全等三角形习题精选(含答案)

合集下载

全等三角形习题精选(含答案)

全等三角形习题精选(含答案)

全等三角形习题精选(含答案)1.在图中,已知△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF的度数。

2.在图中,已知△AOB中,∠B=30°,将△AOB绕点O 顺时针旋转52°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为多少?3.在图中,已知△ABC中,∠A=90°,D、E分别是AC、BC上的点,若△AADB≌△EDB≌△EDC,则∠C的度数是多少?4.在图中,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=?5.已知,如图所示,AB=AC,AD⊥BC于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD的长度是多少?6.在图中,Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的垂线BC、CE,垂足分别为D、E,若BD=3,CE=2,则DE的长度是多少?7.在图中,AD是△XXX的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF,交AD于G,需要证明AD与EF垂直。

8.在图中,△ABC中,AD为∠BAC的角平分线,DE⊥XXX于E,DF⊥AC于F,△ABC的面积是28cm,AB=20cm,AC=8cm,求DE的长度。

9.已知,如图所示:AB=AE,∠B=∠E,∠BAC=∠EAD,∠XXX∠DAF,需要证明AF⊥CD。

10.在图中,已知AD=BD,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点H,需要判断BH是否等于AC,并解释原因。

11.在图中,已知AD为△ABC的高,E为AC上一点,BE交AD于F,且有ABF=AC,FD=CD,需要证明BE⊥AC。

12.在图中,△DAC、△EBC均是等边三角形,AF、BD分别与CD、CE交于点M、N,需要证明:(1)AE=BD(2)CM=CN(3)△CMN为等边三角形(4)MN∥BC。

全等三角形经典50题(含答案)

全等三角形经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACAD BC BACDF21E5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD8. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB AD BC A9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。

∵BC=ED,CF=DF,∠BCF=∠EDF。

∴三角形BCF全等于三角形EDF(边角边)。

∴BF=EF,∠CBF=∠DEF。

连接BE。

在三角形BEF中,BF=EF。

∴ ∠EBF=∠BEF 。

又∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又EF ∥AB∴∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CB ACDF21 E证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDE∴∠ABC =2∠E∴∠ABC =2∠C12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC又∵AC =AC∴△ADC ≌△AFC (SAS )CD B A∴AD =AF∴AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

全等三角形考题精选(带答案)

全等三角形考题精选(带答案)

DO CB AA BCDEF全等三角形一、选择1、(2008 XX)如图,有两个三角锥ABCD 、EFGH ,其中甲、乙、丙、丁分别表示❒ABC 、❒ACD 、❒EFG 、❒EGH 。

若∠ACB =∠CAD =∠EFG =∠EGH =70︒,∠BAC =∠ACD =∠EGF =∠EHG =50︒,则下列叙述何者正确?( )(A)甲、乙全等,丙、丁全等(B) 甲、乙全等,丙、丁不全等 (C) 甲、乙不全等,丙、丁全等(D) 甲、乙不全等,丙、丁不全等2.(2008年XX 省无锡市)如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( ) A.55 B.45 C.40 D.353、(2008XX 潍坊)如图, Rt △ABC 中,AB ⊥AC ,AD ⊥BC ,BE 平分∠ABC ,交A D 于E ,EF ∥AC ,下列结论一定成立的是( )A.AB =BFB.AE =EDC.AD =DCD.∠ABE =∠DFE ,二、填空1.(2008佳木斯市3)如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可).2.(2008年XX 省XX 市)已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB =________度.3、(2008年荷泽市)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD=BE; ② PQ ∥AE ; ③ AP=BQ; ④ DE=DP; ⑤ ∠AOB=60°.G 50︒ AB CDE F 70︒50︒ 70︒50︒70︒50︒70︒ H甲乙丙丁ABCE DO PQ恒成立的结论有______________(把你认为正确的序号都填上).4.(2008海南省)已知在△ABC 和△A 1B 1C 1中,AB=A 1B 1,∠A=∠A 1,要使△ABC ≌△A 1B 1C 1,还需添加一.个.条件,这个条件可以是.5、(2008 湖北 天门)如图,已知AE =CF ,∠A =∠C ,要使△ADF ≌△CBE ,还需添加一个条件____________________(只需写一个).6.(08仙桃等)如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD∆与ABC ∆ 全等,那么点D 的坐标是.三、解答题1、(2008XX 太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片ABC 和DEF 。

全等三角形经典题型50题(含答案)

全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 AD延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即 BE=AC=2 在三角形 ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=512.已知:D 是 AB 中点,/ ACB=90 °,求证: CD - AB2为BC=ED,CF=DF, / BCF= / EDF 。

所以 三角形BCF 全等于三角形 EDF (边角边)。

所以BF=EF, / CBF= / DEF 。

连接 BE 。

在三角形 BEF 中,BF=EF 。

所以 / EBF= / BEF 。

/ ABE= / AEB 。

所以 AB=AE 。

在三角形 ABF 和 / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF 。

所以/ C= / D , F 是 CD 中点,求证:/ 1 = / 2证明:连接BF 和EF 。

因又因为 / ABC= / AED 。

所以 三角形 AEF 中, AB=AE,BF=EF, 三角形ABF 和三角形AEF 全等。

所以 / BAF= / EAF ( / 仁/ 2)。

A3因为 EB = EF ,CE = CE , 所以△ CEBCEF 所以/ B = / CFE 因为/ B +/ D = 180° / CFE + / CFA = 180° 所以/ D = / CFA 因为 AC 平分/ BAD 所以/ DAC = / FAC 又因为 AC = AC 所以△ ADC 也厶AFC ( SAS ) 所以AD = AF 所以AE = AF + FE = AD + BE12.如图,四边形 ABCD 中,AB // DC ,BE 、CE 分别平分/ ABC 、/ BCD ,且点 E 在AD 上。

全等三角形题库(精品)(70题)-含答案

全等三角形题库(精品)(70题)-含答案

全等三角形题库(70题)一、解答题(本大题共70小题,共560.0分)1.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD.AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何.【答案】解:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,{BD=AC∠ABE=∠ACF AB=CG,∴△ABD≌△GCA(SAS),∴AD=GA,(2)结论:AG⊥AD.理由:∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.【解析】(1)先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD= GA,∠BAD=∠G;(2)结论:AG⊥AD.由(1)可以得出∠GAD=90°,进而得出AG⊥AD.本题考查了全等三角形的判定及性质的运用、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会利用等量代换证明垂直,属于中考常考题型.2.如图,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;【答案】解:作DM⊥AF于M,EN⊥AF于N,∵BC⊥AF,∴∠BFA=∠AMD=90°,∵∠BAD=90°,∴∠1+∠2=∠1+∠B=90°,∴∠B=∠2,在△ABF与△DAM中,{∠BFA=∠AMD ∠B=∠2AB=AD,∴△ABF≌△DAM(AAS),∴AF=DM,同理,△ACF≌△EAN(AAS),AF=EN,∴EN=DM,∵DM⊥AF,EN⊥AF,∴∠GMD=∠GNE=90°,在△DMG与△ENG中,{∠DMG =∠ENG ∠DGM =∠EGN DM =EN, ∴△DMG≌△ENG(AAS),∴DG =EG ,即点G 是DE 的中点.【解析】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.作DM ⊥AF 于M ,EN ⊥AF 于N ,根据余角的性质得到∠B =∠2,根据全等三角形的性质得到AF =DM ,同理AF =EN ,求得EN =DM ,由全等三角形的性质得到DG =EG ,于是得到点G 是DE 的中点.3. 如图,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.【答案】解:猜想:DE +BF =EF.证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF = 12∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,{∠4=∠1AB =AD ∠ABG =∠ADE, ∴△AGB≌△AED(ASA),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,{AG =AE ∠GAF =∠EAF AF =AF, ∴△AGF≌△AEF(SAS),∴GF =EF ,∴DE +BF =EF .【解析】本题考查了全等三角形的判定与性质,解题的关键是作辅助角,将DE 和BF 放在一起,便于数量关系的猜想和证明.通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.4. 已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD≌△ACE ;②直接判断结论BC =DC +CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.【答案】解:(1)①∵△ABC 和△ADE 是等边三角形,∴∠BAC =∠DAE =60°,AB =BC =AC ,AD =DE =AE .∴∠BAC −∠DAC =∠DAE −∠DAC ,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;【解析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出BC= DC+CE;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE= AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD−AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+DF=AB+BE+DF=AB+2BE,∴AD−AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,{BH=BG∠OBH=∠OBG OB=OB,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,{∠DOH=∠DOF OD=OD∠ODH=∠ODF,∴△ODH≌△ODF(ASA),∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【解析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2.(1)求证:△ABC≌△ADE;(2)找出图中与∠1、∠2相等的角(直接写出结论,不需证明).【答案】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE,∴△ABC≌△ADE(SAS);(2)解:∵△ABC≌△ADE,∴∠B=∠D,∵∠AMB=∠DMF,∴∠1=∠MFD,∵∠MFD=∠NFC,∴∠1=∠NFC,∴与∠1、∠2相等的角有∠NFC,∠MFD.【解析】(1)根据等式的性质可得∠BAC=∠DAE,然后利用SAS判定△ABC≌△ADE;(2)利用三角形内角和定理可得∠1=∠MFD,再由对顶角相等可得∠1=∠NFC.此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD−BE;(3)当直线MN绕点C旋转到图(3)的位置时,请写出DE,AD,BE之间的等量关系.【答案】解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE−CD=AD−BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE−AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD−CE=BE−AD.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE−CD=AD−BE;(3)DE=BE−AD,与(2)同理,即可证明:DE=BE−AD.8.如图,已知∠AOB=∠COD=90°,AB=CD,OA=OC.求证:(1)△AOB≌△COD(2)DE=BF.【答案】证明:(1)∵∠AOB=∠COD=90°,∴在Rt△AOB和Rt△COD中,{AB=CDOA=OC,∴Rt△AOB≌Rt△COD(HL),即△AOB≌△COD;(2)∵△AOB≌△COD∴OD=OB,∠A=∠C,∵∠AOB=∠COD=90°∴∠AOB−∠EOF=∠COD−∠EOF,即∠AOE=∠COF在△AOE和△COF中,{∠AOE=∠COF OA=OF∠A=∠C,∴△AOE≌△COF(ASA),∴OE=OF,∵OD=OB,∴OD−OE=OB−OF,即DE=BF.【解析】(1)根据题意,利用HL定理可以证明结论成立;(2)根据(1)中的结论,再根据三角形全等的性质和判定,可以证明结论成立.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用数形结合的思想解答.9. 以点A 为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD ,CE .(1)试说明:BD =CE ;(2)延长BD 交CE 于点F ,求∠BFC 的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】解:(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,∠BAD =∠EAC =90°,AD =AE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE .(2)∵△ADB≌△AEC ,∴∠ACE =∠ABD ,而在△CDF 中,∠BFC =180°−∠ACE −∠CDF ,又∵∠CDF =∠BDA ,∴∠BFC =180°−∠DBA −∠BDA =∠DAB =90°.(3)BD =CE 成立,且两线段所在直线互相垂直,即∠BFC =90°.理由如下:∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠EAD =90°,∵∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAD =∠CAE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE ,∠ACE =∠DBA ,【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可以得到∠BFC= 180°−∠ACE−∠CDF=180°−∠DBA−∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.10.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【答案】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵{AE=AB∠EAC=∠BAF AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,所以EC⊥BF.【解析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF 是证明的关键,也是解答本题的难点.11.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFG AF=AF,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA ∠CGA=∠CDA AG=AD,∴△CGA≌△CDA(AAS),∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【解析】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据题意和题目中的条件可以找出△BAC≌△DAE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.12.如图1,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,作FG⊥BC于点G;(1)求证:BE=CG(2)探究线段BE、EN、DN间的等量关系,并说明理由;(3)如图2,当点E运动到BC的中点时,若AB=6,求MN的长.【答案】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,{∠ABE=∠EGF ∠BAE=∠GEF AE=EF,∴△ABE≌△EGF(AAS),∴AB=EG,∴BE=CG.(2)解:结论:EN=BE+DN.理由:如图1中,延长EB到K,使得BK=DN.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABC=∠ABK=90°,∵DN=BK,∴△ADN≌△ABK(SAS),∴AK=AN,∠BAK=∠DAN,∵EA=EF,∠AEF=90°,∴∠EAF=45°,∴∠KAE=∠BAK+∠BAE=∠DAN+∠BAE=45°,∴∠EAK=∠EAN=45°,∵AE=AE,∴△EAK≌△EAN(SAS),∴EN=EK,∵EK=BK+BE=DN+BE,∴EN=BE+DN.(3)解:如图2中,作FK⊥AB于K,交CD于J.∵BE=CE=3,∴FG=BE=CG=3,∵AB//CD,∴∠FKB=∠FJC=90°,∵∠G=∠JCG=90°,∴四边形FGCJ是矩形,∵CG=FG,∴四边形FGCJ是正方形,CG=FG=3,∵EC=CG,CM//FG,∴CM=12FG=32,∴JM=CJ−CM=32,∵四边形BGFK是矩形,∴FK=BG=9,BK=FG=AK=3,∵JN//AK,∴NJAK =FJFK,∴NJ3=39,∴NJ=1,∴MN=NJ+JM=1+32=52.【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等即可解决问题.(2)结论:EN=BE+DN.如图1中,延长EB到K,使得BK=DN.构造全等三角形解决问题即可.(3)如图2中,作FK⊥AB于K,交CD于J.分别求出NJ,JM即可解决问题.此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.13.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60゜,则∠AFB=________;(2)如图2,若∠ACD=α,则∠AFB=_____________(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.【答案】解:(1)120°;(2)180°−α;(3)∠AFB=180°−α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB,∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°−∠ECB=180°−α,即∠AFB=180°−α.【解析】本题考查了全等三角形的性质和判定,三角形外角性质,三角形的内角和定理(1)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(2)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(3)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CEB+∠CBE,根据三角形内角和定理求出即可.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°−60°=120°,故答案为:120°;(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=180°−∠ACD=180°−α,故答案为:180°−α;(3)见答案.14.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】解:(1)AE=BD,AE⊥BD;(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC−∠CDE=135°−45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.【解析】【分析】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(1)结论:AE=BD,AE⊥BD.如图1中,延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD(SAS),即可解决问题;(2)结论:AD=2CM+BD,只要证明△ACE≌△BCD(SAS),即可解决问题.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)见答案.15.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,D在线段BC上,E是线段AD上一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:∠CAE=∠CBF;(2)当A、E、F三点共线时,取AF的中点G,连接CG,求证:AE2+EF2=4CG2;(3)如图3,若AC=BC=3√3,∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.【答案】(1)证明:∵△ABC,△ECF都是等腰直角三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF;(2)解:延长AC至点H,使CH=AC,连接HF,BE.由(1)得:△ACE≌△BCF,∴AE=BF,且∠CAD=∠DBF,∵∠ADB=∠CAD+∠ACD=∠DBF+∠DFB,∴∠DFB=∠ACD=90°,∴BF2+EF2=BE2,易证△CEB≌△CFH,∴BE=HF=2CG,∴BF2+EF2=BE2=4CG2;(3)解:过点F作FH⊥BC于H,如图3所示:∵△ABC是等腰直角三角形,∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAD=15°,∴∠CAE=45°−15°=30°,∴∠ACE=∠CAE=30°,∴AE=CE=CF,同(1)得:△ACE≌△BCF(SAS),∴BF=AE,∠ACE=∠BCF=30°,∴CF=BF,∴∠BCF=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=12BC=3√32,FH=√33CH=32,CF=BF=2FH=3,∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°−30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=3,∴S△DEF=S△ECD+S△CDF−S△ECF=√34×32+12×3×32−12×3×3=9√3−94.【解析】(1)证明△ACE≌△BCF(SAS),即可解决问题;(2)延长AC至点H,使CH=AC,连接HF,BE,由(1)得△ACE≌△BCF,进而得到BF2+ EF2=BE2,易证△CEB≌△CFH,即可解决问题;(3)过点F作FH⊥BC于H,如图3所示,同(1)得△ACE≌△BCF,再证明△BCF是底角为30°的等腰三角形,再求出CH,FB,CF的长,然后根据S△DEF=S△ECD+S△CDF−S△ECF 计算即可.本题属于三角形综合题,考查了等腰直角三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.平面直角坐标系中,A(a,0),B(b,b),C(0,c),且满足:√a−4+(2b−a−c)2+|b−c|=0,E、D分别为x轴和y轴上动点,满足∠DBE=45°.(1)求A、B、C三点坐标;(2)如图1,若D为线段OC中点,求E点坐标;(3)当E,D在x轴和y轴上运动时,试探究CD、DE和AE之间的关系.【答案】解:(1)∵√a−4+(2b−a−c)2+|b−c|=0,∴a=4,b=c,2b−a−c=0,∴b=4,c=4,∴点A(4,0),点B(4,4),点C(0,4);(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,∵点A(4,0),点B(4,4),点C(0,4),∴OA=OC=BC=AB=4,∵D为线段OC中点,∴CD=DO=2,∵将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∴BD=BH,∠CBD=∠HBA,CD=AH=2,∵∠DBE=45°,∴∠CBD+∠EBA=45°,∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∵OH=OA+AH=4+2=6,∴DE=EH=6−OE,∵DE2=OD2+OE2,∴(6−OE)2=4+OE2,∴OE=8,3,0);∴点E坐标为(83(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,由(2)可知:DE=EH,AH=CD,∴DE=AE+AH=AE+CD,如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴AE=AH+EH=CD+DE;如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴CD=AH=AE+EH=AE+DE.【解析】(1)由非负性可求a,b,c的值,即可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAH,可得BD=BH,∠CBD=∠HBA,CD= AH=2,由“SAS”可证△DBE≌△HBE,可得DE=EH,由勾股定理可求OE的长,即可求E点坐标;(3)分三种情况讨论,由旋转的性质,全等三角形的性质可求解.本题是四边形综合题,考查了非负性,正方形的性质,旋转的性质,全等三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.17.如图,在锐角三角形AOB中,分别以OA、OB为腰在△AOB外作等腰直角三角形OAE和等腰直角三角形OBD.(1)如图1,连接BE、AD,求证:BE=AD.(2)如图2,以O为原点、AB边上的高OC所在的直线为y轴.建立平面直角坐标系,连接ED与y轴交于点F.①若A点坐标为(n,m),请用n、m表示;E点的坐标(________,________)及D点的横坐标为________.②△AOB的面积S△AOB与△EOD的面积S△EOD有什么数量关系?请写出你的结果,并给出证明.【答案】解:(1)∵△OAE、△OBD均为等腰直角三角形,∴OD=OB,OA=OE,∠DOB=∠AOE=90°.∴∠EOA+∠AOB=∠BOD+∠AOB,即∠EOB=∠AOD.在Rt△EOB和Rt△AOD中,∴Rt△EOB≌Rt△AOD.∴BE=AD.(2)①m;−n;−m.②S△AOB=S△EOD,证明如下:如图所示:过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M.∵∠EOD+∠DOM=180°,∠EOD+∠NOB=180°,∴∠DOM=∠NOB.在△OBN和△ODM中,∴△OBN≌△ODM.∴MD=BN.又∵AO=OE,∴12AO⋅BN=12OE⋅DM,即S△AOB=S△EOD.【解析】【分析】本题主要考查三角形全等的性质与判定,等腰直角三角形的性质与判定,点的坐标的确定等知识的综合运用.(1)依据等腰直角三角形的性质可得到OD=OB,OA=OE,∠DOB=∠AOE=90°,然后依据等式的性质可证明∠EOB=∠AOD,接下来,依据SAS可证明Rt△EOB≌Rt△AOD,最后,依据全等三角形的性质可得到BE=AD.(2)①过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.先证明∠OEG=∠AOC,然后再证明△OEG≌△AOC,依据全等三角形的性质可得到OG=AC,EG=OC,从而可得到点E的坐标,接下来再证明△ODH≌△OBC.从而可得到OH=OC,故此可得到点D的横坐标;②过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M,先证明△OBN≌△ODM,从而可得到MD=BN,最后,依据三角形的面积公式求解即可.【解答】(1)见答案;(2)①如图所示:过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.∵∠EOA=90°,∴∠EOG+∠AOC=90°.又∵∠EOG+∠OEG=90°,∴∠OEG=∠AOC.在△OEG和△AOC中,∴△OEG≌△AOC.∴OG=AC,EG=OC.∵A(n,m)∴E(m,−n).∵∠DOH+∠HOB=90°,∠HOB+∠BOC=90°,∴∠DOH=∠BOC.在△ODH和△OBC中,∴△ODH≌△OBC.∴OH=OC.∴点D的横坐标为−m.故答案为:m;−n;−m;②见答案.18.已知,△ABC是等边三角形,D是直线BC上一点,以D为顶点做∠ADE=60°.DE交过C且平行于AB的直线于E,求证:AD=DE;当D为BC的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取AB的中点F,连结DF,然后证明△AFD≌△DCE.从而得到AD=DE,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:AD=DE(2)如图3、当D在BC的延长线上时,求证:AD=DE(3)当D在CB的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).【答案】(1)证明:在AB上截取AF=DC,连接FD,如图2所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB//CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图3所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB//CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDEAF=CD∠F=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图4所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB//CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE.【解析】(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD= 60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.19.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时,如图1,线段CE、BD的位置关系为______,数量关系为______;②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由;(2)如图3,如果AB≠AC∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE ⊥BC ?小明通过(1)的探究,猜想∠ACB =45°时,CE ⊥BC.他想过点A 做AC 的垂线,与CB 的延长线相交,构建图2的基本图案,寻找解决此问题的方法.小明的想法对吗?如不对写出你的结论;如对按此方法解决问题并写出理由.【答案】垂直 相等【解析】解:(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE =BD .理由:如图1,∵∠BAD =90°−∠DAC ,∠CAE =90°−∠DAC ,∴∠BAD =∠CAE .又BA =CA ,AD =AE ,∴△ABD≌△ACE (SAS)∴∠ACE =∠B =45°且CE =BD .∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,即CE ⊥BD .故答案为:垂直,相等;②都成立∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE在△DAB 与△EAC 中,{AD =AE ∠BAD =∠CAE AB =AC∴△DAB≌△EAC(SAS),∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD(2)小明的想法对的当∠ACB =45°时,CE ⊥BD理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB=45°,∠AGC=90°−∠ACB,∴∠AGC=90°−45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,{AC=AG∠DAG=∠EAC AD=AE∴△GAD≌△CAE(SAS),∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.本题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.20.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足为D、E.求证:(1)△ABD≌△CAE;(2)DE=BD+CE.【答案】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,∵{∠DBA=∠EAC ∠BDA=∠AEC AB=AC,∴△ABD≌△CAE(AAS),(2)由(1)得:△ABD≌△CAE,∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.【解析】证明∠DBA=∠EAC,这是解决该题的关键性结论;证明△ABD≌△CAE,得到BD=AE,AD=CE,即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.21.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE= BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.【答案】证明:(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.(1)根据BD⊥直线l,CE⊥直线l得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD= CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.22.如图①,已知CA=CB,CD=CE,∠ACB=∠DCE=ɑ,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含ɑ的式子表示∠AMB的度数(3)当ɑ=90°时,AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【答案】解:(1)如图①,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB;∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图①,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°−α,∴∠BAM+∠ABM=180°−α,∴△ABM中,∠AMB=180°−(180°−α)=α;(3)△CPQ为等腰直角三角形.证明:如图②,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,{CA=CB∠CAP=∠CBQ AP=BQ,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理的综合应用.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题时注意掌握全等三角形的对应边相等,对应角相等的运用.(1)由CA=CB,CD=CE,∠ACD=∠BCE,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.23.据图回答问题(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE= BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,。

全等三角形练习题(含答案)

全等三角形练习题(含答案)

全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。

2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。

4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。

(完整版)全等三角形练习题及答案

(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。

4. SAS全等条件指的是_________。

三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。

()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。

()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。

8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。

若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。

五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。

10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。

答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。

8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。

强烈推荐:全等三角形优秀习题及答案(6套)

强烈推荐:全等三角形优秀习题及答案(6套)

C .△APE ≌△APFD .AP PE PF =+ 2.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6三、用心想一想(本大题共69分) 1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和OC 的长 .(结果精确到1mm ,不要求写画法).2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.A DC B 图8 E FA D OC B 图9 A DE C B 图10F G A E C 图11 B A ′ E ′DAD EC B图12F则∠BAC= °.3.把两根钢条AA?、BB?的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.4.如图,∠A=∠D,AB=CD,则△≌△,根据是.5.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.6.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .7.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用,用菱形做活动铁门是利用四边形的。

全等三角形经典例题(含答案)

全等三角形经典例题(含答案)

三角形全等典型例题集锦(含答案)一、选择题(本大题共13小题,共39.0分)1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是()A. 2B. 9C. 18D. 27【答案】B由“AAS”可证△ACD≌△AED,可得CD=DE=9.本题考查了全等三角形的判定和性质,角平分线的性质,证明△ACD≌△AED是本题的关键.解:∵BC=27,BD:CD=2:1,∴BD=18,CD=9,∵AD平分∠BAC,∴∠DAC=∠DAE,且AD=AD,∠DCA=∠DEA= 90°,∴△ACD≌△AED(AAS)∴CD=DE=9,故选B.2.如图,已知∠ABC=∠DCB,添加下列条件,不能使△ABC≌△DCB的是()A. AC=DBB. AB=DCC. ∠A=∠DD. ∠1=∠2【答案】A【解析】A.当添加AC=DB时,不能判定△ABC≌△DCB,故本选项符合题意;B.当添加AB=DC时,能判定△ABC≌△DCB,故本选项不符合题意;C.当添加∠A=∠D时,能判定△ABC≌△DCB,故本选项不符合题意;D.当添加∠2=∠1时,能判定△ABC≌△DCB,故本选项不符合题意,故选A.如图,下列三角形中,与△ABC全等的是()A. B. C. D.【答案】C3.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是()A. 甲B. 乙C. 甲和乙D. 都不是【答案】C4.如图,∠ACB=90∘,AC=BC,BE⊥CE于E点,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A. 0.8cmB. 1cmC. 1.5cmD. 4.2cm【答案】A【解析】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90∘,∴∠EBC+∠BCE=90∘.∵∠BCE+∠DCA=∠ACB=90∘,∴∠EBC=∠DCA.在△CEB和△ADC中,{∠E=∠ADC,∠EBC=∠DCA, BC=CA,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm,故选A.5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积为12AC⋅BD.其中正确的结论有()A. 0个B. 1个C. 2个D. 3个【答案】D如图,已知AB=AC,AD=AE,欲说明△ABD≌△ACE,需补充的条件是()A. ∠B=∠CB. ∠D=∠EC. ∠1=∠2D. ∠CAD=∠2【答案】C6.下列三角形中全等的两个是()A. ①②B. ②③C. ③④D. ①④【答案】A如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB.若AB=4,CF=3,则BD的长是()A. 0.5B. 1C. 1.5D. 2【答案】B7.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A. 4B. 3C. 2D. 1【答案】B【解析】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中, {OA=OB∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵{∠OGA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS)∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,{∠AOM=∠DOMOM=OM∠AMD=∠DMO∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA< OC,故③错误;即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.8.尺规作图作角的平分线,作法步骤如下:9.①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于12CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.则上述作法的依据是().A. SSSB. SASC. AASD. ASA【答案】A本题考查了全等三角形的判定与性质、角平分线的尺规作图方法与作图原理,解题的关键是要理解作图过程中每一步的效果,即:OC=OD,CP=DP,OP=OP.连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【解答】解:如下图④所示:连接CP、DP在△OCP与△ODP中,由作图可知:{OC=ODCP=DPOP=OP∴△OCP≌△ODP(SSS),∴∠COP=∠DOP,即OP是∠AOB的平分线.因此题中作法的依据是SSS.故选A.10.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A. 点DB. 点CC. 点BD. 点A【答案】A【解析】解:观察图象可知△MNP≌△MFD.故选:A.根据全等三角形的判定即可解决问题.本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,AD//BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2−AD2的值等于()A. 14B. 9C. 8D. 5【答案】A延长CB和DE交于点F,∵AD//BC∴∠DAE=∠FBE∵点E是线段AB的中点,∴AE=BE∠AED=∠BEF∴△ADE≌△BFE(ASA∴∠ADE=∠BFE,AD =BF ∵DE 平分∠ADC ,∴∠ADE =∠CDE ∴∠CDE =∠BFE ∴CD =CF ∴BC +BF =BC +AD =CD =7∵BC =AD +2,∴解得BC =92,AD =52∴BC 2−AD 2=(92)2−(52)2=14.或者:∵BC +AD =7BC −AD =2∴BC 2−AD 2=(BC +AD)(BC −AD)=7×2=14.故选:A .可以延长CB 和DE 交于点F ,证明△ADE≌△BFE(ASA)得∠ADE =∠BFE ,AD =BF ,再根据已知条件DE 平分∠ADC ,得∠ADE =∠CDE ,∠CDE =∠BFE ,得CD =CF ,进而得BC +BF =BC +AD =CD =7BC =AD +2,即可求解.本题考查了全等三角形的判定和性质,解决本题的关键是构造适当的辅助线.二、填空题(本大题共7小题,共21.0分)12. 如图,∠AOB 是任意一个角,在OA ,OB 边上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 便是∠AOB 平分线,此作法用的判定三角形全等的方法是 .(用字母表示即可)【答案】SSS【解析】略 13. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,已知EH =EB =3,AE =4,则CH 的长是 .14.【答案】1【解析】略15. 如图为6个边长相等的正方形的组合图形,则∠1−∠2+∠3= .16.【答案】45°【解析】略17. 如图,△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC.若∠D =20°,则∠ABC 的度数为 .18.【答案】40°【解析】略19. 已知等边三角形的三条边,三个内角都相等.如图,△ABC 为等边三角形,点D ,E ,F 分别在边BC ,CA ,AB 上,且AE =CD =BF ,则△DEF 的形状按边分类为 三角形. 20.【答案】等边【解析】略21. 如图,△ABC ,∠ABC =45°,∠ACB =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD =______.【答案】√6+√22【解析】解:作DF ⊥AB 于点F ,作DG ⊥AC 于点G ,作EH ⊥AC 于点H ,∵∠ACB =30°,DG ⊥AC ,∴CD =2DG ,∵AE =CE ,EH ⊥AC ,∴AH =CH ,∴AC =2AH ,∵AD ⊥AE ,DG ⊥AC ,EH ⊥AC ,∴∠DAE =90°,∠DGA =∠AHE =90°,∴∠DAG +∠EAH =90°,∠EAH +∠AEH =90°,∴∠DAG =∠AEH ,在△DAG 和△AEH 中{∠DGA =∠AHE ∠DAG =∠AEH DA =AE∴△DAG≌△AEH(AAS)∴DG =AH ,∴AC =2DG ,∴AC =CD ,∴∠CAD =∠CDA ,∵∠ACB =30°,∵∠ABC=45°,∠ACB=30°,∴∠BAC=180°−∠ABC−∠ACB=105°,∴∠DAE=∠BAC−∠CAD=105°−75°=30°,∵DF⊥AB,∴∠DFA=∠DFB=90°,又∵∠B=45°,∠BAD=30°,∴AD=2DF,BF=DF,∴AF=√AD2−DF2=√3DF,BD=√BF2+DF2=√2DF,∴AB=AF+BF=√3DF+DF,∴ABBD =√3DF+DF√2DF=√6+√22,故答案为:√6+√22.作DF⊥AB于点F,作DG⊥AC于点G,作EH⊥AC于点H,然后根据直角三角形的性质和全等三角形的判定,利用勾股定理可以求得AB和BD与DF的关系,然后即可求得ABBD的值.本题考查全等三角形的判定与性质、等腰三角形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,AB=6cm,AC=BD=4cm,∠CAB=∠DAB=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动。

全等三角形经典题型50题(含答案解析)

全等三角形经典题型50题(含答案解析)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

因为 BC=ED,CF=DF,∠BCF=∠EDF 。

所以 三角形BCF 全等于三角形EDF(边角边)。

所以 BF=EF,∠CBF=∠DEF 。

连接BE 。

在三角形BEF 中,BF=EF 。

所以 ∠EBF=∠BEF 。

又因为 ∠ABC=∠AED 。

所以 ∠ABE=∠AEB 。

所以 AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

所以 三角形ABF和三ADBC角形AEF 全等。

所以 ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DG E ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠E DC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

三角形全等证明题目60题目(有详解)

三角形全等证明题目60题目(有详解)

全等三角形证明题专项练习60 题(有答案)1.已知如图,△ABC≌△ ADE,∠ B=30°,∠ E=20°,∠ BAE=105°,求∠ BAC的度数.∠ BAC= _________.2.已知:如图,四边形ABCD中, AB∥CD, AD∥BC.求证:△ ABD≌△ CDB.3.如图,点 E 在△ ABC外面,点 D 在边 BC上, DE交 AC于 F.若∠ 1=∠ 2=∠ 3, AC=AE,请说明△ ABC≌△ ADE的道理.4.如图,△ ABC的两条高AD, BE订交于 H,且 AD=BD.试说明以下结论成立的原由.(1)∠ DBH=∠ DAC;(2)△ BDH≌△ ADC.5.如图,在△ABC中, D 是 BC边的中点, DE⊥ AB, DF⊥ AC,垂足分别为E、 F,且 DE=DF,则 AB=AC,并说明原由.6.如图, AE是∠ BAC的均分线, AB=AC, D 是 AE反向延长线的一点,则△ABD与△ ACD全等吗?为什么?第1页共28页7.以下列图,A、 D、 F、 B 在同素来线上,A F=BD, AE=BC,且 AE∥BC.求证:△ AEF≌△ BCD.8.如图,已知AB=AC, AD=AE, BE 与 CD订交于 O,△ ABE与△ ACD全等吗?说明你的原由.9.如图,在△ ABC中, AB=AC, D 是 BC的中点,点 E 在 AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.以下列图, CD=CA,∠ 1=∠ 2, EC=BC,求证:△ ABC≌△ DEC.11.已知 AC=FE, BC=DE,点 A、 D、 B、F 在一条直线上,要使△ ABC≌△ FDE,应增加什么条件?并依照你所增加的条件证明:△ ABC≌△ FDE.12.如图,已知AB=AC, BD=CE,请说明△ ABE≌△ ACD.13.如图,△ ABC中,∠ ACB=90°, AC=BC,将△ ABC绕点 C 逆时针旋转角α( 0°<α< 90°)获取△ A1B1C,连接BB1.设 CB1交 AB于 D, A1B1分别交 AB, AC于 E, F,在图中不再增加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ ABC与△ A1B1 C1全等除外)14.如图, AB∥ DE,AC∥ DF,BE=CF.求证:△ ABC≌△ DEF.15.如图, AB=AC, AD=AE, AB,DC订交于点M, AC, BE订交于点N,∠ DAB=∠EAC.求证:△ADM≌△ AEN.16.将两个大小不同样的含 45°角的直角三角板如图 1 所示放置在同一平面内.从图1中抽象出一个几何图形(如图2), B、 C、E 三点在同一条直线上,连接DC.求证:△ ABE≌△ ACD.优秀文档17.如图,已知△ ABC是等边三角形, D、E 分别在边 BC、AC上,且 CD=CE,连接 DE并延长至点 F,使 EF=AE,连接AF、 BE和 CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠ 2,∠ 3=∠ 4, EC=AD.(1)求证:△ ABD≌△ EBC.(2)你能够从中得出哪些结论?请写出两个.19.等边△ ABC边长为 8, D为 AB边上一动点,过点 D 作 DE⊥ BC于点 E,过点 E 作 EF⊥ AC于点 F.(1)若 AD=2,求 AF的长;(2)求当 AD取何值时, DE=EF.20.巳知:如图,AB=AC, D、E 分别是 AB、 AC上的点, AD=AE, BE与 CD订交于 G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的原由(根椐所选三角形说理难易不同样给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC, AC=BD, AC、BD订交于点E,过 E 点作 EF∥ BC,交 CD于 F,(1)依照给出的条件,能够直接证明哪两个三角形全等?并加以证明.(2) EF 均分∠ DEC吗?为什么?22.如图,己知∠1=∠ 2,∠ ABC=∠ DCB,那么△ ABC与△ DCB全等吗?为什么?23.如图, B, F, E, D 在一条直线上,AB=CD,∠ B=∠ D,BF=DE.试证明:(1)△ DFC≌△ BEA;(2)△ AFE≌△ CEF.24.如图, AC=AE,∠ BAF=∠BGD=∠ EAC,图中可否存在与△ABE全等的三角形?并证明.25.如图, D 是△ ABC的边 BC的中点, CE∥ AB,E 在 AD的延长线上.试证明:△ ABD≌△ ECD.26.如图,已知AB=CD,∠ B=∠C, AC和 BD订交于点O,E 是 AD的中点,连接OE.(1)求证:△ AOB≌△ DOC;(2)求∠ AEO的度数.27.如图,已知AB∥ DE, AB=DE, AF=DC.(1)求证:△ ABF≌△ DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ ABC中, BE、CF分别是 AC、AB 两边上的高,在 BE 上截取 BD=AC,在 CF的延长线上截取CG=AB,连接 AD、 AG.(1)求证:△ ABD≌△ GCA;(2)请你确定△ ADG的形状,并证明你的结论.29.如图,点D、 F、 E 分别在△ ABC的三边上,∠ 1=∠ 2=∠ 3, DE=DF,请你说明△ ADE≌△ CFD的原由.30.如图,在△ ABC中,∠ ABC=90°, BE⊥ AC于点 E,点 F 在线段 BE 上,∠ 1=∠ 2,点 D在线段 EC上,给出两个条件:① DF∥BC;② BF=DF.请你从中选择一个作为条件,证明:△AFD≌△ AFB.31.如图,在△ ABC中,点 D在 AB 上,点 E 在 BC上, AB=BC, BD=BE,EA=DC,求证:△ BEA≌△ BDC.32.阅读并填空:如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于点 E,AD⊥ CE于点 D.请说明△ ADC≌△ CEB的原由.解:∵ BE⊥CE于点 E(已知),∴∠ E=90°_________,同理∠ ADC=90°,∴∠ E=∠ ADC(等量代换).在△ ADC中,∵∠ 1+∠ 2+∠ ADC=180°_________,∴∠ 1+∠ 2=90°_________.∵∠ ACB=90°(已知),∴∠ 3+∠ 2=90°,∴_________ .在△ ADC和△ CEB中, .∴△ ADC≌△ CEB ( A. A. S)33.已知:以下列图,AB∥ DE,AB=DE, AF=DC.( 1)写出图中你认为全等的三角形(不再增加辅助线);( 2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点 E 在△ ABC外面,点 D在 BC边上, DE交 AC于点 F,若∠ 1=∠ 2=∠ 3, AC=AE.试说明以下结论正确的原由:(1)∠ C=∠ E;(2)△ ABC≌△ ADE.35.如图,在 Rt△ ABC中,∠ ACB=90°,AC=BC,D 是斜边 AB上的一点, AE⊥ CD于 E,BF⊥ CD交 CD的延长线于F.求证:△ ACE≌△ CBF.36.如图,在△ ABC中, D 是 BC的中点, DE∥ CA交 AB 于 E,点 P 是线段 AC上的一动点,连接PE.研究:当动点P 运动到 AC边上什么地址时,△APE≌△ EDB?请你画出图形并证明△APE≌△ EDB.37.已知:如图,AD∥ BC, AD=BC, E 为 BC上一点,且AE=AB.求证:( 1)∠ DAE=∠B;(2)△ ABC≌△ EAD.38.如图, D 为 AB边上一点,△ ABC和△ ECD都是等腰直角三角形,∠ ACB=∠ DCE=90°, CA=CB, CD=CE,图中有全等三角形吗?指出来并说明原由.39.如图, AB=AC, AD=AE,∠ BAC=∠ DAE.求证:△ ABD≌△ ACE.40.如图,已知D是△ ABC的边 BC的中点,过D 作两条互相垂直的射线,分别交AB于 E,交 AC于 F,求证: BE+CF >EF.41.以下列图,在△MNP中, H是高 MQ与 NE的交点,且QN=QM,猜想 PM与 HN有什么关系?试说明原由.42.如图,在△ ABC中, D 是 BC的中点,过 D 点的直线 GF交 AC于 F,交 AC的平行线 BG于 G点, DE⊥ GF,交 AB于点 E,连接 EG.(1)求证: BG=CF;(2)请你判断 BE+CF与 EF 的大小关系,并证明你的结论.43.如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于 E, AD⊥ CE于 D,,,求 BE 的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD, BC=AD,请说明:∠ A=∠ C 的道理,小明着手测量了一下,发现∠A确实与∠ C相等,但他不能够说明其中的道理,你能帮助他说明这个道理吗?试一试看.45.如图, AD是△ ABC的中线, CE⊥ AD于 E, BF⊥AD,交 AD的延长线于F.求证: CE=BF.46.如图,已知 AB∥ CD,AD∥ BC,F 在 DC的延长线上, AM=CF,FM交 DA的延长线上于E.交 BC于 N,试说明:AE=CN.47.已知:如图,△ABC中,∠ C=90°, CM⊥ AB于 M, AT均分∠ BAC交 CM于 D,交 BC于 T,过 D 作 DE∥ AB交 BC 于 E,求证: CT=BE.48.如图,已知AB=AD, AC=AE,∠ BAE=∠ DAC.∠ B 与∠ D 相等吗?请你说明原由.49. D 是 AB上一点, DF交 AC于点 E, DE=EF, AE=CE,求证: AB∥CF.50.如图, M是△ ABC的边 BC上一点, BE∥ CF,且 BE=CF,求证: AM是△ ABC的中线.优秀文档合用标准文案51.如图,在△ ABC中, AC⊥BC, AC=BC, D 为 AB上一点, AF⊥ CD交于 CD的延长线于点F, BE⊥ CD于点 E,求证:EF=CF﹣ AF.52.如图,在△ ABC中,∠ BAC=90°, AB=AC,若 MN是经过点 A 的直线, BD⊥ MN于 D,EC⊥ MN于 E.(1)求证: BD=AE;(2)若将 MN绕点 A 旋转,使 MN与 BC订交于点 O,其他条件都不变, BD与 AE边相等吗?为什么?(3) BD、 CE与 DE有何关系?53.已知:如图,△ABC中, AB=AC, BD和 CE为△ ABC的高, BD和 CE订交于点O.求证: OB=OC.54.在△ ABC中,∠ ACB=90°, D 是 AB边的中点,点 F 在 AC边上, DE与 CF平行且相等.试说明AE=DF的原由.55.如图,在△ ABC中, D 是边 BC上一点, AD均分∠ BAC,在 AB 上截取 AE=AC,连接 DE,已知 DE=2cm, BD=3cm,求线段 BC的长.优秀文档56.如图:已知∠B=∠ C, AD=AE,则 AB=AC,请说明原由.57.如图△ ABC中,点 D 在 AC上, E 在 AB上,且 AB=AC,BC=CD, AD=DE=BE.( 1)求证△ BCE≌△ DCE;( 2)求∠ EDC的度数.58.已知:∠ A=90°, AB=AC, BD均分∠ ABC, CE⊥ BD,垂足为E.求证: BD=2CE.59.如图,已知:AB=CD, AD=BC,过 BD上一点 O的直线分别交DA、 BC的延长线于E、 F.(1)求证:∠ E=∠ F;(2) OE与 OF相等吗?若相等请证明,若不相等,需增加什么条件就能证得它们相等?请写出并证明你的想法.60.以以下列图, AD是∠ BAC的均分线, DE垂直 AB于点 E, DF垂直 AC于点 F,且 BD=DC.求证: BE=CF.全等三角形证明题专项练习60 题参照答案:1.∵△ ABC≌△ ADE 且∠ B≠∠ E,∴∠ C=∠ E,∠ B=∠ D;∴∠ BAC=180°﹣∠ B﹣∠ C=180°﹣ 30°﹣ 20° =130°.2.∵ AB∥ CD, AD∥ BC,∴∠ ABD=∠ CDB、∠ ADB=∠CBD.又 BD=DB,∴△ ABD≌△ CDB(ASA).3.△ ADF与△ AEF中,∵∠ 2=∠ 3,∠ AFE=∠ CFD,∴∠ E=∠ C.∵∠ 1=∠ 2,∴∠ BAC=∠DAE.∵AC=AE,∴△ ABC≌△ ADE.4.( 1)∵∠ BHD=∠ AHE,∠ BDH=∠ AEH=90°∴∠ DBH+∠BHD=∠ HAE+∠ AHE=90°∴∠ DBH=∠HAE∵∠ HAE=∠DAC∴∠ DBH=∠DAC;(2)∵ AD⊥ BC∴∠ ADB=∠ADC在△ BDH与△ ADC中,∴△ BDH≌△ ADC.5.∵ DE⊥ AB, DF⊥ AC,∴△ DBE与△ DCF是直角三角形,∵BD=CD, DE=DF,∴Rt △ DBE≌ Rt △ DCF( HL),∴∠ B=∠ C,∴AB=AC.6.∵ AE 是∠ BAC的均分线,∴∠ BAE=∠CAE;∴180°﹣∠BAE=180°﹣∠CAE,即∠ DAB=∠DAC;又∵ AB=AC, AD=AD,∴在△ ABD和△ ACD中,∴△ ABD≌△ ACD( SAS)7.∵ AE∥ BC,∴∠ B=∠ C.∵AF=BD, AE=BC,∴△ AEF≌△ BCD( SAS).8.△ ABE与△ ACD全等.原由:∵ AB=AC,∠ A=∠ A(公共角), AE=AD,∴△ ABE≌△ ACD.9.图中的全等三角形有:△ABD≌△ ACD,△ABE≌△ ACE,△BDE≌△ CDE.原由:∵ D是 BC的中点,∴BD=DC, AB=AC, AD=AD∴△ ABD≌△ ACD( SSS);∵AE=AE,∠ BAE=∠ CAE, AB=AC,∴△ ABE≌△ ACE( SAS);∵BE=CE, BD=DC, DE=DE,∴△ BDE≌△ CDE( SSS).10.:∵∠ 1=∠ 2,∴∠ ACB=∠DCE,在△ ABC和△ DEC中,,∴△ ABC≌△ DEC( SAS)11.增加AB=DF.在△ ABC和△ FDE中,∴△ ABC≌△ FDE(SSS).12.∵ AB=AC, BD=CE,∴ AD=AE.又∵∠ A=∠ A,∴△ ABE≌△ ACD(SAS).13.△ CBD≌△ CA1F 证明以下:∵AC=BC,∴∠A=∠ ABC.∵△ ABC绕点 C 逆时针旋转角α( 0°<α< 90°)获取△ A1B1C1,∴∠ A1 =∠ A, A1C=AC,∠ ACA1=∠ BCB1=α.∴∠ A1 =∠ ABC(1 分), A1C=BC.∴△ CBD≌△ CAF( ASA)114.∵ AB∥DE, AC∥DF,∴∠ B=∠ DEF,∠ F=∠ ACB.∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.∴△ ABC≌△ DEF ( ASA).15.∵ AB=AC, AD=AE,∠ DAB=∠ EAC,∴∠ DAC=∠AEB,∴△ ACD≌△ ABE,∴∠ D=∠ E,又 AD=AE,∠ DAB=∠EAC,∴△ ADM≌△ AEN16.∵△ ABC和△ ADE均为等腰直角三角形,∴AB=AC, AD=AE,∠ BAC=∠DAE=90,即∠ BAC+∠CAE=∠DAE+∠ CAE,∴∠ BAE=∠CAD,在△ ABE和△ ACD中,,∴△ ABE≌△ ACD17.答:△ BDE≌△ FEC,△ BCE≌△ FDC,△ ABE≌△ ACF;证明:(以△ BDE≌△ FEC为例)∵△ ABC是等边三角形,∴BC=AC,∠ ACB=60°,∵CD=CE,∴△ EDC是等边三角形,∴∠ EDC=∠DEC=60°,∴∠ BDE=∠FEC=120°,∵CD=CE,∴BC﹣ CD=AC﹣ CE,∴BD=AE,又∵ EF=AE,∴B D=FE,在△ BDE与△ FEC中,∵,∴△ BDE≌△ FEC( SAS).18.( 1)证明以下:∵∠ ABD=∠1+∠ EBC,∠ CBE=∠ 2+∠ EBC,∠ 1=∠2.∴∠ ABD=∠CBE.在△ ABD和△ EBC中∴△ ABD≌△ EBC( AAS);(2)从中还可获取 AB=BC,∠ BAD=∠ BEC19.( 1)∵ AB=8, AD=2∴BD=AB﹣ AD=6在 Rt △ BDE中∠BDE=90°﹣∠B=30°∴ BE= BD=3∴CE=BC﹣ BE=5在 Rt △ CFE中∠CEF=90°﹣∠C=30°∴ CF= CE=∴AF=AC﹣ FC= ;(2)在△ BDE和△ EFC中,∴△ BDE≌△ CFE( AAS)∴BE=CF∴BE=CF= EC∴BE= BC=∴BD=2BE=∴AD=AB﹣ BD=∴AD= 时, DE=EF20.( 1)图中全等的三角形有四对,分别为:①△ DBG≌△ EGC,②△ ADG≌△ AEG,③△ ABG≌△ ACG,④△ABE≌△ ACD;( 4 分)(Ⅱ)∵ AB=AC, AD=AE,∠ A 是公共角,∴△ ABE≌△ ACD( SAS)④;∵AB=AC, AD=AE,∴AB﹣ AD=AC﹣ AE,即 BD=CE;由④得∠ B=∠ C,又∵∠ DGB=∠ EGC(对顶角相等), BD=CE(已证),∴△ DBG≌△ EGC( AAS)①;由①得 BG=CG,由④得∠ B=∠C,又∵ AB=AC,∴△ ABG≌△ ACG( SAS)③;由①得 BG=CG,且 AD=AE, AG为公共边,∴△ ADG≌△ AEG( SSS)②;21.( 1)△ ABC≌△ DCB.证明:∵ AB=CD, AC=BD, BC=CB,∴△ ABC≌△ DCB.( SSS)(2) EF 均分∠ DEC.原由:∵ EF∥ BC,∴∠ DEF=∠EBC,∠ FEC=∠ ECB;由( 1)知:∠ EBC=∠ ECB;∴∠ DEF=∠FEC;∴ FE 均分∠ DEC22.△ ABC≌△ DCB.原由以下:∵∠ABC=∠ DCB,∠ 1=∠ 2,∴∠ DBC=∠ACB.∵BC=CB,∴△ ABC≌△ DCB23.( 1)∵ BF=DE,∴BF+EF=DE+EF.即 BE=DF.在△ DFC和△ BEA中,∵,∴△ DFC≌△ BEA( SAS).(2)∵△ DFC≌△ BEA,∴CF=AE,∠ CFD=∠ AEB.∵在△ AFE与△ CEF中,∵,∴△ AFE≌△ CEF( SAS)24.△ ABF与△ DFG中,∠ BAF=∠ BGD,∠ BFA=∠DFG,∴∠ B=∠ D,∵∠ BAF=∠EAC,∴∠ BAE=∠DAC,∵AC=AE,∠ BAE=∠ DAC,∠B=∠D,∴△ BAE≌△ DAC.答案:有.△ BAE≌△ DAC25.∵ CE∥AB,∴∠ ABD=∠ECD.在△ ABD和△ ECD中,,∴△ ABD≌△ ECD( ASA)26.( 1)证明:在△ AOB和△ COD中∵∴△ AOB≌△ COD( AAS)(2)解:∵△ AOB≌△ COD,∴ AO=DO∵ E 是 AD的中点∴OE⊥ AD∴∠ AEO=90°27. 1)证明:∵ AB∥ DE,∴∠ A=∠ D.∵AB=DE, AF=DC,∴△ ABF≌△ DEC.( 2)解:全等三角形有:△ ABC和△ DEF;△ CBF和△ FEC28.证明:( 1)∵ BE、 CF分别是 AC、 AB两边上的高,∴∠ AFC=∠AEB=90°(垂直定义),∴∠ ACG=∠DBA(同角的余角相等),又∵ BD=CA,AB=GC,∴△ ABD≌△ GCA;(2)连接 DG,则△ ADG是等腰三角形.证明以下:∵△ ABD≌△ GCA,∴AG=AD,∴△ ADG是等腰三角形.29.解:∵∠ 4+∠ 6=180°﹣∠ 3,∠ 5+∠ 6=180°﹣∠ 2,∠ 3=∠2,∴∠ 4+∠ 6=∠ 5+∠ 6,∴∠ 4=∠ 5,∵在△ ADE和△ CFD中,,∴△ ADE≌△ CFD( AAS).30.① DF∥BC.证明:∵ BE⊥ AC,∴∠ BEC=90°,∴∠ C+∠ CBE=90°,∵∠ ABC=90°,∴∠ ABF+∠CBE=90°,∴∠ C=∠ ABF,∵DF∥ BC,∴∠C=∠ ADF,∴∠ABF=∠ADF,在△ AFD和△ AFB中∴△ AFD≌△ AFB( AAS).31.在△ BEA和△ BDC中:,故△ BEA≌△ BDC(SSS).32.如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于点 E, AD⊥CE于点 D.请说明△ ADC≌△ CEB的原由.解:∵ BE⊥CE于点 E(已知),∴∠ E=90°(垂直的意义),同理∠ ADC=90°,∴∠ E=∠ ADC(等量代换).在△ ADC中,∵∠ 1+∠ 2+∠ ADC=180°(三角形的内角和等于180°),∴∠ 1+∠ 2=90°(等式的性质).∵∠ ACB=90°(已知),∴∠ 3+∠ 2=90°,∴∠ 1=∠3(同角的余角相等).在△ ADC和△ CEB中, .∴△ ADC≌△ CEB ( A. A. S)33.( 1)△ ABF≌△ DEC,△ ABC≌△ DEF,△ BCF≌△ EFC;(2 分)(2)△ ABF≌△ DEC,证明:∵ AB∥ DE,∴∠ A=∠ D,( 3 分)在△ ABF和△ DEC中,(4 分)∴△ ABF≌△ DEC.(5 分)34.( 1)△ ADF与△ AEF中,∵∠ 2=∠ 3,∠ AFE=∠ CFD,∴∠ C=∠ E;(2)∵∠ 1=∠ 2,∴∠BAC=∠DAE.∵AC=AE,又∠ C=∠ E,∴△ ABC≌△ ADE.35.∵ AE⊥CD,∴∠ AEC=90°,∴∠ ACE+∠CAE=90°,(直角三角形两个锐角互余)∵∠ ACE+∠BCF=90°,∴∠ CAE=∠BCF,(等角的余角相等)∵AE⊥ CD,BF⊥ CD,∴∠ AEC=∠BFC=90°,在△ ACE与△ CBF中,∠ CAE=∠ BCF,∠ AEC=∠ BFC,AC=BC,∴△ ACE≌△ CBF( AAS).优秀文档36.当动点 P 运动到 AC边上中点地址时,△APE≌△ EDB,∵DE∥ CA,∴△ BED∽△ BAC,∴= ,∵D是BC的中点,∴ = ,∴= ,∴E 是 AB中点,∴DE= AC, BE=AE,∵DE∥ AC,∴∠ A=∠ BED,要使△ APE≌△ EDB,还缺少一个条件DE=AP,又有 DE= AC,∴ P 必定是 AC中点.37.( 1)∵ AE=AB,∴∠ B=∠ AEB,又∵ AD∥ BC,∴∠ AEB=∠DAE,∴∠ DAE=∠B;(2)∵∠ DAE=∠ B,AD=BC,AE=AB,∴△ ABC≌△ EAD.38.△ ACE≌△ BCD.∵△ ABC和△ ECD都是等腰直角三角形,∴∠ ECD=∠ACB=90°,∴∠ ACE=∠BCD(都是∠ ACD的余角),在△ ACE和△ BCD中,∵,∴△ ACE≌△ BCD.39.∵∠ BAC=∠ DAE,∴∠ BAC+∠CAD=∠ DAE+∠ CAD,即∠ BAD=∠EAC,在△ ABD和△ ACE中,∴△ ABD≌△ ACE.40.证明:延长FD到 M使 MD=DF,连接 BM,EM.∵D 为 BC中点,∴BD=DC.∵∠ FDC=∠BDM,∴△ BDM≌△ CDF.∴BM=FC.∵ED⊥ DF,∴EM=EF.∵BE+BM> EM,∴B E+FC> EF.41. PM=HN.原由:∵在△ MNP中, H是高 MQ与 NE的交点,∴∠ MEH=∠NQH=90°,∠ MQP=∠ NQH=90°∵∠ MHE=∠NHQ(对顶角相等),∴∠ EMH=∠QNH(等角的余角相等)在△ MPQ和△ NHQ中,,∴△ MPQ≌△ NHQ( ASA),∴MP=NH.42.( 1)∵ BG∥ AC,∴∠ DBG=∠DCF.∵D为BC的中点,∴ BD=CD又∵∠ BDG=∠ CDF,在△ BGD与△ CFD中,∵∴△ BGD≌△ CFD( ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD, BG=CF.又∵ DE⊥ FG,∴EG=EF(垂直均分线到线段端点的距离相等).∴在△ EBG中, BE+BG> EG,即 BE+CF>EF.43.∵ BE⊥CE于 E,AD⊥ CE于 D∴∠ E=∠ ADC=90°∵∠ BCE+∠ACE=∠ DAC+∠ ACE=90°∴∠ BCE=∠DAC∵AC=BC∴△ ACD≌△ CBE∴CE=AD,﹣ 1.7=0.8 ( cm)44.∵ AB=CD, BC=AD,又∵ BD=DB,在△ ABD和△ CDB中,∴△ ABD≌△ CDB,∴∠ A=∠ C.45.∵ AD是△ ABC中 BC边上的中线,∴BD=CD.∵CE⊥ AD于 E, BF⊥AD,∴∠ BFD=∠CED.在△ BFD和△ CED中,∴△ BFD≌△ CED( AAS).∴CE=BF46.∵ AD∥BC,∴∠ E=∠ ENB,∵∠ ENB=∠CNF,∴∠ E=∠ CNF,∵AB∥ CD,∴∠A=∠B,∵∠ C=∠ B,∴∠ EAB=∠DCB,∵AM=CF,∴△ AME≌△ CFN,优秀文档47.证明:过T 作 TF⊥ AB于 F,∵A T 均分∠ BAC,∠ ACB=90°,∴CT=TF(角均分线上的点到角两边的距离相等),∵∠ ACB=90°, CM⊥AB,∴∠ ADM+∠DAM=90°,∠ ATC+∠ CAT=90°,∵AT 均分∠ BAC,∴∠DAM=∠CAT,∴∠ ADM=∠ATC,∴∠ CDT=∠CTD,∴CD=CT,又∵ CT=TF(已证),∴C D=TF,∵CM⊥ AB,DE∥ AB,∴∠ CDE=90°,∠ B=∠ DEC,在△ CDE和△ TFB 中,,∴△ CDE≌△ TFB( AAS),∴C E=TB,∴CE﹣ TE=TB﹣ TE,即 CT=BE.48.∵∠ BAE=∠ DAC∴∠ BAE+∠CAE=∠ DAC+∠ CAE即∠ BAC=∠DAE又∵ AB=AD, AC=AE,∴△ ABC≌△ ADE( SAS)∴∠ B=∠ D(全等三角形的对应角相等)49.∵ DE=EF, AE=CE,∠ AED=∠ FEC,∴△ AED≌△ FEC.∴∠ ADE=∠CFE.∴AD∥ FC.∵D是AB上一点,∴ AB∥ CF50.∵ BE∥CF,∴∠ CMF=∠BME,∠ FCM=∠ EBM.又∵ BE=CF,即 AM是△ ABC的中线51.∵ AC⊥BC, BE⊥CD,∴∠ ACF+∠FCB=∠ FCB+∠ CBE=90°.∴∠ FCA=∠EBC.∵∠ BEC=∠CFA=90°, AC=BC,∴△ BEC≌△ CFA.∴CE=AF.∴EF=CF﹣ CE=CF﹣ AF52.解:( 1)证明:由题意可知, BD⊥ MN与 D, EC⊥ MN与 E,∠BAC=90°,则△ ABD与△ CEA是直角三角形,∠ DAB=∠ ECA,在△ ABD与△ CEA中,∵,∴△ ABD≌△ CEA,∴B D=AE;(2)若将 MN绕点 A 旋转,与 BC订交于点 O,则 BD, CE与 MN垂直,∴△ABD与△CEA仍是直角三角形,两个三角形仍全等,∴BD与 AE边仍相等;(3)∵△ ABD≌△ CEA,∴B D=AE, AD=EC,∴DE=BD+EC或 DE=CE﹣ BD或 DE=BD﹣ CE.53.∵ AB=AC,∴∠ ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠ BEC=∠BDC=90°,∴在△ BEC和△ CDB中,∴△ BEC≌△ CDB,∴∠ 1=∠ 2,∴OB=OC∵∠ ACB=90°, D 是 AB 边的中点∴CD=AD,∠ DAC=∠ DCF∵DE与 CF平行且相等∴∠ EDA=∠DAC∴∠ EDA=∠DCF在△ AED和△ CFD中CD=AD,∠ EDA=∠ DCF, DE=CF∴△ AED≌△ CFD∴A E=DF.55.∵ AD均分∠ BAC∴∠ BAD=∠CAD在△ ADE和△ ADC中∵∴△ ADE≌△ ADC( SAS)∴DE=DC∴BC=BD+DC=BD+DE=2+3=5(cm)56.在△ AEB与△ ADC中,.∴△ AEB≌△ ADC( AAS).∴ AB=AC(全等三角形,对应边相等)57.( 1)证明:在△ BCE和△ DCE中∴△ BCE≌△ DCE( SSS).(2)解:∵ AD=DE,∴∠ A=∠ AED;∴∠ EDC=∠A+∠ AED=2∠ A,设∠ A=x,依照题意得,5x=180°,解得x=36°∴∠ EDC=2∠ A=72°证明:延长CE、 BA 交于点 F.∵CE⊥ BD于 E,∠ BAC=90°,∴∠ ABD=∠ACF.又 AB=AC,∠ BAD=∠ CAF=90°,∴△ ABD≌△ ACF,∴B D=CF.∵BD均分∠ ABC,∴∠ CBE=∠FBE.有 BE=BE,∴△ BCE≌△ BFE,∴C E=EF,∴C E= BD,∴B D=2CE.59.( 1)证明:在△ ABD和△ CDB中∵AB=CD,AD=BC,BD=DB,∴△ ABD≌△ CDB( SSS),∴∠ ADB=∠DBC,∴ DE∥ BF.∴∠ E=∠ F.(2)答:当 O是 BD中点时,OE=OF.证明以下:∵ O是 BD中点,∴OB=OD.又∵∠ ADB=∠ DBC,∠ E=∠ F,∴△ ODE≌△ OBF( AAS).∴OE=OF.(当 AE=CF时也可证得60.∵ DE⊥AB, DF⊥AC,∴∠ E=∠ DFC=90°.∵AD均分∠ EAC,∴ DE=DF.在 Rt △ DBE和 Rt △ DCF中,∴Rt △ DBE≌ Rt △ CDF( HL).∴BE=CF.。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。

: / ABC= / AED 。

二 / ABE= / AEB 。

• AB=AE 。

在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。

•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。

连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。

全等三角形专项练习及答案

全等三角形专项练习及答案

word 格式-可编辑-感谢下载支持评卷人 得分一、选择题(题型注释)1.小明想用三根木棒为边制作一个三角形,则可以选用的木棒长为( )A .8cm 、15cm 、6cmB .7cm 、9cm 、13cmC .10cm 、20cm 、30cmD .20cm 、40cm 、60cm【答案】B2.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,下列不正确的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE【答案】D3.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A 、∠A 与∠D 互为余角B 、∠A=∠2C 、△ABC≌△CEDD 、∠1=∠2【答案】D4.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB,交BC 于D,DE ⊥AB 于E.AB =6cm,则△DEB 的周长为()A. 4cmB. 6cmC. 10cmD. 14cm【答案】B5.如图,OA =OC ,OB =OD ,OA ⊥OB ,OC ⊥OD ,下列结论:①△AOD ≌△COB ;②CD =AB ;③∠CDA =∠ABC ;其中正确的结论是( )A .①②B .①②③C .①③D .②③ AB C DE 1 2【答案】B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB, ∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC, OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质6.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是()A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°【答案】A【解析】试题分析:根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系2a+∠A=180°.考点:全等三角形的判定和性质,三角形的内角和定理7.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则()A.BE+CF>EFB.BE+CF=EFC.BE+CF<EFD.BE+CF与EF的大小关系不能确定.【答案】A.8.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC 的周长是()A.10cm B.12cm C.15cm D.17cm【答案】C.【解析】试题分析:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9cm+2×3cm=15cm,故选C.考点:线段垂直平分线的性质.9.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()word格式-可编辑-感谢下载支持A.90° B.1 80° C.360° D.无法确定【答案】【解析】试题分析:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,考点:1.三角形内角和定理;2.三角形的外角性质.10.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A、36B、72C、108D、144【答案】C【解析】∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,11.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为().A.60° B.65° C.70° D.75°【答案】C.12.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A.∠1+∠0=∠A+∠2 B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360° D.∠1+∠2+∠A=∠O【答案】D .【解析】试题分析:连接AO 并延长,交BC 于点D ,∵∠BOD 是△AOB 的外角,∠COD 是△AOC 的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD )+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选D .考点:1.三角形的外角性质;2.三角形内角和定理.13.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,DF ⊥BC 于F ,,,,△cm 12BC cm 18AB cm 362ABC ===S 则DE 的长是( )A.2cmB.cm 512C.3cmD.cm 514 【答案】B【解析】试题分析:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥BC,由角平分线的性质可得DE=DF∴DCB S S ∆∆+=ADB ABC S △=DF DE ⋅⨯+⋅⨯12211821=9DE+6DF=15DE=36∴DE=cm 512 所以选B.考点:角平分线的性质word 格式-可编辑-感谢下载支持第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分 二、填空题(题型注释)14.如图,△ABC 中,∠A =90°,DE 是BC 的垂直平分线,AD=DE ,则∠C 的度数是 °.【答案】30°.【解析】试题分析:∵DE 是BC 的垂直平分线,∴DE ⊥BC ,∵∠A =90°,AD=DE ,∴BD 平分∠AABC ,∴∠ABD=∠DBC ,∵DE 是BC 的垂直平分线,∴DC=BD ,∴∠C=∠DBC ,∴3∠C=90°,∴∠C=30°.故答案为:30°. 考点:1.线段垂直平分线的性质;2.角平分线的性质.15.如图,在△ABC 中,∠ACB =90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,BD =4.6,则D 到AB 的距离为 。

全等三角形经典题型50题(含答案)

全等三角形经典题型50题(含答案)

已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD已知:D 是AB 中点,∠ACB=90°,求证:12CD AB已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC1. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C2. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEADBCCDB AB A CDF2 1 E6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

.7.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C8已知:AB=CD,∠A=∠D,求证:∠B=∠CDCBAFEAB CD9.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE10.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):F A ED C BOED C B A24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE . 证明:延长BA 、CE ,两线相交于点F ∵BE ⊥CE ∴∠BEF=∠BEC=90° 在△BEF 和△BEC 中 ∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC∴△BEF ≌△BEC(ASA) ∴EF=EC ∴CF=2CE∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE∴∠ABD=∠ACF 在△ABD 和△ACF 中 ∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD ≌△ACF(ASA) ∴BD=CF ∴BD=2CE 25、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形练习题(含答案)

全等三角形练习题(含答案)

全等三角形练习题宇文皓月一、选择题:1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有()。

A.3个B.4个C.5个D.无数多个2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能3、具备下列条件的两个三角形,全等的是()A.两个角分别相等,且有一边相等B.一边相等,且这边上的高也相等C.两边分别相等,且第三边上的中线也相等D.两边且其中一条对应边的对角对应相等4、等腰三角形中有一个角是50,它的一条腰上的高与底边的夹角是()A.25B.40C.25或40D.大小无法确定5、一个三角形的一边为2,这边的中线为1,另两边之和为31,那么这个三角形的面积为()A.1B.32C.3D.不克不及确定二、解答题、1已知:如图,ABC中,AB=AC,AD=BD,AC=DC求:B的度数2、已知:Rt ABC中,BAC=90,AD是BC边上的高,BF平分ABC,交AD于E。

求证:AEF是等腰三角形3、已知:如图AB=CD,AC和BD的垂直平分线相交于O点。

求证:ABO=CDO4、已知:如图ABC中,BC边中垂线DE交BAC的平分线于D,DM⊥AB 于M,DN⊥AC于N。

求证BM=CN5、已知:如图,ABC中,ACB=90,M为AB的中点,DM⊥AB于M,CD平分ACB,交AB于E求证:MD=AM6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC于点E, PF⊥BC于点F。

求证:DE=DF参考答案一、选择题:1、C2、B3、C4、C5、B二、解答题1 B为36。

2、提示:根据等角的余角相等,可证AFE=BED,又因为BED=AEF,所以AFE=AEF。

3、提示:连结OA,OC,证AOB≌COD5、提示:连结DB、DC。

根据线段中垂线的性质,可得DB=DC,根据角平分线的性质,可得DM=DN,因此,可得Rt DMB∆。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

全等三角形证明经典50 题 (含答案 )1.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AA DB CD C B2. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB23.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A A1 21 2BFECDEC FD B4.已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=AC5.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CA6.已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、 CE 分别均分∠ ABC 、∠ BCD ,且点 E 在 AD上。

求证: BC=AB+DC 。

E DCFA B13.已知: AB//ED ,∠ EAB= ∠ BDE , AF=CD , EF=BC ,求证:∠ F=∠ C14.P 是∠ BAC 均分线 AD 上一点, AC>AB ,求证: PC-PB<AC-AB CAP DB15. 已知∠ ABC=3 ∠ C,∠ 1=∠2, BE⊥ AE ,求证: AC-AB=2BE16.已知, E 是 AB 中点, AF=BD , BD=5 , AC=7 ,求 DCDF A CE B18.如图,在△ABC 中, BD =DC ,∠ 1=∠ 2,求证: AD⊥BC .19.如图, OM 均分∠ POQ ,MA ⊥ OP,MB⊥ OQ , A、 B 为垂足, AB 交 OM 于点 N.求证:∠ OAB=∠OBA20.( 5 分)如图,已知 AD ∥BC,∠ PAB 的均分线与∠ CBA 的均分线订交于 E, CE 的连线交AP 于 D .求证: AD +BC =AB.PACEDCD BA B21.如图,△ ABC 中, AD 是∠ CAB 的均分线,且AB=AC+CD,求证:∠ C=2∠ B22.( 6 分)如图①, E、F 分别为线段AC 上的两个动点,且DE ⊥AC 于 E, BF⊥AC 于 F ,若 AB=CD , AF=CE, BD 交 AC 于点 M.(1)求证: MB=MD , ME =MF(2)当 E、F 两点挪动到如图②的地点时,其他条件不变,上述结论可否建立?若建立请赐予证明;若不建立请说明原因.23.已知:如图,DC∥ AB,且 DC =AE, E 为 AB 的中点,( 1)求证:△ AED≌△ EBC.( 2)观看图前,在不添协助线的状况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):AE ODB C24.( 7 分)如图,△ ABC 中,∠ BAC=90 线垂直于过 C 点的直线于 E,直线 CE 交求证: BD =2CE.度, AB=AC, BD 是∠ ABC 的均分线, BD 的延伸BA 的延伸线于 F.FAED证明:B C25、如图: DF=CE, AD=BC,∠ D=∠ C。

(完整版)全等三角形经典例题(含答案)

(完整版)全等三角形经典例题(含答案)

全等三角形证明题精选一.解答题(共30小题)1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题(共30小题)1.(2016•连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.(2016•孝感)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.(2016•宁德)如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(ASA),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.(2016•十堰)如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.(2016•昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.(2016•衡阳)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.(2016•重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.(2016•恩施州)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.(2016•湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.(2016•吉安校级一模)如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.【点评】本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.(2016•武汉校级四模)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.(2016•济宁二模)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.(2016•诏安县校级模拟)已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA)..【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(2016•屏东县校级模拟)如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.21.(2016•沛县校级一模)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.22.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.(2012•漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E 在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC ≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.(2009•大连)如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).【点评】解决本题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(2006•平凉)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.(2006•佛山)如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是①和③,命题的结论是②和④(均填序号);(2)证明你写出的命题.【分析】本题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD 全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:(1)命题的条件是①和③,命题的结论是②和④.(2)已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】本题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.(2005•安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(2004•昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC(SAS),∴AE=DE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.(2004•淮安)如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:(1)②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;(2)①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;(3)①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】本题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.(2011•通州区一模)已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用(AAS)求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE(AAS)∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用(AAS)求证△BCF≌△CAE,要求学生应熟练掌握.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形提高练习1. 如图所示,△ABC ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是多少?4. 如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=5. 已知,如图所示,AB=AC ,AD ⊥BC 于D ,且AB+AC+BC=50cm,而AB+BD+AD=40cm ,则AD 是多少?6. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,则DE= 7. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD 于G ,AD 与EF8. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。

AB'C A B9. 已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:10. 如图,AD=BD ,AD ⊥BC 于D,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?11. 如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD ,求证:BE ⊥AC12. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD (2)CM=CN (3)△CMN13. 已知:如图1,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,AN 交MC于点E ,BM 交CN 于点F (1) 求证:AN=BM(2) 求证:△CEF 为等边三角形14. 如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD ;②BF=BG ;③BH 平分∠AHD ;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD ,其中正确的有( )A .3个 B. 4个 C. 5个 D. 6个15. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CE 的延长线上,CG=AB ,求证:AG ⊥AFC B B A A B16. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF的延长线上截取CG=AB ,连结AD 、AG求证:(1)AD=AG (2)AD 与AG 的位置关系如何17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE求证:AF=AD-CF18.如图所示,已知△ABC 中,AB=AC ,D 是CB 延长线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB ,求证:19.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF20.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF ∥DE ,交BD 于F ,求证:CF=CD21.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 是OC 上一点,连接DF 和EF ,求证:DF=EF22.已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD ,求证:(1)△BDE ≌△CDFB D B(2) 点D 在∠A 的平分线上23.如图,已知AB ∥CD ,O 是∠ACD 与∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE=2,则AB 与CD 之间的距离是多少?24.如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN ,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E (1)∠AEB 是什么角?(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现? (3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD谁成立?并说明理由。

25.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO26.正方形ABCD 中,AC 、BD 交于O ,∠EOF=90°,已知AE=3,CF=4,则S△BEF 为多少?27.如图,在Rt △ABC 中,∠ACB=45°,∠BAC=90°,AB=AC ,点D 是AB的中点,AF ⊥CD 于H ,交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE28.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E(1)当直线MN绕点C 旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN 绕点C 旋转到图③的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系。

CCB M 图1A1 解:∵△ABC≌△AED∴∠D=∠B=50°∵∠ACB=105°∴∠ACE=75°∵∠CAD=10°∠ACE=75°∴∠EFA=∠CAD+∠ACE=85°(三角形的一个外角等于和它不相邻的两个角的和)同理可得∠DEF=∠EFA-∠D=85°-50°=35°2 根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.解答:解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.3 全等三角形的性质;对顶角、邻补角;三角形角和定理.分析:根据全等三角形的性质得出∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,根据邻补角定义求出∠DEC、∠EDC的度数,根据三角形的角和定理求出即可.解答:解:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,∵∠DEB+∠DEC=180°,∠ADB+∠BDE+EDC=180°,∴∠DEC=90°,∠EDC=60°,∴∠C=180°-∠DEC-∠EDC,=180°-90°-60°=30°.4分析:根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.解答:解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.点评:此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.5因为AB=AC 三角形ABC是等腰三角形所以AB+AC+BC=2AB+BC=50BC=50-2AB=2(25-AB)又因为AD垂直于BC于D,所以BC=2BDBD=25-ABAB+BD+AD=AB+25-AB+AD=AD+25=40AD=40-25=15cm6 解:∵BD⊥DE,CE⊥DE∴∠D=∠E∵∠BAD+∠BAC+∠CAE=180°又∵∠BAC=90°,∴∠BAD+∠CAE=90°∵在Rt△ABD中,∠ABD+∠BAD=90°∴∠ABD=∠CAE∵在△ABD与△CAE中{∠ABD=∠CAE∠D=∠EAB=AC∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵DE=AD+AE∴DE=BD+CE∵BD=3,CE=2∴DE=57证明:∵AD是∠BAC的平分线∴∠EAD=∠FAD又∵DE⊥AB,DF⊥AC∴∠AED=∠AFD=90°边AD公共∴Rt△AED≌Rt△AFD(AAS)∴AE=AF即△AEF为等腰三角形而AD是等腰三角形AEF顶角的平分线∴AD⊥底边EF(等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)8 AD平分∠BAC,则∠EAD=∠FAD,∠EDA=∠DFA=90度,AD=AD所以△AED≌△AFDDE=DFS△ABC=S△AED+S△AFD28=1/2(AB*DE+AC*DF)=1/2(20*DE+8*DE)DE=29AB=AE,∠B=∠E,∠BAC=∠EAD则△ABC≌△AEDAC=AD△ACD是等腰三角形∠CAF=∠DAFAF平分∠CAD则AF⊥CD10 解:∵AD⊥BC∴∠ADB=∠ADC=90∴∠CAD+∠C=90∵BE⊥AC∴∠CBE+∠C=90∴∠CAD=∠CBE∵AD=BD∴△BDH≌△ADC (ASA)∴BH=AC11 解:(1)证明:∵AD⊥BC(已知),∴∠BDA=∠ADC=90°(垂直定义),∴∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中,∴Rt△BDF≌Rt△ADC(H.L).∴∠2=∠C(全等三角形的对应角相等).∵∠1+∠2=90°(已证),所以∠1+∠C=90°.∵∠1+∠C+∠BEC=180°(三角形角和等于180°),∴∠BEC=90°.∴BE⊥AC(垂直定义);12 证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,AC=DC ∠ACE=∠DCB EC=BC∴△ACE≌△DCB(SAS).∴AE=BD(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∠CAM=∠CDN AC=DC ∠ACM=∠DCN∴△ACM≌△DCN(ASA).∴CM=CN.(3)由(2)可知CM=CN,∠DCN=60°∴△CMN为等边三角形(4)由(3)知∠CMN=∠CNM=∠DCN=60°∴∠CMN+∠MCB=180°∴MN//BC13分析:(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△CAN ≌△MCB,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE ≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.解答:证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,在△CAN和△MCB中,AC=MC,∠ACN=∠MCB,NC=BC,∴△CAN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.点评:本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握并熟练运用.14考点:等边三角形的性质;全等三角形的判定与性质;旋转的性质.分析:由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.解答:解:∵△ABC与△BDE为等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,即AB=BC,BD=BE,∠ABE=∠CBD∴△ABE≌△CBD,∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴△BGD≌△BFE,∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,∵BF=BG,AB=BC,∠ABF=∠CBG=60°,∴△ABF≌△CGB,∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∵∠FHG+∠FBG=120°+60°=180°,∴B、G、H、F四点共圆,∵FB=GB,∴∠FHB=∠GHB,∴BH平分∠GHF,∴题中①②③④⑤⑥都正确.故选D.点评:本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.15考点:全等三角形的判定与性质.分析:仔细分析题意,若能证明△ABF≌△GCA,则可得AG=AF.在△ABF和△GCA中,有BF=AC、CG=AB这两组边相等,这两组边的夹角是∠ABD和∠ACG,从已知条件中可推出∠ABD=∠ACG.在Rt△AGE中,∠G+∠GAE=90°,而∠G=∠BAF,则可得出∠GAF=90°,即AG⊥AF.解答:解:AG=AF,AG⊥AF.∵BD、CE分别是△ABC的边AC,AB上的高.∴∠ADB=∠AEC=90°∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,∴∠ABD=∠ACG在△ABF和△GCA中BF=AC ∠ABD=∠ACG AB=CG .∴△ABF≌△GCA(SAS)∴AG=AF∠G=∠BAF又∠G+∠GAE=90度.∴∠BAF+∠GAE=90度.∴∠GAF=90°∴AG⊥AF.点评:本题考查了全等三角形的判定和性质;要求学生利用全等三角形的判定条件及等量关系灵活解题,考查学生对几何知识的理解和掌握,运用所学知识,培养学生逻辑推理能力,围较广.16 1、证明:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA (SAS)∴AG=AD2、AG⊥AD证明∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90∴AG⊥AD17过E做EG⊥AF于G,连接EF∵ABCD是正方形∴∠D=∠C=90°AD=DC∵∠DAE=∠FAE,ED⊥AD,EG⊥AF∴DE=EGAD=AG∵E是DC的中点∴DE=EC=EG∵EF=EF∴Rt△EFG≌Rt△ECF∴GF=CF∴AF=AG+GF=AD+CF18因为:角EDB=60°DE=DB所以:△EDB是等边三角形,DE=DB=EB过A作BC的垂线交BC于F因为:△ABC是等腰三角形所以:BF=CF,2BF=BC又:角DAF=30°所以:AD=2DF又:DF=DB+BF所以:AD=2(DB+BF)=2DB+2BF=【2DB+BC】(AE+ED)=2DB+BC,其中ED=DB所以:AE=DB+BC,AE=BE+BC19补充:B是FD延长线上一点;ED=DF(角平分线到两边上的距离相等);BD=CD;角EDB=FDC(对顶角);则三角形EDB全等CDF;则BE=CF;或者补充:B在AE边上;ED=DF(角平分线到两边上的距离相等);DB=DC则两直角三角形EDB全等CDF(HL)即BE=CF20解:∵AF//DE∴∠D=∠AFC∵∠B+∠D=180°,,∠AFC+∠AFB=180°∴∠B=∠AFB∴AB=AF=DE△AFC和△EDC中:∠B=∠AFB,∠ACF=∠ECD(对顶角),AF=DE∴△AFC≌△EDC∴CF=CD21 证明:∵点P在∠AOB的角平分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=∠EPF,在△DPF和△EPF中PD=PE∠DPF=∠EPFPF=PF (SAS),∴△DPF≌△EPF∴DF=EF.22 考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据全等三角形的判定定理ASA证得△BED≌△CFD;(2)连接AD.利用(1)中的△BED≌△CFD,推知全等三角形的对应边ED=FD.因为角平分线上的点到角的两边的距离相等,所以点D在∠A的平分线上.解答:证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),∴∠B=∠C(等角的余角相等);在Rt△BED和Rt△CFD中,∠B=∠CBD=CD(已知)∠BDE=∠CDF,∴△BED≌△CFD(ASA);(2)连接AD.由(1)知,△BED≌△CFD,∴ED=FD(全等三角形的对应边相等),∴AD是∠EAF的角平分线,即点D在∠A的平分线上.点评:本题考查了全等三角形的判定与性质.常用的判定方法有:ASA,AAS,SAS,SSS,HL等,做题时需灵活运用.23考点:角平分线的性质.分析:要求二者的距离,首先要作出二者的距离,过点O作FG⊥AB,可以得到FG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.解答:解:过点O作FG⊥AB,∵AB∥CD,∴∠BFG+∠FGD=180°,∵∠BFG=90°,∴∠FGD=90°,∴FG⊥CD,∴FG就是AB与CD之间的距离.∵O为∠BAC,∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG(角平分线上的点,到角两边距离相等),∴AB与CD之间的距离等于2•OE=4.故答案为:4.点评:本题主要考查角平分线上的点到角两边的距离相等的性质,作出AB与CD之间的距离是正确解决本题的关键.24考点:梯形中位线定理;平行线的性质;三角形角和定理;等腰三角形的性质.专题:作图题;探究型.分析:(1)由两直线平行同旁角互补,及角平分线的性质不难得出∠1+∠3=90°,再由三角形角和等于180°,即可得出∠AEB是直角的结论;(2)过E点作辅助线EF使其平行于AM,由平行线的性质可得出各角之间的关系,进一步求出边之间的关系;(3)由(2)中得出的结论可知EF为梯形ABCD的中位线,可知无论DC的两端点在AM、BN如何移动,只要DC经过点E,AD+BC的值总为一定值.解答:解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠1+∠3=12(∠MAB+∠ABN)=90°,∴∠AEB=180°-∠1-∠3=90°,即∠AEB为直角;(2)过E点作辅助线EF使其平行于AM,如图则EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,根据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB.点评:本题是计算与作图相结合的探索.对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质,三角形角和定理,及梯形中位线等基础知识解决问题的能力都有较高的要求.25 如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5考点:角平分线的性质.专题:数形结合.分析:利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.解答:解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.点评:本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.26解:正方形ABCD∵AB=BC,AO=BO=CO,∠ABC=∠AOB=∠COB=90,∠ABO=∠BCO=45∴∠BOF+∠COF=90∵∠EOF=90∴∠BOF+∠BOE=90∴∠COF=∠BOE∴△BOE≌△COF (ASA)∴BE=CF∵CF=4∴BE=4∵AE=3∴AB=AE+BE=3+4=7∴BF=BC-CF=7-4=3∴S△BEF=BE×BF/2=4×3/2=627考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:证明出△DBP≌△EBP,即可证明BC垂直且平分DE.解答:证明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∠DAH=∠DCA∠CAD=∠ABEAB=AC∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°-45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且平分DE.点评:此题关键在于转化为证明出△DBP≌△EBP.通过利用图中所给信息,证明出两三角形相似,而证明相似可以通过证明角相等和线段相等来实现.28 1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,∴Rt△ADC≌Rt△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证明的方法与(2)相同已赞同9| 评论(2)。

相关文档
最新文档