7.4 实践与探索(2)
华师大版七年级数学下册第七章《实践与探索》优质优质课课件2

农作物品种 水稻 棉花 蔬菜
每公顷需劳 动力
每公顷需投 入资金
4人 1万元
8人 5人 1万元 2万元
已知该农场计划在设备上投入67万元,应该
怎样安排这三种作物的种植面积,才能使所
有职工都有工作,而且投入的设备资金正好 够用?
分析
1.本题中有哪些已知量? (1)安排种三种农作物的人数共300名; (2)安排种三种农作物的土地共51公顷; (3)每种农作物每公顷所需要的职工数; (4)每种农作物每公顷需要投入的资金; (5)三种农作物需要的资金和为67万元.
恰好拼成一个大长方形.
单位:mm
y yyy y
x
x
x
x
问:大长方形的每组对边是由小长方形的长和宽怎样组成?
引出:5个小长方形的宽=3个小长方形的长 列方程:5y=3x
小红看见了,说:“我来试一试。”结果七拼八凑,
拼成如图那样的正方形。咳,怎么中间还留下了一个洞,
恰好是边长为2mm的 小正方形!
2y
x
2
2y x
S大正方形-8×S小正方形=22 即(x+2y)2-8xy=4
想一想:小正方形的边长跟小长形的长和宽有什么关系?
小正方形的边长是由哪条边延长得到的,延长后又正好等于
什么?
得:2y-x=2
解:设小长方形的长为xmm,宽为ymm。根据题意,得
3x=5y 2y-x=2
解这个方程组,得 X=10
26000 若买茉莉花则需:5×10×4×130=26000 (元) ∴中间五个长方形应该种上茉莉花.
2.长风乐园的门票价格规定如下表所列.某校 初一(1)、(2)两个班共104人去游长风乐园, 其中(1)班人数较少,不到50人,(2)班人数较多, 有50多人.经估算,如果两班都以班为单位分 别购票,则一共应付1240元;如果两班联合 起来,作为一个团体购票,则可以节省不少钱. 问两班各有多少名学生?
华师版七年级数学下册作业课件(HS) 第七章 一次方程组 实践与探索

解:设小长方形的长为 x,宽为 y,则大长方形的长为 3x,宽为 3y.
根据题意,得x3-x-y=3y1=. x+y,
x=2, 解得y=1.
则大正方形 ABCD 的面积为(3x+3y)2=(3×2+3×1)2=81.
答:大正方形 ABCD 的面积是 81
15.(12分)去年,某学校积极组织捐款支援地震灾区,七(1)班55名同学共 捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染 看不清,请你用所学方程的知识求出捐款2元和5元的人数.
A.54人 B.55人 C.56人 D.57人
11.一根木棒长8米,分成两段,其中一段比另一段长1米, 求这两段的长时,设其中较长一段为x米,另一段为y米,
x+y=8, 那么所列的二元一次方程组为___x_-__y_=__1_____.
12.已知两数之差为7,又知此两数各扩大为原来的3倍后的和为45, 则原来的两个数分别为__1_1_,__4__.
3.(4分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的 价钱相同,每盒圆形礼盒的价钱相同.小明原先想购买3盒方形礼盒和7盒圆 形礼盒,但他身上的钱还少240元,如果改成购买7盒方形礼盒和3盒圆形礼 盒,他身上的钱会剩下240元.每盒圆形礼盒比每盒方形礼盒多(D )
A.90元 B.140元 C.1ห้องสมุดไป่ตู้0元 D.120元
A.20,80 B.25,75 C.30,70 D.35,65
10.《数理天地》(初中版)全年共出12期,每期定价2.5元,某中学七年级 组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1 320元;若 订全年的同学都改订半年,而订半年的同学都改订全年,共需订费1 245元, 则该中学七年级订阅《数理天地》(初中版)的学生人数共有( D)
用二元一次方程组解决配套问题

高效上好每节课·快乐上好每天学
方法归纳
用方程(组)解实际问题的过程
分析
求解
问题
方程组
解答
抽象
检验
分析和抽象的过程包括
(1)审题,弄清楚题目中的数量关系,找出未 知数,用x,y表示所要求的两个未知数。 (2)找到能表示应用题全部含义的两个等量关系
根据题意得:
xy9 3x2y20
解方程组得: x2 y 7
答:应买笔记本2件,买笔7件.
ቤተ መጻሕፍቲ ባይዱ
高效上好每节课·快乐上好每天学
随堂练习
2.100个和尚吃100个馍,大和尚每人吃3个, 小和尚3个人吃1个,问大、小和尚各多少人?
大和尚+小和尚=100 大和尚吃馍数+小和尚吃馍数=100
高效上好每节课·快乐上好每天学
7.4 实践与探索
用二元一次方程组解决配套问题
滩歌中学
漆红强
高效上好每节课·快乐上好每天学
考考你
木马(3条腿)、板凳(4条腿)三十三. 一百条腿地上站,木马、板凳各多少?
木马数+板凳数=33
等量关系
木马腿数+板凳腿数=100
高效上好每节课·快乐上好每天学
考考你
香蕉的售价为5元/千克、苹果的售价为3元/千
高效上好每节课·快乐上好每天学
课后作业
1.P36习题7.2 第2、3、4题.
高效上好每节课·快乐上好每天学
克,小华买了香蕉和苹果共9千克,付款33元。问
香蕉和苹果各买了多少?
等量关系
香蕉的数量+苹果的数量=9
买香蕉的钱+买苹果的钱=33
7.4 实践与探索 华东师大版数学七年级下册素养提升练习(含解析)

7.4 实践与探索基础过关全练知识点 列方程(组)解决实际问题1.(2023河南南阳淅川期中)已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,则下列方程组中符合题意的是( )A.x +y =180x =y -30 B.x +y =180x =y +30 C.x +y =90x =y -30 D.x +y =90x =y +302.【跨学科·体育】(2022浙江嘉兴中考)“市长杯”青少年校园足球联赛的比赛规则是胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A.x +y =73x +y =17 B.x +y =93x +y =17C.x +y =7x +3y =17D.x +y =9x +3y =173.【教材变式·P42问题2】(2023山西阳泉模拟)如图,用12块相同的长方形地砖拼成一个矩形,设长方形地砖的长和宽分别为x cm 和y cm,则根据题意可列方程组为( )A.x -2y =60x =4yB.x -2y =60y =4xC.x +2y =60x =4yD.x +2y =60y =4x4.(2023河南南阳镇平月考)周末小华和家人到公园游玩,湖边有大、小两种游船.小华发现1艘大船与2艘小船一次可以载游客32人,2艘大船与1艘小船一次可以载游客52人,则1艘大船与1艘小船一次可以载游客的人数为( )A.32B.30C.28D.265.(2023四川宜宾月考)某班举行茶话会,班长在分橘子的时候提到若每人分3个,则余42个;若每人分4个,则最后一位同学只能分得1个,则共有 个橘子.6.【跨学科·物理】(2022浙江杭州期中)在弹性限度内,弹簧总长度y(cm)与所挂物体质量x(kg)满足等式:y=kx+b(k≠0,k,b为常数).当挂1 kg物体时,弹簧总长度为6.3 cm;当挂4 kg物体时,弹簧总长度为7.2 cm,则等式中b的值为 .7.(2023河南南阳二十一中月考)一个两位数,个位上的数字与十位上的数字之和为9,若把十位上的数字和个位上的数字交换位置,所得的新两位数比原两位数大27,则原来的两位数是 .8.(2023吉林长春德惠期中)某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,一个螺栓配套两个螺帽,则应该如何分配工人才能使生产的螺栓和螺帽刚好配套?设应安排x人生产螺栓,安排y人生产螺帽,则可列方程组为 .9.(2023福建泉州石狮一中月考)甲、乙两人匀速骑车分别从相距60 km的A、B两地同时出发,若两人相向而行,则两人在出发2 h后相遇;若两人同向而行,则甲在出发6 h后追上乙.若设甲的速度为x km/h,乙的速度为y km/h,则可列方程组为 .10.【新独家原创】新学期开始,小明、小兵和小杭去文具店买学习用品,三人商量好买同样品牌和价格的学习用品,三人都买了价格为25元的书包,小明另外买了3个笔记本,2支钢笔共付款55元,小兵另外买了4个笔记本,1支钢笔共付款50元,小杭另外买了2个笔记本,4支钢笔,则他需要付款多少元?11.【新素材】(2023吉林松原宁江三模)抽盲盒顾名思义就是盒子中放置不同的物品,消费者凭运气抽商品,是当下热门的营销方法之一.某葡萄酒酒庄也推出了盲盒式营销,商家计划在每件盲盒中放入A、B两种类型的酒共6瓶.销售人员包装了甲、乙两种盲盒,甲盲盒中装了A种酒3瓶,B种酒3瓶,乙盲盒中装了A种酒1瓶,B种酒5瓶.甲盲盒的成本价为每件240元,乙盲盒的成本价为每件160元.(1)求A种酒和B种酒的成本价;(2)商家计划将所有的盲盒均以每件299元的价格出售.请你直接写出一种包装盲盒的方案(题中两种方案除外),使它的成本价不高于每件299元.12.(2023四川成都期末)为丰富学生的课外体育活动,八年级2班购买了一些排球和跳绳.根据下列对话,求出肖雨购买的排球和跳绳的单价.13.【中华优秀传统文化】(2023吉林松原前郭四模)《九章算术》中记载:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其大意是:今有好田1亩,价值300钱;坏田7亩,价值500钱.今买好、坏田共1顷(1顷=100亩),价钱为10 000钱.问好、坏田各买了多少亩?14.(2021江苏扬州仪征期末)王老师在水果店用54元买了苹果和橘子共8千克,已知苹果每千克8元,橘子每千克6元.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:x +y =( ),8x +6y =( );乙+y =( ),+y 6=( ).根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在括号中补全甲、乙两名同学所列的方程组.甲:x 表示 ,y 表示 ;乙:x 表示 ,y 表示 .(2)求王老师买苹果和橘子各花了多少元钱.(写出完整的解答过程)能力提升全练15.(2023河南新乡期末,9,★★☆)如图,2个塑料凳子叠放在一起的高度为60 cm,4个塑料凳子叠放在一起的高度为80 cm,塑料凳子相同且叠放时均忽略缝隙,则11个塑料凳子叠放在一起的高度为( )A.120 cmB.130 cmC.140 cmD.150 cm16.【数学文化】(2023河南商丘柘城模拟,8,★★☆)《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排.图中各行从左到右列出的算筹分别表示未知数x,y的系数与相应的常数项.把如图1所示的算筹图用我们现在所熟悉的方程组的形式表示出来就是3x+2y=19,x+4y=23.在如图2所示的算筹图中有一部分被墨水覆盖了,若图2所表示的方程组中x的值为3,则被墨水覆盖的部分为( )图1 图2A. B.C. D.17.(2023浙江嘉兴、舟山中考,15,★★☆)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y 只,则可列方程组为 .18.(2023河南南阳卧龙二模,20,★★☆)春季正是新鲜草莓上市的季节,甲、乙两人一起去某水果超市购买奶油草莓,甲购买了3 kg,乙购买了5 kg,后来觉得草莓不错,又约好一起去该水果超市购买.第二次购买时,甲花了和上次相同的钱,却比上次多买了1 kg,乙购买了和上次相同质量的草莓,却比上次少花了35元.(1)求这种草莓两次购买的价格;(2)分别求甲、乙两次购买这种草莓的平均价格;(3)生活中,无论物品的单价如何变化,有人每次总按相同金额购买,有人每次总按相同质量购买,结合(2)的计算结果,建议按相同 购买更合算(填“金额”或“质量”).素养探究全练19.【应用意识】(2023福建福州一中期中)某化工厂与A,B两地通过公路、铁路相连(距离如图所示).这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成售价为每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运输费15 000元,铁路运输费97 200元.(1)这批产品的销售款比原料费和运输费的和多多少元?小明同学已完成了一部分解答过程,请补全以下方程组并解决上述问题.解:设工厂制成运往B地的产品x吨,从A地购买了y吨原料,依题意得1.5(20x+10y)=( ), 1.2(110x+120y)=( ).(2)工厂原计划从A地购买的原料和送往B地的产品一共20吨,若要增加c吨产品,就要再购买115c吨原料,此时产品的销售款与原料的进货款相差65 000元,同时满足原料总质量是产品总质量的3倍,求c的值.答案全解全析基础过关全练1.D ∵∠A比∠B大30°,∴x=y+30,∵∠A、∠B互余,∴x+y=90.故选D.2.A 根据题意得x+y=9―2,3x+y=17,即x+y=7,3x+y=17,故选A.3.C 长方形地砖的长和宽分别为x cm和y cm,由题意得x+2y=60,x=4y,故选C.4.C 设1艘大船可载x人,1艘小船可载y人,依题意得x+2y=32,2x+y=52,解得x=24,y=4,∴x+y=24+4=28,即1艘大船与1艘小船一次可以载游客的人数为28,故选C.5.177解析 设某班共有x名同学参加茶话会,共有y个橘子,由题意得3x+42=y,4(x-1)+1=y,解得x=45,y=177,故共有177个橘子.6.6解析 依题意得k+b=6.3,4k+b=7.2,解得k=0.3,b=6.7.36解析 设原来的两位数的十位上的数字为x,个位上的数字为y,依题意得x+y=9,10y+x-(10x+y)=27,解得x=3,y=6,∴10x+y=10×3+6=36,即原来的两位数是36.8.x+y=902×15x=24y解析 根据题意,得x+y=90,2×15x=24y.9.2x+2y=606x-6y=60解析 由题意得2x+2y=60, 6x-6y=60.10.解析 设1个笔记本x元,1支钢笔y元,根据题意得3x+2y=55―25,4x+y=50―25,解得x=4, y=9,∴2x+4y+25=2×4+4×9+25=69.答:小杭需要付款69元.11.解析 (1)设A种酒的成本价为每瓶x元,B种酒的成本价为每瓶y元,由题意得3x+3y=240,x+5y=160,解得x=60,y=20.答:A种酒的成本价为每瓶60元,B种酒的成本价为每瓶20元.(2)∵4×60+2×20=280<299,∴盲盒中装4瓶A种酒,2瓶B种酒.(答案不唯一)12.解析 设排球的单价为x元,跳绳的单价为y元,根据题意得2x+5y=138,4x+8y=240,解得x=24,y=18.答:排球的单价为24元,跳绳的单价为18元.13.解析 设好田买了x亩,坏田买了y亩,根据题意得x+y=100,300x+5007y=10 000,解得x=12.5,y=87.5.答:好田买了12.5亩,坏田买了87.5亩.14.解析 (1)8;54;54;8.甲:x表示王老师在水果店买的苹果的质量,y表示王老师在水果店买的橘子的质量;乙:x表示王老师在水果店买的苹果的费用,y表示王老师在水果店买的橘子的费用.(2)设王老师在水果店买苹果花费x 元,买橘子花费y 元,由题意得+y =54,+y 6=8,解得x =24,y =30.答:王老师买苹果花了24元,买橘子花了30元.能力提升全练15.D 设1个塑料凳子的高度为x cm,每叠放1个塑料凳子高度增加y cm,依题意得x +y =60,x +3y =80,解得x =50,y =10,∴x+10y=50+10×10=150,即11个塑料凳子叠放在一起的高度为150 cm,故选D.16.C 设被墨水覆盖的部分表示的数为a,则题图2表示的方程组为x +2y =11,3x +y =10+a,把x=3代入方程组得3+2y =11,9+y =10+a,解得y =4,a =3,即被墨水覆盖的部分表示的数为3,故选C.17.5×8+3x +13y =100x +y +8=100解析 根据题意得5×8+3x +13y =100,x +y +8=100.18.解析 (1)设这种草莓第一次购买的价格是x 元/kg,第二次购买的价格是y 元/kg,根据题意得3x =(3+1)y,5x-5y =35,解得x =28,y =21.答:这种草莓第一次购买的价格是28元/kg,第二次购买的价格是21元/kg.(2)甲两次购买这种草莓的平均价格为28×3+21×43+4=24(元/kg),乙两次购买这种草莓的平均价格为28×5+21×55+5=24.5(元/kg).答:甲两次购买这种草莓的平均价格为24元/kg,乙两次购买这种草莓的平均价格为24.5元/kg.(3)由(2)可知24<24.5,∴按相同金额购买更合算.故答案为金额.素养探究全练19.解析 (1)工厂制成运往B 地的产品x 吨,从A 地购买了y 吨原料,依题意得1.5(20x +10y)=15 000,1.2(110x +120y)=97 200,解得x =300,y =400,∴8 000×300-400×1 000-15 000-97 200=1.887 8×106(元),故补全的方程组为1.5(20x +10y)=15 000,1.2(110x +120y)=97 200.这批产品的销售款比原料费和运输费的和多1.887 8×106元.(2)设从A 地购买的原料为m 吨,则送往B 地的产品为(20-m)吨,根据c +m =3(c +20―m),+20―c +m =65 000,解得c =10,m =17,即c 的值为10.。
华东师大版七年级数学下册7.4实践与探索工程问题教学设计

7.教学评价:采用多元化的评价方式,关注学生在知识掌握、能力提升、情感态度等方面的表现,全面评价学生的学习成果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个简单的工程问题为例,如“某工程队计划在规定时间内完成一段道路修建,现有甲、乙两个工程队,分别单独完成需要的时间和费用各不相同。问如何安排两个工程队的合作方式,才能在规定时间内完成工程且费用最低?”
2.基本概念:介绍工程问题的基本概念,如工作效率、工作量、工作时间等。
3.解题步骤:以实际工程问题为例,讲解解题步骤,包括分析问题、建立数学模型、求解、检验等。
4.解决策略:介绍解决工程问题的策略,如方程法、不等式法、统筹法等。
5.实践与探索:分组讨论,让学生解决实际问题,培养学生的合作能力和解决问题的能力。
2.拓展思考题:设计一到两道拓展思考题,鼓励学生进行深入思考,提高学生运用统筹方法分析问题和解决问题的能力。
-提问方式:引导学生结合生活实际,思考如何优化资源配置,提高工作效率。
-解答要求:要求学生用文字和数学表达式相结合的方式,清晰展示解题过程。
3.小组研究性学习:布置一道小组合作完成的工程问题研究性学习题目,要求学生在课后进行资料搜集、数据分析、小组讨论等。
(4)检验:引导学生检验解答的正确性,培养学生严谨的学习态度。
3.合作学习,提高能力:组织学生进行小组合作,讨论交流工程问题的解决方法,培养学生的合作能力和团队精神。
4.现代信息技术辅助教学:利用数学软件或工具,帮助学生进行数据计算和图像绘制,提高解决实际问题的效率。
5.融入情感态度与价值观教育:在教学过程中,适时融入情感态度与价值观教育,培养学生热爱数学、关注社会热点问题的良好品质。
7.4.2实践与探索——几何图形与分段计费的应用题

14m
下面 你能完成了不?
归纳
涉及图形问题,充分利用图形的 边相等或面积相等来列方程
例2
为了鼓励居民节约用电,执行分段计费,具体执行 方案如下:
档次 第一档 第二档 第三档 用户每月用电数(度) 小于大于200 大于200小于400 大于等于400 执行单价(元/度) 0.55 0.6 0.85
(大长方形的长相等)
3y=5x 2y-x=2
(小正方形的边长的表示)
x
下面 你能完成了不?
y
y
例1
如图,在长为14m,宽为10m的长方形展厅 中规划出三个形状、大小完全一样的小长 方形摆放花草,求每个小长方形的周长. y x
10m
解
设小长方形 的长和宽分别为 xm和ym,根据题意,得
2x+y=14 x+2y=10
设五月份的用电量为x度,六月份的用电量为y度, 根据题意,得
x+y=500 0.55x+0.6y=290.5
下面 你能完成了不?
归纳
分段计费问题关键是弄清每一段 的计费情况
试一试
某城市为了避免居民用水浪费现象,制定了居民每月每户用 水标准10立方米,收费为正常标准,如果超标用水,超过部 分加价收费.下表是小明家2016年两个月的收费清单:
7.4.2 几何图形与分段计费
问题2
小明用8个大小一样的长方形拼成如图所示的一 个大长方形,你能求出这些长方形的长和宽吗?
小红看见后,说:“我来试一试 .”结果拼成了如图所示的一个正 方形,中间还有留下一个边长为 2mm的正方形的小洞!
你能根据这两则信 息求出这些长方形 的长和宽吗?
小明用8个大小一样的长方形拼成如图所示的一个大长方形, 你能求出这些长方形的长和宽吗? 小红看见后,说:“我来试一试.”结果拼成了如图所示的一 个 正方形,中间还有留下一个边长为2mm的正方形的小洞! 求这些长方形的长和宽. x 设小长方形 的长和宽分别为 解 y xmm和ymm,根据题意,得
华师大版七下数学7.4《实践与探索(2)》说课稿

华师大版七下数学7.4《实践与探索(2)》说课稿一. 教材分析华师大版七下数学7.4《实践与探索(2)》这一节的内容主要围绕着实践与探索的主题,通过一系列的案例和问题,让学生理解和掌握数学知识在实际问题中的应用。
教材中包含了丰富的案例和问题,旨在激发学生的学习兴趣,提高学生的动手能力和解决问题的能力。
在教材分析中,我们需要深入了解教材的结构和内容,以及每个问题的设计意图,为接下来的教学做好准备。
二. 学情分析在七年级下学期的数学学习中,学生已经掌握了一定的数学知识,对于一些基本的数学概念和运算规则有了初步的了解。
但是,学生在解决实际问题时,往往还存在一定的困难,对于如何将数学知识应用到实际问题中,还需要进一步的引导和培养。
因此,在教学过程中,我们需要关注学生的学习情况,针对不同学生的特点和需求,进行有针对性的教学。
三. 说教学目标根据教材内容和学情分析,本节课的教学目标如下:1.让学生理解和掌握数学知识在实际问题中的应用。
2.培养学生的动手能力和解决问题的能力。
3.提高学生的学习兴趣和积极性。
四. 说教学重难点本节课的重难点是如何引导学生将数学知识应用到实际问题中,以及如何培养学生的动手能力和解决问题的能力。
五. 说教学方法与手段为了达到本节课的教学目标,我采用了以下教学方法和手段:1.案例教学法:通过分析教材中的案例,让学生理解和掌握数学知识在实际问题中的应用。
2.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的动手能力和解决问题的能力。
3.小组合作学习:通过小组合作,让学生互相交流和讨论,提高学生的学习兴趣和积极性。
六. 说教学过程1.导入:通过引入一些实际问题,激发学生的学习兴趣,引发学生的思考。
2.案例分析:分析教材中的案例,让学生理解和掌握数学知识在实际问题中的应用。
3.问题解决:提出问题,引导学生思考和探索,培养学生的动手能力和解决问题的能力。
4.小组合作:让学生进行小组合作,互相交流和讨论,提高学生的学习兴趣和积极性。
华师大版数学七年级(下册)说教材

(2)若要求购买的篮球和排球的总数量是36 个,且购买的篮球数量多于25个,有哪几种购 买方案?
2011河南中考
21.(10分)某旅行社拟在暑假期间面向学生推出 “林州红旗渠一日游”活动,收费标准lt;m≤200
m>200
收费标准(元/人) 90
题,再一次实实在在地让学生参与到学习中来。
§6.2 解一元一次方程
1.方程的简单变形
可利用天平做演示实验引入课题,要注意一些细节(如天 平的调零,左盘放物体,右盘放砝码等),得到方程变形的 两个基本规律后,对于例1,引导学生跳跃式地进行思维,从 而概括出移项的一般规律,由于安排的两个小题移项后即得 方程的解,移项对于求方程解的重要性不点自明。从例2,可 以看出教材删除了“简单方程”,代之以“将未知数的系数化为 1”,与“移项”相结合,完备了知识体系。淡化冗长的程序, 注重实效。本节最好能安排一节习题课,形式可以多样(小 组赛,议一议,谁的方法好等)。让学生充分表达不同的意 见,真正思考起来,动起来,体会方程的不同解法中所经历 的转化思想。P9习题第3题渗透了函数思想,让学生有所体会 即可,我们觉得不必加深。
重点 难点
二元一次方程组及相关概念,消元思想和代入 法、加减法解二元一次方程组 (化归思想、 优化思想的逐步形成)
利用二元一次方程组解决实际问题 (发展分 析问题能力,发展发散思维能力)
以方程组为工具分析问题、解决含有多个未 知数的问题。
能力:具备不熟练的读写能力
学
心理素质:对文字类题目即应用题的恐惧心理
“三元一次方程组及其解法”目的是通过解
三元一次方程组进一步体会消元思想。三元一次 方程组含有三个未知数,如何消元,先消哪个元 是需要认真思考的。消去其中一个未知数就得到 前面已学过的二元一次方程组,从而把三元一次 方程组转化为二元一次方程组,进而转化为一元 一次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当你能梦的时候就不要放弃梦-------李嘉诚
7.4.2实践与探索
第二课时
编写人:七年级阳光部黄婧
【学习目标】
1、让学生综合运用已有的知识,经过自主探索、互相交流.
2、去尝试用二元一次方程组解决与生活密切相关的问题,
3、在探索和解决问题的过程中获得体验,得到发展。
【重点难点】
重点:让学生在实践与探索过程中,运用方程或方程组解决几何图形中的数量关系。
难点:寻找等量关系
【学法指导】
小组讨论、合作探究。
【自学指导、合作探究】
一.自学指导
(1) (2)
1.如图(1)设小长方形的长为xcm ,宽为ycm 试试看:小长方形的长与宽等量关 系如何?
2.如图(2)设各小长方形的长为xcm ,宽为ycm.试试看:小长方形的长与宽又有何 等量关系?
师生札记
二.合作探究
探究1.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形。
小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如下图的
正方形.咳,怎么中间还留下了一个洞,恰好是边长为2mm的小正方形!如何求出这
些小长方形的长和宽?
你能帮他们解开其中的奥秘吗?
小明
小红
观察小明的拼图,你能发现小长方形的长x与宽y之间的数量关系吗?
观察小红的拼图,你能发现小长方形的长x与宽y之间的另一数量关系
吗?
请大家详细地写出本题的解答过程
图7.4.1
图7.4.2
师生札记
当你能梦的时候就不要放弃梦-------李嘉诚
当你能梦的时候就不要放弃梦-------李嘉诚
探究2.如图所示,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y ,那么下列可以求出这两个角的度数的方程组是( ). (A ) (B ) (C ) (D ) C
A
1 B O
【展示质疑、教师点拨】
【同步演练、拓展提升】 1、一个长方形,它的长减少cm 1,宽增加cm 3,所得的正方形比原来的长方形面积大221cm .求原来长方形的长与宽各是多少厘米?
2、如图所示,学校为了提高绿化品位、美化环境,准备将一块周长为76米的长方形草地设计分成形状大小完全相同的九块长方形,种上各种花卉.经市场预测,牡丹花每平
师生札记
180,310
x y x y ⎧+=⎪⎨
=+⎪
⎩180,10
x y x y ⎧+=⎪⎨=-⎪
⎩180,310x y x y ⎧+=⎪⎨
=-⎪⎩3180,310y x y ⎧=⎪⎨=-⎪⎩
当你能梦的时候就不要放弃梦-------李嘉诚 方米造价150元,玫瑰花每平方米造价135元,茉莉花每平方米造价130元. (1)每个小长方形的长和宽分别为 10、10米和 4、4米.每个小长方形的长和宽分别为多少米? (2)学校计划投入5万元全部用于购买两种不同花卉,并设计上下四个长方形种上牡丹花,那么中间五个长方形应该种上茉莉花
2、如图,一张长20cm 的正方形纸片(虚线部分)将它的四个角按图示对折,中间围成一个小正方形(阴影部分).
(1)若小正方形的面积为4cm 2,求a,b 的值。
(2)若对折后中间没有洞,则a,b 应满足什么条件?
【归纳总结、回归目标】
今天你收获了什么?
师生札记
当你能梦的时候就不要放弃梦-------李嘉诚。