穷小一. 选择题:下列题中其条件对其结论来说是(A)充分但非必要条件; (B)必要但非充分条件; (C)充分必要条件: (D)既非充分又非必要条件; 1.条件a a n n =∞→lim ,b b n n =∞→lim .结论b a b a n n n +=+∞→)(lim (A )2.条件)(lim 0x f a n -→和)(lim 0x f a n +→都存在.结论)(lim x f an →存在 (B )3.条件)(lim x f an →和)(lim x g an →都存在.结论 )]()([lim x g x f an +→存在. (A )4.条件f(x)在a 的某个邻域内单调有界.结论)(lim x f an →存在. (D )三.求0)(,)(→==x xx x g x xx f ,当时的左右极限,并说明它们在x →0时的极限是否存在? 解:xxx f =)(=1,所以1)(lim 0=→x f x .⎩⎨⎧><-==.0,1,0,1)(x x x xx g 所以 1)(lim 00-=-→x g x , 1)(lim 00=+→x g x显然≠-→)(lim 00x g x )(lim 00x g x +→,故)(lim 0x g x →不存在.五.证明:函数 xx y 1cos 1=在区间(0,1]上无界,但当x →+0时,这函数不是无穷大.证明:1. 取+∞→∈=k N k k x 当),(21π时,x x y 1cos 1==+∞=πk 2 所以 x x y 1cos 1=在区间(0,1]上无界.2.取0),(21+→+∞→∈+=x k N k k x 时,当ππ,x x y 1cos 1==021⋅+ππk =0即在0的任何邻域都不可能有M xx y >=1cos 1(M>0)成立. 所以当x →+0时,这函数不是无穷大.一元微积分学题库(4) 极限的求法一. 判断题:下列运算是否正确:0)(lim .12=∞-∞=--∞→x x x n (F).1)53(lim )32(lim5332lim .24343=∞∞=++=++∞→∞→∞→x x x x x x x (F) 0lim 2lim 1lim )21(lim .3222222=+⋅⋅⋅++=+⋅⋅⋅++∞→∞→∞→∞→nnn n n n n n n n n n (F )二.计算下列极限:1.x x xx x x 2324lim 2230++-→ 解:xx x x x x 2324lim 2230++-→ =23124lim 20++-→x x x x =21 2.)2141211(lim n n +⋅⋅⋅+++∞→解:)2141211(lim n n +⋅⋅⋅+++∞→=211)21(1lim--∞→nn =23.)1111(lim 31xx x ---→ 解:设31111)(x x x f ---=,则311111)(1x x x f ---=因为2313111lim 11111lim )(1lim x x x x x x f x x x +-=---=→→→=0,所以∞=→)(lim 1x f x即:∞=---→)1111(lim 31xx x 从而时,当,10,1lim .40-∞→-→→xx x arctg x 从而时,当,10,21lim 0+∞→+→-=-→x x x arctgx π)(.1lim ,21lim 00T xarctg x arctgx x 不存在所以→+→=π4.x x x 11lim-+→ 解:xx x 11lim-+→ =)11()11()11(lim++⋅++⋅-+→x x x x x=)11(lim++⋅→x x x x=111lim++→x x=21 5.xarctgxx ∞→lim解:因为 22ππ<<-arctgx 所以arctgx 为有界函数.而 xx 1lim∞→=0, 由有界函数与无穷小的乘积是无穷小知.x arctgx x ∞→lim =0 6.)(lim x x x x x -+++∞→解:)(lim x x x x x -+++∞→=xx x x x x x x x x x x x ++++++⋅-+++∞→)()(lim=xx x x x x x x x +++-+++∞→)(lim=xx x x x x x +++++∞→lim=xxx 111111lim+++++∞→=21 7.)1()1)(1(lim 2n n x x x +⋅⋅⋅++∞→解:)1()1)(1(lim 2n n x x x +⋅⋅⋅++∞→=x x x x x n n -+⋅⋅⋅++-∞→1)1()1)(1)(1(lim 2 =xx n n --∞→11lim 2 =x-11 三.已知a x f x a x x x x f x 存在,求且)(lim ,3,3,3)(3→⎩⎨⎧<+≥-= 解:)(lim 03x f x +→=3lim3-+→x x =0,)(lim 03x f x -→=)(lim 03a x x +-→=3+a,)(lim 3x f x →存在,即:)(lim 03x f x +→=a x f x +==-→3)(lim 003所以. 3-=a .一元微积分学题库(5)极限存在准则 两个重要极限 无穷小的比较一、 判断题: 1. 因为0→x 时,tgx~x,sinx~x,所以 0lim sin lim 330=-=-→→xxx xtgx x x x (F ) 2. 222)21(lim )2(lim e xx x xx x x =+=+∙∞→∞→ (T) 3.1sin lim )sin (lim sin lim=⋅=⋅=→→→xxx tgx x x x tgx x tgx x x x πππ (F)二、计算下列极限1. xxx 5sin 2sin lim 0→解:x x x 5sin 2sin lim 0→=)525sin 522sin (lim 0⋅⋅→x x x x x =⋅→x x x 22sin lim 0⋅→x x x 5sin 5lim 052=522. xctgx x 0lim →解:xctgx x 0lim →=)cos sin (lim 0x x x x ⋅→=)sin (cos lim 0x x x x ⋅→=⋅→x x cos lim 0xxx sin lim0→=1 3. xx xx sin 2cos 1lim0-→解:x x x x sin 2cos 1lim 0-→=x x x x sin sin 2lim 20⋅→=x x x sin 2lim 0→=xx x sin lim 20→⋅=24. xx x 1sin lim ∞→解:x x x 1sin lim ∞→=x x x 11sinlim∞→=xx x11sinlim 01→=1.5. kx x x)11(lim -∞→解:kx x x )11(lim -∞→=)()()11(lim k x x x -∙-∞→--+=k x x x --∞→--+])11[(lim =ke -6. xx x x )11(lim -+∞→解:x x x x )11(lim -+∞→=x x x x ]12)1([lim -+-∞→=xx x )121(lim -+∞→=1221)2111(lim +∙-∞→-+x x x=)]2111()2111[(lim 221-+⋅-+∙-∞→x x x x =2e . 二、 证明:当x →0时,下列各对无穷小量是等价的 1.x arctgx ~证明:设A=arctgx,则 x=tgA, 当0→x 时,0→A . xarctgxx 0lim→=tgA A A 0lim →=1 2.1-cosx ~ 22x证明:2cos 1lim 20x x x -→=2)2sin(2lim 220x x x ⋅→=2202)2(2)2sin(2lim x x x ⋅⋅→=222)2()2sin(lim x x x →=1. 四、证明:0)2124321(lim =-⋅⋅⋅⋅∞→nn n 用两边夹法则:(解法一)设F(n)= nn 2124321-⋅⋅⋅⋅>0则2)2124321()(nn n F -⋅⋅⋅= 22222)2()12(4321n n -⋅⋅⋅⋅=1)2()12(14312122222--⋅⋅⋅-⋅-<n n )12()12()12(75353122+⋅--⋅⋅⋅⋅⋅⋅=n n n121+=n 设 g(n)=0, h(n)= 121+n , 则g(n)=0 < F(n) < h(n).显然0)(lim =∞→n g n ,0)(lim =∞→n h n ;由极限存在准则I 知:0)(lim =∞→n F n .证毕.(解法二):设F(n)= nn 2124321-⋅⋅⋅⋅>0因为 n n n n 112-<--(n 为自然数), 所以有F(n)< 12254322124321+⋅⋅⋅⋅⋅-⋅⋅⋅⋅n n n n=n21 设 g(n)=0, h(n)= 121+n , 则g(n)=0 < F(n) < h(n).显然0)(lim =∞→n g n ,0)(lim =∞→n h n ;由极限存在准则I 知:0)(lim =∞→n F n .证毕.另解:设F(n)= nn 2124321-⋅⋅⋅⋅( 0<F(n)<1 ),则F(n+1)= 122)(+⋅n nn F ,有F(n+1)<F(n).所以F(n)为单调有界数列,由极限存在准则II 知F(n)有极限.设A n F n =∞→)(lim .则有)1(lim +∞→n F n =))(1(lim n F n nn ⋅+∞→ )1(lim +∞→n F n =1+n n)(lim n F n ∞→⋅A=1+n nA , A=0. 即0)(lim =∞→n F n .证毕.五、设2112,,2,1,10n n n x x x n x -=⋅⋅⋅=<<+,证明数列}{n x 的极限存在,并求其极限.证明: 212n n n x x x -=+ 2211n n x x -+-= 2)1(1n x --= ]))1(1(1[1221-----=n x 221)1(1---=n x 322)1(1---=n x = (1)21)1(1---=k x因为 ,101<<x 所以 ,10<<n x 因为 212n n n x x x -=+所以)1(1n n n n x x x x -=-+>0 即: n n x x >+1所以}{n x 为单调有界数列,由极限存在准则II 知}{n x 有极限. A x n n =∞→lim , 则有 )2(lim lim 21n n n n n x x x -=∞→+∞→,A=2A--2A ,解得:A=1 或A=0(舍去,因为}{n x 为递增数列且01>x .) 所以 1lim =∞→n n x一元微积分学题库(6) 函数的连续性一. 判断题1.21))12)(12(1...5*313*11(lim =+-+++∞→n n n ( T ) 2.设)(x f 在0x 点连续,则 )lim ()(lim 0x f x f x x x x →→=( T )3.如果函数)(x f 在],[b a 上有定义,在],[b a 上连续,且<)(*)(b f a f 0,则在),(b a 内至少存在一点ξ,使得)(ξf = 0 ( T )4.若)(x f 连续,则)(x f 必连续. ( T ) 5.若函数)(x f 在],[b a 上连续且恒为正,则)(1x f 在],[b a 上必连续. ( T )6.若a x f x x =→)(lim 0,且0>a ,则在0x 的某一邻域内恒有0)(>x f . ( F )7.0=x 是函数xx x f 1sin )(=的振荡间断点.( F )二. 填空题:1.-→ππx xx sin lim (1-)2. =∞→xx x sin lim ( 0 ) 3. =+--+-→123lim 2312x x x x x x ( ∞ ) 4. 0=x 是xe xf 1)(=的第(二)类间断点.三. 求xx x x sin 10sin 1tan 1lim ⎪⎭⎫⎝⎛++→解:xx x x sin 10sin 1tan 1lim ⎪⎭⎫ ⎝⎛++→=()()1sin 1tan 1lim sin 1sec cot 0==++→ee x x xxx x 四. 求函数4tan()1()(π-+=x xx x f 在)2,0(π内的间断点,并判断其类型.解:)(x f 在()π2,0内的间断点有:4π=x ,43π=x ,45π=x ,47π=x因为 ),(lim 4x f x π→)(lim 45x f x π→不存在,,1)(lim 43=→x f x π1)(lim 47=→x f x π 所以43π=x ,47π=x 是)(x f 的第一类(可去)间断点; 4π=x ,45π=x 是)(x f 的第二类间断点.五. 设1lim )(2212+++=-∞→n n n x bxax x x f ,(1)求)(x f ;(2)当)(x f 连续时,求b a ,的值.解:(1) n n n n xx bx ax x f 2122231lim )(---∞→+++=∴ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<+-=-+-=++>=112112111)(2x bx ax x b a x b a x x x f(2) )(x f 连续21)1(11lim )(lim 0101ba f x x f x x ++====+→+→1=+⇒b a21)1(11lim )(lim)01()01(ba f x x f x x -+-====--→--→ 1-=-⇒b a ∴⎩⎨⎧==10b a .一元微积分学题库(7) 连续函数的性质一.计算下列极限: 1.2321lim4--+→x x x 解:原式= )321)(4()2)(921(lim4++-+-+→x x x x x =321)2(2lim4+++→x x x =342.22011lim xx x +-→ 解:原式=2220)11(lim x x x x ++→=)11(lim 20x x ++→=2 3.x x x sin lnlim 0→ 解:原式=)sin lim ln(0xxx →=01ln =4.ctgx x tgx )31(lim 0+→解:原式=tgxx tgx 33)31(lim +→=331])31(lim [tgx x tgx +→=3e5.145lim1---→x xx x解:原式=)45)(1()1(4lim1x x x x x +---→=xx x +-→454lim1=26.xe x x 1lim 0-→解:令t e x =-1,得)1ln(+=t x ,当0,0→→t x 时原式=)1ln(limt tt +→=tt t 10)1ln(1lim+→=])1(lim ln[110tt t +→=1ln 1=e二.证明方程b x a x +=sin 至少有一个不超过b a +的正根(其中0,0>>b a ). 证明:设x b x a x f -+=sin )(,则)(x f 在],0[b a +上连续. 又0)0(>=b f ,0]1)[sin()(≤-+=+b a a b a f . 若0)(=+b a f ,则结论成立.若0)(<+b a f ,则由零点定理0)(),0(=+∈∃ξξf b a 使得.三.设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得 ξξ=)(f .证明:设x x f x F -=)()(,则)(x F 在]1,0[上连续. 又0)0(0)0()0(≥=-=f f F ,01)1()1(≤-=f F 若0)1(0)0(==F F 或,则结论成立.若0)1(0)0(<>F F 或,则由零点定理0)()1,0(=∈∃ξξf 使得. 四.设)(x f 在),(b a 上连续,且B x f x f bx ax ==-+→→)(lim )(lim 00,又存在),(1b a x ∈使 B x f >)(1.证明)(x f 在),(b a 上有最大值. 证明:取),(1B x f -=ε1δ∃, 当10δ<-<a x 时, B x f B x f -<-)()(1. 即 当),(1δ+∈a a x 时,)()(1x f x f <.2δ∃, 当02<-<-b x δ时, B x f B x f -<-)()(1. 即 当),(2b b x δ-∈时,)()(1x f x f <. 若21δδ->+b a ,)(1x f 为最大值),(1b a x ∈.若21δδ-≤+b a ,)(x f 在],[21δδ-+b a 上连续,必有最大值.)()(10x f x f ≥, ],[210δδ-+∈b a x .∴在),(b a 上)(x f 取得最大值)(0x f .一元微积分学题库(8) 导数的概念一. 选择题:1. 设f ′ (x)存在,a 为常数,则h a h x f a h x f h )()(lim0--+→等于(C ). (A) f ′(x) ; (B) 0 ; (C) )('2x f a ; (D) )('2x f .2. 在抛物线23x y =上,与抛物线上横坐标11=x 和22-=x 的两点连线平行的切线方程 是(B ).(A) 12x-4y+3=0; (B)12x+4y+3=0; (C) 4x+12x+3=0; (D)12x+4y+1=0.3. 将一个物体铅直上抛,设经过时间t 秒后,物体上升的高度为22140gt t s -=,则物体在3秒时的瞬时速度为(B ).(A) g 2340-; (B) 40-3g ; (C) 0 ; (D) g 29120-.4. 若函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f 在x=0处 (B). (A) 连续且可导; (B )连续,不可导;(C )不连续; (D )都不是.二.设函数⎩⎨⎧>+≤=1,1,)(2x b ax x x x f 在处x=1可导,求a 和b. 解:)(x f 在x=1处可导∴)(x f 在x=1处连续,可得 )(lim )(lim 0101x f x f x x -→+→= 即 1=+b a (1)又)(x f 在x=1处可导, 可得 1)1()(lim 1)1()(lim0101--=---→+→x f x f x f x f x x 即 211lim 11lim20101=--=--+-→+→x x x b ax x x (2)由(1),(2)得 2=a , 1-=b . 三.设5323)(xx x x f =,求)('x f .解: 67)(x x f =, 由幂函数的导数公式可得6167)('x x f =.四.已知⎩⎨⎧≥<=0,0,sin )(x x x x x f ,求)('x f .(提示:分段点x=0处的导数用导数的定义求)解: 当x=0时, 令0-=x h , 1sinhlim )0()0(lim 00==-+--→→hh f h f h h ;1lim )()0(lim 00==-+++→→h hh x f h f h h .所以 1)0('=f∴ ⎩⎨⎧≥<=0,10,cos )('x x x x f五.设f(x)在),(+∞-∞上有连续导函数.证明f(x)为偶函数的充要条件是:)('x f 为奇函数(充分性的证明用到不定积分的概念,只证必要性).证明: 对于∀ ),(0+∞-∞∈x 则有),(0+∞-∞∈-x 依题意 令0x x h -=有 h x f h x f x f h )()(lim)('0000-+=→;hx f h x f x f h )()(lim)('0000--+-=-→;)(x f 为偶函数).(')()(lim )('00000x f hx f h x f x f h -=--=-∴→一元微积分学题库(9) 求导法与复合函数求导一. 填空题: 1.曲线xx y 1-=与x 轴交点的切线方程是)1(2±=x y .2.曲线2sin 2x x y +=在横坐标x=0点处的切线方程是x y 2=,法线方程是x y 21-=.3. 设x x y ln 1ln 1+-=,则2)ln 1(2'x x y +-=. 4. 设xxy 2sin =,则22sin 2cos 2'x x x x y -=.5.设)(cos )(sin 22x f x f y +=,则x x f x x f y 2sin )(cos '2sin )(sin ''22-=.二. 求下列函数的导数.1. 52322+-=xx y .解: 3222246)'2()'3()'523('x x x x x x y +=-=+-=.2. x x y cos 2=.解: )'(cos cos )()'cos ('222x x x x x x y +==x x x x sin cos 22-=. 3. x x y cos sin ⋅=.解: x x x x y 2cos )'2sin 21()'cos (sin '==⋅=.4. )13(2+-=x x e y x .解: )'13()13('22+-++-=x x e x x e y x x )3213(2-++-=x x x e x )2(2--=x x e x .5. 110110+-=x x y .解: 2)110()110(10ln 10)110(10ln 10'+--+=x x x x x y 2)110(10ln 102+⋅=x x . 三.求导数:1.x y 2ln 1+=,求'y .解: xx x x x y 222ln 1211ln 2ln 121)'ln 1('+⋅⋅=+⋅+= xx x 2ln 1ln +=.2.2ln x tg y =,求dx dy. 解: x x x x x x tg y csc sin 12cos 2sin 212sec 2121'2==⋅=⋅⋅=.3. t t y cos 1sin 1-+=,求dtdy. 解: 2)cos 1()'cos 1()sin 1()cos 1()'sin 1('t t t t t y --⋅+--⋅+=222)cos 1(sin cos sin cos t t t t t ----=2)cos 1(1sin cos t t t ---=.四.已知)2523(+-=x x f y ,2arctan )('x x f =,求=x dx dy .解: 令2523+-=x x u ,则 22)2523()25()23(5)25(3)('''+-⋅+--+=⋅=x x arctg x x x u f u y ===140arctg dxdyx π.一元微积分学题库(10) 复合函数求导(二) 高阶导数一.求下列函数的导数: 1. )21arcsin(2x y -=. 解:2222124)21(11)'21('xx x x x y --=--⋅-=.⎪⎪⎩⎪⎪⎨⎧<<--<<--=01,1210,1222x xx x2.x e y arcsin =.解: xxe xxe x y arcsinarcsin1121)'(arcsin '⋅-⋅=⋅=2arcsin2xx e x -=.3.3212ttarctgy +=. 解: 1444)21()21(82)212(11)'212('23623233233++++⋅+-=++⋅+=t t t t t t tt tty 1444822363+++-=t t t t .4.242arcsin x xx y -+=.解: 22422)2(11212arcsin'xx xx x y ---⋅⋅+=)4242(22arcsin22xx x x ---+=2arcsin x=.5.xey 1sin 2-=.解: xx e x x xe x y 1sin 21sin 222)1cos 1sin 2(1)'1sin ('--⋅⋅-⋅-=⋅-=xe xx 1sin 222sin-⋅=. 二.求下列函数的二阶导数:1. )1ln(2x y -=.解: 212'x x y --=, 222222)1()1(2)1(22)1(2''x x x x x x y -+-=-⋅---=. 2. arctgx x y )1(2+=.解: 1211)1(2'22+=+⋅++=xarctgx x x xarctgx y , 2122''xxarctgx y ++=. 3. x xe y =.解: x x xe e y +=', x x x x x xe e xe e e y +=++=2''. 三.求函数x x y ln =的n 阶导数.解: 1ln '+=x y ,x y 1''=,21'''x y -=,3)4(2xy =, 一般地,可得 ⎪⎩⎪⎨⎧≥--=+=-2,)!2()1(1,1ln 1)(n x n n x y n n n . 四.设)()()(2x a x x f ϕ-=,其中)('x ϕ在点a 的邻域内连续,求)(''a f .解: )(')()()22()('2x a x x a x x f ϕϕ-+-=.ax x a x x a x a x a f x f a f a x a x --+-=--=→→)(')()()22(lim )(')('lim )(''2ϕϕ)('x ϕ在点a 的邻域内连续 ∴)(')('lim a x ax ϕϕ=→∴0)(lim )(')(')(lim2=-=--→→a x a ax x a x a x a x ϕϕ. )(20)(2lim )(''a x a f ax ϕϕ=+=→.一元微积分学题库(11) 隐函数求导法一.求由下列方程所确定的隐函数y 的导数dxdy. 1. y xe y -=1.解: )'('yye xy e y +-=, 即 yyxe e y +-=1'其中y 是由方程y xe y -=1所确定的隐函数. 2. )(y x tg y +=.解: )(sec )'1('2y x y y +⋅+=, 即 221'yy y +-=.其中y 是由方程)(y x tg y +=所确定的隐函数. 3. 0922=+-xy y .解: 0'22'2=--xy y y y , 即 xy y y -='. 其中y 是由方程0922=+-xy y 所确定的隐函数. 二.用对数函数求导法求下列函数的导数'y :1. 22x ctg x tg y =.解: 先两边取对数(假定422πππk x k +<< . ,2,1,0±±=k ) 得 x tg xctg y 2ln 2ln ⋅=. 则)2ln 2csc 21222sec 2('122x tg xx ctg x ctg x y y -⋅⋅=. )2ln 2csc 21222sec 2(2'222x tg xx ctgx ctg x x tg y xctg -⋅⋅=. 当2)1(42πππ+<<+k x k 时,用同样的方法可得与上面相同的结果. 2. 55225+-=x x y .解: 先两边取对数(假定5>x ) 得)]2ln(51)5[ln(51ln 2+--=x x y .对上式两边对x 求导,得)2125151(51'12+⋅⋅--=x x x y y .即 ])2(5251[2551'2552+--+-=x x x x x y . 当5<x 时,用同样的方法可得与上面相同的结果. 三.求下列函数的二阶导数22dxyd .1. ⎩⎨⎧==tb y t a x sin cos .解: t ab t a t b dtdx dt dy dx dy cot sin cos -=-==, t a bt a t a b dtdx t a b dt d dx y d 32222sin sin 1csc 1)cot (-=-⋅=⋅-=. 2. 已知⎩⎨⎧-==)()(')('t f t tf y t f x 这里)(''t f 存在且不为零.解: )(''t f 存在且不为零 ∴t t f t f t tf t f dx dy =-+=)('')(')('')(', )(''122t f dxy d =.四.设⎪⎩⎪⎨⎧+=+=tt t y tt x 4522,证明y=y(x)在t=0时dx dy 存在,并求其值. 证明: 原方程可化为 02=-x y . 当0=t 时0=x ,.0)0()(lim lim )0()(lim 0200=-==--+→→→hf h f h h h f h f h h h 一元微积分学题库(12) 微分一. 选择题:1.已知x y 2tan =,则dy 等于(C).(A) 2tgxdx ; (B) tgxdx x212+ ; (C) xdx tgx 2sec 2 ; (D) x tgx 2sec 2. 2. 一元函数连续是可导的(A );一元函数可导是可微的(C ). (A )必要条件; (B )充分条件;(C )充要条件; (D )既非充分条件又非必要条件. 2.函数x x x x x f ---=32)2()(不可微点的个数是(B ).(A ) 3; (B) 2; (C) 1; (D) 0. 二.填空题: 1.已知函数2)(x x f =在点x 处的自变量的增量2.0=∆x ,对应的函数增量y ∆的线性主部是8.0-=dy ,那末自变量的始值为2-.2.)](ln ln[ln 32x y =,则dx xx dy ln ln ln 2-=.3. xdx c x d 3cos )sin 31(=+; dx e c e d xx22)2(--=+-;dx xc xd 1)2(=+; dx x c x d 11))1(ln(-=+-. 三. 利用微分求近似值:ο59cos .解: 180359ππο-=. 这里x ∆较小应用(p150)(2)式,得1803sin 3cos )1803cos(59cos πππππο⋅+≈+= 5151.01802321=⋅+=π. 四. 已知测量球的直径D 时有1%的相对误差,问用公式36D V π=计算球的体积时,相对误差有多少?解: 我们把测量D 时所产生的误差当作自变量D 的增量D ∆,那么,利用公式36D V π=来计算V 时所产生的误差就是函数V 的对应增量V ∆.当V∆很小时,可以利用微分dV 近似地代替增量V ∆,即D D D V dV V ∆⋅=∆⋅=≈∆22'π.其相对误差 %3)(3=∆=∆=DVV V s v . 五. 求由方程t t s st =-+)ln()sin(所确定的隐函数s 在t=0处的微分ds .解: 对方程两边关于t 求导,得11')cos()'(=--++t s s st s t s . 当 t=0时, 得 1'2++-=s s s .又对原方程, 当 t=0时, 得 0ln =s 即 s=1. 1111=++-=∴dt ds一元微积分学题库(13)中值定理一.选择题:1.下列函数中,满足罗尔定理条件的是(B ).(A)()[];1,1,132-∈-=x x x f (B)()()[];8,0,42∈-=x x x f(C)()];3,1[,3-∈=x x x f(D)()[].1,10,00,1sin 2-∈⎪⎩⎪⎨⎧=≠=x x x xx x f 2.对于函数()332x x f -=,在区间[]1,0上满足拉格朗日中值定理的点ξ是(A).(A)21; (B)31±; (C)31; (D)1. 二. 应用导数证明恒等式:()112arccos arcsin ≤≤-=+x x x π.(注意:对1±=x处的讨论)证:令()x x x f arccos arcsin +=当()1,1-∈x 时,()()()01111'arccos 'arcsin '22=---=+=xxx x x f()C x f =∴(C 为常数).特别地,取0=x ,则求得()20π==f C当1-=x 时,()221πππ=+-=-f当1=x 时,()2021ππ=+=f∴ 当[]1,1-∈x 时,2arccos arcsin π=+x x三. 设0>>b a ,证明:bba b a a b a -<<-ln .证:设()x x f ln =,在],[a b 上利用拉格朗日中值定理,有:()()a b b a b a <<==--ξξξ1'ln ln lnba 111<<ξ ∴bba b a a b a -<<-ln . 四. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根.证:反证法.设()b x x x f +-=33,且在区间[]1,1-上有两个以上实根,其中两个分别记为21,x x ,不妨设1121≤<≤-x x ,则()()021==x f x f ,由罗尔定理,在()1,1-内至少有一点ξ,使()0'=ξf .而()33'2-=x x f 在()1,1-内恒小于0,矛盾.命题成立.五. 构造辅助函数,证明不等式e e ππ>.证:设()x x f ln =,则在区间[]π,e 上,()ππln =f ,().1=e f 根据拉格朗日中值定理,在()π,e 内至少存在一点ξ使()()()()πξξξππ<<==--e f e e f f ,1'即()ξππe -+=1ln 又πξ<<e()()e e e e ππξππ=-+<-+=∴11lnππ<∴ln e 即ππe e <六. 设函数()x f 和()x g 在[]b a ,上存在二阶导数,且(),0''≠x g()()()()0====b g a g b f a f ,证明(1) 在(a,b)内()0≠x g ;(2) 在(a,b)内至少存在一点ξ,使()()()()ξξξξ''''g f g f =. 证:(1)反证法.设(a,b )内存在一点1x 使0)(1=x g ,则在[]1,x a 上有g(a)=g(x 1)=0,由罗尔定理知在(a,x 1)内至少存在一点ξ1使'g (ξ1)=0. 同理在(x 1,b)内也至少存在一点ξ2使'g (ξ2)=0. ∵'g (ξ1)='g (ξ2)=0∴由罗尔定理,在(ξ1,ξ2)内至少存在一点3ξ使0)(''3=ξg ,这与0)(''≠x g 矛盾,故在()b a ,内()0≠x g . (3) 令)(')()(')()(x f x g x g x f x F -=由题设条件可知,F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理可知,存在()b a ,∈ξ使得()0'=ξF 即()()()()0''''=-ξξξξg f g f由于()()0'',0≠≠ξξg g ,故()()()()ξξξξ''''g f g f =. 一元微积分学题库(14)罗必塔法则一. 求下列极限:1. xe e x x x cos 12lim 0--+-→ 解:原式=2cos lim sin lim00=+=--→-→xe e x e e xx x x x x 2. 0lim→x xxx 3sin arcsin -解:原式=0lim →x cos sin 311122=--x x x 0lim →x ()()xx x x xsin cos 9sin 321212232+---- =0lim→x xxsin 0lim→x ()xx 2232cos 931+----=61- 3.0lim →x xctgx解:原式=0lim→x x xsin 0lim →x x cos =1 4.tgxx x ⎪⎭⎫ ⎝⎛+→1lim 0 解:令tgxx y ⎪⎭⎫⎝⎛=1,则ctgx x x tgx y ln ln ln -=-= 0lim +→x =y ln 0sin lim csc 1lim ln lim 20200===-+→+→+→xx x x ctgx x x x x ∴0lim +→x y=e 0=1 5.⎪⎭⎫ ⎝⎛--→x x xx ln 11lim 1 解:原式=()()21111lim 1ln 11ln lim ln 11ln lim 2111=+=-+-+=---→→→xx xx x x x x x x x x x x x 一元微积分学题库(15)函数的单调性一. 填空题:1.函数y=(x-1)(x+1)3在区间)5.0,(-∞内单调减少,在区间),5.0(+∞内单调增加.2.函数2x ax x y -= (a>0)在区间)43,0(a 内单调增加,在区间),43(a a 内单调减少.3.函数7186223---=x x x y 在区间),3()1,(+∞⋃--∞内单调增加,在区间(-1,3)内单调减少. 4. 函数xx x y 6941023+-=在区间(0.5,1)内单调增加,在区间()),1()5.0,0(0,+∞∞- 内单调减少.二. 证明下列不等式: 1. 当4>x 时,22x x >.证:令22)(x x f x -=,则0)4(=f .x x f x 22ln 2)('-=,082ln 16)4('>-=f2)2(ln 2)(''2-=x x f ,显然,当4>x 时,0)(''>x f )('x f ∴在区间),4(+∞内单调增加. 又0)4('>f)('x f ∴在区间),4(+∞内恒大于零. 又0)4(=f)(x f ∴在区间),4(+∞内大于零.即当4>x 时,02)(2>-=x x f x 即22x x >. 2. 当20π<<x 时,x tgx x 2sin >+.证:令x tgx x x f 2sin )(-+= 2sec cos )('2-+=x x x f)1sec 2(sin sec 2sin )(''32-=+-=x x x tgx x x f 显然,当20π<<x 时,0)(''>x f)('x f ∴在)2,0(π内单调增加.又)0('f =0)('x f ∴在)2,0(π内大于零.)(x f ∴在)2,0(π内单调增加.而)0(f =0 )(x f ∴在)2,0(π内恒大于零. 即当20π<<x 时,02sin )(>-+=x tgx x x f即.2sin x tgx x >+ 3. 当20π<<x 时,x x x <<sin 2π证:令x x x f sin )(=,则2sin cos )('xxx x x f -=. 令x x x x g sin cos )(-=,则)20(0sin )('π<<<-=x x x x g .)(x g ∴在此区间内单调减少.)('x f ∴在此区间内也单调减少.而()02sin lim sin cos lim0'020=-=-=→→x xx xx x x f x x )('x f ∴在)2,0(π内小于0.)(x f ∴在)2,0(π内单调减少.∴xxx f sin )(=在区间的两端取得极大极小值.即ππ2)2(1sin lim)0(0===→f xxf xx x x <<∴sin 2π三. 证明方程sinx=x 只有一个根.证:令x x x f -=sin )(,则01cos )('≤-=x x f . )(x f ∴在),(+∞-∞内单调减少.∴f(x)=sinx-1=0至多有一个根.而f(0)=0, 0)(=∴x f 有且只有一个根. 即方程sinx=x 只有一个根.一元微积分学题库(16)函数的极值一. 填空题:1. 函数3443x x y -=在1=x 处取得极小值.2. 已知函数322)1()5(+-=x x y 当=x -1或5时,y=0为极小值;当x=0.5时, y=318881为极大值. 3.已知bx ax x x f ++=23)(在x=1处有极值-2,则a=0,b=-3,y=f(x)的极大值为2;极小值为-2.二. 求下列函数的极值: 1. ()()23321--=x x y解:)12)(32()1(5'2++-=x x x y )188)(1(10''2-+-=x x x y令0'=y 得三驻点:5.0,5.1,1321-=-==x x x . 当1>x 时,0'>y ,当15.0<<-x 时,0'>y . 11=∴x 处为非极值点.当5.12-=x 时,,0''<y 取得极大值,其值为0. 当5.03-=x 时,0''>y ,取得极小值,其值为-13.5. 2. x e y x cos =解:)sin (cos 'x x e y x -=,令0'=y ,得驻点4ππ+=k x (k 为整数).x e y x sin 2''-=∴当42ππ+=k x 时,,0''<y x 在该处取得极大值,其值为4222ππ+=k e y 当452ππ+=k x 时,,0''>y x 在该处取得极小值,其值为45222ππ+-=k e y 三. 试问a 为何值时,函数x x a x f 2sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求出此极值.解:x x a x f 2cos 32cos )('+=,令0)('=x f ,则02cos 32cos =+x x a即x x a cos /2cos 32-=3π=x 时)(x f 取得极值.323cos /32cos 32=-=∴ππax x x x a x f 2sin 34sin 322sin 34sin )(''--=--=0332sin 343sin 32)3(''<-=--=πππf)(x f ∴在3π=x 处取得极大值,其值为23.四. 设q px x x f +-=3)(,q p ,为实数,且0>p(1) 求函数的极值.(2) 求方程03=+-q px x 有三个实根的条件. 解:(1) p x x f -=23)(',令0)('=x f 得3p x ±=,而x x f 6)(''=31px =∴处取得极小值,其值为q p+-23)3(231px -=处取得极大值,其值为q p+23)3(2 (2)由上述的讨论我们可以看出,)(x f 仅有 ),3(),3,3(),3,(+∞---∞p p p p 三个单调区间,由介值定理及区间 单调性知:方程要有三个实根,必须满足在这三个单调区间上各有一个实根,也就是说,极小值应小于或等于0同时极大值应大于或等于0(等于0时含重根).即0320322323≥+⎪⎭⎫⎝⎛≤+⎪⎭⎫⎝⎛-q p q p即当23233232⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-p q p 时,方程有三个实根.五. 一个无盖的圆柱形大桶,已规定体积为V,要使其表面积为最小,问圆 柱的底半径及高应是多少?解:设圆柱的底半径为R,高为h ,则 h R V 2π=,R V R Rh R S /2222+=+=πππ表0/222=-=R V R dRdS π表则3πV R = 32/RV R V h ==π 六. 设)(x f 在[]1,0上二阶可微,0)1()0(==f f ,且2)(max 10=≤≤x f x .证明存在 )1,0(∈ξ,使得()16''-≤ξf .证:将)1(),0(f f 在x 取得极大值处展开一阶泰勒公式(设此时0x x =) 201000)0(!2)('')0(!1)(')()0(x f x x f x f f -+-+=ξ,010x <<ξ202000)1(!2)('')1(!1)(')()1(x f x x f x f f -+-+=ξ,120<<ξx 0)1()0(,0)(',2)(00====f f x f x f ,两式相加得:8)1)(('')(''20221-=-+x f x f ξξ 令()(){}21'',''m in )(''ξξξf f f =,则16212128)(''8)122)((''20020-≤+⎪⎭⎫ ⎝⎛--≤-≤+-x f x x f ξξ一元微积分学题库 (17) 最大值 最小值 凹凸性 拐点一、求下列函数的最大值和最小值: 1. )41( 3223≤≤--=x x x y函数在所给区间内可导,因此可令 066)(2=-='='x x x f y 解得 1 ,0==x x而 104)4( ,1)1( ,0)0( ,5)1(=-==-=-f f f f所以函数在区间]4,1[-上的最大值、最小值分别为104和-5. 2. )41( 718x -6223≤≤+-=x x x y函数在所给区间内可导,因此可令 018126)(2=--='='x x x f y 解得 )( 1 ,3舍去-==x x 而 33)4( ,47)3( ,15)1(-=-=-=f f f所以函数在区间]4 ,1[上的最大值、最小值分别为-47和-15.二、某车间靠墙壁盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大? 解:设宽为)200( <<x x 米,则长为x 220-米,因此,面积为 x x S )220(-=显然,当5=x 时,面积取最大值502m .三、求数项),2,1( =n n n 中的最大项. 解:令 0)(x )(1>=xx x f 则 )ln 1()(21x xx f x-='-解得唯一驻点,e x = ,并且)(x f 在区间e] ,0[上单调递增,在区间] ,[∞+e 上单调递减,而 332<所以数项),2,1( =n n n中的最大项为33. 四、求下列函数的凹凸区间与拐点: 1. 53x 523++-=x x y 解:函数在定义域) ,(∞+-∞内阶导数存在,并且 3106)(2+-='='x x x f y 1012)(-=''=''x x f y因此,当)65 ,(-∞∈x 时,0<''y ,曲线为凸的,当) ,65(∞+∈x 时,0>''y ,曲线为凹的,点)216995,65(是曲线的拐点.2. )1ln(2+=x y 解:函数在定义域) ,(∞+-∞内阶导数存在,并且 12)(2+='='x xx f y 22)1()1)(1(2)(x x x x f y ++-=''='' 因此,当)1- ,(-∞∈x 时,0<''y ,曲线为凸的,当) 1 ,1(-∈x 时,0>''y ,曲线为凹的,当) ,1(∞+∈x 时,0<''y ,曲线为凸的,点)ln2 ,1(±是曲线的拐点.五、证明112+-=x x y 有三个拐点位于同一直线上. 证明:函数在定义域) ,(∞+-∞内二阶导数存在,并且222)1(21)(+-+='='x x x x f y322)1()14)(1(2)(x x x x x f y ++-+=''='' 令0=''y ,解得, ,32 , 32 ,1321+=-=-=x x x因此,当)1- ,(-∞∈x 时,0<''y ,曲线为凸的,当) 3-2 ,1(-∈x 时,0>''y ,曲线为凹的,当) 32 ,32(+-∈x 时,0<''y ,曲线为凸的,当 ) ,32(∞++∈x 时,0>''y ,曲线为凹的,所以曲线有三个拐点 )431 ,32( ),431 ,32( ),1- ,1(+-+----. 并且4121212323=--=--x x y y x x y y所以三个拐点在同一条直线上.一元微积分学题库 (18) 函数图形的描绘一、作下列函数的图形(要求列表之后再画图):1. 21x xy += 解:函数在定义域) ,(∞+-∞内二阶导数存在,并且222)1(1)(+-='='x x x f y 322)1()3(2)(x x x x f y +-=''=''令0 ,0=''='y y ,解得, ,3 , 3 ,0 1, x ,13=-===-=x x x x。

一元微积分试卷及答案

一元微积分试卷及答案

一、单项选择题1.设01<<-x ,21arcsin )(x x f -=,则=')(x f (C )A .211x x - B. 211x x -- C. 211x - D. 211x--2.当1→x 时,函数11211)(---=x e x x x f 的极限为(D )A.2B.0C.∞D.不存在但不是∞ 3.设232)(-+=x x x f ,则当0→x 时,有(B )A.)(x f 是x 的等价无穷小B. )(x f 与x 是同阶但非等价无穷小C. )(x f 是比x 高阶的无穷小D. )(x f 是比x 低阶的无穷小 4.函数1ln )(-=x x f 的导数是(B )A. 11-xB.11-xC.x -11D.⎪⎪⎩⎪⎪⎨⎧>-<-='1,111,11)(x xx x x f5.设1)()()(lim2-=--→a x a f x f ax ,则在a x =处(B ) A. )(x f 的导数存在,且0)(≠'a f 。

B. )(x f 取得极大值。

C. )(x f 取得极小值。

D. )(x f 的导数不存在。

6.设在[]10,区间0)(>''x f ,则下列不等式的大小关系正确的是(B ) A. )0()1()0()1(f f f f ->'>' B. )0()0()1()1(f f f f '>->' C. )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->' 7.若)0(1)(2>='x xx f ,且2)1(=f ,则=)(x f ( C ) A. x 2 B. 2ln 21+x C. x 2 D.x18.设 ⎰=41tan I πdx xx ,⎰=402tan I πdx x x ,则(B )A. 121>>I IB.211I I >>C.112>>I ID. 121I I >>二、填空题1.设2)(x x x f +=,⎩⎨⎧≥<=0,0,)(2x x x x x ϕ,则=)]([x f ϕ ⎩⎨⎧≥<0,0,02x x x2.设函数⎩⎨⎧>+≤+=0),cos (sin 0,2)(x x x e x a x x f x 在),(+∞-∞连续,则=a 1 .3.若0)(=a f ,1)(='a f ,则=-∞→)1(lim na nf n -1 .4.求极限=-+∞→2)(lim 22x n ax a x a e 2. 5.不定积分⎰=''dx x f x )(c x f x f x +-')()(.三、解答题1. 求极限 xx x x x c b a 10)3(lim ++→,(0,0,0>>>c b a )解:设x x x x c b a y 1)3(++=,xx x x c b a x y 1)3ln(1ln ++=xx x x x x c b a x y 100)3ln(1lim ln lim ++=→→ 3ln ln ln 3lim 0cc b b a a c b a x x x x x x x ++⋅++=→ =3ln 3ln ln ln abc cb a =++ ∴30lim abc y x =→2. 已知0333=-+axy y x (a 为常数),求dxdy . 解:0)(33322='+-'+y x y a y y x 022='+-'+y ax ay y y xax y x ay y --='223. 已知⎪⎩⎪⎨⎧-==t y t x 122,求22dx y d .解:tx y dx dy t t 1-=''=322211)()(t t t dtdx dt dx dy d dx dx dy d dx y d ====4. 求不定积分dx x x ⎰+1002)1(.解:dx x x ⎰+1002)1(=)(1)1(2121002++⎰x d x =c x ++⋅101)1211012(=c x ++202)11012( 5. 求极限)1()21)(11ln(1lim n nn n n n +++∞→解:原式=⎰+10)1ln(dx x =dx x xx x ⎰+-+10101)1ln(=-2ln dx x ⎰+-1)111( =10)1ln(12ln ++-x =12ln 2-四、叙述拉格朗日中值定理,并验证函数12ln , 1()1 1 , 13x x e f x x x⎧-≤<⎪⎪=⎨⎪+≤≤⎪⎩ 在区间⎥⎦⎤⎢⎣⎡3e 1,上满足拉格朗日中值定理的条件。

清华大学一元微积分期末考题-答案

清华大学一元微积分期末考题-答案

一.填空题(每空3分,共15空)(请将答案直接填写在横线上!)1.=-⎰dx x x2)1(ln答案:C x x x x+--+-ln |1|ln 1ln 2. ⎰=+xdx2cos 1 。

答案:C x +⎪⎭⎫ ⎝⎛tan 21arctan 21 3.=⎰+∞12arctan dx xx解:22ln 4)1(arctan arctan 12112+=++-=⎰⎰∞++∞∞+πx x dx x x dx x x 4.C x dx x xf +=⎰arctan )(,则=⎰dx x f )(1。

答案:C x x ++4242 5.=++⎰-dx x xx 222sin 1cos )1(ππ 。

答案:2π 6. =⎪⎭⎫ ⎝⎛⎰22x x t dt e dx d 。

答案:242x x e xe-7. 设)(x f 为连续函数,0)0(≠f ,⎰=xdt t f t x F 02)()(,当0→x 时,)(x F 与kx 是同阶无穷小,则=k 。

答案:38. 将22(3)1x y -+=绕y 轴转一圈,则所得图形围成的体积为 。

答案:26π9. 设0>m ,且广义积分⎰+∞+0mxx dx 收敛,则m 的范围为答案:1>m10.幂级数∑∞=-+12)5(2n nn nx 的收敛域为 。

答案:)5,5(-11. 级数∑∞+=-11sin)1(n pn n n 条件收敛,则参数p 的范围为 。

答案:01≤<-p 12.在00=x 点,函数⎰-xt dt e 02的幂级数展开为答案:∑+∞=++-012)12(!)1(n n nn n x ,ℜ∈x13.'xx yy e e++=,的通解是 。

答案:ln 1y yx e e eC =++ 14.0)2(=-+dx y x xdy 满足0)1(=y 的解为 。

答案:2x x y -=15. 初值问题()⎩⎨⎧='=='+''0)0(,1)0(022y y y x y 的解为 。

一元微积分(上)复习题

一元微积分(上)复习题

一、填空题1.设函数)(x f 当1→x 时极限存在,且)(lim 2143)(1222x f x x x x x f x →+--+=,则极限=→)(lim 1x f x .2.设函数()⎩⎨⎧=≠+=0,20,1)(/x x x x f x k 在点x = 0处连续,则常数=k .3. 设,ln x x y =则='''y .4.已知函数3cos arctan )1ln(2+++=x e x y , 则 _________________dy =.5. 曲线1=+y xe y 在)1,0(点的切线方程是 .6. =-+-+∞→1)23(lim n n n n ________ .7. 设⎪⎪⎩⎪⎪⎨⎧≤+>+=0,cos 0,)1()(1x x a x x x f x在),(∞+-∞上连续,则=a ________ .8. 曲线x x y ln =上与直线3=-y x 平行的切线方程是 .9. 已知)()tan (ln 2可导f x f y =, 则______________=dy . 10. 已知x e y xy 2+=, 则===10y x dxdy.11.曲线21x y e -=-的凹区间是 ,凸区间是 ,拐点是 ,渐近线是 .12..设曲线2332x y =,则弧长微元=dsxxxx13.曲线x y sin =在点)1,2(π处的曲率半径为 .二、单项选择题1.下列极限不存在的是( ) A. xx 13lim ∞→; B. xxx x -+∞→2lim; C. x x x 1sin lim ∞→; D.xx 1arctanlim 0+→. 2.设)(x f 在点0=x 处可导,0)0(=f ,0)0(≠'f ,令⎪⎩⎪⎨⎧=≠=0,)0(0,)()(x f x xx f x F ,则0=x 是)(x F 的( )A. 连续点;B. 可去间断点;C. 跳跃间断点;D. 无穷间断点.3. 设函数)(x f 可导,0)(0≠'x f ,)()(00x f x x f y -∆+=∆,x x f dy ∆'=)(0,则当0→∆x 时,结论( )是错误的.A .dy 是y ∆的线性主部;B .y ∆dy -是比x ∆高阶的无穷小;C .y ∆dy ≈;D .y ∆dy -是与x ∆等价的无穷小.4. 如果在区间(a, b )内,f (x ) 的一阶导数,0)(>'x f 且二阶导数,0)(<''x f 则函数y = f (x ) 的图形是 ( ) .A .B .C . D5.数列有界是数列收敛的( ).A. 必要条件;B. 充分条件;C. 充要条件;D. 无关条件.6. 函数⎪⎩⎪⎨⎧=≠=0,10,1sin )(x x xx x f 在点0=x 处( ). A. 极限不存在; B. 极限存在但不连续; C. 连续但不可导; D. 可导.7.在区间[]1,1-上,满足罗尔定理条件的函数是 ( ). A .()x x f =; B .()32x x f =; C .()x x x f sin 1-=; D .()x e x x f 2=.8.设函数)(x f 二阶可导,0)0(='f 且1)(lim 0=''→x f x ,则)0(f ( ).A .是)(x f 的极小值;B .是)(x f 的极大值;C .不是)(x f 的极值;D .不一定是)(x f 的极值;9.设2()()lim1()x af x f a x a →-=--,则在点a 处( ) A .()f x 的导数存在,且()0f a '≠; B. ()f x 取得极大值;C .()f x 取得极小值; D. ()f x 的导数不存在.10.设()f x 在0x =的某邻域内连续,且0()lim2,1cos x f x x→=- 则在0x =处()f x ( )A .不可导; B. 可导且(0)0f '≠; C. 取得极大值; D. 取得极小值.11.设()y f x =是方程240y y y '''-+=的一个解,若0()0f x >且0()0f x '=,则()f x 在0x ( )A .取得极大值; B. 取得极小值; C. 在某邻域内单增; D. 在某邻域内单减12.曲线2211x x e y e--+=-,则( )A .没有渐近线; B. 仅有水平渐近线; C. 仅有铅直渐近线; D .既有水平渐近线又有铅直渐近线13. 设在[0,1]上()0,f x ''> 则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是( )A .(1)(0)(1)(0)f f f f ''>>-; B. (1)(1)(0)(0)f f f f ''>->;C. (1)(0)(1)(0)f f f f ''->>;D. (1)(0)(1)(0)f f f f ''>->三、计算题 1.求极限⎪⎪⎭⎫⎝⎛--→111lim 0xx e x. 2. 求极限xx x x x sin sin lim2-→. 3.设,arcsin 122x x x x y +-= 求'y .4.设2ln arcsin 12--+=x x xe y x,y '求.5. 设1y y xe =-,求隐函数y 的导数.dy dx6.设函数x e x f x sin )(=,求极限xf x f x )0()(lim 0-→.7.设⎩⎨⎧=+=321ty t x ,求2π=t dx dy ,22dxyd . 8.已知)1ln()1(x x y ++=,求dx dy , 22dx y d 和n n dxyd .)(x f x 设)(x f 在上可导且对于任何都试证:在内有且仅有一个数使)([]0,10,1,01)(x f ,x )(0,1)(x f 1,,,.x 有9.)(),(arctan sin )cos(1lim)(0x f x f x tt t x x f t ''-=→,求设 .10.设22ln arctan x x y x +=, 求y '.11.确定函数x xx x x x x f sin 6)9()(22+-+-=的间断点,指出间断点的类型.12. 在曲线21x y += )0(>x 上求一点,使得曲线在该点的切线与两坐标轴所围三角形的面积为最小.13. 讨论函数21)(xxx f +=的单调性、凹凸性,并确定对应曲线的拐点. 14. 注水入深10 m 、上顶直径10 m 的正圆锥形容器中,注水速率为min 33m . 当水深为6 m 时,其表面上升的速率是多少?15.16. 确定函数 23)1(-=x x y 的单调区间,极值点,函数图形的凹凸区间和拐点(要求列表讨论并写出结论).17. 设函数)(x g 可微,)(2)(x g x e x h +=.已知,1)1(,2)1(='='h g 求).1(g 18. 设e b a <<<1,证明:)(2ln ln 22a b ea b -<-. 19. 设,2e b a e <<< 证明).(4ln ln 222a b ea b ->-。

一元微积分_函数、数列及其极限练习题(1)

一元微积分_函数、数列及其极限练习题(1)

习题课 1函数、数列及其极限1. 函数的简单性质 ● 增减性(单调性)● 设函数)(x f y =定义域为X ,若X x x ∈∀21,,当21x x <时有)()(21x f x f ≤,则称)(x f y =在X 上为增函数(非严格),而当21x x <时有)()(21x f x f <,则称)(x f y =在X 上为严格单调增函数。

类似可给出单凋减函数的定义。

● 奇偶性函数)(x f y =在对称的定义域内满足)()(x f x f =-,则称)(x f y =为偶函数; 函数)(x f y =在对称的定义域内满足)()(x f x f -=-时,则称)(x f y =为奇函数。

● 周期性:若存在一个正数T ,使函数)(x f y =在定义域内满足)()(x f T x f =+,则称)(x f y =为周期函数。

这里的正数T 对一个周期函数来说不是唯一的(事实上有无穷多),一般情况下,称其中最小正数称为周期。

● 有界性:设函数)(x f y =在X 上有定义,若存在一个正数M 使得对任意X x ∈有M x f ≤)(,则称函数)(x f y =在X 上有界。

连续函数的有界性,后面还将具体讨论。

例:任何函数都可以写成奇函数与偶函数的和。

解: [][])()(21)()(21)(x f x f x f x f x f --+-+=例1:已知2)1()(2x x f x f =-+, 求)(x f 表达式。

2. 数列1) ()n n n nn +--+∞→222322lim2) 221lim n nn +++∞→3) 321lim2-+∞→n n n4) 设11>=a a ,a 为常数,⎪⎪⎭⎫ ⎝⎛+=+n n n a a a a 1121,),2,1( =n ,证明极限 n n a ∞→lim 存在,并求此极限。

5) 求极限 ()nn nn 1321lim +++∞→6) 求极限∑+∞→+nk n kn k12lim 。

一元微积分A:期末练习题1

一元微积分A:期末练习题1

复习题1一、填空题(每小题3分,共15分).1.在积分曲线族⎰=xdx y sin 2中,过点)0,3(π的曲线为 .2.定积分1221sin (21)1x x d x x -+-=+⎰ . 3.微分方程02=+'y y 的通解是 .4. 设)(x f 是连续函数,且⎰+=2)(3)(dx x f x x f ,则=⎰dx x f 2)( .5.⎰+x t ttx 12d 1d d = .二、单项选择题(每小题3分,共18分). 1.下列关系式中错误的是( ).A. C x f x f d +=⎰)()(;B. )()(x f dx x f d =⎰;C. C x f dx x f +='⎰)()(;D.)()(x f dx x f dx d=⎰. 2. x x d cos 204⎰π的值为( ).A .π83;B . 83;C . π163;D .163.3.设12,y y 是''()'()0y p x y q x y ++=的解,则( )也是它的解. A . 12y y ; B .112y y y +; C .12yy ; D .1122C y C y +. 4.设()arcsin f x dx x C =+⎰,则()x f x dx =⎰( ).A .C x +-21;B .C x +-212; C . C x +--212;D .C x +--21. 5.微分方程2(1)20x y xy '''++=满足初始条件(0)0,y =(0)1y '=的特解为( ).A .arctan y x =;B . arccos y x =;C .arcsin y x =;D .arccot y x =.6.下列反常积分发散的是( ).A .x x d 1112⎰∞++; B .x x x d 1arctan 12⎰∞++; C .x x d )1(1102⎰-; D .x x x d ln 10⎰. 三、(6分)计算极限⎰⎰+→x x x dtt dtt 03sin )1ln(lim2 .四、(6分)求⎰-20d )1(x x f ,其中=)(x f ⎩⎨⎧<<-≤≤01,10,e x e x x x . 五、(6分)求一阶线性微分方程 1tan cos y y x x'-= 的通解. 六、(6分)求不定积分 41dx x x+⎰. 七、(7分)求齐次方程 0)2(22=+-dy x dx xy y 满足初始条件12x y ==的特解.八、(7分)计算由曲线2x y =和直线1=y 所围平面图形 1. 绕x 轴旋转一周所成的旋转体的体积; 2. 绕y 轴旋转一周所成的旋转体的体积. 九、(9分)求微分方程2443x y y y e '''-+=的通解. 十、(9分)设曲线 .x y e =(1) 在此曲线上求一点A ,使曲线在该点的切线通过坐标原点(0,0)O . (2) 求位于曲线x y e =下方和切线OA 的左方以及x 轴上方之间图形的面积. 十一、(6分)一个锥顶向上的圆锥形蓄水池装满了水,高为10米,底半径为4米,问要把池内的水全部吸出,需要做多少功?(计算过程中,水的密度ρ、圆周率π和重力加速度g 的值不要求代入). 十二、(5分) 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()f x M '≤,()0f a =,证明:22()()b af x dx M b a ≤-⎰.yxo。

一元微积分经典习题

一元微积分经典习题

5. 曲线
与 x 轴所围图形面积可表示为
(a)
(b)
(c) 解.
(d)
0 由图知(c) 为答案.
1
2
二. 填空题
1. 函数
( x > 0) 的单调减少区间______.
解.
, 所以 0 < x <
.
2. 曲线
与其在
处的切线所围成的部分被 y 轴分成两部分, 这两部分
面积之比是________.
解.
, 所以切线的斜率为 k =
3. 求通过点(1, 1) 的直线 y = f ( x ) 中, 使得 解. 过点(1, 1) 的直线为
为最小的直线方程.
y = kx + 1 -k
所以
F(k) =
=
=
=
k = 2
所求直线方程为
y = 2 x -1
4. 求函数
的最大值与最小值.
解.
, 解得
x = 0,
x =
,
,
=1
所以, 最大值
解. 由联立方程
解得交点坐标
,

求得二条法线的斜率分别为
,
. 相应的法线为
, 已知三点求面积公式为
. 解得法线的交点为
.
所以
.
2. 在抛物线 y = x2 上一点 P (a, a 2) 作切线, 问 a 为何值时所作切线与抛物线 y =-x2 + 4 x -1 所围图形面积最小 解. 切线和抛物线的交点为
, 若两个极值点及其对应的两个极值均
(c) 关于直线 y = x 轴对称
(d) 以
解. 假设两个极值点为 x = t 及 x = -t (t 0), 于是 f(t) = -f( -t). 所以

一元微积分期末考试答案

一元微积分期末考试答案
n→∞
lim
n2
n n n + 2 + ··· + 2 +1 n +2 n +n
.
Solution This problem uses the Squeeze Theorem. Since n· and
n→∞
n2
n n n n n < 2 + 2 + ··· + 2 <n· 2 , +n n +1 n +2 n +n n +1 lim n · lim n · n 1 = lim 1 = 1 , + 1 n→∞ 1 + n 2 n 1 = lim + n n→∞ 1 +
1 2 1 2 d e 2 x y = x3 e 2 x . dx
xdx
= e 2 x . Multiplying this factor on both sides
1 2
4
Integrating both sides of the above, we get e 2 x − 2e 2 x + C .
2π (2 − y )xdy = 2π
0 0
2 1 (2y − y )dy = 2π ( y 3 − y 4 ) 3 4
2 3
2 0
8 = π. 3
8. [9 points] Find the area of the surface generated by revolving the given √ curve y = x3 /3, 1 ≤ x ≤ 7, about the x-axis. 5
ξ 1 0
f (t)dt > 0, since f (t) < 1 for all t ∈ [0, 1]. By

高等数学一元函数微积分学题目与答案A

高等数学一元函数微积分学题目与答案A

三、一元函数积分学练习题(A)一.选择题1. =+òdx x )1(cos ()Cx x A ++sin .Cx x B ++-s i n .Cx x C ++c o s .Cx xx D ++-cos .2. =òdx x 41()CxA +-331.CxB +331.CxC +31.CxD +-31.3. 已知函数2(1)x +为()f x 的一个原函数,则下列函数中()f x 的原函数是()A 21x -B 21x +C 22x x -D 22x x+4. 已知函数()f x 在(,)-¥+¥内可导,且恒有()f x ¢=0,又有(1)1f -=,则函数()f x = ()A 1 B -1 C 0 D x5. 若函数()f x 的一个原函数为ln x ,则一阶导数()f x ¢=()A 1xB 21x-C ln xD ln x x6.定积分ò1221ln xdx x 值的符号为().A 大于零.B 小于零.C 等于零.D 不能确定7.曲线)2)(1(--=x x x y ,x 轴所围成的图形的面积可表示为().A ò--10)2)(1(dx x x x ;.B ò--20)2)(1(dx x x x ;.C òò-----2110)2)(1()2)(1(dx x x x dx x x x ;.D òò--+--2110)2)(1()2)(1(dxx x x dx x x x 8. 已知dt t x F xò+=21)(,则=)('x F ()212.x x A + 11.2++x B 21.x C + 11.2-+x D 9. =ò-dx x 115( ) 2.-A 1.-B 0.C D .1 10.若()211xx F -=¢,()231p=F ,则()=x F ( ) A.x arcsin B. c x +arcsin C.p +x arccos D. p +x arcsin二.填空题二.填空题1. 1. 写出下列函数的一个原函数写出下列函数的一个原函数写出下列函数的一个原函数 (1) 52x 的原函数为的原函数为 (2) cos x -的原函数为的原函数为(3) 12t 的原函数为的原函数为 (4) 221x--的原函数为的原函数为2. 在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立 (1)dx = (51)d x -;(2)xdx = 2(2)d x -;(3)3x dx = 4(32)d x +; (4)2xe dx -= 2()xd e-;(5)219dx x=+ (a r c t a n 3d x ;(6)212dx x=+ (a r c t a n 2)d x ; (7)2(32)x dx -= 3(2)d x x -; (8)dx x= (3l n )d x ;(9)21dx x=- (2a r c si n d x -; (10)21xdx x=- 21d x -. 3. 若()1xf e x ¢=+,则()f x = 4. 根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小(1)120x dx ò13x d x ò(2)10xe dx ò1(1)x dx +ò5. _________3=òdx e x 6. __________1=òdx ex 7. ò+dx x xln 1=_____________ 8. 已知一阶导数已知一阶导数2(())1f x dx x ¢=+ò,则(1)f ¢= 9. 当x = 时,函数()ò-=xt dt te xI 02有极值. 10. 设()ïîïíì>£+=1,211,12x x x x xf ,()ò20dx x f = 11. 已知ò=xdt t xf y0)(,则=dx dy 12. dt t t x x x )1sin (1lim 030-ò®=三.计算题三.计算题 1.不定积分的计算不定积分的计算(1)1x x e dx e +ò (2)12x e dx x ò(3)ln dx x x ò(4)211x dx x --ò (5)3431xdx x -ò(6)12dx x -ò(7)223xdx x-ò(8)3xa dx ò(9)sin tdt tò (10)2cos ()x dx w j +ò(11)2cos ()sin()x x dx w j w j ++ò(12)22(arcsin )1dx x x-ò(13)3tan secx xdxò(14)sec(sec tan)x x x dx-ò(15)11cos2dxx+ò(16)2(4)x x dx-ò(17)32(32)x dx-ò(18)221dxx x-ò(19)1231dxx-+ò(20)sinx xdxò(21)xxe dx-ò(22)arcsin xdxò(23)2tte dt -ò(24)2arcsin 1xdx x-ò(25)sin cos xxe dx ò(26)1cos sin x dx x x++ò(27)dxx 43-ò (28)dx x 122-ò(29)dx xxe e --ò (30)e32x dx +ò(31)()232xx dx+ò (32)1252+òx dx(33)sin5xdxò(34)cos25xdxò(35)()()244522x dxx x+++ò(36)x dxx23412-ò(37)sin cossin cosx xx xdx+-ò3(38)dxx x(arcsin)221-ò(39)dxx x222-+ò(40)sin cossinx xxdx14+ò(41)2x xe dxò(42)23523x xx dx ×-×ò2.定积分的计算定积分的计算(1)1e xx dx-ò(2)e1lnx xdxò(3)41ln xdxxò(4)324sinxdxxppò(5)220e cosxxdxpò(6)221logx xdxò(7)π2(sin)x x dxò(8)e1sin(ln)x dxò(9)121ln(1)x x dx-++ò(10)41xdxò(11)dx xx x )1(241+ò(12)dx xxò+1241 (13)dx x ò+2241 (14)dx x x ò40tansec p(15)xdxò242cotpp(16)ò--112d x x x(17)dx ò2121)-(3x 1 (18)dx ò+3ln 0x xe 1 e(19)dxx xò-123 (20)ò1arctan xdx x3.反常积分的计算反常积分的计算(1)2048dx x x +¥++ò(2)21arctan xdx x +¥ò(3)101(1)dx x x -ò(4)1ln edx x x ò4. 4. 比较下列各对积分的大小:比较下列各对积分的大小:比较下列各对积分的大小:(1)ò4arctan pxdx 与ò402)(arctan pdx x(2)ò43ln xdx 与ò432)(ln dx x(3)dx x ò-+1141与dxx ò-+112)1((4)ò-2)cos 1(pdx x 与ò2221pdx x四.综合题四.综合题 1.求导数求导数(1)201xdt dt dx +ò (2)5ln 2xtdt e dt dx -ò(3)cos 2cos()xd t dt dx p ò (4)sin xd tdt dx tpò (0x >). 2. 验证下列等式验证下列等式(1)2311d 2-=-+òx x C x ; (2)(sin cos )cos sin x x dx x x C+=-++ò. 3. 求被积函数()f x . (1) 2()ln(1)f x dx x x C =+++ò;(2)21()1f x dx C x=++ò. 4 求由下列曲线所围成的平面图形的面积:求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =- (2) xy e =与0x =及y e =(3) 24y x =-与0y =(4) 2y x =与y x =及2y x =5.5. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积: (1) ,1,4,0y x x x y ====,绕x 轴;轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴;轴; (3) 22,y x x y ==,绕y 轴;轴;(4) 22(5)1x y -+=,绕y 轴.轴.(5). 32y x =,x=4 ,绕y 轴.轴.6. 当k 为何值时,反常积分+2(ln )k dxx x ¥ò收敛?当k 为何值时,这反常积分发散? 7. 设1321()()1f x x f x dx x=++ò,求1()f x dx ò.8. 求函数2()(1)xtf x t e dt -=-ò的极值.的极值.9. 设()f x 在[],a b 上连续,且()1b af x dx =ò,求()baf a b x dx +-ò.10. 设曲线通过点(0,1),且其上任一点(,)x y 处的切线斜率为xe -,求此曲线方程.11. 设3()1xxf e e ¢=+,且(0)1f =,求()f x . 12. 设()ïîïí죣=其它,00,sin 21p x x xf ,求()()ò=x dt t f x 0j . 13. 设()ïïîïïíì<+³+=时当时当0,110,11x ex x x f x ,求()ò-21dxx f . 14. 已知222(sin )cos tan 01f x x x x ¢=+<< ,求()f x . 三、一元函数积分学 练习题( A ) 参考答案 一.选择题一.选择题1. A2. A3. D4. A5. B6. B7. C8. C9. C 9. C 因为因为5x 为奇函数为奇函数 10. D 10. D二.填空题二.填空题1. 1. 写出下列函数的一个原函数写出下列函数的一个原函数写出下列函数的一个原函数(1) 613x (2) sin x - (3) t (4) 2arcsin x -2. 2. 在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立 (1)51;(2)21-;(3)121;(4)21-;(5)31;(6)21;(7)1- (8)31;(9)1-;(1010))1- 3. ()(1ln )ln f x x dx x x C=+=+ò4. 4. 根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小 (1)112300x dx x dx>òò;∵ 当[0,1]x Î时,232(1)0x x x x -=-³,即23x x ³,又2x3x ,所以112300x dx x dx >òò(2)110(1)xe dx x dx >+òò;令()1,()1xxf x e x f x e ¢=--=-,因01x ££,所以()0f x ¢>,从而()(0)0f x f ³=,说明1xe x ³+,所以1100(1)xe dx x dx >+òò5. C e x+33 6. C ex+-- 7. c x x ++2ln 21ln 8.229. 0. 10.38 11. )()(0x xf dt t f x +ò 12. 181- 三.计算题三.计算题1.1.不定积分的计算不定积分的计算不定积分的计算(1)1(1)ln(1)11xx xx x e dx d e e C e e =+=++++òò (2)11121xx xedx e d e C x x=-=-+òò (3)ln ln ln ln ln dx d x x C x x x ==+òò (4)211(1)ln 11(1)(1)1x x d x dx dx x C x x x x --+===++-+-+òòò(5)3444444333(1)3ln 1141414x dx d x dx x C x x x -==-=--+---òòò(6)1(12)1ln 12122122dx d x x C x x -=-=--+--òò (7)22222211(23)123263232323x dx d x dx x C xx x -==-=--+---òòò (8)33311(3)33ln x x xa dx a d x a C a ==+òò(9)sin 2sin 2cos t dt td t t C t ==-+òò(1010))21cos(22)cos ()2x x dxdx w j w j +++=òò 11 cos(22)(22)24x x d x w j w j w =+++ò11sin(22)24x x C w j w=+++ (1111))221cos ()sin()cos ()cos()x x dx x d x w j w j w j w j w ++=-++òò 31cos ()3x C w j w=-++(1212))222arcsin 1(arcsin )arcsin (arcsin )1dxd xC x xx x==-+-òò(1313))32231tan sectan sec (sec 1)sec sec sec 3x xdx xd x x d x x x C ==-=-+òòò (1414))2sec (sec tan )(sec sec tan )tan sec x x x dx x x x dx x x C-=-=-+òò(1515))221111sec tan 1cos 22cos 22dx dx xdx x C x x ===++òòò (1616))515173222222228(4)(4)473x x dx x x dx x dx x dx x x C -=-=-=-+òòòò(1717))33522211(32)(32)(32)(32)25x dx x d x x C -=---=--+òò (1818)令)令sin ()22x t t p p=-<<,则cos dx tdt =,所以,所以22222cos 1csc cot sincos 1dxtdtx tdt t C C t txxx-===-+=-+×-òòò(1919)令)令23x t -=,则23,2t x dx tdt +==,所以所以11(1)ln(1)11231tdt dxdt t t C t t x ==-=-++++-+òòò23ln(231)x x C =---++(2020))sin cos cos cos cos sin x xdx xd x x x xdx x x x C=-=-+=-++òòò(2121))xxxxxxxe dxxdexee dxxeeC ------=-=-+=--+òòò(2222))222111arcsin arcsin arcsin (1)211xdx x x x dx x x d x xx=-×=+---òòò2arcsin 1x x x C =+-+ (2323))2222221111122224ttttttte dt tdetee dt tee C ------=-=-+=--+òòò(2424))22arcsin 1arcsin arcsin arcsin21x dx xd x x C x ==+-òò(2525))sin sin sin cossinx x x xe dx e dx e C==+òò(2626))1cos (sin )ln sin sin sin x d x x dx x x C x x x x++==++++òò(2727))dx x 43-ò=1(43)1ln 434434d x x C x -=-+-ò。

微积分试题(sc)

微积分试题(sc)

一元微积分期末综合测试任课老师: 学号: 姓名: 班级: 得分:一、填空题(本题共9小题,每小题4分,满分36分. 把答案填在题中横线上)1.xy 2=的麦克劳林公式中n x 项的系数是 2. =⎰→22cos limxdtt x x3.=⎰xx cos tan4. 12lim(sin sin sin n n n n n nπππ→∞+++= 5.=-⎰+∞121x xdx6.()=-+⎰-dx x x 112217. 微分方程]')'[(2''2y y yy -=满足2',10====x x y y 的特解是8. ()=+→xx x e x 10lim9. 微分方程()()0d 2d 1=-++-y x y x y x 的通解是二、选择题(本题共4小题,每小题4分,满分16分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)1.设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.2.设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则 ( )(A) .121>>I I (B) .121I I >> (C) .112>>I I (D) .112I I >>3.设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 ( )(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点.4.设dx x xa n n nn n +=⎰+-123101,则极限n n na ∞→lim 等于 ( ) (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e .三、计算题(本题共4小题,每小题5分,满分20分.)1.求极限 2031)cos(sin lim x x x -→2.求不定积分dx x x x x e x ⎪⎭⎫⎝⎛+⎰2cos sin cos sin3. 求微分方程x xe y y y 22'3''-=++的通解4. 求()dx x I nn ⎰-=121 )(N n ∈四、(本题满分6分)求曲线132--=x y 与x 轴围成的封闭图形的绕直线3=y 旋转一周所围成的旋转体体积 五、(本题满分7分)已知函数)(x f 在()+∞,0内可导,0)(>x f ,1)(lim =+∞→x f x 且满足()()x hh e x f hx x f 110lim =⎪⎪⎭⎫⎝⎛+→,求)(x f 六、(本题满分7分)设函数)(x y y =可导,且满足下面积分方程)(2)(2t y x dt t ty x++=⎰,求函数)(x y y =七、(本题满分8分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη。

一元微积分试卷(1)

一元微积分试卷(1)

一、填空题(每小题4分,共20分)1、极限 ()()21ππ2πsin2sin 1sin limn n n n n n n→∞-+++-= 1π 2、202d sin()d d x t x t x-=⎰22sin x x 3、220e d x x x +∞-=⎰124、函数()2f x x x =-在22,33⎡⎤-⎢⎥⎣⎦上的最大值为0,最小值为14-5、()()1200911ee d xx x x x --+-=⎰14e -二、单项选择题 (每小题4分,共20分)1、设函数()f x 连续,且(0)0f '>,则存在0δ>,使得(C ).(A )()f x 在(0,)δ内单调增加; (B )()f x 在(,0)δ-内单调减少; (C )对任意的(0,)x δ∈有()(0)f x f >; (D )对任意的(,0)x δ∈-有()(0)f x f >. 2、=( B).(A )12C ;(B )2C ; (C )()2arcsin 21x C -+;(D) ()arcsin 21x C -+.3、设函数()y f x =满足关系式240y y y '''-+=,且()00f x >,()00f x '=, 则()f x 在0x 点处(A). (A )取得极大值;(B )取得极小值;(C )在0x 点某邻域内单调增加; (D )在0x 的某邻域内单调减少. 4、若()1cos 2sin d x f x t t -=⎰,()5656x x g x =-,则当0x →时,()f x 是()g x的(B ).(A )低阶无穷小; (B )高阶无穷小;(C )等价无穷小;(D )同阶但不是等价的无穷小。

5、设()21,0e ,xx x f x x ⎧+<=⎨≥⎩,则()312d f x x -=⎰( B ) .(A )1e 3-; (B) 1e 3+; (C )13;(D )2e .三、计算下列各题(每小题4分,共12分)1、求抛物线2y a x =上任一点处的曲率,在那一点它的曲率最大? 解:因为33222222(1)(14)y a y a x ''K =='++要使K 最大,只需3222(14)a x +最小,所以有0x =,即曲线在(0,0)处曲率最大。

一元微积分数学函数题库有答案

一元微积分数学函数题库有答案

一元微积分数学函数题库有答案一元微积分学数学(1) 函数一、 填空题: 1. 函数 y=arcsin 92-x定义域是:310103-≤≤-⋃≤≤x x2.设y=f (x)的定义域是[0,1],则复合函数f (sinx)的定义域是:z k k x k ∉+≤≤,22πππ.3.函数33+=x y 的值域是 0≤y ≤+∝ . 4.函数)1,0(11≠>+-=a a ax ax y 的反函数是:axa xy +-=1. 5.函数12+-=x y 在区间 ]0,(-∞ 内是单调增加的.在区间)0[∞+,内是单调减少.6.设21)1(x x xf ++=,(x>o ),则)(x f =x x 211++.7.设1)(-=x x x f ,则))(((x f f f =1-x x, ))((x f f = x . 8.函数⎪⎩⎪⎨⎧+∞<<≤≤<<-∞=x x x x x y x 4,241,1,2的反函数y=⎪⎩⎪⎨⎧+∞<≤≤≤<<-∞.16,log ,161,,1,2x x x x x x. 二.选择题:1. 在同一直角坐标系中,函数 与它的反函数说代表的曲线具有的性质是(D )(A) 关于y 轴对称; (B) 关于x 轴对称; (C)重合; (D) 关于直线y=x 对称.2.下列几对函数中,)(x f 与)(x g 相同的是(C ).(A )2lg )(x x f =与x x g lg 2)(= (B )x x f =)(与2)(x x g = (C )2)(x x g =与2)(x x g = (D )1)(=x f 与xxx g =)( 3.已知的定义域为则的定义域是(C )(A )[-a,3a] (B) [a,3a] (C) {a} (D) {-a} 4.如果1)(-=x xx g ,那么))(1(x f f 的表达式是(B )(A) x-1 (B)1-x (C)xx 1- (D) 都不是 三.设函数)(x f y =是线性函数,已知,3)1(,1)0(-==f f 求此函数. 解:设f(x)=ax+b,则有0+b=1, a+b=-3,解得a= -4,b=1.四.证明函数1)(2+=x xx f 在它的整个定义域内是有界.证明:f(x)的定义域为R.xx x x1112+=+因为2111,21≤+≥+xx xx 所以所以: 函数1)(2+=x xx f 在它的整个定义域内是有界 五.试讨论函数21121)(+-=x x f 的奇偶性.解:21121)(+-=x x f21121)(+-=--x x f211211+-=x 212211+-=xx 21212+-=x x 2121211+-+-=xx 212111+-+-=x21211--=x )(x f -= 所以 21121)(+-=xx f 偶函数. 一元微积分学题库(2) 数列的极限一.判断题:1.如果数列{n u }以A 为极限,那么在数列{n u }增加或去掉有限项之后,说形成的新数列{n u }仍以阿A 为极限. ( T )2.如果0lim =∞→n n n v u ,则有0lim =∞→n n u 或0lim =∞→n n v( F )3.如果a a n n =∞→lim ,且存在自然数N ,当n>N 时恒有n a <0,则必有a<0. ( F )4.如果n n a ∞→lim ,n n b ∞→lim 均不存在,则有)(lim n n n b a +∞→必不存在. ( F )一元微积分学题库(3) 函数的极限,无穷大,无穷小一. 选择题:下列题中其条件对其结论来说是(A)充分但非必要条件; (B)必要但非充分条件; (C)充分必要条件: (D)既非充分又非必要条件; 1.条件a a n n =∞→lim ,b b n n =∞→lim .结论b a b a n n n +=+∞→)(lim (A )2.条件)(lim 0x f a n -→和)(lim 0x f a n +→都存在.结论)(lim x f an →存在 (B )3.条件)(lim x f an →和)(lim x g an →都存在.结论 )]()([lim x g x f an +→存在. (A )4.条件f(x)在a 的某个邻域内单调有界.结论)(lim x f an →存在. (D )三.求0)(,)(→==x xx x g x xx f ,当时的左右极限,并说明它们在x →0时的极限是否存在? 解:xxx f =)(=1,所以1)(lim 0=→x f x .⎩⎨⎧><-==.0,1,0,1)(x x x xx g 所以 1)(lim 00-=-→x g x , 1)(lim 00=+→x g x 显然≠-→)(lim 00x g x )(lim 00x g x +→,故)(lim 0x g x →不存在.五.证明:函数 xx y 1cos 1=在区间(0,1]上无界,但当x →+0时,这函数不是无穷大.证明:1. 取+∞→∈=k N k k x 当),(21π时,x x y 1cos 1==+∞=πk 2 所以 x x y 1cos 1=在区间(0,1]上无界.2.取0),(21+→+∞→∈+=x k N k k x 时,当ππ,x x y 1cos 1==021⋅+ππk =0即在0的任何邻域都不可能有M xx y >=1cos 1(M>0)成立. 所以当x →+0时,这函数不是无穷大.一元微积分学题库(4) 极限的求法一. 判断题:下列运算是否正确:0)(lim .12=∞-∞=--∞→x x x n(F).1)53(lim )32(lim 5332lim .24343=∞∞=++=++∞→∞→∞→x x x x x x x(F)0lim 2lim 1lim )21(lim .3222222=+⋅⋅⋅++=+⋅⋅⋅++∞→∞→∞→∞→nnn n n n n n n n n n (F )二.计算下列极限:1.x x xx x x 2324lim 2230++-→解:xx x x x x 2324lim 2230++-→ =23124lim 20++-→x x x x =21 2.)2141211(lim n n +⋅⋅⋅+++∞→解:)2141211(lim n n +⋅⋅⋅+++∞→=211)21(1lim--∞→nn =23.)1111(lim 31x x x ---→ 解:设31111)(x x x f ---=,则311111)(1x x x f ---=因为2313111lim 11111lim )(1lim x x x x x x f x x x +-=---=→→→=0,所以∞=→)(lim 1x f x即:∞=---→)1111(lim 31xx x 从而时,当,10,1lim .40-∞→-→→xx x arctg x 从而时,当,10,21lim 0+∞→+→-=-→x x x arctgx π)(.1lim ,21lim 00T xarctg x arctgx x 不存在所以→+→=π4.x x x 11lim-+→ 解:xx x 11lim-+→ =)11()11()11(lim++⋅++⋅-+→x x x x x=)11(lim++⋅→x x x x=111lim 0++→x x=21 5.xarctgxx ∞→lim解:因为 22ππ<<-arctgx 所以arctgx 为有界函数.而 xx 1lim∞→=0, 由有界函数与无穷小的乘积是无穷小知.x arctgxx ∞→lim =06.)(lim x x x x x -+++∞→解:)(lim x x x x x -+++∞→=xx x x x x x x x x x x x ++++++⋅-+++∞→)()(lim=xx x x x x x x x +++-+++∞→)(lim=xx x x x x x +++++∞→lim=xxx 111111lim+++++∞→=21 7.)1()1)(1(lim 2n n x x x +⋅⋅⋅++∞→解:)1()1)(1(lim 2n n x x x +⋅⋅⋅++∞→=x x x x x n n -+⋅⋅⋅++-∞→1)1()1)(1)(1(lim 2=xx n n --∞→11lim 2=x-11 三.已知a x f x a x x x x f x 存在,求且)(lim ,3,3,3)(3→⎩⎨⎧<+≥-=解:)(lim 03x f x +→=3lim3-+→x x =0,)(lim 03x f x -→=)(lim 03a x x +-→=3+a,)(lim 3x f x →存在,即:)(lim 03x f x +→=a x f x +==-→3)(lim 003所以. 3-=a .一元微积分学题库(5)极限存在准则 两个重要极限 无穷小的比较一、 判断题:1. 因为0→x 时,tgx~x,sinx~x,所以 0lim sin lim 330=-=-→→xxx xtgx x x x (F ) 2. 222)21(lim )2(lim e xx x xx x x =+=+•∞→∞→ (T)3. 1sin lim )sin (lim sin lim=⋅=⋅=→→→x xx tgx x x x tgx x tgx x x x πππ (F)二、计算下列极限1. xxx 5sin 2sin lim 0→解:x x x 5sin 2sin lim 0→=)525sin 522sin (lim 0⋅⋅→x x x x x =⋅→x x x 22sin lim 0⋅→x x x 5sin 5lim 052=522. xctgx x 0lim →解:xctgx x 0lim →=)cos sin (lim 0x x x x ⋅→=)sin (cos lim 0x x x x ⋅→=⋅→x x cos lim 0xxx sin lim0→=1 3. xx xx sin 2cos 1lim0-→解:x x x x sin 2cos 1lim 0-→=x x x x sin sin 2lim 20⋅→=x x x sin 2lim 0→=xx x sin lim 20→⋅=24. xx x 1sin lim ∞→解:x x x 1sin lim ∞→=x x x 11sinlim∞→=xx x11sinlim 01→=1.5. kx x x)11(lim -∞→解:kx x x )11(lim -∞→=)()()11(lim k x x x -•-∞→--+=k x x x --∞→--+])11[(lim =ke -6. xx x x )11(lim -+∞→解:x x x x )11(lim -+∞→=x x x x ]12)1([lim -+-∞→=xx x )121(lim -+∞→=1221)2111(lim +•-∞→-+x x x=)]2111()2111[(lim 221-+⋅-+•-∞→x x x x =2e . 二、 证明:当x →0时,下列各对无穷小量是等价的 1.x arctgx ~证明:设A=arctgx,则 x=tgA, 当0→x 时,0→A . xarctgxx 0lim→=tgA A A 0lim →=1 2.1-cosx ~ 22x证明:2cos 1lim 20x x x -→=2)2sin(2lim 220x x x ⋅→=2202)2(2)2sin(2lim x x x ⋅⋅→=222)2()2sin(lim x x x →=1. 四、证明:0)2124321(lim =-⋅⋅⋅⋅∞→nn n 用两边夹法则:(解法一)设F(n)= n n 2124321-⋅⋅⋅⋅>0 则2)2124321()(nn n F -⋅⋅⋅= 22222)2()12(4321n n -⋅⋅⋅⋅=1)2()12(14312122222--⋅⋅⋅-⋅-<n n )12()12()12(75353122+⋅--⋅⋅⋅⋅⋅⋅=n n n121+=n 设 g(n)=0, h(n)= 121+n , 则g(n)=0 < F(n) < h(n).显然0)(lim =∞→n g n ,0)(lim =∞→n h n ;由极限存在准则I 知:0)(lim =∞→n F n .证毕.(解法二):设F(n)=nn 2124321-⋅⋅⋅⋅>0 因为 n n n n 112-<--(n 为自然数), 所以有F(n)< 12254322124321+⋅⋅⋅⋅⋅-⋅⋅⋅⋅n n n n=n21 设 g(n)=0, h(n)= 121+n , 则g(n)=0 < F(n) < h(n).显然0)(lim =∞→n g n ,0)(lim =∞→n h n ;由极限存在准则I 知:0)(lim =∞→n F n .证毕.另解:设F(n)=nn 2124321-⋅⋅⋅⋅( 0<F(n)<1 ), 则F(n+1)= 122)(+⋅n nn F ,有F(n+1)<F(n).所以F(n)为单调有界数列,由极限存在准则II 知F(n)有极限.设A n F n =∞→)(lim .则有)1(lim +∞→n F n =))(1(lim n F n nn ⋅+∞→ )1(lim +∞→n F n =1+n n)(lim n F n ∞→⋅A=1+n nA , A=0. 即0)(lim =∞→n F n .证毕.五、设2112,,2,1,10n n n x x x n x -=⋅⋅⋅=<<+,证明数列}{n x 的极限存在,并求其极限.证明: 212n n n x x x -=+ 2211n n x x -+-=2)1(1n x --= ]))1(1(1[1221-----=n x 221)1(1---=n x 322)1(1---=n x = (1)21)1(1---=k x因为 ,101<<x 所以 ,10<<n x 因为 212n n n x x x -=+所以)1(1n n n n x x x x -=-+>0 即: n n x x >+1 所以}{n x 为单调有界数列,由极限存在准则II 知}{n x 有极限. A x n n =∞→lim , 则有 )2(lim lim 21n n n n n x x x -=∞→+∞→,A=2A--2A ,解得:A=1 或A=0(舍去,因为}{n x 为递增数列且01>x .)所以 1lim =∞→n n x一元微积分学题库(6) 函数的连续性一. 判断题1.21))12)(12(1...5*313*11(lim =+-+++∞→n n n ( T ) 2.设)(x f 在0x 点连续,则)lim ()(lim 0x f x f x x x x →→=( T )3.如果函数)(x f 在],[b a 上有定义,在],[b a 上连续,且<)(*)(b f a f 0,则在),(b a 内至少存在一点ξ,使得)(ξf = 0( T )4.若)(x f 连续,则)(x f 必连续. ( T )5.若函数)(x f 在],[b a 上连续且恒为正,则)(1x f 在],[b a 上必连续. ( T )6.若a x f x x =→)(lim 0,且0>a ,则在0x 的某一邻域内恒有0)(>x f .( F )7.0=x 是函数xx x f 1sin )(=的振荡间断点.( F )二. 填空题:1.-→ππx xx sin lim (1-)2. =∞→x x x sin lim ( 0 )3. =+--+-→123lim2312x x x x x x ( ∞ ) 4. 0=x 是xe xf 1)(=的第(二)类间断点.三. 求xx x x sin 10sin 1tan 1lim ⎪⎭⎫⎝⎛++→解:xx x x sin 10sin 1tan 1lim ⎪⎭⎫ ⎝⎛++→=()()1sin 1tan 1lim sin 1sec cot 0==++→ee x x xxx x 四. 求函数4tan()1()(π-+=x xx x f 在)2,0(π内的间断点,并判断其类型.解:)(x f 在()π2,0内的间断点有:4π=x ,43π=x ,45π=x ,47π=x因为 ),(lim 4x f x π→)(lim 45x f x π→不存在,,1)(lim 43=→x f x π1)(lim 47=→x f x π 所以43π=x ,47π=x 是)(x f 的第一类(可去)间断点; 4π=x ,45π=x 是)(x f 的第二类间断点.五. 设1lim )(2212+++=-∞→n n n x bxax x x f ,(1)求)(x f ;(2)当)(x f 连续时,求b a ,的值.解:(1) n n n n xx bx ax x f 2122231lim )(---∞→+++= ∴ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<+-=-+-=++>=112112111)(2x bx ax x b a x b a x x x f(2) )(x f 连续21)1(11lim)(lim 0101ba f x x f x x ++====+→+→1=+⇒b a21)1(11lim )(lim )01()01(ba f x x f x x -+-====--→--→ 1-=-⇒b a∴⎩⎨⎧==1b a .一元微积分学题库(7) 连续函数的性质一.计算下列极限: 1.2321lim4--+→x x x 解:原式= )321)(4()2)(921(lim4++-+-+→x x x x x =321)2(2lim4+++→x x x =342.22011lim xx x +-→ 解:原式=2220)11(lim x x x x ++→=)11(lim 20x x ++→=2 3.x x x sin lnlim 0→ 解:原式=)sin lim ln(0xxx →=01ln =4.ctgx x tgx )31(lim 0+→解:原式=tgxx tgx 33)31(lim +→=331])31(lim [tgx x tgx +→=3e5.145lim1---→x xx x解:原式=)45)(1()1(4lim1x x x x x +---→=xx x +-→454lim1=26.xe x x 1lim 0-→解:令t e x =-1,得)1ln(+=t x ,当0,0→→t x 时 原式=)1ln(limt tt +→=tt t 10)1ln(1lim+→=])1(lim ln[110tt t +→=1ln 1=e二.证明方程b x a x +=sin 至少有一个不超过b a +的正根(其中0,0>>b a ). 证明:设x b x a x f -+=sin )(,则)(x f 在],0[b a +上连续. 又0)0(>=b f ,0]1)[sin()(≤-+=+b a a b a f . 若0)(=+b a f ,则结论成立.若0)(<+b a f ,则由零点定理0)(),0(=+∈∃ξξf b a 使得. 三.设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得ξξ=)(f .证明:设x x f x F -=)()(,则)(x F 在]1,0[上连续. 又0)0(0)0()0(≥=-=f f F ,01)1()1(≤-=f F 若0)1(0)0(==F F 或,则结论成立.若0)1(0)0(<>F F 或,则由零点定理0)()1,0(=∈∃ξξf 使得. 四.设)(x f 在),(b a 上连续,且B x f x f bx ax ==-+→→)(lim )(lim 00,又存在),(1b a x ∈使 B x f >)(1.证明)(x f 在),(b a 上有最大值. 证明:取),(1B x f -=ε1δ∃, 当10δ<-<a x 时, B x f B x f -<-)()(1. 即 当),(1δ+∈a a x 时,)()(1x f x f <.2δ∃, 当02<-<-b x δ时, B x f B x f -<-)()(1. 即 当),(2b b x δ-∈时,)()(1x f x f <.若21δδ->+b a ,)(1x f 为最大值),(1b a x ∈.若21δδ-≤+b a ,)(x f 在],[21δδ-+b a 上连续,必有最大值. )()(10x f x f ≥, ],[210δδ-+∈b a x .∴在),(b a 上)(x f 取得最大值)(0x f .一元微积分学题库(8) 导数的概念一. 选择题:1. 设f ′ (x)存在,a 为常数,则ha h x f a h x f h )()(lim0--+→等于(C ). (A) f ′(x) ; (B) 0 ; (C) )('2x f a; (D) )('2x f .2. 在抛物线23x y =上,与抛物线上横坐标11=x 和22-=x 的两点连线平行的切线方程是(B ).(A) 12x-4y+3=0; (B)12x+4y+3=0; (C) 4x+12x+3=0; (D)12x+4y+1=0.3. 将一个物体铅直上抛,设经过时间t 秒后,物体上升的高度为22140gt t s -=,则物体在3秒时的瞬时速度为(B ).(A) g 2340-; (B) 40-3g ; (C) 0 ; (D) g 29120-.4. 若函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f 在x=0处 (B). (A) 连续且可导; (B )连续,不可导;(C )不连续; (D )都不是.二.设函数⎩⎨⎧>+≤=1,1,)(2x b ax x x x f 在处x=1可导,求a 和b. 解:)(x f 在x=1处可导∴)(x f 在x=1处连续,可得 )(lim )(lim 0101x f x f x x -→+→= 即 1=+b a (1)又)(x f 在x=1处可导, 可得1)1()(lim1)1()(lim0101--=---→+→x f x f x f x f x x 即 211lim 11lim20101=--=--+-→+→x x x b ax x x (2) 由(1),(2)得 2=a , 1-=b . 三.设5323)(xx x x f =,求)('x f .解: 67)(x x f =, 由幂函数的导数公式可得6167)('x x f =.四.已知⎩⎨⎧≥<=0,0,sin )(x x x x x f ,求)('x f .(提示:分段点x=0处的导数用导数的定义求)解: 当x=0时, 令0-=x h , 1sinhlim )0()0(lim 00==-+--→→hh f h f h h ;1lim )()0(lim 00==-+++→→h hh x f h f h h .所以 1)0('=f∴ ⎩⎨⎧≥<=0,10,cos )('x x x x f五.设f(x)在),(+∞-∞上有连续导函数.证明f(x)为偶函数的充要条件是:)('x f 为奇函数(充分性的证明用到不定积分的概念,只证必要性).证明: 对于∀ ),(0+∞-∞∈x 则有),(0+∞-∞∈-x 依题意 令0x x h -=有 h x f h x f x f h )()(lim)('0000-+=→;hx f h x f x f h )()(lim)('0000--+-=-→;)(x f 为偶函数).(')()(lim )('00000x f hx f h x f x f h -=--=-∴→一元微积分学题库(9) 求导法与复合函数求导一. 填空题:1. 曲线xx y 1-=与x 轴交点的切线方程是)1(2±=x y .2. 曲线2sin 2x x y +=在横坐标x=0点处的切线方程是x y 2=,法线方程是x y 21-=.3. 设x x y ln 1ln 1+-=,则2)ln 1(2'x x y +-=. 4. 设xxy 2sin =,则22sin 2cos 2'x x x x y -=. 5. 设)(cos )(sin 22x f x f y +=,则x x f x x f y 2sin )(cos '2sin )(sin ''22-=. 二. 求下列函数的导数.1. 52322+-=xx y .解: 3222246)'2()'3()'523('x x x x x x y +=-=+-=.2. x x y cos 2=.解: )'(cos cos )()'cos ('222x x x x x x y +==x x x x sin cos 22-=. 3. x x y cos sin ⋅=.解: x x x x y 2cos )'2sin 21()'cos (sin '==⋅=.4. )13(2+-=x x e y x .解: )'13()13('22+-++-=x x e x x e y x x )3213(2-++-=x x x e x )2(2--=x x e x .5. 110110+-=x x y .解: 2)110()110(10ln 10)110(10ln 10'+--+=x x x x x y2)110(10ln 102+⋅=x x . 三.求导数:1. x y 2ln 1+=,求'y . 解: xx x x x y 222ln 1211ln 2ln 121)'ln 1('+⋅⋅=+⋅+= xx x 2ln 1ln +=.2. 2ln x tgy =,求dx dy. 解: x x x x x x tg y csc sin 12cos 2sin 212sec 2121'2==⋅=⋅⋅=.3. t t y cos 1sin 1-+=,求dt dy.解: 2)cos 1()'cos 1()sin 1()cos 1()'sin 1('t t t t t y --⋅+--⋅+=222)cos 1(sin cos sin cos t t t t t ----= 2)cos 1(1sin cos t t t ---=. 四.已知)2523(+-=x x f y ,2arctan )('x x f =,求=x dx dy .解: 令2523+-=x x u ,则 22)2523()25()23(5)25(3)('''+-⋅+--+=⋅=x x arctg x x x u f u y ===140arctg dxdyx π.一元微积分学题库(10) 复合函数求导(二) 高阶导数一. 求下列函数的导数: 1. )21arcsin(2x y -=. 解:2222124)21(11)'21('xx x x x y --=--⋅-=.⎪⎪⎩⎪⎪⎨⎧<<--<<--=01,1210,1222x xx x2.x e y arcsin =.解: x xe xxe x y arcsin arcsin1121)'(arcsin '⋅-⋅=⋅=2arcsin2xx e x -=.3.3212ttarctgy +=. 解: 1444)21()21(82)212(11)'212('23623233233++++⋅+-=++⋅+=t t t t t t tt tty 1444822363+++-=t t t t .4.242arcsin x xx y -+=.解: 22422)2(11212arcsin'xx xx x y ---⋅⋅+=)4242(22arcsin22xx x x ---+=2arcsin x=.5.xey 1sin 2-=.解: xx e x x xe x y 1sin 21sin 222)1cos 1sin 2(1)'1sin ('--⋅⋅-⋅-=⋅-=xe xx 1sin 222sin-⋅=. 二. 求下列函数的二阶导数:1. )1ln(2x y -=.解: 212'x x y --=, 222222)1()1(2)1(22)1(2''x x x x x x y -+-=-⋅---=. 2. arctgx x y )1(2+=.解: 1211)1(2'22+=+⋅++=xarctgx x x xarctgx y , 2122''xxarctgx y ++=. 3. x xe y =.解: x x xe e y +=', x x x x x xe e xe e e y +=++=2''. 三. 求函数x x y ln =的n 阶导数. 解: 1ln '+=x y ,x y 1''=,21'''x y -=,3)4(2xy =, 一般地,可得 ⎪⎩⎪⎨⎧≥--=+=-2,)!2()1(1,1ln 1)(n x n n x y n n n . 四. 设)()()(2x a x x f ϕ-=,其中)('x ϕ在点a 的邻域内连续,求)(''a f . 解: )(')()()22()('2x a x x a x x f ϕϕ-+-=.ax x a x x a x a x a f x f a f a x a x --+-=--=→→)(')()()22(lim )(')('lim )(''2ϕϕ)('x ϕ在点a 的邻域内连续 ∴)(')('lim a x ax ϕϕ=→∴0)(lim )(')(')(lim2=-=--→→a x a ax x a x a x a x ϕϕ. )(20)(2lim )(''a x a f ax ϕϕ=+=→.一元微积分学题库(11) 隐函数求导法一. 求由下列方程所确定的隐函数y 的导数dxdy. 1. y xe y -=1.解: )'('yye xy e y +-=, 即 yyxee y +-=1' 其中y 是由方程y xe y -=1所确定的隐函数. 2. )(y x tg y +=.解: )(sec )'1('2y x y y +⋅+=, 即 221'yy y +-=.其中y 是由方程)(y x tg y +=所确定的隐函数. 3. 0922=+-xy y .解: 0'22'2=--xy y y y , 即 xy y y -='. 其中y 是由方程0922=+-xy y 所确定的隐函数. 二. 用对数函数求导法求下列函数的导数'y : 1. 22x ctg xtg y =.解: 先两边取对数(假定422πππk x k +<< . ,2,1,0±±=k ) 得 x tg xctg y 2ln 2ln ⋅=. 则)2ln 2csc 21222sec 2('122x tg xx ctg x ctg x y y -⋅⋅=. )2ln 2csc 21222sec 2(2'222x tg xx ctgx ctg x x tg y xctg -⋅⋅=. 当2)1(42πππ+<<+k x k 时,用同样的方法可得与上面相同的结果. 2. 55225+-=x x y .解: 先两边取对数(假定5>x ) 得)]2ln(51)5[ln(51ln 2+--=x x y .对上式两边对x 求导,得)2125151(51'12+⋅⋅--=x x x y y .即 ])2(5251[2551'2552+--+-=x x x x x y . 当5<x 时,用同样的方法可得与上面相同的结果.三. 求下列函数的二阶导数22dxyd .1. ⎩⎨⎧==tb y t a x sin cos .解:t a b t a t b dtdx dt dy dx dy cot sin cos -=-==, t a b t a t a b dtdx t a b dt d dx y d 32222sin sin 1csc 1)cot (-=-⋅=⋅-=.2. 已知⎩⎨⎧-==)()(')('t f t tf y t f x 这里)(''t f 存在且不为零.解: )(''t f 存在且不为零 ∴t t f t f t tf t f dx dy =-+=)('')(')('')(', )(''122t f dx y d =. 四. 设⎪⎩⎪⎨⎧+=+=tt t y tt x 4522,证明y=y(x)在t=0时dx dy 存在,并求其值. 证明: 原方程可化为 02=-x y . 当0=t 时0=x ,.0)0()(lim lim )0()(lim 0200=-==--+→→→hf h f h h h f h f h h h 一元微积分学题库(12) 微分一. 选择题:1. 已知x y 2tan =,则dy 等于(C).(A) 2tgxdx ; (B)tgxdx x212+ ; (C) xdx tgx 2sec 2 ; (D) x tgx 2sec 2. 2. 一元函数连续是可导的(A );一元函数可导是可微的(C ). (A )必要条件; (B )充分条件;(C )充要条件; (D )既非充分条件又非必要条件. 2. 函数x x x x x f ---=32)2()(不可微点的个数是(B ). (A ) 3; (B) 2; (C) 1; (D) 0. 二.填空题:1. 已知函数2)(x x f =在点x 处的自变量的增量2.0=∆x ,对应的函数增量y ∆的线性主部是8.0-=dy ,那末自变量的始值为2-. 2. )](ln ln[ln 32x y =,则dx xx dy ln ln ln 2-=.3. xdx c x d 3cos )sin 31(=+; dx e c e d xx22)2(--=+-;dx xc xd 1)2(=+; dx x c x d 11))1(ln(-=+-. 三. 利用微分求近似值:ο59cos .解: 180359ππο-=. 这里x ∆较小应用(p150)(2)式,得1803sin 3cos )1803cos(59cos πππππο⋅+≈+= 5151.01802321=⋅+=π. 四. 已知测量球的直径D 时有1%的相对误差,问用公式36D V π=计算球的体积时,相对误差有多少?解: 我们把测量D 时所产生的误差当作自变量D 的增量D ∆,那么,利用公式36D V π=来计算V 时所产生的误差就是函数V 的对应增量V ∆.当V∆很小时,可以利用微分dV 近似地代替增量V ∆,即D D D V dV V ∆⋅=∆⋅=≈∆22'π.其相对误差%3)(3=∆=∆=DVV V s v . 五. 求由方程t t s st =-+)ln()sin(所确定的隐函数s 在t=0处的微分ds .解: 对方程两边关于t 求导,得11')cos()'(=--++t s s st s t s . 当 t=0时, 得 1'2++-=s s s .又对原方程, 当 t=0时, 得 0ln =s 即 s=1.1111=++-=∴dt ds一元微积分学题库(13)中值定理一.选择题:1.下列函数中,满足罗尔定理条件的是(B ).(A)()[];1,1,132-∈-=x x x f (B)()()[];8,0,42∈-=x x x f(C)()];3,1[,3-∈=x x x f(D)()[].1,10,00,1sin 2-∈⎪⎩⎪⎨⎧=≠=x x x xx x f 2.对于函数()332x x f -=,在区间[]1,0上满足拉格朗日中值定理的点ξ是(A).(A)21; (B)31±; (C)31; (D)1. 二. 应用导数证明恒等式:()112arccos arcsin ≤≤-=+x x x π.(注意:对1±=x处的讨论)证:令()x x x f arccos arcsin +=当()1,1-∈x 时,()()()01111'arccos 'arcsin '22=---=+=xxx x x f()C x f =∴(C 为常数).特别地,取0=x ,则求得()20π==f C当1-=x 时,()221πππ=+-=-f当1=x 时,()2021ππ=+=f∴ 当[]1,1-∈x 时,2arccos arcsin π=+x x三. 设0>>b a ,证明:bba b a a b a -<<-ln .证:设()x x f ln =,在],[a b 上利用拉格朗日中值定理,有:()()a b b a b a <<==--ξξξ1'ln ln lnba 111<<ξ ∴bba b a a b a -<<-ln . 四. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根.证:反证法.设()b x x x f +-=33,且在区间[]1,1-上有两个以上实根,其中两个分别记为21,x x ,不妨设1121≤<≤-x x ,则()()021==x f x f ,由罗尔定理,在()1,1-内至少有一点ξ,使()0'=ξf . 而()33'2-=x x f 在()1,1-内恒小于0,矛盾.命题成立.五. 构造辅助函数,证明不等式e e ππ>.证:设()x x f ln =,则在区间[]π,e 上,()ππln =f ,().1=e f 根据拉格朗日中值定理,在()π,e 内至少存在一点ξ使()()()()πξξξππ<<==--e f e e f f ,1'即()ξππe -+=1ln 又πξ<<e()()e e e e ππξππ=-+<-+=∴11lnππ<∴ln e 即ππe e <六. 设函数()x f 和()x g 在[]b a ,上存在二阶导数,且(),0''≠x g()()()()0====b g a g b f a f ,证明(1) 在(a,b)内()0≠x g ;(2) 在(a,b)内至少存在一点ξ,使()()()()ξξξξ''''g f g f =. 证:(1)反证法.设(a,b )内存在一点1x 使0)(1=x g ,则在[]1,x a 上有g(a)=g(x 1)=0,由罗尔定理知在(a,x 1)内至少存在一点ξ1使'g (ξ1)=0. 同理在(x 1,b)内也至少存在一点ξ2使'g (ξ2)=0. ∵'g (ξ1)='g (ξ2)=0∴由罗尔定理,在(ξ1,ξ2)内至少存在一点3ξ使0)(''3=ξg ,这与0)(''≠x g 矛盾,故在()b a ,内()0≠x g . (3) 令)(')()(')()(x f x g x g x f x F -=由题设条件可知,F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理可知,存在()b a ,∈ξ使得()0'=ξF 即()()()()0''''=-ξξξξg f g f 由于()()0'',0≠≠ξξg g ,故()()()()ξξξξ''''g f g f =. 一元微积分学题库(14)罗必塔法则一. 求下列极限:1. xe e x x x cos 12lim 0--+-→解:原式=2cos lim sin lim00=+=--→-→xe e x e e xx x x x x 2. 0lim→x xxx 3sin arcsin -解:原式=0lim →x cos sin 311122=--x x x 0lim →x ()()xx x x xsin cos 9sin 321212232+---- =0lim →x xx sin 0lim→x ()xx 2232cos 931+----=61-3.0lim →x xctgx解:原式=0lim→x x xsin 0lim →x x cos =1 4.tgxx x ⎪⎭⎫ ⎝⎛+→1lim 0 解:令tgxx y ⎪⎭⎫⎝⎛=1,则ctgx x x tgx y ln ln ln -=-= 0lim +→x =y ln 0sin lim csc 1lim ln lim 20200===-+→+→+→xx x x ctgx x x x x ∴lim +→x y=e 0=1 5.⎪⎭⎫ ⎝⎛--→x x xx ln 11lim 1 解:原式=()()21111lim 1ln 11ln lim ln 11ln lim 2111=+=-+-+=---→→→xx xx x x x x x x x x x x x 一元微积分学题库(15)函数的单调性一. 填空题:1.函数y=(x-1)(x+1)3在区间)5.0,(-∞内单调减少,在区间),5.0(+∞内单调增加.2.函数2x ax x y -= (a>0)在区间)43,0(a 内单调增加,在区间),43(a a 内单调减少.3.函数7186223---=x x x y 在区间),3()1,(+∞⋃--∞内单调增加,在区间(-1, 3)内单调减少.4. 函数xx x y 6941023+-=在区间(0.5,1)内单调增加,在区间()),1()5.0,0(0,+∞∞- 内单调减少.二. 证明下列不等式: 1. 当4>x 时,22x x >.证:令22)(x x f x -=,则0)4(=f .x x f x 22ln 2)('-=,082ln 16)4('>-=f2)2(ln 2)(''2-=x x f ,显然,当4>x 时,0)(''>x f )('x f ∴在区间),4(+∞内单调增加. 又0)4('>f)('x f ∴在区间),4(+∞内恒大于零. 又0)4(=f)(x f ∴在区间),4(+∞内大于零.即当4>x 时,02)(2>-=x x f x 即22x x >. 2. 当20π<<x 时,x tgx x 2sin >+.证:令x tgx x x f 2sin )(-+= 2sec cos )('2-+=x x x f)1sec 2(sin sec 2sin )(''32-=+-=x x x tgx x x f 显然,当20π<<x 时,0)(''>x f)('x f ∴在)2,0(π内单调增加.又)0('f =0)('x f ∴在)2,0(π内大于零.)(x f ∴在)2,0(π内单调增加.而)0(f =0 )(x f ∴在)2,0(π内恒大于零. 即当20π<<x 时,02sin )(>-+=x tgx x x f即.2sin x tgx x >+ 3. 当20π<<x 时,x x x <<sin 2π证:令x x x f sin )(=,则2sin cos )('xxx x x f -=. 令x x x x g sin cos )(-=,则)20(0sin )('π<<<-=x x x x g .)(x g ∴在此区间内单调减少.)('x f ∴在此区间内也单调减少.而()02sin lim sin cos lim0'020=-=-=→→x xx xx x x f x x )('x f ∴在)2,0(π内小于0.)(x f ∴在)2,0(π内单调减少.∴xxx f sin )(=在区间的两端取得极大极小值.即ππ2)2(1sin lim)0(0===→f xxf xx x x <<∴sin 2π三. 证明方程sinx=x 只有一个根.证:令x x x f -=sin )(,则01cos )('≤-=x x f . )(x f ∴在),(+∞-∞内单调减少.∴f(x)=sinx-1=0至多有一个根.而f(0)=0, 0)(=∴x f 有且只有一个根. 即方程sinx=x 只有一个根.一元微积分学题库(16)函数的极值一. 填空题:1. 函数3443x x y -=在1=x 处取得极小值.2. 已知函数322)1()5(+-=x x y 当=x -1或5时,y=0为极小值;当x=0.5时, y=318881为极大值. 3.已知bx ax x x f ++=23)(在x=1处有极值-2,则a=0,b=-3,y=f(x)的极大值为2; 极小值为-2.二. 求下列函数的极值: 1. ()()23321--=x x y解:)12)(32()1(5'2++-=x x x y)188)(1(10''2-+-=x x x y令0'=y 得三驻点:5.0,5.1,1321-=-==x x x . 当1>x 时,0'>y ,当15.0<<-x 时,0'>y . 11=∴x 处为非极值点.当5.12-=x 时,,0''<y 取得极大值,其值为0. 当5.03-=x 时,0''>y ,取得极小值,其值为-13.5. 2. x e y x cos =解:)sin (cos 'x x e y x -=,令0'=y ,得驻点4ππ+=k x (k 为整数).x e y x sin 2''-=∴当42ππ+=k x 时,,0''<y x 在该处取得极大值,其值为4222ππ+=k e y 当452ππ+=k x 时,,0''>y x 在该处取得极小值,其值为45222ππ+-=k e y 三. 试问a 为何值时,函数x x a x f 2sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求出此极值.解:x x a x f 2cos 32cos )('+=,令0)('=x f ,则02cos 32cos =+x x a即x x a cos /2cos 32-=3π=x 时)(x f 取得极值.323cos /32cos 32=-=∴ππax x x x a x f 2sin 34sin 322sin 34sin )(''--=--=0332sin 343sin 32)3(''<-=--=πππf)(x f ∴在3π=x 处取得极大值,其值为23. 四. 设q px x x f +-=3)(,q p ,为实数,且0>p(1) 求函数的极值.(2) 求方程03=+-q px x 有三个实根的条件. 解:(1) p x x f -=23)(',令0)('=x f 得3p x ±=,而x x f 6)(''=31px =∴处取得极小值,其值为q p+-23)3(231px -=处取得极大值,其值为q p+23)3(2 (2)由上述的讨论我们可以看出,)(x f 仅有 ),3(),3,3(),3,(+∞---∞p p p p 三个单调区间,由介值定理及区间 单调性知:方程要有三个实根,必须满足在这三个单调区间上各有一个实根,也就是说,极小值应小于或等于0同时极大值应大于或等于0(等于0时含重根).即0320322323≥+⎪⎭⎫⎝⎛≤+⎪⎭⎫⎝⎛-q p q p即当23233232⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-p q p 时,方程有三个实根.五. 一个无盖的圆柱形大桶,已规定体积为V,要使其表面积为最小,问圆 柱的底半径及高应是多少?解:设圆柱的底半径为R,高为h ,则h R V 2π=,R V R Rh R S /2222+=+=πππ表0/222=-=R V R dRdS π表则3πV R = 32/RV R V h ==π 六. 设)(x f 在[]1,0上二阶可微,0)1()0(==f f ,且2)(max 10=≤≤x f x .证明存在 )1,0(∈ξ,使得()16''-≤ξf .证:将)1(),0(f f 在x 取得极大值处展开一阶泰勒公式(设此时0x x =)201000)0(!2)('')0(!1)(')()0(x f x x f x f f -+-+=ξ,010x <<ξ202000)1(!2)('')1(!1)(')()1(x f x x f x f f -+-+=ξ,120<<ξx 0)1()0(,0)(',2)(00====f f x f x f ,两式相加得:8)1)(('')(''20221-=-+x f x f ξξ 令()(){}21'',''m in )(''ξξξf f f =,则16212128)(''8)122)((''20020-≤+⎪⎭⎫ ⎝⎛--≤-≤+-x f x x f ξξ一元微积分学题库 (17) 最大值 最小值 凹凸性 拐点一、求下列函数的最大值和最小值: 1.)41( 3223≤≤--=x x x y-11234-2-11函数在所给区间内可导,因此可令 066)(2=-='='x x x f y 解得 1 ,0==x x而 104)4( ,1)1( ,0)0( ,5)1(=-==-=-f f f f 所以函数在区间]4,1[-上的最大值、最小值分别为104和-5. 2. )41( 718x -6223≤≤+-=x x x y-1123456-50-25255075100函数在所给区间内可导,因此可令18126)(2=--='='xxxfy解得)(1,3舍去-==xx而33)4(,47)3(,15)1(-=-=-=fff所以函数在区间]4,1[上的最大值、最小值分别为-47和-15.二、某车间靠墙壁盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大?解:设宽为)200(<<xx米,则长为x220-米,因此,面积为xxS)220(-=显然,当5=x时,面积取最大值502m.三、求数项),2,1(=nnn中的最大项.解:246810121.11.21.31.4令 0)(x )(1>=xx x f 则 )ln 1()(21x xx f x-='-解得唯一驻点,e x = ,并且)(x f 在区间e] ,0[上单调递增,在区间] ,[∞+e 上单调递减,而332<所以数项),2,1( =n n n 中的最大项为33. 四、求下列函数的凹凸区间与拐点: 1. 53x 523++-=x x y 解:-2246-20-101020函数在定义域) ,(∞+-∞内阶导数存在,并且 3106)(2+-='='x x x f y 1012)(-=''=''x x f y因此,当)65 ,(-∞∈x 时,0<''y ,曲线为凸的,当) ,65(∞+∈x 时,0>''y ,曲线为凹的,点)216995,65(是曲线的拐点.2. )1ln(2+=x y 解:-4-2240.511.522.53函数在定义域) ,(∞+-∞内阶导数存在,并且 12)(2+='='x xx f y 22)1()1)(1(2)(x x x x f y ++-=''='' 因此,当)1- ,(-∞∈x 时,0<''y ,曲线为凸的,当) 1 ,1(-∈x 时,0>''y ,曲线为凹的,当) ,1(∞+∈x 时,0<''y ,曲线为凸的,点)ln2 ,1(±是曲线的拐点.五、证明112+-=x x y 有三个拐点位于同一直线上. 证明:-4-224-1.5-1-0.5函数在定义域) ,(∞+-∞内二阶导数存在,并且。

经济数学总复习(01一元微积分题目与解答)

经济数学总复习(01一元微积分题目与解答)
n
x x0
答:数列极限:对于数列{ x n },如果存在某个确定的常数 A,对于预先给定的任意一 个正数 ,总存在一个正整数 N,使得对于满足 n>N 时的一切 x n ,不等式 x n A < 都成立,则称常数 A 是数列{ x n }的极限,或者称数列{ x n }收敛于 A,记为 lim xn A
n(n 1) 1 2 3 n 1 解: lim lim 2 2 2 n n 3n 2 n n 3n 5. lim(
x
1 2 3 n ( n n 2 3n
).
sin x 1 x sin ) ( x x
).
sin x 1 解: lim( x sin ) x x x
n
或 x n →A(n→∞) ,否则数列{ x n }是发散的。
《经济数学总复习题》
第 1 页 共 15 页
函数极限:
①如果对于每一个预先给定的正数 ,总存在一个正数 N ,使得对于适合 不等式 x N 的一切 x ,一定有
f x A
那 么 常 数 A 称 为 函 数 f x 当 x 时 的 极 限 , 记 为 lim f x A , 或
1 sin sin x x =0+1=1 lim lim 1 x x x x
6. lim(
n
n4 n ) ( n4
).
n 4 8n 8 n 4
n4 n 解: lim( ) n n 4
n 48 ) ( lim n4 n
做积分上限, [a, b] 叫做积分区间。
10.叙述微积分基本公式(即牛顿-莱布尼兹公式).

一元微积分A:期末练习题4

一元微积分A:期末练习题4

复习题4一、填空题(每小题3分)1.若C x dx x f +=⎰sin )( ,则='⎰dx x f )( . 2.⎰--+222 4)1( dx x x = .3.若反常积分dx x k)1(121⎰-收敛,则参数k 的取值范围是 .4.已知二阶常系数齐次线性微分方程有一个特解为x xe y 2=,则此微分方程 是 .二、单项选择题(每小题3分)1.设)0( 1)(ln >='x xx f ,则=)(x f ( ).A .C e x +--;B .C x +ln ; C .C e x +-;D .C e x +. 2.设)(x f 是R 上的连续周期函数,若对于任意x 恒有4 )( )(233 0=+⎰⎰-+x x dt t f dt t f成立,则)(x f 的周期是( ).A .2;B .3;C .4;D .6. 3.心形线)cos 1(θ-=a r (0>a )所围成的图形的面积是( ).A .22a π; B .2a π; C .232a π; D .22a π.三、计算题(解题要有必要的步骤)(每小题6分)1.若函数⎪⎩⎪⎨⎧=≠-=⎰-0,0,)1(1)(2032x a x dt e x x f x t ,在0=x 处连续, 求a 的值.2.求不定积分dx x ⎰-12cos .3.设⎪⎩⎪⎨⎧>+≤-=0,10,1)(x xxx x x f , 求定积分⎰-2)1(dx x f .4.求圆的渐伸线⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x )0(>a 相应于π≤≤t 0的一段弧的弧长.5.求微分方程 x x y y x ln =-' 满足初始条件11==x y 的特解. 6. 求微分方程x xe y y y 223=+'-''的通解.四、[8分]求微分方程0)(2='+''y y e x 满足初始条件00==x y ,210-='=x y 的特解.五、[8分]直径为20cm ,高为80cm 的圆柱形容器内充满压强为10N/cm 2的气体,设温度保持不变,要使气体体积缩小到原体积的1/3, 问要作多少功?(注,恒温下,压强p 与体积V 成反比)六、综合题(9分)(1)求曲线x e y =,该曲线过原点的切线以及y 轴所围成的封闭图形的面积;(2)求该图形绕x 轴旋转一周所成的旋转体的体积.七、证明题(本题6分)设)(x f 在],[b a 上连续,且0)(>x f ,证明:在),(b a 内有唯一的ξ,使下式成立:⎰⎰=badx x f dx x f ξξ)(1)(.。

01一元函数微积分复习与进阶习题(1)

01一元函数微积分复习与进阶习题(1)

1 2⎨(1)⎪d t(2)⎪d x201 一元函数微积分复习与进阶习题【题 1】验证下列函数是相应的微分方程的解,是特解还是通解?(1)y = sin 2x, y''+ 4 y = 0(2)y =C1 cos ax +C2 sin ax, y''+a y = 02(3)y=C eλ1x+C eλ2 x,y'-(λ+λ)y'+λλy=0,λ≠λ1 2 1 2 1 2 1 2 (4)y =C eλx+C eλx,y '- 2λy'+λ2 y = 0(5)y =Ce3x (C 为任意常数), y''-9 y= 0x e x x(6)y=x(⎰1dx +C), xy'-y =xex⎧d 2 x+=【题 2】验证函数x(t) = cos t+ 2sin t -2t cos t是初值问题⎪dt 2x 4 sin t的解。

【题 3】求下列初值问题的解:⎧d x= cosωt(ω≠ 0, 为常数)⎨⎪⎩x(0) =10⎪⎩x(0) = 1, x'(0) = 0⎧d2 y=⎨ 12x2⎪⎩y(0)=0,y'(0)=1⎧y'''=x(3)⎨y(0) =a , y'(0) =a , y '(0) =a⎩0 1 2【题 4】化下列方程为齐次方程,并求出通解:(x +y)d x +(3x + 3y - 4)d y = 0y (1 x ) 【题 5】 指出下列微分方程的阶. (1)dy =xy 2 + y 6dx(2) ( y ')2+ 2( y ')6 - x 5 = 0(3) y ' + 2( y ')3+ y 2 + x 5 = 0【题 6】求解下列微分方程-(1)微分方程 y ' = 的通解是————。

x (2)微分方程 y d x + (x 2 - 4x )d y = 0 的通解为————。

微积分试题集精编版

微积分试题集精编版

微积分试题集一季一、计算下列极限:(每题5分,共10分) 4.若0x →时1sin x x 与是等价无穷小,求常数k 的值.5. 设sin 2sin ,0,()3,0,1,0sin x bx x x x x f x x a x x⎧+<⎪⎪⎪==⎨⎪-⎪>⎪⎩在0x =处连续,求,a b 的值.二、导数与微分:(每题5分,共25分) 1. 设sin ,x y x =求 2.x dy π=2.求由方程yx x y e e +=所确定的曲线()y y x =在0x =处的切线方程.3.利用微分近似计算,求.4.设2210,sin ,()ln(1)0x x x f x x x ⎧<⎪⎪=⎨⎪⎪+≥⎩ 求 ().f x '5. 求曲线5235()33f x x x =+的拐点.三、计算下列各题:(每小题8分,共16分) 1. 设某商品的价格P 与需求量Q 的关系为280P Q-=,(1) 求4=P时的需求弹性,并说明其经济意义.(2)求当价格P 为何值时,总收益R 最大?并求出此时的需求价格弹性d E .2. 设()F x 为()f x 的原函数,且()f x =,已知2(1),F e π=()0,F x >求().f x四、证明题:(每小题5分,共10分) 1. 当0x >时, 证明:(1)ln(1)arctan .x x x ++>.2. 设)(x f '连续且()lim8x af x x a→'=-,试证明a x =是)(x f 的极小值点。

二季一、填空题(每小题4分,本题共20分) ⒈函数24)2ln(1)(x x x f -++=的定义域是 .⒉若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x xx x f ,在0=x 处连续,则=k .⒊曲线x y =在点)1,1(处的切线方程是.⒋='⎰x x s d )in (.⒌微分方程x y y x y sin 4)(53='''+''的阶数为 .二、单项选择题(每小题4分,本题共20分) ⒈设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x ⒉若函数f (x )在点x 0处可导,则( )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 ⒊函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 ⒋=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C.c x f x +')(212D. c x f x +'+)()1( ⒌下列微分方程中为可分离变量方程的是( ) A. y x x y +=d d ; B. y xy x y +=d d ; C. x xy x y sin d d +=; D. )(d d x y x xy +=三、计算题(本题共44分,每小题11分)⒈计算极限4586lim 224+-+-→x x x x x .⒉设x y x 3sin 2+=,求y d .⒊计算不定积分x x x d cos ⎰⒋计算定积分xx x d ln 51e1⎰+四、应用题(本题16分)欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?微积分初步期末试题选(一)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是.(2)函数24)2ln(1)(x x x f -++=的定义域是 .(3)函数74)2(2++=+x x x f ,则=)(x f.(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .(5)函数x x x f 2)1(2-=-,则=)(x f.(6)函数1322+--=x x x y 的间断点是.(7)=∞→xx x 1sinlim.(8)若2sin 4sin lim 0=→kxxx ,则=k.2.单项选择题、(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数(2)下列函数中为奇函数是( ).A .x x sinB .2e e xx +- C .)1ln(2x x ++D .2x x +(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .1- (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点3.计算题(1)423lim 222-+-→x x x x .(2)329lim 223---→x x x x(3)4586lim 224+-+-→x x x x x1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是.(2)曲线x x f e )(=在)1,0(点的切线方程是.(3)已知x x x f 3)(3+=,则)3(f '=.(4)已知x x f ln )(=,则)(x f ''=.(5)若x x x f -=e )(,则='')0(f.2.单项选择题 (1)若x x f x cos e )(-=,则)0(f '=().A. 2B. 1C. -1D. -2(2)设y x =lg2,则d y =().A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx (3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x fd 2sin )2(cos 2' D .x x x f d22sin )2(cos '-(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ). A .23cos a x + B .a x 6sin + C .x sin - D .x cos3.计算题 (1)设xx y 12e=,求y '. (2)设x x y 3cos 4sin +=,求y '.(3)设xy x 2e1+=+,求y '. (4)设x x x y cos ln +=,求y '.1.填空题 (1)函数y x =-312()的单调增加区间是.(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .2.单项选择题 (1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 (2)满足方程0)(='x f 的点一定是函数)(x f y =的( ).A .极值点B .最值点C .驻点D . 间断点 (3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上.(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .x sinB .xe C .2xD .x -33.应用题(1)欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?(2)用钢板焊接一个容积为43m 的正方形的开口水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?1.填空题 (1)若)(x f 的一个原函数为2ln x ,则=)(x f .(2)若⎰+=c x x x f 2sin d )(,则)(x f . (3)若______________d os ⎰=x x c(4)=⎰-2de x.(5)='⎰x x d )(sin.(6)若⎰+=c x F x x f )(d )(,则⎰=-x x f d )32( .(7)若⎰+=c x F x x f )(d )(,则⎰=-x x xf d )1(2.(8).______d )2cos (sin 112=+-⎰-x x x x x(9)=+⎰e12d )1ln(d d x x x .(10)x x d e 02⎰∞-=.2.单项选择题(1)下列等式成立的是( ). A .)(d )(d x f x x f =⎰ B .)(d )(x f x x f ='⎰C .)(d )(d dx f x x f x=⎰ D .)()(d x f x f =⎰(2)以下等式成立的是( ) A . )1d(d lnxx x = B .)(cos d d sin x x x =C .x xxd d = D .3ln 3d d 3xxx =(3)=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C.c x f x +')(212D. c x f x +'+)()1( (4)下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ(5)设)(x f 是连续的奇函数,则定积分=⎰aax x f -d )(( )A .0B .⎰-d )(ax x f C .⎰ax x f 0d )(D .⎰-d )(2ax x f(6)下列无穷积分收敛的是( ). A .⎰∞+0d in x x s B .⎰∞+1d 1x xC .⎰∞+1d 1x xD .⎰∞+-02d e x x3.计算题(1)x x d )12(10⎰- (2)x x x d 1sin2⎰(3)c x d x xxx x+==⎰⎰e2e 2d e(4)x x x d )e 4(e 22ln 0+⎰(5)xx x d ln 51e1⎰+ (6)x x x d e 10⎰(7)⎰π20d sin x x x微积分初步期末试题选(五)1.填空题 (1)已知曲线)(x f y =在任意点x 处切线的斜率为x1,且曲线过)5,4(,则该曲线的方程是 .(2)由定积分的几何意义知,x x a ad 022⎰-= .(3)微分方程1)0(,=='y y y 的特解为 . (4)微分方程03=+'y y 的通解为 .(5)微分方程x y xy y sin 4)(7)4(3=+''的阶数为 .2.单项选择题(1)在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ).A .y = x 2+ 3 B .y = x 2+ 4 C .22+=x y D .12+=x y(2)下列微分方程中,( )是线性微分方程. A .y y yx '=+ln 2 B .x xy y y e 2=+'C .y y x y e ='+''D .x y y x y x ln e sin ='-''(3)微分方程0='y 的通解为( ). A .Cx y = B .C x y += C .C y = D .0=y(4)下列微分方程中为可分离变量方程的是( )A. y x x y +=d d ;B. y xy x y+=d d ; C. x xy x y sin d d +=; D. )(d d x y x xy +=三季一、 选择题 (选出每小题的正确选项,每小题2分,共计10分) 1.10lim 2xx -→=_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这是一套期末测试题,基本上就是上学年的试卷,有修改。大家可以自己做一下,测评一下。注意,此次考试题目完全以课后作业和总习题为原型,所以大家要以基本题目为根本。
一、计算下列各题
1、计算下列积分(每题4分,共20分):
(1) ;(2) ;
(3) ;(4) .
பைடு நூலகம்(5)
2、求解下列微分方程:(每小题5分,共25分)
三、证明题(每小题5分,选做两道。)
1.设函数 在 上连续,且
试证在 内至少存在两个不同的点 使
2.设 在区间 上连续导数,且 ,若 ,证明:
.
3.设函数 是 上的连续,在 内可导,且有 ,试证:必有 ,使 .
四、附加题(10分)
1.设 是 上的连续函数,证明:存在 ,使得 .
2.设函数 和 在 上连续,证明: .
1.过坐标原点作曲线 的切线,该切线与曲线 及 轴围成平面图形 .
(1)求 的面积 ;(2)求 绕直线 旋转一周所得旋转体的体积.
2.一物体按规律 作直线运动,介质的阻力与速度的平方成正比,即 ,其中 为物体的运动速度, 为比例常数。计算物体由 移至 时,克服介质阻力所作的功.(注:题目中的 和 均为正的常数).
(1)求微分方程 的通解;(2)求微分方程 满足 的特解.
(3)求微分方程 的通解。
(4)求初值问题 的解.
(5)设函数 满足 ,求 .
3、求下列极限(每小题5分,共10分)
(1) ;(2)设 ,求极限
4、(8分)求微分方程 满足 , 的特解.
5、(6分)若 ,对 ,求 .
6、(6分)设 ,求 .
二、应用题(第一小题9分,第二题6分,共15分)
相关文档
最新文档