17浙江高考空间向量与立体几何练习

合集下载

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。

高考数学一轮复习《空间向量与立体几何》练习题(含答案)

高考数学一轮复习《空间向量与立体几何》练习题(含答案)

高考数学一轮复习《空间向量与立体几何》练习题(含答案)一、单选题1.已知空间向量()3,4,5AB =-,则AB =( ) A .5B .6C .7D .522.设直线1l 、2l 的方向向量分别为a ,b ,能得到12l l ⊥的是( ) A .(1,2,2)a =-,(2,4,4)b =- B .(2,2,1)a =-,(3,2,10)b =- C .(1,0,0)a =,(3,0,0)b =-D .(2,3,5)a =-,(2,3,5)b =3.已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C .2121D .421214.已知四棱锥P ABCD -的底面ABCD 为平行四边形,M ,N 分别为棱BC ,PD 上的点,12CM BM =,N 是PD 的中点,向量MN AB x AD y AP =-++,则( )A .13x =,12y =-B .16x =-,12y =C .13x,12y =D .16x =,12y =-5.有以下命题:①一个平面的单位法向量是唯一的②一条直线的方向向量和一个平面的法向量平行,则这条直线和这个平面平行 ③若两个平面的法向量不平行,则这两个平面相交④若一条直线的方向向量垂直于一个平面内两条直线的方向向量,则直线和平面垂直 其中真命题的个数有( ) A .1个B .2个C .3个D .4个6.已知(2,2,3)a =--,(2,0,4)=b ,则cos ,a b 〈〉=( ) A .48585B .48585-C .0D .17.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱1111,C D A D 上的动点.给出下面四个命题①直线EF 与直线AC 平行;②若直线AF 与直线CE 共面,则直线AF 与直线CE 相交; ③直线EF 到平面ABCD 的距离为定值; ④直线AF 与直线CE 所成角的最大值是3π.其中,真命题的个数是( ) A .1B .2C .3D .48.在以下命题中:①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--,则P ,A ,B ,C 四点共面④若a ,b 是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠,则{},,a b c 构成空间的一个基底⑤若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底; 其中真命题的个数是( ) A .0B .1C .2D .39.已知向量(4,2,4),(6,3,2)a b =--=-,则下列结论正确的是( ) A .(10,5,2)a b +=- B .(2,1,6)a b -=-C .(24,6,8)a b ⋅=-D .||6a =10.如图,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别为1BB ,CD 的中点.有下列结论:①三棱锥11A MND -在平面11D DCC 上的正投影图为等腰三角形; ②直线//MN 平面11A DC ;③在棱BC 上存在一点E ,使得平面1AEB ⊥平面MNB ;④若F 为棱AB 的中点,且三棱锥M NFB -的各顶点均在同一求面上,则该球的体积为6π. 其中正确结论的个数是( ) A .0B .1C .2D .311.如图,某圆锥SO 的轴截面SAC ,其中5SA AO =,点B 是底面圆周上的一点,且2cos 3BOC ∠=,点M 是线段SA 的中点,则异面直线SB 与CM 所成角的余弦值是( )A 235B 665C 13D 312.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90BAD ∠=︒,112PA AB BC AD ====,//BC AD ,已知Q 是四边形ABCD 内部一点(包括边界),且二面角Q PD A --的平面角大小为30,则ADQ △面积的取值范围是( )A .2150,15⎛⎤ ⎥ ⎝⎦B .250,5⎛⎤⎥ ⎝⎦C .2100,15⎛⎤ ⎥ ⎝⎦D .3100,5⎛⎤ ⎥ ⎝⎦二、填空题13.已知a =(3,2,-1),b = (2,1,2),则()()2a b a b -⋅+=___________. 14.若空间中有三点()()()1,0,1,0,1,1,1,2,0A B C - ,则点()1,2,3P 到平面ABC 的距离为______.15.正四棱柱1111ABCD A B C D -中,14AA =,3AB =,点N 为侧面11BCC B 上一动点(不含边界),且满足1D N CN ⊥.记直线1D N 与平面11BCC B 所成的角为θ,则tan θ的取值范围为_________.16.如图所示,在平行六面体1111ABCD A B C D -中,1111AC B D F =,若1AF xAB yAD zAA =++,则x y z ++=___________.三、解答题17.如图1,在ABC 中,90C ∠=︒,3BC =3AC =,E 是AB 的中点,D 在AC 上,DE AB ⊥.沿着DE 将ADE 折起,得到几何体A BCDE -,如图2(1)证明:平面ABE ⊥平面BCDE ;(2)若二面角A DE B --的大小为60︒,求直线AD 与平面ABC 所成角的正弦值.18.已知正方体1111ABCD A B C D -中,棱长为2a ,M 是棱1DD 的中点.求证:1DB ∥平面11A MC .19.四棱锥P ABCD -中,//AB CD ,90PDA BAD ∠=∠=︒,12PD DA AB CD ===,S 为PC中点,BS CD ⊥.(1)证明:PD ⊥平面ABCD ;(2)平面SAD 交PB 于Q ,求CQ 与平面PCD 所成角的正弦值.20.如图,在多面体ABCDEF 中,AD ⊥平面ABF ,AD ∥BC ∥4EF AD =,,3,2BC AB BF EF ====,120ABF ︒∠=.(1)证明:AC DE ⊥;(2)求直线AE 与平面CDE 所成角的大小.21.如图(1),在直角梯形ABCD 中,AB CD ∥,AB BC ⊥,22CD AB BC ==,过A 点作AE CD ⊥,垂足为E ,现将ADE ∆沿AE 折叠,使得DE EC ⊥,如图(2).(1)求证:平面DAB ⊥平面DAE ; (2)求二面角D AB E --的大小.22.如图,在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//AB CD ,24CD AB ==,2AD =,PAB 为等腰直角三角形,PA PB =,平面PAB ⊥底面ABCD ,E 为PD 的中点.(1)求证://AE 平面PBC ; (2)求二面角A EB C --的余弦值.23.如图所示,边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且2DE =,//ED AF 且90DAF ∠=︒.(1)求BD 和面BEF 所成的角的正弦; (2)求点C 到直线BD 的距离;(3)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值:若不存在,说明理由.24.如图,在三棱锥A BCD -中,ABD △是等边三角形,2AC =,2BC CD ==,BC CD ⊥,E 为空间内一点,且CDE 为以CD 为斜边的等腰直角三角形.(1)证明:平面ABD ⊥平面BCD ;(2)若2BE =,试求平面ABD 与平面ECD 所成锐二面角的余弦值参考答案1.D2.B3.B4.B5.A6.B7.B8.D9.D10.D11.B12.A 13.21415.13,22⎫⎛⎫+∞⎪ ⎪⎪ ⎪⎝⎭⎝⎭16.2 17.(1)证明:因为在图1中DE AB ⊥,沿着DE 将ADE 折起, 所以在图2中有DE AE ⊥,DE BE ⊥, 又AEBE E =,所以DE ⊥平面ABE , 又因为DE ⊂平面BCDE , 所以平面ABE ⊥平面BCDE ; (2)解:由(1)知,DE AE ⊥,DE BE ⊥, 所以AEB ∠是二面角A DE B --的平面角, 所以60AEB ∠=︒, 又因为AE BE =, 所以ABE 是等边三角形, 连接CE ,在图1中,因为90C ∠=︒,BC =,3AC = 所以60EBC ∠=︒,AB =因为E 是AB 的中点,所以BE BC == 所以BCE 是等边三角形. 取BE 的中点O ,连接AO ,CO , 则AO BE ⊥,CO BE ⊥,因为平面ABE ⊥平面BCDE ,平面ABE ⋂平面BCDE BE =,所以AO ⊥平面BCDE , 所以OB ,OC ,OA 两两垂直,以O 为原点,OB ,OC ,OA 为x ,y ,z 轴建系,如图所示.30,0,2A ⎛⎫ ⎪⎝⎭,3B ⎫⎪⎪⎝⎭,30,,02C ⎛⎫ ⎪⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭ 所以3322AB ⎛⎫=- ⎪ ⎪⎝⎭,330,,22AC ⎛⎫=- ⎪⎝⎭,332AD ⎛⎫=-- ⎪ ⎪⎝⎭设平面ABC 的法向量为(),,n x y z =,则0,0,n AB n AC ⎧⋅=⎨⋅=⎩即330,2330.22z y z ⎧-=⎪⎪⎨⎪-=⎪⎩取1z =,得平面ABC 的一个法向量为()3,1,1n =,所以33311125cos ,52n AD AD n n AD ⎛⎛⎫⨯+-⨯ ⎪⋅⎝⎭===⨯设直线AD 与平面ABC 所成角为θ,则5sin θ=. 18.以点D 为原点,分别以DA 、DC 与1DD 的方向为x 、y 与z 轴的正方向,建立空间直角坐标系.则()0,0,0D 、()2,0,0A a 、()0,2,0C a 、()2,2,0B a a 、()10,0,2D a 、()12,0,2A a a 、()10,2,2C a a 、()12,2,2B a a a ,M 是棱1DD 的中点得()0,0,M a ,()12,2,2DB a a a =.设面11A MC的一个法向量为(),,n x y z =,()12,0,MA a a =,()10,2,MC a a =,则1120,0,20,0,ax az n MA ay az n MC ⎧+=⋅=⎧⎪⇒⎨⎨+=⋅=⎪⎩⎩令1y =,则()1,1,2n =-.又110DB n DB n ⋅=⇒⊥,因为1DB ⊄平面11A MC ,所以1DB ∥平面11A MC .19.(1)取CD 中点为M ,则DM AB =且//DM AB , 所以四边形ABMD 为平行四边形,可得//BM AD , 所以BM CD ⊥,又由BS CD ⊥,BM BS B ⋂=,所以CD ⊥平面BSM ,又因为SM ⊂平面BSM ,所以CD SM ⊥, 又由//SM PD ,所以CD PD ⊥,AD PD ⊥,CDAD D =,所以PD ⊥平面ABCD .(2)延长CB ,DA 交于N ,连SN 与PB 交点即为Q ,因为B 为CN 中点,S 为PC 中点,故Q 为PNC △的重心,故2PQ QB =,以D 为原点,,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,不妨设1AB =,则()1,1,0B ,()0,0.1P ,设(),,Q x y z 且2PQ QB =,可得()()()212112x x y y z z ⎧=-⎪=-⎨⎪-=-⎩,所以221,,333x y z ===,可得241,,333CQ ⎛⎫=- ⎪⎝⎭,因为AD PD ⊥,AD CD ⊥且PD CD D ⋂=,所以AD ⊥平面PCD . 平面PCD 的法向量为()1,0,0DA =,可得2cos ,211CQ DA CQ DA CQ DA⋅===⋅⋅.即CQ 与平面PCD20.(1)因为AD∥BC∥EF,AD⊥平面ABF,所以BC⊥平面ABF,EF⊥平面ABF,所以四边形ABCD与四边形BCEF都是直角梯形,以B为坐标原点,BA BC所在直线分别为x轴、y轴,过点B且垂直于平面ABCD的直线为z轴,建立如图所示的空间直角坐标系,则(2,0,0),(1,0,3),(1,2,3),(0,3,0),(2,4,0)A F E C D--,所以(2,3,0),(3,2,3)AC DE=-=--,所以6600AC DE⋅=-+=,所以AC DE⊥.(2)由(1)知,(3)AE=-,(2,1,0)CD=,(3,23)DE=--,,设平面CDE的法向量为(,,)n x y z=,则CD nDE n⎧⋅=⎨⋅=⎩,即203230x yx y z+=⎧⎪⎨--=⎪⎩,取=1x -,则32,3y z ==,所以31,2,3n ⎛⎫=- ⎪ ⎪⎝⎭为平面CDE 的一个法向量, 设直线AE 与平面CDE 所成的角为0,2πθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 则|||341|3sin |cos ,|2||||4343AE n AE n AE n θ⋅++=〈〉===⋅⨯,所以3πθ=, 所以直线AE 与平面CDE 所成角的大小为3π. 21.证明:(1) AE CD ⊥,AB CD ∥,∴ AE AB ⊥DE EC ⊥,AB EC ∥, ∴DE AB ⊥又AE DE E =,故:AB ⊥平面DAE ,AB ⊂平面DAB ,故:平面DAB ⊥平面DAE .(2)以E 为原点,EA 为x 轴,EC 为y 轴,ED 为z 轴,建立空间直角坐标系,如图:设2DE EC ED ===,∴ ()2,0,0A ,()0,0,2D ,()0,0,0E ,()2,2,0B ,可得:()2,0,2AD =-,()0,2,0AB =,设平面DAB 的法向量(),,n x y z =,则22020n AD x z n AB y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,1n =, 平面ABE 的法向量()0,0,1m =,设二面角D AB E --的大小为θ,则12cos 22m n m n θ⋅===⋅, ∴ 45θ=︒,∴二面角D AB E --的大小为45︒.22.(1)如图,取PC 的中点F ,连接EF ,BF ,∵PE DE =,PF CF =,∴//EF CD ,2CD EF =,∵//AB CD ,2CD AB =,∴//AB EF ,且EF AB =.∴四边形ABFE 为平行四边形,∴//AE BF .∵BF ⊂平面PBC ,AE ⊄平面PBC ,故//AE 平面PBC .(2)取AB 中点O ,CD 中点M ,以O 为原点,OM 为x 轴,AB 为y 轴,OP 为z 轴,建立空间直角坐标系:则()0,1,0A -,()0,1,0B ,()1,2,0C ,()0,0,1P ,()1,2,0D -,11,1,22E ⎛⎫- ⎪⎝⎭,则11,2,22BE ⎛⎫=- ⎪⎝⎭,()0,2,0AB =,()1,1,0BC =, 设平面ABE 的一个法向量为()111,,m x y z =,平面CBE 的一个法向量为()222,,n x y z =, 则111120112022m AB y m BE x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令11x =,则()1,0,1m =-, 222220112022n BC x y n BE x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,21x =,则()1,1,5n =--, 设m 与n 的夹角为θ,则66cos 3233m n m n θ⋅===⋅,由二面角A EB C --为钝角,则余弦值为63-.23.(1)解:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则()2,0,0B ,()0,0,2D ,()1,1,2E ,()2,2,0F ,()0,2,0C ,则(2,0,2),(1,1,2),(0,2,0)DB BE BF =-=-=设平面BEF 的法向量(,,)n x y z =,则200n BE x y z n BF y ⎧⋅=-++=⎨⋅==⎩令1z =,则2x =,0y =,所以(2,0,1)n =, ∴向量DB 和()2,0,1n =所成角的余弦为2222220210212(2)DB nDB n ⋅+-=⋅++-.即BD 和面BEF 10 (2)解:因为()2,0,2DB =-,()2,2,0BC =-,所以()()2202024DB BC ⋅=⨯-+⨯+⨯-=-,22DB =,22BC =C 到直线BD 的距离()2222422622DB BC d BC DB ⎛⎫⋅-⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭⎝⎭(3)解:假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,即EP mPF =,设(),,P x y z ,即()()1,1,22,2,x y z m x y z ---=---,所以()()12122x m x y m y z mz ⎧-=-⎪-=-⎨⎪-=-⎩,解得12112121m x m m y m z m +⎧=⎪+⎪+⎪=⎨+⎪⎪=⎪+⎩集P 点坐标为12122(,,)111m m m m m +++++, 则向量12122(,,)111m m AP m m m++=+++,向量1212(,,)111m CP m m m +=-+++, 因为()2,0,2DB =-所以()()12122202011112122020111m m m m m m m m m ++⎧⨯+⨯+-⨯=⎪⎪+++⎨+-⎪⨯+⨯+-⨯=⎪+++⎩,解得12m =. 所以存在p ,求EP 与PF 的比值1224.解:(1)取BD 的中点O ,连接OC ,OA ,因为ABD △是等边三角形,2BD =,所以AO BD ⊥,且3AO =,又因为2BC CD ==,所以OC BD ⊥112CO BD ==,又2AC = 222AO OC AC AO OC ∴+=∴⊥又AO BD ⊥,因为CO BD O ⋂=,二面角A BD C --的平面角AOC ∠是直角,∴平面ABD ⊥平面BCD ;(2)由(1)以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴建立空间直角坐标系, 不妨令E 在平面BCD 上方取CD 的中点F ,连接OF ,EF ,则,OF CD EF CD ⊥⊥.OF EF F ⋂=,,OF EF ⊂平面EOF ,∴CD ⊥平面EOF ,CD ⊂平面OCD ,∴平面EOF ⊥平面OCD ,OF =,EF =, 设EFO πθ∠=-,则(0,0,0)O ,(1,0,0)C ,(0,1,0)D,A ,(0,1,0)B -11111113cos ,cos ,cos ,cos 22222222E BE θθθθθθ⎛⎫⎛⎫++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13322,cos ,sin ,244BE E θθ⎛==∴=∴=∴ ⎝⎭所以(1,1,0)CD =-,13,44CE ⎛=- ⎝⎭,设平面ECD 的一个法向量为(,,)n x y z =,则00CD n CE n ⎧⋅=⎨⋅=⎩,013044x y x y z -+=⎧⎪∴⎨-+=⎪⎩, 令1x =,则1,1,n ⎛=- ⎝⎭因为平面ABD 的一个法向量为(1,0,0)OC =,所以1|cos ,|4OC n〈〉==,即平面ABD 与平面ECD。

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。

空间向量与立体几何测试题及答案

空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题一、选择题1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A2.在长方体1111ABCD A B C D -中,下列关于1AC的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++C.111AD CC D C ++D.11111()2AB CD AC ++答案:B3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( )A.1 B.1- C.12D.2-答案:B5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D.649答案:B6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-,,AB AC AD ,则四点,,,A B C D ( )A.一定共圆B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,, 的中点,则2a 等于( )A.2BA AC · B.2AD BD ·C.2FG CA ·D.2EF CB·答案:B8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( )A.51122--,, B.51122-,, C.51122--,, D.51122,,答案:AA.2 B.2- C.2-或255D.2或255-答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,答案:D11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( )A.60° B.90° C.3arccos3D.3arccos6答案:D12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···;②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底;④若,a b 共线,则,a b 所在直线或者平行或者重合.正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C二、填空题13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055⎛⎫- ⎪⎝⎭,,14.已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与A B C ,,共面,那么λ= .答案:21515.已知线段AB ⊥面α,BC α⊂,CD BC ⊥,DF ⊥面α于点F ,30DCF ∠=°,且D A ,在平面α的同侧,若2AB BC CD ===,则AD 的长为 . 答案:2216.在长方体1111ABCD A B C D -中,1B C 和1C D 与底面所成的角分别为60°和45°,则异面直线1B C 和1C D 所成角的余弦值为 . 答案:64三、解答题17.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k,试问是否存在实数λμν,,,使4123a a a a λμν=++成立?如果存在,求出λμν,,;如果不存在,请写出证明.答案:解:假设4123a a a a λμν=++成立. 1234(211)(132)(213)(325)a a a a =-=-=--=,,,,,,,,,,,∵, (22323)(325)λμνλμνλμν+--++--=,,,,∴. 22332235λμνλμνλμν+-=⎧⎪-++=⎨⎪--=⎩,,,∴解得213λμν=-⎧⎪=⎨⎪=-⎩,,. 所以存在213v λμ=-==-,,使得412323a a a a =-+-. 理由即为解答过程.18.如图2,正三棱柱111-ABC A B C 的底面边长为a ,侧棱长为2a ,求1AC 与侧面11ABB A 所成的角.解:建立如图所示的空间直角坐标系,则113(000)(00)(002)222⎛⎫- ⎪ ⎪⎝⎭,,,,,,,,,,,aA B a A a C a a . 由于(100)=-,,n 是面11ABB A 的法向量,1111312cos 6023a AC AC AC a AC ===⇒=,,·°n n n n.故1AC 与侧面11ABB A 所成的角为30°.19.如图3,直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=°,侧棱12AA D E =,,分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,求点1A 到平面AED 的距离.解:建立如图所示的空间直角坐标系,设2CA a =,则1221(200)(020)(001)(202)(1)333a a A a B a D A a E a a G ⎛⎫⎪⎝⎭,,,,,,,,,,,,,,,,,.从而2(021)333a a GE BD a ⎛⎫==- ⎪⎝⎭ ,,,,,.由0GE BD GE BD ⊥⇒=·,得1a =,则1(202)(200)(111)A A E ,,,,,,,,.自1A 作1A H ⊥面AED 于M ,并延长交xOy 面于H ,设(0)H x y ,,, 则1(22)A H x y =--,,. 又(201)AD =- ,,,(111)AE =- ,,. 由112(2)20(2)20A H AD x A H AE x y ⊥---=⎧⎧⇒⎨⎨⊥--+-=⎩⎩,,11x y =⎧⇒⎨=⎩,,得(110)H ,,.又1111cos A M A A A A A M = ,·111426cos 2326A A A A A H ==⨯=,·.20.已知正方体1111ABCD A B C D -的棱长为2,P Q ,分别是BC CD ,上的动点,且2PQ =,确定P Q ,的位置,使11QB PD ⊥.解:建立如图所示的空间直角坐标系,设BP t =, 得22(2)CQ t =--,222(2)DQ t =---.那么211(202)(022)(20)(22(2)20)B D P t Q t ---,,,,,,,,,,,, 从而21(2(2)22)QB t =--- ,,,1(222)PD t =-- ,,, 由11110QB PD QB PD ⊥⇒=·, 即222(2)2(2)401t t t -----+=⇒=. 故P Q ,分别为BC CD ,的中点时,11QB PD ⊥.21.如图4,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥面ABCD ,112SA AB BC AD ====,,求面SCD 与面SBA 所成二面角的正切值.解:建立如图所示的空间直角坐标系,则1(000)(100)(110)00(001)2A B C D S ⎛⎫-- ⎪⎝⎭,,,,,,,,,,,,,,.延长CD 交x 轴于点F ,易得(100)F ,,, 作AE SF ⊥于点E ,连结DE ,则DEA ∠即为面SCD 与面SBA 所成二面角的平面角.又由于SA AF =且SA AF ⊥,得11022E ⎛⎫⎪⎝⎭,,,那么102EA ⎛⎫=-- ⎪⎝⎭ ,,12,111222ED ⎛⎫=-- ⎪⎝⎭ ,,,从而6cos 3EA ED EA ED EA ED ==,·, 因此2tan 2EAF ED =,. 故面SCD 与面SBA 所成二面角的正切值为22. 22.平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠,试问:当1CDCC 的值为多少时,1AC ⊥面1C BD ?请予以证明. 解:欲使1AC ⊥面1C BD ,只须11AC C D ⊥,且11AC C B ⊥. 欲证11AC C D ⊥,只须证110CA C D = ·, 即11()()0CA AA CD CC +-=·, 也就是11()()0CD CB CC CD CC ++-= ·,即22111cos cos 0CD CC CB CD BCD CB CC C CB -+∠-∠=.由于1C CB BCD ∠=∠,显然,当1CD CC =时,上式成立; 同理可得,当1CD CC =时,11AC C B ⊥. 因此,当11CDCC =时,1AC ⊥面1C BD .一.选择题:(10小题共40分)1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O,下列条件中能确定点M 与点A 、B 、C一定共面的是 ( ) A.OC OB OA OM ++= B.OC OB OA OM --=2C.OC OB OA OM 3121++= D.OC OB OA OM 313131++=2.直三棱柱ABC —A 1B 1C 1中,若====B A C CC b CB a CA 11,,,则 ( )A.c b a -+B.c b a +-C.c b a ++-D.c b a -+-3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( )A.n m //B.n m ⊥C.n m n m 也不垂直于不平行于,D.以上三种情况都可能4.以下四个命题中,正确的是 ( ) A.若OB OA OP3121+=,则P 、A、B三点共线 B.设向量},,{c b a 是空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底 C.cb ac b a ⋅⋅=⋅)(D.△ABC 是直角三角形的充要条件是0=⋅AC AB 5.对空间任意两个向量b a o b b a //),(,≠的充要条件是( )A.b a =B.b a -=C.a b λ=D.b a λ= 6.已知向量b a b a 与则),2,1,1(),1,2,0(--==的夹角为 ( )A.0°B.45°C.90°D.180°7.在平行六面体1111D C B A ABCD -中,M为AC与BD的交点,若c A A b D A a B A ===11111,,,则下列向量中与M B 1相等的是 ( ) A.c b a 212121++-B.c b a 212121++C.c b a +-2121D.-c b a +-2121 8.已知的值分别为与则若μλμλλ,//),2,12,6(),2,0,1(b a b a -=+=( )A.21,51 B.5,2C.21,51--D.-5,-29.已知的数量积等于与则b a k j i b k j i a 35,2,23+-=-+= ( )A.-15B.-5C.-3D.-110.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN所成角的余弦值是( )A.52-B.52 C.53 D.1010 二.填空题: (4小题共16分)11.若A(m+1,n-1,3),B(2m,n,m-2n),c(m+3,n-3,9)三点共线,则m+n= . 12.已知A (0,2,3),B (-2,1,6),C (1,-1,5),若a AC a AB a a 则向量且,,,3||⊥⊥=的坐标为 .13.已知b a ,是空间二向量,若b a b a b a 与则,7||,2||,3||=-==的夹角为 .14.已知点G 是△ABC 的重心,O 是空间任一点,若的值则λλ,OG OC OB OA =++为 .三.解答题:(10+8+12+14=44分)15.如图:ABCD 为矩形,PA ⊥平面ABCD ,PA=AD ,M 、N 分别是PC 、AB 中点, (1)求证:MN ⊥平面PCD ;(2)求NM 与平面ABCD 所成的角的大小.16.一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角的大小.17.正四棱锥S —ABCD 中,所有棱长都是2,P 为SA 的中点,如图. (1)求二面角B —SC —D 的大小;(2)求DP 与SC 所成的角的大小.18.如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA=CB=1,∠BCA=90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点; (1)求;的长BN(2)求;,cos 11的值><CB BA (3).:11M C B A ⊥求证(4)求CB 1与平面A 1ABB 1所成的角的余弦值.高中数学选修2-1测试题(10)—空间向量(1)参考答案DDBB DCDA AB 11.0 12.(1,1,1) 13.60014.3 15.(1)略 (2)45016.45017.(1) 13-(2) π 18.(1)3 (2)3010 (3) 略 (4)3101018.如图,建立空间直角坐标系O —xyz.(1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA . 图(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2},M C 1={21,21,0}.∴B A 1·M C 1=-2121 +0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M. 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件.。

专题1 空间向量与立体几何练习(三)

专题1 空间向量与立体几何练习(三)

专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。

高三数学空间向量与立体几何训练卷及答案

高三数学空间向量与立体几何训练卷及答案

三、解答题(本大题共 6 个大题,共 70 分,解答应写出文字说明,证明过程或演算步骤)
17.(10 分)如图,在平行六面体 ABCD − A1B1C1D1 中, AB = 5 , AD = 3 , AA1 = 4 , DAB = 90 , BAA1 = DAA1 = 60 , E 是 CC1 的中点,设 AB = a , AD = b , AA1 = c . (1)用 a , b , c 表示 AE ; (2)求 AE 的长.
2
2
2
因为正四面体中, BC ⊥ 平面 ADE ,所以 BE ⊥ AD , BAD = π , 3
即 BE AD = 0 , AB AD =| AB | | AD | cos π = a2 ,∴ AE AF = a2 .
32
4
4.【答案】B
【解析】如下图所示,以点 D 为坐标原点, DA 、 DC 、 DD1 所在直线分别为 x 轴、 y 轴、 z 轴建立空间
21.(12 分)如图,已知 ABCD 是矩形, M , N 分别为边 AD , BC 的中点, MN 与 AC 交于点 O ,沿 MN 将矩形 MNCD 折起,设 AB = 2 , BC = 4 ,二面角 B − MN − C 的大小为 . (1)当 = 90 时,求 cos AOC 的值; (2)当 = 60 时,点 P 是线段 MD 上一点,直线 AP 与平面 AOC 所成的角为 .若sin = 14 ,求
4 平面 BCC1B1 的一个法向量为 a = (0,1, 0) ,
所以, sin = AP a =
3
=
3
| AP | | a | (m − 3)2 + 9 + n2 (m − 3)2 + 9 + ( 3 m)2

人教版高二数学空间向量与立体几何练习(含答案)

人教版高二数学空间向量与立体几何练习(含答案)

人教版高二数学空间向量与立体几何练习(含答案)1.空间直角坐标系中,已知(1,2,3)A -,(3,2,5)B -,则线段AB 的中点坐标为( ) A.(1,2,4)--B.(2,0,1)-C.(2,0,2)-D.(2,0,1)-2.若向量(1,,0)λ=a ,(2,1,2)=-b ,且a 与b 的夹角的余弦值为23,则实数λ等于( ). A.0B.43-C.0或43-D.0或433.已知棱长为1的正方体1111ABCD A B C D -的上底面1111A B C D 的中心为1O ,则11AO AC ⋅的值为( ).A.-1B.0C.1D.24.已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 的一个法向量的是( ) A.(1,1,1)- B.(1,1,1)- C.333,,333⎛⎫--- ⎪ ⎪⎝⎭D.333,,333⎛⎫- ⎪⎪⎝⎭5.如图,在三棱锥P ABC -中,ABC 为等边三角形,PAC 为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A.142 3 D.126.如图,点P 为矩形ABCD 所在平面外一点,PA ⊥平面,ABCD Q 为线段AP 的中点,3,4,2AB BC PA ===,则点P 到平面BQD 的距离为( )A.513B.1213C.135D.13127.(多选)已知向量(1,1,)m =-a ,(2,1,2)m =--b ,则下列结论中正确的是( ) A.若||2=a ,则2m = B.若⊥a b ,则1m =- C.不存在实数λ,使得=a b D.若1⋅=-a b ,则(1,2,2)+=---a b8.(多选)已知正方体1111ABCD A B C D -的棱长为1,点E 、O 分别是11A B 、11A C 的中点,P 在正方体内部且满足1312423AP AB AD AA =++,则下列说法正确的是( ) A.点A 到直线BE 5 B.点O 到平面11ABC D 2 C.平面1A BD 与平面11B CD 3 D.点P 到直线AB 的距离为25369.已知(1,52) AB =-,,(3,1,)BC z =,若AB BC ⊥,(1,,3)BP x y =--,且BP ⊥平面ABC ,则x y +=___________.10.如图,在正四棱锥P ABCD -中,PA AB =,点M 为PA 的中点,BD BN λ=.若MN AD ⊥,则实数λ=__________.11.在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别是111,A D CD 的中点,则直线MN 与平面ABCD 所成的角的余弦值为__________.12.如图,ABC △和BCD △都是边长为2的正三角形,且它们所在平面互相垂直.DE ⊥平面BCD ,且6AE =.(1)设P 是DE 的中点,求证://AP 平面BCD . (2)求二面角B AE C --的正弦值.答案以及解析1.答案:D解析:设中点坐标为(,,)x y z ,根据中点坐标公式得1322x +==,2202y -+==,3512z -==-.故选D. 2.答案:C解析:由题意得2202cos ,||31414λλ⋅-+〈〉===+⋅++a b a b a b ,解得0λ=或43λ=-.故选C. 3.答案:D解析:建立如图所示的空间直角坐标系,则(1,0,0)A ,111,,122O ⎛⎫⎪⎝⎭,1(0,1,1)C ,111,,122AO ⎛⎫=- ⎪⎝⎭,1(1,1,1)AC =-,121111,,1(1,1,1)122222AO AC ⎛⎫∴⋅=-⋅-=++= ⎪⎝⎭.故选D.4.答案:C解析:易得(1,1,0)AB =-,(1,0,1)AC =-, 设(,,)x y z =n 为平面ABC 的一个法向量,则0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x y x z -+=⎧⎨-+=⎩x y z ∴==,故选C.5.答案:B解析:取AC 的中点O ,连接OP ,OB ,PA PC =,AC OP ∴⊥,平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC = ,OP ∴⊥平面ABC ,又AB BC =,AC OB ∴⊥,以O 为坐标原点,建立如图所示的空间直角坐标系,PAC 是等腰直角三角形,4PA PC ==,ABC 为等边三角形,(22,0,0)A ∴,(2,0,0)C -,2)P ,(2,6,0)D , (42,0,0)AC ∴=-,(2,6,2)PD =-,2cos ,424||||AC PD AC PD AC PD ⋅∴〈〉===⨯∴异面直线AC 与PD 所成角的余弦值为24. 故选B. 6.答案:B解析:如图,以A 为原点,分别以,,AB AD AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(3,0,0),(0,4,0),(0,0,2),(0,0,1)B D P Q ,(3,0,1),(3,4,0),(0,0,1)QB BD QP =-=-=.设平面BQD 的一个法向量为(,,)x y z =n ,则0,0,BD QB ⎧⋅=⎪⎨⋅=⎪⎩n n 即340,30.x y x z -+=⎧⎨-=⎩ 令4x =,则12,3,(4,3,12)z y ==∴=n .∴点P到平面BQD 的距离||12||13QP d ⋅==n n . 7.答案:AC解析:由||2=a 2221(1)2m +-+, 解得2m =±,故A 选项正确;由⊥a b得2120m m --++=,解得1m =,故B 选项错误; 若存在实数λ,使得λ=a b ,则12λ=-,1(1)m λ-=-,2m λ=,显然λ无解,即不存在实数λ使得λ=a b ,故C 选项正确; 若1⋅=-a b ,则2121m m --++=-,解得0m =, 于是(1,2,2)+=--a b ,故D 选项错误. 8.答案:BC解析:如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,1(0,1,1)D ,1,0,12E ⎛⎫ ⎪⎝⎭,所以(1,0,0)BA =-,1,0,12BE ⎛⎫=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,225sin 1cos θθ-. 故A 到直线BE 的距离12525||sin 1d BA θ===A 错. 易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭, 平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211222DA C O d DA ⋅===,故B 对. 1(1,0,1)A B =-,1(0,1,1)A D =-,11(0,1,0)A D =.设平面1A BD 的法向量为(,,)x y z =n ,则110,0,A B A D ⎧⋅=⎪⎨⋅=⎪⎩n n 所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1y =,1x =, 所以(1,1,1)=n .所以点1D 到平面1A BD 的距离1133||3A D d ⋅=n n . 因为易证得平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 3,故C 对.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离2218195||144166||AP AB d AP AB ⋅=-=-=,故D 错. 9.答案:257解析:已知AB BC ⊥,由题意,可得BP AB ⊥,BP BC ⊥.利用向量数量积的运算公式,可得352015603(1)30z x y x y z +-=⎧⎪-++=⎨⎪-+-=⎩,,,解得4071574,x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,401525777x y ∴+=-=. 10.答案:4解析:连接AC ,交BD 于点O ,连接OP ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设2PA AB ==,则(2,0,0)A ,(0,2,0)D -,22M ⎝⎭,2,0)B ,(0,2,0)BD ∴=-,(2,2,0)AD =-,设(0,,0)N b ,则(0,2,0)BN b =-.BD BN λ=,22(2)b λ∴-=,222b λ-∴=222N λ⎛⎫-∴ ⎪ ⎪⎝⎭,22222,,22MN λλ⎛⎫-∴=-- ⎪ ⎪⎝⎭, MN AD ⊥,2410MN AD λλ-∴⋅=-=,解得4λ=.11.答案:63解析:建立如图所示的空间直角坐标系,则1(0,0,0),(0,0,2),(1,0,2),,(0,1,1)D D M N ,所以(1,1,1)MN =--,平面ABCD 的一个法向量为1(0,0,2)DD =,所以1113cos ,3||MN DD MN DD MN DD ⋅〈==-MN 与平面ABCD 所成的角为θ,则3sin θ,所以6cos θ=. 12.答案:(1)见解析 26解析:(1)证明:取BC 的中点O ,连接,,AO DO AD .ABC ∴△是正三角形, OA BC ∴⊥.∵平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,OA ∴⊥平面BCD . OD ⊂平面BCD , AO OD ∴⊥.在Rt AOD △中,2sin 603AO DO ===336∴=+=.AD又6AE=,∴△为等腰三角形.ADE∴⊥.P是DE的中点,AP DEDE⊥平面BCD,∴∴⊥∴.AO DE AP AO AP OD////,,BCD AP⊄平面BCD,OD⊂平面,∴平面BCD.//AP(2)由(1)知,,OA DP AP OD,////∴四边形APDO为平行四边形,∴==,PD OA3∴=.23DE以点O为坐标原点,以,,OD OC OA的方向分别为x轴、y轴、z轴的正方向,建立如图的空间直角坐标系O xyz-,则3),(0,1,0)C E,A B-,(0,1,0),(3,0,23)∴===-.BA AE AC(0,1,3),(3,0,3),(0,1,3)设平面ABE的法向量为(,,)m,x y z=则0,0,BA AE ⎧⋅=⎪⎨⋅=⎪⎩m m即0,0.y ⎧=⎪=令y =1,1x z ==-,1)∴=-m .设平面ACE 的法向量为(,,)a b c =n , 则0,0,AE AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.b ==⎪⎩ 令1a =-,则1b c ==,(∴=-n.1cos ,||||5⋅∴===m n m n m n. sin ,∴=m n ∴二面角B AE C --.。

空间向量与立体几何测试题(含答案)

空间向量与立体几何测试题(含答案)

[学生用书P151(单独成册)][A 基础达标]1.已知a =(-3,2,5),b =(1,5,-1),则a ·(a +3b )=( ) A .(0,34,10) B .(-3,19,7) C .44D.23解析:选C.a +3b =(-3,2,5)+3(1,5,-1)=(0,17,2),则a ·(a +3b )=(-3,2,5)·(0,17,2)=0+34+10=44.2.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1→-D 1C 1→等于( ) A.AD 1→ B.AC 1→ C.AD →D.AB →解析:选A.AB →+BC →+CC 1→-D 1C 1→=AC 1→+C 1D 1→=AD 1→.3.如图所示,在几何体A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =1,CD =2,点E 为CD 中点,则AE 的长为 ( )A. 2B. 3 C .2D. 5解析:选B.AE →=AB →+BC →+CE →, 因为|AB →|=|BC →|=1=|CE →|, 且AB →·BC →=AB →·CE →=BC →·CE →=0. 又因为AE →2=(AB →+BC →+CE →)2,所以AE →2=3,所以AE 的长为 3.故选B.4.如图所示,点P 在正方形ABCD 所在平面外,P A ⊥平面ABCD ,P A =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D.30° 解析:选B.将题中图补成正方体ABCD -PQRS ,如图,连接SC ,AS ,则PB ∥SC ,所以∠ACS (或其补角)是PB 与AC 所成的角.因为△ACS 为正三角形,所以∠ACS =60°,所以PB 与AC 所成的角是60°,故选B.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,D 为AA 1上一点.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A.2B. 3 C .2 D.22解析:选A.如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Cxyz ,则C (0,0,0),B 1(0,2,2).设AD =a ,则点D 的坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2).设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CB 1→=0m ·CD →=0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0,令z =-1,得m=(a ,1,-1).又平面C 1DC 的一个法向量为(0,1,0),记为n ,则由cos 60°=|m ·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2.故选A. 6.已知平行六面体OABC -O ′A ′B ′C ′,OA →=a ,OC →=c ,OO ′→=b ,D 是四边形OABC 的对角线的交点,则O ′D →=________.解析:O ′D →=OD →-OO ′→=12(OA →+OC →)-OO ′→=12a +12c -b .答案:12a +12c -b7.已知平面α的一个法向量为n =(1,-1,0),则y 轴与平面α所成的角的大小为________.解析:y 轴的一个方向向量s =(0,1,0),cos 〈n ,s 〉=n ·s |n |·|s |=-22,即y 轴与平面α所成角的正弦值是22,故其所成的角的大小是π4. 答案:π48.直角三角形ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P到斜边AB 的距离是________.解析:以点C 为坐标原点,CA ,CB ,CP 所在直线分别为x轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (4,0,0),B (0,3,0),P (0,0,95),所以AB →=(-4,3,0),AP →=⎝⎛⎭⎫-4,0,95.所以AP →在AB →上的投影为|AP →·AB →||AB →|=165,所以点P 到斜边AB 的距离d =|AP →|2-⎝⎛⎭⎫1652=16+8125-25625=3.答案:39.如图,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求异面直线DP 与CC ′所成角的大小; (2)求DP 与平面AA ′D ′D 所成角的大小.解:如图,以D 为坐标原点,DA 为单位长度建立空间直角坐标系Dxyz .则DA →=(1,0,0),CC ′→=(0,0,1).连接BD ,B ′D ′,在平面BB ′D ′D 中,延长DP 交B ′D ′于点H . 设DH →=(m ,m ,1)(m >0),由〈DH →,DA →〉=60°及DH →·DA →=|DH →||DA →|cos 〈DH →,DA →〉, 可得2m =2m 2+1,解得m =22, 所以DH →=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH →,CC ′→〉=11×2=22,所以〈DH →,CC ′→〉=45°,即异面直线DP 与CC ′所成的角为45°. (2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0). 因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,即DP 与平面AA ′D ′D 所成的角为30°.10.(2018·武汉高二检测)在如图所示的空间几何体中,平面ACD ⊥平面ABC ,△ACD 与△ACB 是边长为2的等边三角形,BE =2,BE 和平面ABC 所成的角为60°,且点E 在平面ABC 上的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:(1)证明:由题意知,△ABC ,△ACD 都是边长为2的等边三角形, 取AC 的中点O ,连接BO ,DO , 则BO ⊥AC ,DO ⊥AC . 又平面ACD ⊥平面ABC ,所以DO ⊥平面ABC ,作EF ⊥平面ABC , 那么EF ∥DO ,根据题意,点F 落在BO 上,因为BE 和平面ABC 所成的角为60°,所以∠EBF =60°, 因为BE =2,所以EF =DO =3,所以四边形DEFO是平行四边形,所以DE ∥OF . 因为DE ⊄平面ABC ,OF ⊂平面ABC , 所以DE ∥平面ABC . (2)建立如图所示的空间直角坐标系Oxyz , 则B (0,3,0),C (-1,0,0), E (0,3-1,3), 所以BC →=(-1,-3,0), BE →=(0,-1,3),平面ABC 的一个法向量为n 1=(0,0,1), 设平面BCE 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·BC →=0n 2·BE →=0,所以⎩⎨⎧-x -3y =0-y +3z =0,取z =1,所以n 2=(-3,3,1).所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1313,又由图知,所求二面角的平面角是锐角,所以二面角E -BC -A 的余弦值为1313. [B 能力提升]11.(2018·河南洛阳模拟)如图,已知三棱锥A -BCD ,AD ⊥平面BCD ,BD ⊥CD ,AD =BD =2,CD =23,E ,F 分别是AC ,BC 的中点,P 为线段BC 上一点,且CP =2PB .(1)求证:AP ⊥DE ;(2)求直线AC 与平面DEF 所成角的正弦值. 解:(1)证明:作PG ∥BD 交CD 于G .连接AG . 所以CG GD =CPPB =2,所以GD =13CD =233.因为AD ⊥平面BCD ,所以AD ⊥DC , 因为在△ADG 中,tan ∠GAD =33, 所以∠DAG =30°,在Rt △ADC 中,AC 2=AD 2+CD 2=4+12=16,所以AC =4,又E 为AC 的中点,所以DE =AE =2,又AD =2,所以∠ADE =60°,所以AG ⊥DE .因为AD ⊥平面BCD ,所以AD ⊥BD ,又因为BD ⊥CD ,AD ∩CD =D ,所以BD ⊥平面ADC , 所以PG ⊥平面ADC ,所以PG ⊥DE .又因为AG ∩PG =G ,所以DE ⊥平面AGP ,又AP ⊂平面AGP ,所以AP ⊥DE .(2)以D 为坐标原点,DB 、DC 、DA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz ,则D (0,0,0),A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0), 所以DF →=(1,3,0),DE →=(0,3,1),AC →=(0,23,-2). 设平面DEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,令x =3,则n =(3,-3,3). 设直线AC 与平面DEF 所成角为θ,则sin θ=|cos 〈AC →,n 〉|=|AC →·n ||AC →|·|n |=|-6-6|421=217,所以AC 与平面DEF 所成角的正弦值为217.12.(2017·高考山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF ︵的中点.(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小; (2)当AB =3,AD =2时,求二面角E -AG -C 的大小. 解:(1)因为AP ⊥BE ,AB ⊥BE , AB ,AP ⊂平面ABP ,AB ∩AP =A , 所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC =120°, 因此∠CBP =30°. (2)法一:取EC ︵的中点H ,连接EH ,GH ,CH . 因为∠EBC =120°, 所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13. 取AG 中点M ,连接EM ,CM ,EC , 则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13-1=2 3. 在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,因此△EMC 为等边三角形, 故所求的角为60°. 法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧m ·AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由⎩⎪⎨⎪⎧n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2). 所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此所求的角为60°.13.(选做题)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:如图,以O 为坐标原点,建立空间直角坐标系Oxyz .则A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4),所以AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC . (2)假设存在满足题意的点M ,设PM →=λP A →,0≤λ<1, 则PM →=λ(0,-3,-4), 所以BM →=BP →+PM →=(-4,-2,4)+λ(0,-3,-4) =(-4,-2-3λ,4-4λ), AC →=(-4,5,0).设平面BMC 的一个法向量为n 1=(x 1,y 1,z 1),平面APC 的一个法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧BM →·n 1=0BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0-8x 1=0即⎩⎪⎨⎪⎧x 1=0z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0AC →·n 2=0,得⎩⎪⎨⎪⎧3y 2+4z 2=0-4x 2+5y 2=0,即⎩⎨⎧x 2=54y 2z 2=-34y2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故AM =35|AP →|=35×32+42=3.综上所述,线段AP 上存在点M 符合题意,此时AM =3.。

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

空间向量和立体几何练习题及答案

空间向量和立体几何练习题及答案

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面BDP的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.2.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE 所成角的余弦值为列式求得线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=或t=.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG 中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,=2,得;由,得,取z1设为平面ACG的一个法向量,由,可得,取z=﹣2,得.2∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.4.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.5.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.【分析】(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B﹣D′A﹣C的平面角为θ,求出|cosθ|.则二面角B﹣D′A﹣C的正弦值可求.【解答】(Ⅰ)证明:∵ABCD是菱形,∴AD=DC,又AE=CF=,∴,则EF∥AC,又由ABCD是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又AB=5,AO⊥OB,∴OB=4,∴OH==1,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面ABCD;(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,﹣3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=﹣4,z=5.∴.同理可求得平面AD′C的一个法向量,设二面角二面角B﹣D′A﹣C的平面角为θ,则|cosθ|=.∴二面角B﹣D′A﹣C的正弦值为sinθ=.【点评】本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.6.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【分析】(I)取AB的中点D,连结CD,DF,DE.计算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;(II)以C为原点建立空间直角坐标系,求出和平面CEF的法向量,则直线AC1与平面CEF所成角的正弦值等于|cos<>|.【解答】证明:(I)取AB的中点D,连结CD,DF,DE.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴A1E=,EF==,DE==,DF==,∴EF2+DE2=DF2,∴DE⊥EF,又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,∴EF⊥平面CDE,又CD⊂平面CDE,∴CD⊥EF,又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C(0,0,2),E(,0,),F(,,12).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴sin<>==.∴直线AC与平面CEF所成角的正弦值为.1【点评】本题考查了面面垂直的判定,线面角的计算,空间向量的应用,属于中档题.7.如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.【分析】(1)利用直角梯形的性质求出AB,AC的长,根据勾股定理的逆定理得出AB⊥AC,由PA⊥平面ABCD得出AB⊥PA,故AB⊥平面PAC,于是AB⊥PC;(2)假设存在点M,做出二面角的平面角,根据勾股定理求出M到平面ABCD的距离从而确定M的位置,利用棱锥的体积求出B到平面MAC的距离h,根据勾股定理计算BM,则即为所求角的正弦值.【解答】解:(1)证明:∵四边形ABCD是直角梯形,AD=CD=2,BC=4,∴AC=4,AB===4,∴△ABC是等腰直角三角形,即AB⊥AC,∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB,∴AB⊥平面PAC,又PC⊂平面PAC,∴AB⊥PC.(2)假设存在符合条件的点M,过点M作MN⊥AD于N,则MN∥PA,∴MN⊥平面ABCD,∴MN⊥AC.过点M作MG⊥AC于G,连接NG,则AC⊥平面MNG,∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角.若∠MGN=45°,则NG=MN,又AN=NG=MN,∴MN=1,即M是线段PD的中点.∴存在点M使得二面角M﹣AC﹣D的大小为45°.在三棱锥M﹣ABC中,VM﹣ABC =S△ABC•MN==,设点B到平面MAC的距离是h,则VB﹣MAC=,∵MG=MN=,∴S△MAC===2,∴=,解得h=2.在△ABN中,AB=4,AN=,∠BAN=135°,∴BN==,∴BM==3,∴BM与平面MAC所成角的正弦值为=.【点评】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题.8.如图,在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.(1)求侧棱AA1与平面AB1C所成角的正弦值的大小;(2)已知点D满足=+,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.【分析】(1)推导出A1O⊥平面ABC,BO⊥AC,以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,利用向量法能求出侧棱AA1与平面AB1C所成角的正弦值.(2)假设存在点P符合题意,则点P的坐标可设为P(0,y,z),则.利用向量法能求出存在点P,使DP∥平面AB1C,其坐标为(0,0,),即恰好为A1点.【解答】解:(1)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O,∴A1O⊥平面ABC.又∠ABC=∠A1AC=60°,且各棱长都相等,∴AO=1,OA1=OB=,BO⊥AC.…(2分)故以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,则A(0,﹣1,0),B(,0,0),A1(0,0,),C(0,1,0),∴=(0,1,),=(),=(0,2,0).…(4分)设平面AB1C的法向量为,则,取x=1,得=(1,0,1).设侧棱AA1与平面AB1C所成角的为θ,则sinθ=|cos<,>|=||=,∴侧棱AA1与平面AB1C所成角的正弦值为.…(6分)(2)∵=,而,,∴=(﹣2,0,0),又∵B(),∴点D(﹣,0,0).假设存在点P符合题意,则点P的坐标可设为P(0,y,z),∴.∵DP∥平面AB1C,=(﹣1,0,1)为平面AB1C的法向量,∴由=λ,得,∴y=0.…(10分)又DP⊄平面AB1C,故存在点P,使DP∥平面AB1C,其坐标为(0,0,),即恰好为A1点.…(12分)【点评】本题考查线面角的正弦值的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.9.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥平面ABB1A1.(Ⅰ)证明:平面AB1C⊥平面BCD;(Ⅱ)若OC=OA,△AB1C的重心为G,求直线GD与平面ABC所成角的正弦值.【分析】(Ⅰ)通过证明AB1⊥BD,AB1⊥CO,推出AB1⊥平面BCD,然后证明平面AB1C⊥平面BCD.(Ⅱ)以O为坐标原点,分别以OD,OB1,OC所在直线为x,y,z轴,建立如图所示的空间直角坐标系O﹣xyz.求出平面ABC的法向量,设直线GD与平面ABC 所成角α,利用空间向量的数量积求解直线GD与平面ABC所成角的正弦值即可.【解答】(本小题满分12分)解:(Ⅰ)∵ABB1A1为矩形,AB=2,,D是AA1的中点,∴∠BAD=90°,,,从而,,∵,∴∠ABD=∠AB1B,…(2分)∴,∴,从而AB1⊥BD…(4分)∵CO⊥平面ABB1A1,AB1⊂平面ABB1A1,∴AB1⊥CO,∵BD∩CO=O,∴AB1⊥平面BCD,∵AB1⊂平面AB1C,∴平面AB1C⊥平面BCD…(6分)(Ⅱ)如图,以O为坐标原点,分别以OD,OB1,OC所在直线为x,y,z轴,建立如图所示的空间直角坐标系O﹣xyz.在矩形ABB1A1中,由于AD∥BB1,所以△AOD和△B1OB相似,从而又,∴,,,,∴,,∵G为△AB1C的重心,∴,…(8分)设平面ABC的法向量为,,由可得,令y=1,则z=﹣1,,所以.…(10分)设直线GD与平面ABC所成角α,则=,所以直线GD与平面ABC所成角的正弦值为…(12分)【点评】本题考查平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.10.在矩形ABCD中,AB=4,AD=2,将△ABD沿BD折起,使得点A折起至A′,设二面角A′﹣BD﹣C的大小为θ.(1)当θ=90°时,求A′C的长;(2)当cosθ=时,求BC与平面A′BD所成角的正弦值.【分析】(1)过A作BD的垂线交BD于E,交DC于F,连接CE,利用勾股定理及余弦定理计算AE,CE,由A′E⊥CE得出A′C;(2)利用余弦定理可得A′F=,从而得出A′F⊥平面ABCD,以F为原点建立坐标系,求出和平面A′BD的法向量,则BC与平面A′BD所成角的正弦值为|cos <>|.【解答】解:(1)在图1中,过A作BD的垂线交BD于E,交DC于F,连接CE.∵AB=4,AD=2,∴BD==10.∴,BE==8,cos∠CBE==.在△BCE中,由余弦定理得CE==2.∵θ=90°,∴A′E⊥平面ABCD,∴A′E⊥CE.∴|A′C|==2.(2)DE==2.∵tan∠FDE=,∴EF=1,DF==.当即cos∠A′EF=时,.∴A′E2=A′F2+EF2,∴∠A'FE=90°又BD⊥AE,BD⊥EF,∴BD⊥平面A'EF,∴BD⊥A'F∴A'F⊥平面ABCD.以F为原点,以FC为x轴,以过F的AD的平行线为y轴,以FA′为z轴建立空间直角坐标系如图所示:∴A′(0,0,),D(﹣,0,0),B(3,2,0),C(3,0,0).∴=(0,2,0),=(4,2,0),=(,0,).设平面A′BD的法向量为=(x,y,z),则,∴,令z=1得=(﹣,2,1).∴cos<>===.∴BC与平面A'BD所成角的正弦值为.【点评】本题考查了空间角与空间距离的计算,空间向量的应用,属于中档题.11.如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=,平面CC1D⊥平面ACC1A1.(Ⅰ)求证:AC⊥DC1;(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由.【分析】(Ⅰ)证明AC⊥CC1,得到AC⊥平面CC1D,即可证明AC⊥DC1.(Ⅱ)易得∠BAC=90°,建立空间直角坐标系A﹣xyz,依据已知条件可得A(0,0,0),,,B(0,0,1),B1(2,0,1),,利用向量求得AM与平面DBB1所成角为0,即AM∥平面DBB1.(Ⅲ)利用向量求解【解答】解:(Ⅰ)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,故AC⊥CC1,由平面CC1D⊥平面ACC1A1,且平面CC1D∩平面ACC1A1=CC1,所以AC⊥平面CC1D,又C1D⊂平面CC1D,所以AC⊥DC1.(Ⅱ)证明:在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,所以AA1⊥AB,AA1⊥AC,又∠BAC=90°,所以,如图建立空间直角坐标系A﹣xyz,依据已知条件可得A(0,0,0),,,B(0,0,1),B1(2,0,1),,所以,,设平面DBB1的法向量为,由即令y=1,则,x=0,于是,因为M为DC1中点,所以,所以,由,可得,所以AM与平面DBB1所成角为0,即AM∥平面DBB1.(Ⅲ)解:由(Ⅱ)可知平面BB1D的法向量为.设,λ∈[0,1],则,.若直线DP与平面DBB1成角为,则,解得,故不存在这样的点.【点评】本题考查了空间线线垂直、线面平行的判定,向量法求二面角.属于中档题12.如图,在多面体ABCDEF中,底面ABCD为正方形,平面AED⊥平面ABCD,AB=EA=ED,EF∥BD( I)证明:AE⊥CD( II)在棱ED上是否存在点M,使得直线AM与平面EFBD所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.【分析】(I)利用面面垂直的性质得出CD⊥平面AED,故而AE⊥CD;(II)取AD的中点O,连接EO,以O为原点建立坐标系,设,求出平面BDEF的法向量,令|cos<>|=,根据方程的解得出结论.【解答】(I)证明:∵四边形ABCD是正方形,∴CD⊥AD,又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,CD⊂平面ABCD,∴CD⊥平面AED,∵AE⊂平面AED,∴AE⊥CD.(II)解:取AD的中点O,过O作ON∥AB交BC于N,连接EO,∵EA=ED,∴OE⊥AD,又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,OE⊂平面AED,∴OE⊥平面ABCD,以O为原点建立空间直角坐标系O﹣xyz,如图所示:设正方形ACD的边长为2,,则A(1,0,0),B(1,2,0),D(﹣1,0,0),E(0,0,1),M(﹣λ,0,1﹣λ)∴=(﹣λ﹣1,0,1﹣λ),=(1,0,1),=(2,2,0),设平面BDEF的法向量为=(x,y,z),则,即,令x=1得=(1,﹣1,﹣1),∴cos<>==,令||=,解得λ=0,∴当M与点E重合时,直线AM与平面EFBD所成角的正弦值为.【点评】本题考查了线面垂直的判定,空间向量与线面角的计算,属于中档题.13.如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.(1)设点E为PD的中点,求证:CE∥平面PAB;(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为?若存在,试确定点N的位置,若不存在,请说明理由.【分析】(1)取AD中点M,利用三角形的中位线证明EM∥平面PAB,利用同位角相等证明MC∥AB,得到平面EMC∥平面PAB,证得EC∥平面PAB;(2)建立坐标系,求出平面PAC的法向量,利用直线CN与平面PAC所成的角θ的正弦值为,可得结论.【解答】(1)证明:取AD中点M,连EM,CM,则EM∥PA.∵EM⊄平面PAB,PA⊂平面PAB,∴EM∥平面PAB.在Rt△ACD中,∠CAD=60°,AC=AM=2,∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.∵MC⊄平面PAB,AB⊂平面PAB,∴MC∥平面PAB.∵EM∩MC=M,∴平面EMC∥平面PAB.∵EC⊂平面EMC,∴EC∥平面PAB.(2)解:过A作AF⊥AD,交BC于F,建立如图所示的坐标系,则A(0,0,0),B(,﹣,0),C(,1,0),D(0,4,0),P(0,0,2),设平面PAC的法向量为=(x,y,z),则,取=(,﹣3,0),设=λ(0≤λ≤1),则=(0,4λ,﹣2λ),=(﹣λ﹣1,2﹣2λ),∴|cos<,>|==,∴,∴N为PD的中点,使得直线CN与平面PAC所成的角θ的正弦值为.【点评】本题考查线面平行的判定,考查线面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.14.如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,平面PAB⊥平面ABCD,PB=PC,∠ABC=45°,点E是线段PA上靠近点A的三等分点.(Ⅰ)求证:AB⊥PC;(Ⅱ)若△PAB是边长为2的等边三角形,求直线DE与平面PBC所成角的正弦值.【分析】(Ⅰ)作PO⊥AB于O,连接OC,可得PO⊥面ABCD.由△POB≌△POC,∠ABC=45°,得OC⊥AB,即得AB⊥面POC,可证得AB⊥PC.(Ⅱ)以O 为原点建立空间坐标系,,利用向量求解.【解答】解:(Ⅰ)作PO⊥AB于O…①,连接OC,∵平面PAB⊥平面ABCD,且面PAB∩面ABCD=AB,∴PO⊥面ABCD.…(2分)∵PB=PC,∴△POB≌△POC,∴OB=OC,又∵∠ABC=45°,∴OC⊥AB…②又PO∩CO=O,由①②,得AB⊥面POC,又PC⊂面POC,∴AB⊥PC.…(6分)(Ⅱ)∵△PAB是边长为2的等边三角形,∴.如图建立空间坐标系,设面PBC的法向量为,,由,令,得;,.,设DE与面PBC所成角为θ,∴直线DE与平面PBC所成角的正弦值.…(12分)【点评】本题考查了空间线线垂直的判定,向量法求线面角,属于中档题.15.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AAl ,A1B1上,且AE=,A1F=,CE⊥EF,M为AB中点( I)证明:EF⊥平面CME;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【分析】(Ⅰ)推导出Rt△EAM∽Rt△FA1E,从而EF⊥ME,又EF⊥CE,由此能证明EF⊥平面CEM.(Ⅱ)设线段A1B1中点为N,连结MN,推导出MC,MA,MN两两垂直,建空间直角坐标系,利用向量法能求出直线AC1与平面CEF所成角的正弦值.【解答】证明:(Ⅰ)在正方形ABB1A1中,A1E=,AM=1,在Rt△EAM和Rt△FA1E中,,又∠EAM=∠FA1E=,∴Rt△EAM∽Rt△FA1E,∴∠AEM=∠A1FE,∴EF⊥EM,又EF⊥CE,ME∩CE=E,∴EF⊥平面CEM.解:(Ⅱ)在等腰三角形△CAB中,∵CA⊥CB,AB=2,∴CA=CB=,且CM=1,设线段A1B1中点为N,连结MN,由(Ⅰ)可证CM⊥平面ABB1A1,∴MC,MA,MN两两垂直,建立如图所示的空间直角坐标系,则C(1,0,0),E(0,1,),F(0,,2),A(0,1,0),C1(1,0,2),=(﹣1,1,),=(0,﹣,),=(1,﹣1,2),设平面CEF的法向量为=(x,y,z),则,取z=2,得=(5,4,2),设直线AC1与平面CEF所成角为θ,则sinθ==,∴直线AC1与平面CEF所成角的正弦值为.【点评】本题考查线面垂直的证明,考查线面角的正弦值求法,是中档题,解题时要认真审题,注意空间思维能力的培养.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

(浙江专用)2017版高考数学一轮复习 第八章 立体几何 第5讲 空间向量及其运算练习

(浙江专用)2017版高考数学一轮复习 第八章 立体几何 第5讲 空间向量及其运算练习

【创新设计】(浙江专用)2017版高考数学一轮复习 第八章 立体几何 第5讲 空间向量及其运算练习基础巩固题组(建议用时:40分钟)一、选择题1.在空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A.垂直B.平行C.异面D.相交但不垂直解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点.∴AB ∥CD .答案 B2.空间四边形ABCD 的各边和对角线均相等,E 是BC 的中点,那么( )A.AE →·BC →<AE →·CD →B.AE →·BC →=AE →·CD →C.AE →·BC →>AE →·CD →D.AE →·BC →与AE →·CD →的大小不能比较解析 取BD 的中点F ,连接EF ,则EF 綉12CD ,因为〈AE →,EF →〉=〈AE →,CD →〉>90°,因为AE →·BC →=0,∴AE →·CD →<0,所以AE →·BC →>AE →·CD →.答案 C3.(2016·济南月考)O 为空间任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( ) A.一定不共面B.一定共面C.不一定共面D.无法判断解析 因为OP →=34OA →+18OB →+18OC →,且34+18+18=1.所以P ,A ,B ,C 四点共面. 答案 B4.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( )A.-1B.43C.53D.75解析 由题意得,k a +b =(k -1,k ,2),2a -b =(3,2,-2).所以(k a +b )·(2a -b )=3(k -1)+2k -2×2=5k -7=0,解得k =75. 答案 D5.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A.a 2B.12a 2C.14a 2D.34a 2解析 如图,设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=a ,且a ,b ,c 三向量两两夹角为60°.AE →=12(a +b ),AF →=12c ,∴AE →·AF →=12(a +b )·12c =14(a ·c +b ·c )=14(a 2cos 60°+a 2cos 60°)=14a 2. 答案 C二、填空题6.(2016·衡阳模拟)已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________.解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.答案 -97.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b·c =-10,又∵a·c =4,∴b·c =-18, ∴cos 〈b ,c 〉=b·c |b |·|c |=-1812×1+4+4=-12,∴〈b ,c 〉=120°,∴两直线的夹角为60°.答案 60°8.(2016·徐州模拟)已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是__________. 解析 ∵点Q 在直线OP 上,∴设点Q (λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23.此时OQ →=⎝ ⎛⎭⎪⎫43,43,83. 答案 ⎝ ⎛⎭⎪⎫43,43,83 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)若|c |=3,且c ∥BC →,求向量c .(2)求向量a 与向量b 的夹角的余弦值.解 (1)∵c ∥BC →,BC →=(-3,0,4)-(-1,1,2)=(-2,-1,2),∴c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ),∴|c |=(-2m )2+(-m )2+(2m )2=3|m |=3,∴m =±1.∴c =(-2,-1,2)或(2,1,-2).(2)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1,又∵|a |=12+12+02=2,|b |=(-1)2+02+22=5, ∴cos 〈a ,b 〉=a·b |a |·|b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. 10.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,G 为△BC 1D 的重心,(1)试证:A 1,G ,C 三点共线;(2)试证:A 1C ⊥平面BC 1D .证明 (1)CA 1→=CB →+BA →+AA 1→=CB →+CD →+CC 1→,可以证明CG →=13(CB →+CD →+CC 1→)=13CA 1→,∴CG →∥CA 1→,又CG →与CA 1→有公共点C ,即A 1,G ,C 三点共线.(2)设CB →=a ,CD →=b ,CC 1→=c ,则|a |=|b |=|c |=a ,且a·b =b·c =c·a =0,∵CA 1→=a +b +c ,BC 1→=c -a ,∴CA 1→·BC 1→=(a +b +c )·(c -a )=c 2-a 2=0,因此CA 1→⊥BC 1→,即CA 1⊥BC 1,同理CA 1⊥BD ,又BD 与BC 1是平面BC 1D 内的两相交直线,故A 1C ⊥平面BC 1D .能力提升题组(建议用时:20分钟)11.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ,μ∈R ,且λμ≠0),则( )A.c ∥dB.c ⊥dC.c 不平行于d ,c 也不垂直于dD.以上三种情况均有可能 解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .答案 B12.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( )A.-1B.0C.1D.不确定解析 如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b ·(a -c )+c ·(b -a )=a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.答案 B13.(2016·北京西城模拟)如图所示,正方体ABCD -A1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →·AP →的取值范围是________.解析 如图所示,由题意,设BP →=λBD 1→,其中λ∈[0,1],DC →·AP →=AB →·(AB→+BP →)=AB →·(AB →+λBD 1→)=AB →2+λAB →·BD 1→=AB →2+λAB →·(AD 1→-AB →)=(1-λ)AB →2=1-λ∈[0,1].因此DC →·AP →的取值范围是[0,1].答案 [0,1]14.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG 的长;(3)异面直线AG 与CE 所成角的余弦值.解 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,(1)EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c , EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14, (2)EG →=EB →+BC →+CG →=12a +b -a +12c -12b =-12a +12b +12c , |EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22. (3)AG →=12b +12c ,CE →=CA →+AE →=-b +12a , cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23, 由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.。

【名校联盟】-高中数学-第一章 空间向量与立体几何章末测试(解析版)

【名校联盟】-高中数学-第一章 空间向量与立体几何章末测试(解析版)

第一章 空间向量与立体几何章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.(2020·宜昌天问教育集团高二期末)在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为( )A .1-B .1CD .73【答案】A【解析】如图所示由正四面体的性质可得:PA BC ⊥可得:0PA BC ⋅= E 是棱AB 中点 12PE PA PB 111122cos12012222PE BC PA PB BC PA BC PB BC 故选:A【点睛】 本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型. 2.(2020·宜昌高二期末)已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( )A .9B .﹣9C .﹣3D .3【解析】由P ,A ,B ,C 四点共面,可得,,PA PB PC 共面,(2,2,33)(7,6,)xPA yPB x y x y C y P x λ∴=+=-+-+=,272633x y x y x y λ-=⎧⎪+=⎨⎪-+=⎩,解得419x y λ=⎧⎪=⎨⎪=-⎩.故选:B.3.(2020·全国高二课时练习)下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.故选C .4.(2020·全国高二课时练习)若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( ) A .l α⊂B .//l αC .l α⊥D .l 与α相交 【答案】C【解析】∵直线l 的方向向量为()1,2,3a =-,平面α的法向量为()3,6,9n =--, ∴13a n =-,∴a n ,∴l α⊥.故选C .5.(2020·河北新华.石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )A .16B .14C .16-D .14-【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则1111cos ,66MN OD MN OD MN OD ⋅===. ∴异面直线MN 与1OD 所成角的余弦值为16,故选A .6.(2020·吉化第一高级中学校)已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于()A .23B C.3 D .13【答案】A【解析】设1AB =11BD BC DC ∴===1BDC ∆面积为3211C BDC C BCD V V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴== 7.(2020·延安市第一中学高二月考)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2), ∴点M 到平面D 1EF 的距离为:d=||2||55EM n n ⋅==,N 为EM 中点,所以N 故选:D . 8.(2019·黑龙江大庆四中高二月考)已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( ) A .131,,243⎛⎫ ⎪⎝⎭ B .133,,224⎛⎫ ⎪⎝⎭ C .448,,333⎛⎫ ⎪⎝⎭ D .447,,333⎛⎫ ⎪⎝⎭【答案】C【解析】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=,即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+,根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q. 故选:C.9.(2020·河北省盐山中学高一期末)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83 D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E , 所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩, 不妨取11z =,则11x =,12y =同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C , 故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R == 所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.10.(2020·福建厦门。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017浙江高考空间向量与立体几何练习空间向量与立体几何两年高考真题演练1.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=5,且点M和N分别为B1C和D1D的中点.(1)求证:MN∥平面ABCD;(2)求二面角D1-AC-B1的正弦值;(3)设E 为棱A1B1上的点,若直线NE和平面ABCD所成角的正1弦值为3,求线段A1E的长. 2. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB 交PB于点F,连接DE、DF、BD、BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理;πDC(2)若面DEF与面ABCD所成二面角的大小为3,求BC的值.3.如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD. (1)求证:AB⊥PD;(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC 夹角的余弦值.考点25 空间向量与立体几何一年模拟试题精练1.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.2(1)如图(1),若G为线段PD的中点,BE=DF=3,证明:PB∥平面EFG;(2)如图(2),若E, F分别为线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下列两个条件,并说明理.(ⅰ)点H到点F 的距离与点H到直线AB的距离之差大于4;(ⅱ)GH⊥PD.2.如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边AB=t,(0(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理.3.如图,已知平行四边形ABCD与直角梯形ABEF所在的平面互相1垂直,其中BE∥AF,AB⊥AF,AB=BE=2AF,BC=2AB,∠CBAπ=4,P为DF 的中点.(1)求证:PE∥平面ABCD;(2)求平面DEF与平面ABCD所成角(锐角)的余弦值.4.如图1在Rt△ABC 中,∠ABC=90°,D、E分别为线段AB、AC的中点,AB=4,BC=22.以DE为折痕,将Rt△ADE折起到图2的位置,使平面A′DE⊥平面DBCE,连接A′C,A′B,设F是线段→=λCA→A′C上的动点,满足CF′. (1)证明:平面FBE ⊥平面A′DC;(2)若二面角F-BE -C的大小为45°,求λ的值.空间向量与立体几何【两年高考真题演练】 1. 如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2),又因为M,N分别为B1C和D1D的中点,1??得M?1,2,1?,N(1,-2,1).??(1)证明依题意,可得n=(0,0,1)为平面ABCD的一个法向5?→=?→·n=0,又因为直线MN?平面?0,-,0?,此可得MN量,MN2??ABCD,所以MN∥平面ABCD. →=(1,-2,2),AC→=(2,0,0),设n=(x,y,z)为(2)解AD11平面ACD1的法向量,则→=0,??n1·AD1?x-2y+2z=0,即? ?→?2x=0.?n1·AC=0,?不妨设z=1,可得n1=(0,1,1).设n2=(x,y,z)为平面ACB1的法向量,则→=0,?n2·AB1?→=0,?n2·AC→=(0,1,2),又AB1??y+2z=0,得?不妨设z=1,可得n2=(0,-2,1).??2x=0,n1·n210因此有cos〈n1,n2〉==-10,于是sin〈n1,n2〉=|n1|·|n2|31010. 310所以,二面角D1-AC-B1的正弦值为10. →→(3)依题意,可设A1E=λA1B1,其中λ∈[0,1],则E(0,λ,2),→=(-1,λ+2,1),又n=(0,0,1)为平面ABCD的一个法从而NE向量,→·nNE1→已知,得cos〈NE,n〉==222→++1|NE|·|n|1=3,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=7-2,所以,线段A1E 的长为7-2. 2.解法一(1)因为PD⊥底面ABCD,所以PD⊥BC,底面ABCD为长方形,有BC⊥CD,而PD∩CD =D,所以BC⊥平面PCD.而DE?平面PCD,所以BC⊥DE. 又因为PD=CD,点E是PC的中点,所以DE⊥PC. 而PC∩BC=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE. 又PB ⊥EF,DE∩EF=E,所以PB⊥平面DEF. DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB. (2)如图,在面PBC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线.(1)知,PB⊥平面DEF,所以PB⊥DG. 又因为PD⊥底面ABCD,所以PD⊥DG,而PD∩PB=P,所以DG⊥平面PBD. 故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有BD=1+λ2,π在Rt△PDB 中,DF⊥PB,得∠DPF=∠FDB=3,πBD则tan 3=tan∠DPF=PD=1+λ2=3,解得λ=2. DC12所以BC==2. λπDC2故当面DEF与面ABCD 所成二面角的大小为3时,BC=2. 法二(1)如图,以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,则D(0,0,→=(λ,1,-1),点E0),P(0,0,1),B(λ,1,0),C(0,1,0),PB11?→?11??是PC的中点,所以E?0,2,2?,DE=?0,2,2?,→·DE→=0,即PB⊥DE. 于是PB 又已知EF⊥PB,而DE∩EF=E,所以PB⊥平面DEF. →=(0,1,-1),DE→·PC→=0,则DE⊥PC,因PC 所以DE⊥平面PBC. DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB. →=(0,0,1)是平面ABCD的一(2)PD ⊥平面ABCD,所以DP个法向量;→=(-λ,-1,1)是平面DEF(1)知,PB⊥平面DEF,所以BP的一个法向量.π若面DEF与面ABCD所成二面角的大小为3,→·DP→??1?1π?BP?=,则cos 3=??=?2→→λ+2?2?|BP|·|DP|??DC12解得λ=2.所以BC==2. λπDC2故当面DEF与面ABCD所成二面角的大小为3时,BC=2. 3.(1)证明ABCD为矩形,故AB⊥AD;又平面PAD ⊥平面ABCD,平面PAD∩平面ABCD =AD,所以AB⊥平面PAD,故AB⊥PD. (2)解过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连接PG. 故PO⊥平面ABCD,BC ⊥平面POG,BC⊥PG,23266在Rt△BPC中,PG=3,GC=3,BG=3,设AB=m,则OP=PG-OG=的体积为1 V=3·6·m·22242-m,故四棱锥P -ABCD34m22-m=8-6m. 33 24因为m8-6m=8m-6m=?22?28-6?m-3?+3,??66故当m=3,即AB=3时,四棱锥P-ABCD的体积最大.此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),?6?6266?26?6??B,3,0,C3,3,0,D0,3,0,P0,0,3?. 3?626??6?→6→→?,故PC=?,BC=(0,6,0),CD=?-,0,0?,3,-3?3?3??设平面BPC 的法向量n1=(x,y,1),→,n⊥BC→得则n1⊥PC1?6x+26y-6=0,33 ?3?6y=0,解得x=1,y=0,n1=(1,0,1).1??同理可求出平面DPC的法向量n2=?0,2,1?,??从而平面BPC与平面DPC夹角θ的余弦值为|n1·n2| cos θ==|n1||n2|12·14+1 10=5. 【一年模拟试题精练】1.(1)证明取AB中点O,连接PO,则PO⊥AB,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO?平面PAB,PO⊥平面ABCD,分别以OB,ON,OP为x轴,y轴,z轴,建立空间直角坐标系,P(0,0,3),D(-1,4,0),B(1,0,0),?1??1?→=(1,0,-3).E?-3,0,0?,F?-3,4,0?,则PB设平面EFG的法向量n=(x,y,z),?5?3?→?2→??,??,-4,0∵GE=,-2,-,FE=362→·n=0,FE→·n=0,∴GE53 6x-2y-2z=0,∴23x-4y=0故n=(6,1,23),→·n =0,∴PB→⊥n. ∴PB∵PB?平面EFG,∴PB∥平面EFG. (2)解连接PE,则PE⊥AB,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE?平面PAB,∴PE⊥平面ABCD,分别以EB,EN,EP为x轴,y轴,z 轴建立空间直角坐标系,→=(-1,4,-3),∴P(0,0,3),D(-1,4,0),PD?1423?1→?143?→. ∵PG =3PD=-,,-.∴G?-,,3?3??33?33设点H(x,y,0),且-1≤x≤1,0y+4,∴x2>16y,(-1≤x≤1)①?1423?→??,又GH=x+,y-,-333??→·PD→=0,∵GH⊥PD,∴GH 1161111∴-x-3+4y-3+2=0,即y=4x+12②把②代入①得:3x2-12x-44>0. 242242∴x>2+3,或x ∵满足条件的点H必在矩形ABCD内,则有-1≤x≤1,∴矩形ABCD内不能找到点H,使之同时满足(ⅰ)(ⅱ)条件.2.解法一(1)根据题意,长方体体积为?t+2-t?2?=1,V=t(2-t)×1=t(2-t)≤?2??当且仅当t=2-t,即t=1时体积V有最大值为1,所以当长方体ABCD -A1B1C1D1的体积最大时,底面四边形ABCD为正方形,作BM⊥A1C 于M,连接DM,BD,因为四边形ABCD为正方形,所以△A1BC与△A1DC全等,故DM⊥A1C,所以∠BMD即为所求二面角的平面角.因为BC⊥平面AA1B1B,所以△A1BC为直角三角形,A1B×BC26又A1B=2,A1C=3,所以BM=AC==3,同理可316得,DM=3,669+9-21在△BMD中,根据余弦定理有:cos∠BMD==-2,662×3×3因为∠BMD∈(0°,180°),所以∠BMD=120°,即此时二面角B-A1C -D的值是120°. (2)若线段A1C上存在一点P,使得A1C⊥平面BPD,则A1C⊥BD,又A1A⊥平面ABCD,所以A1A⊥BD,所以BD⊥平面A1AC. 所以BD⊥AC,底面四边形ABCD 为正方形,即只有ABCD为正方形时,线段A1C上存在点P满足要求,否则不存在.(1)知,所求点P即为BM⊥A1C的垂足M,A1B2223此时,A1P =AC==3. 31法二根据题意可知,AA1,AB,AD两两垂直,以AB为x轴,AD为y轴,AA1为z 轴建立如图所示的空间直角坐标系:?t+2-t?2?=1,(1)长方体体积为V=t(2-t)×1=t(2-t)≤?2??当且仅当t=2-t,即t=1时体积V有最大值为1. 所以当长方体ABCD-A1B1C1D1的体积最大时,底面四边形→ABCD为正方形,则A1(0,0,1),B(1,0,0),C(1,1,0),A1B=→=(0,1,0),(1,0,-1),BC??x-z=0,设平面A1BC的法向量m=(x,y,z),则? ??y=0,取x=z=1,得:m=(1,0,1),同理可得平面A1CD 的法向量n=(0,1,1),所以,cos〈m,n〉=m·n1=,|m|·|n|2又二面角B-A1C-D为钝角,故值是120°. (也可以通过证明B1A⊥平面A1BC写出平面A1BC的法向量) (2)根据题意有B(t,0,0),C(t,2-t,0),D(0,2-t,0),若线→→段A1C上存在一点P满足要求,不妨A1P=λA1C,可得P(λt,λ(2-t),1-λ),→=(λt-t,λ(2-t),1-λ),BD→=(-t,2-t,0) BP 2→·→??BPA?t+λ-=0,1C=0即:?2 ?2?→→-t+=0,??BD·A1C =02解得:t=1,λ=3. 即只有当底面四边形是正方形时才有符合要求的点P,位置是线段A1C上且满足A1P∶PC=2∶1处.3.(1)证明取AD 的中点M,连接MP,MB,在△ADF 中,FP=PD,DM=MA. 11所以MP∥AF,且MP=2AF,又因为BE =2AF,且BE∥AF,。

相关文档
最新文档