人教版数学七年级下教案 6.1 第1课时 算术平方根 2
人教版七年级数学下册6.1.1《算术平方根》教案
人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。
本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。
教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。
但在计算能力和数学思维方面,学生之间存在较大差异。
因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高学生的计算能力。
4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。
四. 教学重难点1.算术平方根的定义及其求法。
2.运用算术平方根解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。
2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。
3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。
3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。
七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。
2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。
3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
人教版数学七年级下册《算术平方根》教案
七年级数学下册《6.1算术平方根(第1课时)》教学设计一、教学目标:1.知识与技能目标(1)了解算术平方根的概念,会用根号表示一个正数的算术平方根,并了解算术平方根的非负性。
(2)了解算术平方根的性质。
(3)了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根。
2.过程与方法目标(1)通过创设情境让学生得出新知,加强概念形成的教学,提高学生的思维水平。
(2)通过对平方根概念及性质的探究,提高数学数感和符号感,以及抽象思维的能力。
3.情感态度与价值观目标(1)鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。
(2)通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系的。
二、教学重难点:教学重点:算术平方根的概念和性质,会用根号表示一个正数的算术平方根。
教学难点:对算术平方根的概念和性质的理解,尤其是对算术平方根的双重非负性的理解。
三、教学准备:教具准备:多媒体课件,白板四、教学时间:四十分钟五、教学过程:(一)创设情境、导入新课学校为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长应为多少?(谁来说这块正方形场地的边长应取多少米?你是怎么算出来的?)(二)合作交流、探究新知解答上一个问题后,请同学们完成下表:这个填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题。
(通过解决这个问题,我们就引出了算术平方根的概念)正数3的平方等于9,我们把正数3叫做9的算术平方根。
正数4的平方等于16,我们把正数4叫做16的算术平方根。
说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和0这两个数?(教师让学生拿出提前准备好这样的10张卡片,一面写1-10,另一面写1-10的平方.生任意抽一张卡片,让其他学生回答平方或算术平方根。
)(三)总结提炼、梳理延伸说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?(出示算术平方根的定义并板书)一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a 的算术平方根记为a,读作“根号a”,a叫做被开方数.也就是,在等式x2=a(x≥0)中,规定x=a.规定:0的算术平方根是0。
人教版数学七年级下册6.1.1算术平方根优秀教学案例
在导入新课后,教师开始讲授新知识。首先,教师可以利用多媒体课件或实物模型,为学生提供丰富的感性材料,引导学生观察和操作。例如,教师可以展示一个正方形的模型,让学生观察并描述其特征,从而引导学生思考正方形的面积与边长之间的关系。接着,教师提出算术平方根的概念,并通过举例解释其含义。
(三)学生小组讨论
在讲授新知识后,教师将学生分成若干小组,让学生在小组内进行讨论、交流和合作。教师可以设计以下任务:
1.每个小组探究一个正整数的算术平方根,并总结求解方法。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)总结归纳
在学生小组讨论结束后,教师组织学生进行总结归纳。教师可以引导学生回顾本节课所学的内容,让学生总结算术平方根的定义、性质以及求解方法。同时,教师要注意关注学生的个体差异,引导每个学生都能参与到总结归纳的过程中。
人教版数学七年级下册6.1.1算术平方根优秀教学案例
一、案例背景
在我国基础教育课程体系中,算术平方根的概念是学生从小学过渡到初中阶段必须掌握的重要数学知识。对于七年级下册的学生而言,他们在学习了有理数、整数等基础知识后,算术平方根的概念及其性质,不仅是对原有知识的深化,更是为后续的代数学习奠定基础。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)反思与评价
本节课的教学结束时,教师引导学生进行反思与评价,使学生对所学知识有一个清晰的认识。教师可以设计以下问题:
1.你在这节课中学到了什么?你对自己的学习有何评价?
2.你觉得算术平方根在实际生活中有哪些应用?
二、教学目标
(一)知识与技能
人教版七年级数学下册《平方根》教学设计(第1课时)
6.1《平方根》教学设计(第1课时)一、内容和内容解析1.内容算术平方根的概念.2.内容解析算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要.作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面为后续研究平方根、立方根提供方法上的借鉴,另一方面为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式等内容的学习作准备.算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定,由算术平方根的概念引出其符号表示、读法及什么是被开方数.根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根.基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.二、目标和目标解析1.教学目标(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.(2)会求一些数的算术平方根.2.目标解析(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数.(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法.三、教学问题诊断分析在本课学习之前,学生们会计算一些数的平方,对乘方运算也有一定的认识,但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯;还有负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,没有碰到过(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学计算都涉及两个数不一样,学生可能难以理解.基于以上分析,本节课的教学难点是:强化对算术平方根的理解.四、教学过程设计1.创设情境,引入新课通过数学游戏,巩固一个正数的平方是正数,并提出:知道一个正数的平方,如何求这个正数?(板书课题)设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中来,同时为学习算术平方根提供实际背景和生活素材.2.师生互动,学习新知(1)、完成下表:121 169 0.09 2正方形的面积/dm边长/dm设计意图:通过多个已知正方形面积求边长问题的解答,加强学生对这种运算的理解,为学习算术平方根的定义作好铺垫.(2)、通过“已知一个正方形的面积,求这个正方形的边长”的问题,教师引导学生归纳:“已知一个正数的平方,求这个正数”,从而揭示问题的本质.在此基础上教师通过引导、补充、完善,引出算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.(3)、通过讨论:“0的算术平方根是多少?”“怎样表示”比较合适呢?引出规定:0的算术平方根是0.进一步强调:算术平方根中被开方数可以是正数或0,即非负数.(4)、通过数学游戏学会应用,再通过例题示范,规范解题.设计意图:通过实际问题引出概念,并进一步理解、应用.3、变式训练,强化概念.(1)、体验并理解≥0.(2)、体验并理解a≥0.设计意图:通过多次追问,让学生独立思考、解决问题,体会分类讨论,在加深学生对算术平方根概念理解的同时,让学生养成全面分析问题的习惯.4、当堂检测,巩固新知设计意图:通过练习使学生在理解算术平方根概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解.5、课堂小结小结要点是:(1)什么是算术平方根?(2)如何求一个正数的算术平方根?(3)什么数有算术平方根?设计意图:让学生对本节课知识进行梳理,进一步理解和应用所学知识.6、布置作业:教科书习题6.1 第1、2题.附:板书设计6.1 算术平方根x2=a →x=aa(a≥0) a≥0负数没有算术平方根。
人教版数学七年级下册6.1.3《平方根》教学设计2
人教版数学七年级下册6.1.3《平方根》教学设计2一. 教材分析平方根是初中数学中的重要概念,对于学生来说,掌握平方根的概念和求法是十分必要的。
本节课的内容包括平方根的定义、求法以及平方根的性质。
通过学习,学生能够理解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根的性质。
二. 学情分析学生在之前的学习中已经掌握了有理数的概念,也了解了乘方的概念,这为本节课的学习提供了基础。
但是,对于平方根的概念和求法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.知识与技能目标:理解平方根的概念,掌握求一个数的平方根的方法,了解平方根的性质。
2.过程与方法目标:通过观察、实验、探究等活动,培养学生的动手操作能力和抽象思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:平方根的概念和求法,平方根的性质。
2.难点:平方根的性质的理解和应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和抽象思维能力。
六. 教学准备1.准备平方根的实例和练习题。
2.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过一个实例,如“一个正方形的边长是a,求这个正方形的面积”,引出平方根的概念。
让学生思考,如何求一个数的平方根。
2.呈现(15分钟)介绍平方根的定义,通过PPT展示平方根的图像,让学生直观地理解平方根的概念。
然后,讲解如何求一个数的平方根,以及平方根的性质。
3.操练(10分钟)让学生分组进行练习,每组选择一个数,求出它的平方根,并观察平方根的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对平方根的概念和求法的掌握程度。
5.拓展(10分钟)引导学生思考,如何求一个数的算术平方根,以及算术平方根的性质。
让学生通过小组合作,共同探究这个问题。
人教版教材七年级数学第6章第一节《算术平方根》教学设计
重点:算术平方根概念的理解。
难点:根据算术平方根的概念正确求出非负数的算术平方根。
七、教具安排PPT、视频八、课件使用说明本课件采用微软件幻灯片制作软件Microsoft Office PowerPoint 2007制作,安装Microsoft Office PowerPoint 2007或该软件更高版本可以正常运行。
双击PPT文件即可进入本课件进行授课。
九、教学过程1.明确目标课前导学出示学习目标(课标要求);围绕学习目标,课前学生自主阅读教材P40-41。
设计意图:明确本节所学的内容,让学生对本节课知识有个大体认识,产生疑惑课堂答疑。
2.提出问题引入新课提出问题:能否用两个面积为1dm2的正方形拼成一个面积为2dm2的大正方形?边长为多少?(设边长为xdm,可列方程x2=2,引出概念)设计意图:从现实生活中提出数学几何问题,能够使学生积极主动地投入到数学活动中去,动手操作,师生共探,培养学生动手能力和学习兴趣,发散学生思维,同时为学习算术平方根提供实际背景和生活素材。
3.解决问题学会算法解决问题:实际问题(正方形画布已知面积求边长)填入表格PPT展示对比;提问:加法、减法、乘法、除法、乘方这五种运算中那些是互逆运算呢?得出平方与开平方互为逆运算,配套练习教师点拨思考方法及书写。
设计意图:通过填表活动,从数学几何问题抽象为代数问题,总结归纳规律,解决生活实际问题,并在归纳中加深学生对平方与开平方互逆运算的认识,理解算术平方根的算法。
4.生成问题提炼性质符号表示:强调a的算术平方根符号表示,配套三个练习巩固。
生成新问题:负数有算术平方根吗?中的a可以取任何数吗?总结性质(双非负性-PPT展示)。
初步了解无理数:√a是什么数?(视频播放有多大)得出结论,两种情况考虑。
2配套习题,归纳性质。
设计意图:巩固练习,强化符号和文字的转换,加强符号意识。
通过三个新问题的提出和解决,总结性质;通过数学故事的视频播放,初步了解无理数,感受无理数的发展史;最后通过配套的习题,师生凝练性质,记忆符号表达。
6.1.1+算术平方根教案-2023-2024学年人教版数学七年级下册
第1课时算术平方根教学设计课题算术平方根授课人素养目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根.教学重点算术平方根的概念.教学难点根据算术平方根的概念求出非负数的算术平方根.教学活动教学步骤师生活动活动一:创设情境,新课导入设计意图借助实例让学生感受算术平方根的产生是实际生活的需要,也是数学运算的需要.【情境导入】同学们,你们知道宇宙飞船离开地球进入地面附近轨道的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(单位:m/s),而小于第二宇宙速度v2(单位:m/s).v1,v2的大小满足v12=gR,v22=2gR,其中g是物理中的一个常数(重力加速度),g≈9.8m/s2,R是地球半径,R≈6.4×106m.怎样求v1,v2呢?这就要用到算术平方根的概念,也就是本节课的主要学习内容.【教学建议】此内容富有感染力,使学生感性认识本章知识的应用价值.对第一、二宇宙速度讲解不宜过多,重在借此公式引出如何求v1,v2的值.活动二:问题引入,自主探究设计意图引导学生通过填表体会求算术平方根的过程,引出算术平方根的概念.探究点1算术平方根的概念与求算术平方根(教材P40问题)学校要举行美术作品比赛,小鸥想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?解:因为52=25,所以这个正方形画布的边长应取5dm.填表并回答问题.问题1观察上表,从上面到下面对应的是什么运算?从下面到上面又对应的是什么运算?答:从上面到下面是已知一个正数的平方,求这个正数;从下面到上面是求一个正数的平方,即我们学过的平方运算.【教学建议】教师提问,学生作答,使学生理解算术平方根的概念,并学会计算一个数的算术平方根:先找出哪一个正数的平方等于所给的数,再用式子表示即可.注意:①求一个带分数的算术平方根时,要先将其化为假分数,如对应训练T4(5);教学步骤师生活动设计意图引导学生总结算术平方根的双重非负性.问题2这两个运算之间有什么关系?答:互为逆运算.概念引入:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.例1(教材P40例1)求下列各数的算术平方根:(1)100;(2)6449;(3)0.0001.解:(1)因为102=100,所以100的算术平方根是10,即100=10;(2)因为(87)2=6449,所以6449的算术平方根是87,即6449=87;(3)因为0.012=0.0001,所以0.0001的算术平方根是0.01,即0.0001=0.01.从例1可以看出:被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立,即若a>b>0,则a>b.【对应训练】1.若x是49的算术平方根,则x等于(A )A.7B.±7C.49D.-492.(1)若一个数的算术平方根是13,则这个数是13.(2)①16=4,16的算术平方根是2;②2(-5)=5,2(-5)的算术平方根是5,(-5)2的算术平方根是5.(3)2x=6,则x=±6.(4)算术平方根是其本身的数是0,1.3.教材P41练习第2题.4.(教材P41练习第1题及补充)求下列各数的算术平方根:(1)0.0025;(2)81;(3)32;(4)12136;(5)25241.解:(1)因为0.052=0.0025,所以0.0025的算术平方根是0.05,即0.0025=0.05;(2)因为92=81,所以81的算术平方根是9,即81=9;(3)因为32=9,所以32的算术平方根是3,即23=3;(4)因为(116)2=12136,所以12136的算术平方根是116,即12136=116;(5)因为25241=2549,(57)2=2549,所以25241的算术平方根是57,即25241=57.②看清被开方数,如对应训练T2(2).教学步骤师生活动探究点2算术平方根的双重非负性根据上面探究的内容,想一想:(1)算术平方根√a中,a可以取任何数吗?(提示:结合教材P40问题进行思考,面积可以为负数吗?)答:不可以.被开方数a是非负数,即a>0或a = 0.(2)√a是什么数?(提示:结合教材P40问题进行思考,边长可以为负数吗?)答:√a是非负数,即√a>0或√a= 0.(3)√−4有意义吗?通过(1)(2)(3)你能得出什么结论?答:没有.结论:非负数的算术平方根是非负数,负数没有算术平方根.【对应训练】已知x,y为有理数,且√x−1+(y-2)2=0,求x-y的值.解:由题意,得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1.【教学建议】让学生先独立思考,再小组合作,交流探究,启发学生思维,让学生逐步学习,引导学生总结,教师再进行补充讲解,为后面研究平方根做准备,也为以后的二次根式学习埋下伏笔.利用非负性解题的关键点是:若几个非负数的和为0,则这几个数都为0.活动三:重综合训练,提升探究设计意图巩固加深对于算术平方根及其非负性的理解.例2已知√1−3a与√b−108互为相反数,求ab的算术平方根.解:根据题意,得1-3a=0,b-108=0,所以a=13,b=108,所以ab=13×108=36.因为62=36,所以ab的算术平方根是6.【对应训练】若|x+1|+y-8=0,求2y+x的算术平方根.解:由|x+1|+y-8=0,可知x+1=0,y-8=0,所以x=-1,y=8,所以2y+x=16-1=15.故2y+x的算术平方根是√15.【教学建议】学生自主探究,对于此类算术平方根综合其非负性类型题目进行练习巩固,加深理解,也有利于为以后学习二次根式的性质打下坚实的基础.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:什么是算术平方根?如何求一个正数的算术平方根?什么数才有算术平方根?【知识结构】【作业布置】1.教材P47习题6.1第1,2,11题.2.相应课时训练.教学步骤师生活动板书设计6.1平方根第1课时算术平方根1.概念:若x2=a(x为非负数),则x叫做a的算术平方根.2.表示:a的算术平方根用a表示,即x=a.算术平方根的性质归纳:①算术平方根的双重非负性:算术平方根本身是非负数,算术平方根的被开方数也是非负数.拓展:非负性的应用:几个非负数的和等于0,则这几个非负数均等于0.即若√a +√b +…+√m =0,则a =b =…=m=0.②一个正数的算术平方根的平方等于这个数本身.即(√a )2=a .③一个数的平方的算术平方根等于这个数的绝对值,再根据这个数的正负去绝对值符号.即√a 2=a .例1 √81的算术平方根是( B ) A.9 B.3 C.±9 D.±3分析:利用算术平方根的概念解答即可,注意看清被开方数是√81,而不是81. 解析:因为√81=9,9的算术平方根为3,所以√81的算术平方根是3.故选B. 例2若√x −1+√x +y =0,则x +2y 的值为( A ) A.-1 B.0 C.1 D.2分析:根据算术平方根的非负性可知被开方数必须为非负数,由此得到x -1=0,x +y =0,分别求出x ,y 的值,然后代入所要求值的式子即可得出结果.解析:因为√x −1+√x +y =0,所以x -1=0,x +y =0,所以x =1,y =-1,所以x +2y =-1.故选A.例3计算:√32=3,√0.72=0.7,√02=0,√(−6)2=6,-√(−34)2=34.(1)根据计算结果,回答√a 2一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:√(3.14−π)2 . 解:(1) √a 2不一定等于a , √a 2=|a |. (2)原式=|3.14-π| = π-3.14.例1已知√25=x ,√y =2,z 是9的算术平方根,求2x +y -z 的算术平方根.解:因为√25=x ,所以x =5.因为√y =2,所以y =4.因为z 是9的算术平方根,所以z =3. 所以2x +y -z =2×5+4-3=11,所以2x +y -z 的算术平方根是11. 例2小强同学用两个小正方形纸片做拼剪构造大正方形游戏:(他选用的两个小正方形的面积分别为S 1,S 2)(1)如图①,S 1=1,S 2=1,拼成的大正方形A 1B 1C 1D 1的边长为√2;3.性质:(1)算术平方根的“双重非负性”;(2)正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.教学反思本节课从宇宙飞船的实例引入,激发学生学习的积极性,再从学生熟知的正方形的边长与面积的关系入手,揭示问题本质:它们都是已知一个正数的平方,求这个正数的问题,进而从具体到抽象地给出算术平方根的概念,再从概念的本质入手,引导学生分析算术平方根的双重非负性,最后通过例题和练习题进一步巩固所学知识,达到教学目标.如图②,S1=1,S2=4,拼成的大正方形A2B2C2D2的边长为√5;如图③,S1=1,S2=16,拼成的大正方形A3B3C3D3的边长为√17.(2)若将(1)中的图③沿正方形A3B3C3D3边的方向剪裁,能否剪出一个面积为14.52且长、宽之比为4∶3的长方形?若能,求它的长、宽;若不能,请说明理由.分析:(1)求出所拼成的正方形的面积,再根据算术平方根的概念进行计算即可;(2)根据题意求出其长、宽,再根据算术平方根进行验证即可.解:(1)解析:当S1=1,S2=1时,拼成的大正方形A1B1C1D1的面积为1+1=2,因此其边长为√2;当S1=1,S2=4时,拼成的大正方形A2B2C2D2的面积为1+4=5,因此其边长为√5;当S1=1,S2=16时,拼成的大正方形A3B3C3D3的面积为1+16=17,因此其边长为√17.(2)不能.理由如下:设长方形的长为4x,宽为3x,则有4x·3x=14.52,所以x2=1.21,即x=1.1(x>0).因此长方形的长为4x=4.4,宽为3x=3.3.因为(4.4)2=19.36>17,所以4.4>√17,所以不能沿正方形A3B3C3D3边的方向剪出一个面积为14.52且长、宽之比为4∶3的长方形.。
人教版七年级下册:6.1 平方根第1课时 算术平方根教学设计
人教版七年级下册:6.1 平方根第1课时算术平方根教学设计一、教学背景分析本节课是七年级数学教材下册的第一课时,主要内容为算术平方根。
学生在前几章已经学习了平方和平方根的概念,本节课将进一步扩展学生对平方根的认识。
通过这节课的学习,学生将能够理解算术平方根的概念和计算方法,并能够运用所学知识解决实际问题。
二、教学目标1. 知识目标•掌握算术平方根的概念和计算方法;•了解平方根的性质。
2. 能力目标•能够正确计算给定数的算术平方根;•能够应用所学知识解决相关问题。
3. 情感目标•培养学生对数学的兴趣和好奇心;•提高学生解决问题的能力和自信心。
三、教学重点和难点1. 教学重点•算术平方根的概念和计算方法。
2. 教学难点•理解平方根的性质,并能够运用所学知识解决实际问题。
四、教学过程设计1. 导入与引入通过提问的方式,复习平方和平方根的概念,并与学生探讨平方根与平方的关系。
示例问题:•什么是平方?什么是平方根?•如何表示一个数的平方?如何表示一个数的平方根?•平方根与平方有什么关系?2. 概念讲解通过示例和图表的方式,向学生介绍算术平方根的概念,并讲解算术平方根的计算方法。
示例:•什么是算术平方根?•如何计算一个数的算术平方根?3. 计算练习设计一些简单的计算练习题,让学生通过计算来巩固所学的算术平方根的计算方法。
示例题目:1.计算下列数的算术平方根:a)4b)9c)162.根据给定的算术平方根,求出对应的数:a)√9 = ?b)√16 = ?c)√25 = ?4. 拓展应用设计一些拓展应用题,让学生能够运用所学知识解决实际问题。
示例题目:1.在一个正方形花坛中,一棵树的根部到花坛的边缘的距离为3米。
试问这棵树离花坛的中心有多远?2.小明和小华分别种植了一块土地,小明种植的土地面积是小华种植的土地面积的4倍。
如果小明种植的土地面积是36平方米,那么小华种植的土地面积是多少?5. 总结与展望让学生总结本节课所学的知识点,并展望下节课的内容。
七年级下册数学人教版-第6章--实数6.1--平方根6.1.1--算术平方根【说课稿】
算术平方根教材分析:《算术平方根》是人教版初中数学七年级下第六章第一节第一课时。
在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。
本节主要学习算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。
本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。
因此,本节处于非常重要的地位,起着承前启后的作用。
学生分析:八年级的学生已经能从具体事例中归纳问题的本质,通过观察、类比等活动抽象出问题的规律,同时学生在前面的学习中已经熟练掌握算术平方根的知识,具备了用所学知识来分析算术平方根性质的基础。
教学目标:1. 知识与技能掌握算术平方根的概念,能通过开方运算求一个非负数算术平方根。
2. 过程与方法从现实生活中提出数学问题,在学生已有的基础上建立新旧知识的联系,让学生用自己的语言有条理地、清晰的阐述算术平方根的概念、意义及求法,提高理解能力和语言表达能力。
3 情感、态度与价值观准确理解把握概念,将对知识的理解转化为数学技能,鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。
教学重、难点:本节课的重点是算术平方根的概念和性质。
正确理解这个概念是学好本章的关键之一。
本节课的难点是根据算术平方根的概念正确求出非负数的算术平方根。
说教法与学法:1 教法学生在七年级学过乘方运算,但由于间隔时间长,他们会有不同程度的遗忘,为了实现新旧教学方式和学习方式的接轨,我利用情景与问题教学激发学生的兴趣,利用对比教学让学生掌握概念的本质,完善学生的知识结构。
2 学法学生才是学习的主人,教师应该把过程还给学生,让过程与结果并重。
新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此本节的学法我定为小组交流合作法和自主学习法。
人教版七年级下册6.1.1《算术平方根》(说课稿)
人教版七年级下册6.1.1《算术平方根》(说课稿)一. 教材分析《算术平方根》是人教版七年级下册第六章第一节的内容。
本节主要介绍了算术平方根的概念和性质,以及求一个数的算术平方根的方法。
这部分内容是学生学习了有理数、实数等基础知识后,进一步学习代数和几何的基础知识。
通过本节的学习,学生能够理解算术平方根的概念,掌握求算术平方根的方法,并为后续学习平方根、立方根等知识打下基础。
二. 学情分析学生在学习本节内容之前,已经学习了有理数、实数等基础知识,对数的概念和性质有一定的了解。
但是,对于算术平方根的概念和性质,学生可能还比较陌生,需要通过实例和练习来理解和掌握。
此外,学生可能对于求一个数的算术平方根的方法还不够熟练,需要通过大量的练习来提高计算能力。
三. 说教学目标1.知识与技能:理解算术平方根的概念,掌握求一个数的算术平方根的方法。
2.过程与方法:通过实例和练习,培养学生的计算能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.重点:算术平方根的概念和性质,求一个数的算术平方根的方法。
2.难点:理解算术平方根的概念,求一个数的算术平方根的方法。
五. 说教学方法与手段本节课采用讲授法和练习法相结合的教学方法。
在讲解算术平方根的概念和性质时,采用直观演示和举例说明的方法,帮助学生理解和掌握。
在练习求一个数的算术平方根时,采用引导学生自主探究和合作交流的方式,培养学生的计算能力和解决问题的能力。
六. 说教学过程1.导入:通过复习实数的概念,引导学生引入算术平方根的学习。
2.讲解:讲解算术平方根的概念和性质,举例说明求一个数的算术平方根的方法。
3.练习:布置练习题,让学生自主探究和合作交流,巩固所学知识。
4.总结:对本节课的内容进行总结,强调算术平方根的概念和性质,以及求算术平方根的方法。
七. 说板书设计板书设计要简洁明了,突出算术平方根的概念和性质,以及求算术平方根的方法。
人教版七年级下册数学教案设计:6.1平方根
教具 学具 学生活动
三角板 三角尺
学生展示前置性作业,小组长批 改,并向老师汇报作业中存在的问 题。
小组内个人展示先学成果,相互交 流,明确答案。
对疑难问题,小组内共同讨论完 成。 提出质疑,组长解答。
不是一个完全平方数时, a 是一个 无限不循环小数。
巩
练习:
固 P44 1、2
拓 小结:
展
本节课你有何收获?
学生独立完成练习,小组长批 改,小组内纠正。
学生总结收获。
课后作业: P47 5、6
作
前置性作业设计:
业 1、 用计算器求下列各式的值:
布
置
(1) 3 (精确到 0.001); (2) 3136 .
拓 小结:
展
本节课你有何收获?
学生独立完成练习,小组长批 改,小组内纠正。
学生总结收获。
课后作业: P47 习题第 1、2、题
作 前置性作业设计:
业 1.填空;
布
置
正方形的面积
9
16
36
1
4
25
边长 2.填空:
(1)因为_____2=64,所以 64 的算术平方根是______,即 64 =______;
前置 性学习
小 组 合 作 学 习
算术平方根的概念
教具 三角板
正确求出非负数的算术平方根
学具 三角尺
教师活动
学生活动
教师抽查学生的前置性作业的完成情
学生展示前置性作业,小组
况,并听取各小组组长的汇报。
长批改,并向老师汇报作业中存
人教版七年级数学下册教学设计6.1平方根(第1课时 算术平方根教学设计
师生活动:学生可能很快回答3.
追问:只有一个数3吗?
问题:一般的,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.你能类比说说平方根的概念?
一般的,如果一个数x的平方等于a,那么这个数x叫做a的算术平方根.
引导学生得出平方根的概念
八、板书设计(本节课的主板书)
平方根
引导学生得出平方根的概念.一般的,如果一个数x的平方等于a,那么这个数x叫做a的算术平方根.
正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.
正数a的平方根的表示 .其中 是a的正的平方根,- 是a的负的平方根.
九、教学反思
本节课课堂教学中师生通过问题的互动对平方根概念进行理解,从具体的数入手,然后从具体到抽象的给出平方根的概念,数的平方根的特征,让学生反复举出例子理解开平方和求平方根的互逆运算关系。给学生留出足够的时间探索交流平方根的特征,自己归纳得出结论.教学时注意了让学生通过观察、思考、探究完成对知识的理解和构建.
三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)
本节课课堂教学中师生通过问题的互动对平方根概念进行理解,从具体的数入手,然后从具体到抽象的给出平方根的概念,数的平方根的特征,让学生反复举出例子理解开平方和求平方根的互逆运算关系。给学生留出足够的时间探索交流平方根的特征,自己归纳得出结论.教学时注意了让学生通过观察、思考、探究完成对知识的理解和构建.
四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)
人教版数学七年级下册6.1平方根(第1课时)教学设计
(3)小组代表展示解题过程和答案,其他学生认真倾听,相互学习。
(四)课堂练习
1.教学内容:设计不同难度的平方根练习题,巩固所学知识。
2.教学过程:
(1)教师出示练习题,要求学生在规定时间内完成。
(2)学生独立完成练习,教师巡回指导,关注学生的解题方法和技巧。
2.学生在小学阶段对算术平方根有一定的了解,但尚未系统地学习平方根的概念及其性质,需要在教学中逐步引导和拓展。
3.七年级学生正处于青春期,思维活跃,好奇心强,对新知识具有较强的求知欲,有利于激发他们对平方根学习的兴趣。
4.部分学生对数学学习存在恐惧心理,对运算类题目有一定的抵触情绪,需要在教学中关注学生的心理变化,采用鼓励、激励的方式,帮助学生克服困难,树立信心。
4.培养学生的创新精神,鼓励学生在解决问题时敢于尝试、勇于突破。
5.培养学生正确的价值观,使学生认识到数学知识在日常生活和社会发展中的重要作用,增强学生的社会责任感。
二、学情分析
针对人教版数学七年级下册6.1平方根(第1课时)的教学内容,考虑到学生的年龄特点和已有知识水平,进行以下学情分析:
1.学生在七年级上册已经学习了有理数的乘方,对数的乘方概念有了初步的认识,这为平方根的学习奠定了基础。
6.数学日记:要求学生撰写一篇关于平方根学习心得的数学日记,内容包括对本节课知识点的理解、在学习过程中遇到的困难及解决方法、对平方根知识在实际生活中的应用等。
作业布置注意事项:
1.作业量适中,难度分层,以满足不同层次学生的需求。
2.鼓励学生独立完成作业,培养自主学习能力。
3.关注学生的作业完成情况,及时给价方式,关注学生在知识掌握、能力提升、情感态度等方面的表现。及时给予学生反馈,鼓励他们不断进步,培养他们积极向上的心态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级下教案 第1课时 算术平方根
【教学目标】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;
3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
【教学难点与重点】
1. 重点:算术平方根的概念。
2. 难点:根据算术平方根的概念正确求出非负数的算术平方根。
【教学过程】
一、 情境导入
同学们,2003年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度1v (米/秒)而小于第二宇宙速度:2v (米/秒).1v 、2v 的大小满足gR v gR v 2,2
221==.怎样求1v 、2v 呢?这就要用到平方根的概念,也就是本章的主要学习内容.
设计理念:“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对 本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.
这节课我们先学习有关算术平方根的概念.
请看下面的问题.
你是怎样算出画框的边长等于5dm 的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x 的值.
练习:教科书第160页的填表.这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
二、 归纳新知
上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.
一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 也就是,在等式2x =a (x ≥0)中,规定x =a .
思考:这里的数a 应该是怎样的数呢? 试一试:你能根据等式:2
12=144说出144的算术平方根是多少吗?并用等式表示出来.
想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平
方根的记法写出对应的值.例如25表示25的算术平方根,因为……
a 也可以写成2a ,读作“二次根号a ”。
算术平方根的概念比较抽象,原因之一是学生对石这个新
的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.
三、 应用新知
例.求下列各数的算术平方根:
(1)100;(2)1;(3)64
49;(4)0.0001 建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x ,使2x =100,
因为100102
=
四、 探究拓展
提出问题:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢? 大正方形的边长是2,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受2的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
五、 课堂小结
提问:1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
六、 布置作业
(1)判断下列说法是否正确:
① 是25的算术平方根;
② 一6是()2
6-的算术平方根;
③ 0的算术平方根是0;
④ 0.01是0.1的算术平方根;
⑤一个正方形的边长就是这个正方形的面积的算术平方根.
(2)下列各式哪些有意义,哪些没有意义? ①-3 ②3- ③ ()23- ④210-
(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。