2020高考文科数学二轮专题辅导通用版课件:专题1 函数与导数2.1
2020高考数学(文科)二轮总复习保分专题1 函数与导数第一部分 层级二 专题1 第3讲
课时跟踪检测(三) 导数的简单应用一、选择题1.已知函数f (x )的导函数f ′(x )满足下列条件: ①f ′(x )>0时,x <-1或x >2; ②f ′(x )<0时,-1<x <2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )解析:选A 根据条件知,函数f (x )在(-1,2)上是减函数,在(-∞,-1),(2,+∞)上是增函数,故选A.2.若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a 的值为( )A .e -12 B .2e -12 C .e 12D .2e 12解析:选B 依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′| x =x 0=2x 0,于是有⎩⎨⎧a =2x 0,ax 0=2ln x 0+1,解得⎩⎨⎧x 0=e ,a =2e -12.3.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值为( )A .1B .2C .0D. 2解析:选B ∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a2≥1,得a ≥2. 又∵g ′(x )=2x -ax ,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a 在x ∈(1,2)上恒成立,有a ≤2.综上,a =2.4.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选C f ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.5.设函数f (x )满足2x 2f (x )+x 3f ′(x )=e x,f (2)=e 28,则x ∈[2,+∞)时,f (x )的最小值为( )A.e 22B.3e 22C.e 24D.e 28解析:选D ∵2x 2f (x )+x 3f ′(x )=e x ,∴当x ≠0时,此等式可化为f ′(x )=e x -2x 2f (x )x 3.∵f (2)=e 28,∴f ′(2)=e 2-8×f (2)23=0.令g (x )=e x -2x 2f (x ),则g (2)=0,g ′(x )=e x-2[x 2f ′(x )+2xf (x )]=e x-2e x x =e xx (x -2).当x ∈[2,+∞)时,g ′(x )≥0,则g (x )在[2,+∞)上单调递增,g (x )的最小值为g (2)=0,则f ′(x )≥0恒成立,∴f (x )的最小值为f(2)=e28.故选D.6.(2019·重庆七校联考)函数f(x)(x>0)的导函数为f′(x),若xf′(x)+f(x)=e x,且f(1)=e,则()A.f(x)的最小值为eB.f(x)的最大值为eC.f(x)的最小值为1 eD.f(x)的最大值为1 e解析:选A设g(x)=xf(x)-e x,所以g′(x)=f(x)+xf′(x)-e x=0,所以g(x)=xf(x)-e x为常数函数.因为g(1)=1×f(1)-e=0,所以g(x)=xf(x)-e x=g(1)=0,所以f(x)=e xx ,f′(x)=e x(x-1)x2.当0<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,故f(x)在x=1处取得最小值.所以f(x)≥f(1)=e.二、填空题7.(2019·西安八校联考)已知曲线f(x)=e x+x2,则曲线在(0,f(0))处的切线与坐标轴围成的图形的面积为________.解析:由题意,得f′(x)=e x+2x,所以f′(0)=1.又f(0)=1,所以曲线在(0,f(0))处的切线方程为y-1=1×(x-0),即x-y+1=0,所以该切线与x,y轴的交点分别为(-1,0),(0,1),所以该切线与坐标轴围成的图形的面积为12×1×1=1 2.答案:1 28.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:f ′(x )=3x 2-12,由f ′(x )>0,得函数的增区间是(-∞,-2)及(2,+∞),由f ′(x )<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3.答案:(-3,-1)∪(1,3)9.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是________.解析:f ′(x )=(2x +a )e x +(x 2+ax +3)e x =[x 2+(a +2)x +a +3]e x ,令g (x )=x 2+(a +2)x +a +3.由题意知,f (x )在(0,+∞)内先减后增或先增后减,结合函数g (x )的图象特征知,f (x )在(0,+∞)内先减后增,故a +3<0或⎩⎪⎨⎪⎧-a +22>0,a +3=0,解得a ≤-3.答案:(-∞,-3] 三、解答题10.已知函数f (x )=ln x -ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程; (2)讨论f (x )的单调性.解:(1)当a =0时,f (x )=ln x +x ,f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e ,∴曲线y =f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝ ⎛⎭⎪⎫1+1e (x -e),即y =⎝ ⎛⎭⎪⎫1e +1x .(2)f ′(x )=1x -2ax +1=-2ax 2+x +1x ,x >0,①当a ≤0时,显然f ′(x )>0, ∴f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x =0,则-2ax 2+x +1=0,易知Δ>0, 设方程的两根分别为x 1,x 2(x 1<x 2), 则x 1x 2=-12a <0,∴x 1<0<x 2, ∴f ′(x )=-2ax 2+x +1x=-2a (x -x 1)(x -x 2)x,x >0,令f ′(x )>0,得x ∈(0,x 2),令f ′(x )<0得,x ∈(x 2,+∞),其中x 2=1+8a +14a, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减.11.(2019·烟台模拟)设函数f (x )=ln x -2mx 2-n (m ,n ∈R ). (1)讨论f (x )的单调性;(2)若f (x )有最大值-ln 2,求m +n 的最小值. 解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=1x -4mx =1-4mx 2x ,当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增; 当m >0时,令f ′(x )>0,得0<x <m2m , 令f ′(x )<0,得x >m2m ,∴f (x )在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增,在⎝ ⎛⎭⎪⎫m 2m ,+∞上单调递减.(2)由(1)知,当m ≤0时,f (x )在(0,+∞)上单调递增,无最大值. 当m >0时,f (x )在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增,在⎝ ⎛⎭⎪⎫m 2m ,+∞上单调递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫m 2m =ln m 2m -2m ·14m -n =-ln 2-12ln m -12-n =-ln 2, ∴n =-12ln m -12, ∴m +n =m -12ln m -12. 令h (x )=x -12ln x -12(x >0), 则h ′(x )=1-12x =2x -12x , 由h ′(x )<0,得0<x <12; 由h ′(x )>0,得x >12,∴h (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增.∴h (x )min =h ⎝ ⎛⎭⎪⎫12=12ln 2,∴m +n 的最小值为12ln 2. 12.设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x .令f ′(x )=0,得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g (x )=f (x )-ax -1=(1-x 2)e x -ax -1. 令x =0,可得g (0)=0. g ′(x )=(1-x 2-2x )e x -a , 令h (x )=(1-x 2-2x )e x -a ,则h′(x)=-(x2+4x+1)e x当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,所以h(x)≤h(0)=1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0.综上所述,a的取值范围为[1,+∞).。
2020高考数学(文科)二轮专题辅导与训练课件:导数的综合应用
[证明] (1)f(x)的定义域为(0,+∞). f′(x)=x-x 1+ln x-1=ln x-1x. 因为 y=ln x 在(0,+∞)上单调递增,
y=1x在(0,+∞)上单调递减, 所以 f′(x)在(0,+∞)上单调递增. 又 f′(1)=-1<0,f′(2)=ln 2-12=ln 42-1>0, 故存在唯一 x0∈(1,2),使得 f′(x0)=0. 又当 x<x0 时,f′(x)<0,f(x)单调递减, 当 x>x0 时,f′(x)>0,f(x)单调递增, 因此,f(x)存在唯一的极值点.
=-2x2+(k+x+6)2 x+2k+2.
由(2)知,当 k=2 时,f(x)<g(x)恒成立, 即对于 x>-1,2ln(x+2)-(x+1)2<2(x+1), 不存在满足条件的 x0; 当 k>2 时,对于 x>-1,x+1>0, 此时 2(x+1)<k(x+1). 2ln(x+2)-(x+1)2<2(x+1)<k(x+1), 即 f(x)<g(x)恒成立,不存在满足条件的 x0; 当 k<2 时,令 t(x)=-2x2-(k+6)x-(2k+2), 可知 t(x)与 h′(x)符号相同.
• 3.含有双变量的不等式问题的常见 转化策略
• (1)∀x1∈[a,b],x2∈[c,d],f(x1)> g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c, d]上的最大值. • (2)∃x1∈[a,b],x2∈[c,d],f(x1)> g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c, d]上的最小值. • (3)∀x1∈[a,b],∃x2∈[c,d],f(x1)> g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c, d]上的最小值.
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
高考数学新课标全国二轮复习课件2.函数与导数2
导数
导数及其应用 (1)导数概念及其几何意义
①了解导数概念的实际背景. ②理解导数的几何意义.
(2)导数的运算
①能根据导数定义求函数y=C(C为常数),
y=x,y=x2,y=x3,y=������ ,y= ������的导数.
②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单
������ ������
过点 P(2,-5),且该曲线在点 P 处的切线与直线 7x+2y+3=0 平行,则 a+b 的值是 . 解析:由曲线 y=ax2+������ 过点 P(2,-5), 得 4a+2 =-5. 又 y'=2ax-������ 2 ,
������ ������ ������
①
调区间(其中多项式函数一般不超过三次).
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、
极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值
(其中多项式函数一般不超过三次). (4)生活中的优化问题 会利用导数解决某些实际问题.
1.导数的几何意义 (1)函数y=f(x)在x=x0处的导数f'(x0)等于曲线y=f(x)在点(x0,f(x0))处的切线的斜率, 即k= f'(x0). (2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)= f'(x0)(x-x0). (3)导数的物理意义:s'(t)=v(t),v'(t)=a(t).
在点
π 2
,2 处的切线与直线 x+ay+1=0 垂直,则
(2-cos ������ )'sin ������ -(2-cos ������ )(sin ������ )' 1-2cos ������ si n 2 ������ π 2
高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用
3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).
(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log
(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg
高中总复习二轮文科数学精品课件 专题2 函数与导数 2.1 基本初等函数、函数的图象和性质
(2021全国乙,文9)
(2021全国甲,文6)
(2022全国乙,文8)
(2018全国Ⅰ,文13)
(2018全国Ⅱ,文12)
(2018全国Ⅲ,文9)
(2019全国Ⅰ,文3)
(2019全国Ⅱ,文6)
(2020全国Ⅰ,文8)
(2020全国Ⅱ,文12)
(2020全国Ⅲ,文12)
(2021全国甲,文4)
周期为2|a-b|;如果函数f(x)的图象关于直线x=a对称,关于点(b,0)(a≠b)对称,
则f(x)为周期函数,周期为4|a-b|.
对点训练2(1)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,
f(-x)=-f(x);当
A.-2
B.-1
C.0
D.2
1
x> 时,f
=1
=0+1-1-2-1=-3.
题后反思 1.单调性是函数在其定义域上的局部性质,函数的单调性使得自
变量的不等关系和函数值之间的不等关系可以“正逆互推”.
2.奇偶性和周期性是函数在定义域上的整体性质.偶函数的图象关于y轴对
称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象
关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调
所以函数为奇函数,排除B,D选项.
又f(1)=(3-3-1)cos 1>0,故选A.
(2)已知函数 f(x)=x
1
A.y=f(x)+g(x)4
1
B.y=f(x)-g(x)4
C.y=f(x)g(x)
()
D.y=
()
2
1
2020版高考文科数学突破二轮复习新课标通用课件:第三部分 回顾2 函数与导数
[必练习题]
1.已知函数 f(x)=l4oxg-22x-+1a,,xx≤>00.,若 f(a)=3,则 f(a-2)=(
)
A.-1156
B.3
C.-6634或 3
D.-1156或 3
解析:选 A.当 a>0 时,若 f(a)=3,则 log2a+a=3,解得 a=2(满足 a>0);当 a≤0 时,若 f(a)=3,则 4a-2-1=3,解得 a=3,不满足 a≤0,所以舍去.于是,可得
第十三页,编辑于星期日:一点 三十四分。
函数图象伸缩变换的相关结论 (1)把 y=f(x)的图象上各点的纵坐标伸长(a>1)或缩短(0<a<1)到原来的 a 倍,而横坐 标不变,得到函数 y=af(x)(a>0)的图象. (2)把 y=f(x)的图象上各点的横坐标伸长(0<b<1)或缩短(b>1)到原来的1b倍,而纵坐 标不变,得到函数 y=f(bx)(b>0)的图象.
第三页,编辑于星期日:一点 三十四分。
指数函数与对数函数的对比区分表
解析式
y=ax(a>0 且 a≠1)
图象
y=logax(a>0 且 a≠1)
定义域 值域
单调性
R
(0,+∞)
(0,+∞)
R
0<a<1 时,在 R 上是减函数;a>1 时,0<a<1 时,在(0,+∞)上是减函数;
在 R 上是增函数
第十一页,编辑于星期日:一点 三十四分。
函数图象对称变换的相关结论 (1)y=f(x)的图象关于 y 轴对称的图象是函数 y=f(-x)的图象. (2)y=f(x)的图象关于 x 轴对称的图象是函数 y=-f(x)的图象. (3)y=f(x)的图象关于原点对称的图象是函数 y=-f(-x)的图象. (4)y=f(x)的图象关于直线 y=x 对称的图象是函数 y=f-1(x)的图象. (5)y=f(x)的图象关于直线 x=m 对称的图象是函数 y=f(2m-x)的图象. (6)y=f(x)的图象关于直线 y=n 对称的图象是函数 y=2n-f(x)的图象.
(通用版)2020版高考数学复习专题二函数与导数2.1函数的概念、图象和性质课件文
-1,+∞
4
.若 f(x)的值域为
-1,2
4
,当 x=-2 时,x2+x=2,当
������ > 0,
x=-12时,x2+x=-14,要使 f(x)的值域为
-14,2
,则
������2 + ������
1 ������
≤
2,
≤
2,
得
1≤c≤1,
2
实数 c 的取值范围是 12,1 .
-11-
函数的性质及其应用 高考真题体验·对方向
2
2
22
2
-8-
4.(2019 安徽定远中学高三猜题一)已知函数 f(x)=ax(a>0,且 a≠1)在
区间[m,2m]上的值域为[m,2m],则 a=( )
A. 2 C.116 或 2
B.14 D.14或 4
答案:C
解析:分析知 m>0. 当 a>1 时, ���������������2���������==���2���,������,所以 am=2,m=2,
2.1 函数的概念、图象和性 质
高考命题规律 1.高考必考考题. 2.选择题或填空题,5分,中低档题. 3.全国高考有4种命题角度,分布如下表.
-2-
2020 年高考必备
命题 角度 1
命题 角度 2
命题 角度 3
命题 角度 4
函数的概 念及其表 示 函数的性 质及其应 用 函数图象 的识别与 应用 函数与方 程
所以 a= 2;
当
0<a<1
时,
������������ = 2������, ������2������ = ������,
2020届高考数学二轮复习全程方略课件:专题一 函数与导数、不等式(4)导数与函数的单调性、极值、最
②当 k=2 时,k=4k=2,f′(x)<0,f(x)在(0,+∞) 上为减函数.
③当 k>2 时,k>4k,f(x)的减区间为0,4k和(k,+ ∞),增区间为4k,k.
第二十三页,编辑于星期日:一点 五分。
[典例] 已知函数f(x)=x-1+eax(a∈R,e为自然对数的 底数).
第十一页,编辑于星期日:一点 五分。
[典例] (2015·重庆高考)已知函数f(x)=ax3+x2(a∈R)在 x=-43处取得极值.
(1)确定a的值; (2)若g(x)=f(x)ex,讨论g(x)的单调性.
第十二页,编辑于星期日:一点 五分。
[解] (1)对f(x)求导得f′(x)=3ax2+2x, 因为f(x)在x=-43处取得极值,所以f′-43=0, 即3a·196+2·-43=163a-83=0,解得a=12. (2)由(1)得g(x)=12x3+x2ex, 故g′(x)=32x2+2xex+12x3+x2ex =12x3+52x2+2xex =12x(x+1)(x+4)ex.
第十六页,编辑于星期日:一点 五分。
(2)因为f(x)=ln x-ax+1-x a-1, 所以f′(x)=1x-a+a-x2 1=-ax2-xx+2 1-a,x∈(0,+∞). 令g(x)=ax2-x+1-a,x∈(0,+∞). ①当a=0时,g(x)=-x+1,x∈(0,+∞), 当x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减; 当x∈(1,+∞)时,g(x)<0,此时f′(x)>0,函数f(x)单调递增.
第二十页,编辑于星期日:一点 五分。
(2)对 k 分类讨论不全,题目中已知 k>0,对 k 分类 讨论时容易对标准划分不准确,讨论不全面.
高考数学二轮复习函数与导数的综合应用ppt课件
所以 f(x)max=f(1)=-1.
3.[函数的零点问题](2022·全国乙卷,T20)已知函数 f(x)=ax--(a+1)ln x.
(2)若f(x)恰有一个零点,求a的取值范围.
解:(2)f(x)=ax--(a+1)ln x,x>0,
时,f(x)= · -a(x+2)>e
ln(2a)
·(+2)-a(x+2)=2a>0,故 f(x)在(ln a,+∞)上
存在唯一零点,从而 f(x)在(-∞,+∞)上有两个零点.
综上,a 的取值范围是(,+∞).
法二
+
令 f(x)=0,得 ex=a(x+2),即=
3
解:(2)当 x≥0 时,f(x)≥x +1 恒成立,
①当 x=0 时,不等式恒成立,可得 a∈R;
②当 x>0 时,可得 a≥
则 h′(x)=
=
++-
恒成立,设 h(x)=
++-
,
(-) +( --) (-) +( - )+( --) (-) + (-)+(-)(+)
因为f′(0)=0,所以当x>0时,f′(x)>0;当x<0时,f′(x)<0,
2020届新课标高考数学二轮专题复习讲义全套打包下载2函数与导数
专题二函数与导数第1讲函数的概念、图象与性质[记牢方能用活]一、函数与映射的相关结论1.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.2.映射的个数若集合A中有m个元素,集合B中有n个元素,则从集合A到集合B的映射共有n m个.二、函数的表示方法及分段函数1.表示函数的常用方法:解析法、图象法、列表法.2.分段函数:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.三、函数的图象及应用1.描点法作图的方法步骤(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质,即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换四、函数的性质及应用1.利用性质判断函数的奇偶性一般情况下,在相同定义域内,有下列结论成立:奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,偶函数×偶函数=偶函数,奇函数×奇函数=偶函数,奇函数×偶函数=奇函数.2.函数单调性判断的常用方法(1)定义法:要注意函数的定义域;(2)图象法:作出函数图象,从图象上直观判断;(3)复合函数法:同增异减;(4)性质法:增+增=增,减+减=减,增-减=增,减-增=减;(5)导数法.3.几种常见抽象函数的周期调研1函数的表示、分段函数a.分段函数求值问题1.(2019·山西太原三中模拟)设函数f (x )=⎩⎨⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则实数m 的值为( )A .-2B .8C .1D .2答案:D 解析:当m ≥2时,m 2-1=3,∴m =2或m =-2(舍);当0<m <2时,log 2m =3,∴m =8(舍).∴m =2.故选D.2.(2018·江苏,9,5分)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0, 则f (f (15))的值为________.答案:22 解析:由函数f (x )满足f (x +4)=f (x )(x ∈R),可知函数f (x )的周期是4,所以f (15)=f (-1)=⎪⎪⎪⎪⎪⎪-1+12=12,所以f (f (15))=f ⎝ ⎛⎭⎪⎫12=cos π4=22.b .分段函数的不等式问题3.(2017·全国Ⅲ,15,5分)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫-14,+∞ 解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1, 解得x >-14,∴-14<x ≤0;当0<x ≤12时,原不等式为2x +x +12>1,显然成立; 当x >12时,原不等式为2x +2x -12>1,显然成立. 综上可知,x >-14.小提示:分段函数的有关方程、不等式问题,都需对函数表达式分段讨论,只有解析式明确后,才能解方程、解不等式,关键是对自变量的分类讨论,得到函数表达式.[对点提升]1.若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤2,log a x -12,x >2的值域为R ,则f (22)的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-12 B.⎝ ⎛⎭⎪⎫-∞,-54 C.⎣⎢⎡⎭⎪⎫-54,+∞ D.⎣⎢⎡⎭⎪⎫-54,-12 答案:D 解析:当x ≤2时,f (x )∈[-1,+∞),依题意可得当x >2时,函数f (x )的取值必须包含(-∞,-1),如图所示,可知函数在区间(2,+∞)上单调递减,得0<a <1.当x =2时,log a 2<0,且log a 2-12≥-1,即-12≤log a 2<0,所以f (22)=log a 22-12=32log a 2-12,即f (22)∈⎣⎢⎡⎭⎪⎫-54,-12.故选D.2.已知函数f (x )=⎩⎨⎧ln (x +1),x >0,-x 2+3x ,x ≤0,若不等式|f (x )|-mx +2≥0恒成立,则实数m 的取值范围为________.答案:[-3-22,0] 解析:原不等式恒成立等价于不等式mx ≤|f (x )|+2恒成立.在平面直角坐标系中画出y=|f(x)|+2的大致图象,如图所示,则不等式恒成立即是函数y=mx的图象恒在函数y=|f(x)|+2的图象的下方.下面考虑函数y=x2-3x+2(x≤0)的图象的切线的斜率,且此切线过原点.设切点为P(a,b)(a<0),则b=a2-3a+2,y′=2x-3,于是切线方程为y-b=(2a-3)(x-a).因为切线过原点,所以-b=(2a-3)·(-a),即-(a2-3a+2)=-2a2+3a,所以a2=2.又因为a<0,所以a=- 2.此时切线的斜率k=2a-3=-3-2 2.结合图象可知,所求实数m的取值范围为[-3-22,0].调研2函数的图象及应用a.由解析式辨识图象1.(2019·全国Ⅰ,5,5分)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()解析:∵f(-x)=sin(-x)-xcos(-x)+(-x)2=-f(x),∴f(x)为奇函数,排除A.当x=π时,f(π)=π-1+π2>0,排除B,C.故选D.小提示:函数图象的辨识方法1.由函数的定义域判断图象的左右位置,由函数的值域判断图象的上下位置;2.由函数的单调性判断图象的变化趋势;3.由函数的奇偶性判断图象的对称性;4.由函数的周期性识辨图象;5.由函数图象上的特征点排除不符合要求的图象.b.函数零点与图象的综合2.(2016·全国Ⅱ,12,5分)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1x与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则∑i=1m(x i+y i)=( )A .0B .mC .2mD .4m答案:B 解析:由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x +1x =1+1x 的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x 1+x m =x 2+x m -1=…=0,y 1+y m =y 2+y m -1=…=2,∴ i =1m(x i +y i )=0×m 2+2×m2=m .故选B.小提示:凡是两函数交点坐标之和(或积)等问题,都与图象的性质有关,数形结合法是解题关键,准确判断函数的对称性(对称轴、对称中心),借助对称性解决问题.[对点提升]1.(2019·全国Ⅲ,7,5分)函数y =2x 32x +2-x在[-6,6]的图象大致为( )答案:B2.(2016·山东,15,5分)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m的取值范围是________.答案:(3,+∞)解析:f(x)的大致图象如图所示,要满足存在b∈R,使得方程f(x)=b有三个不同的根,只需4m-m2<m,又m>0,所以m>3.调研3函数的性质及应用a.利用函数性质求值问题1.(2018·全国Ⅱ,11,5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=() A.-50 B.0C.2 D.50答案:C解析:∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).又f(1-x)=f(1+x),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数,得f(0)=0.又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.小提示:本题中函数既有对称中心,又有对称轴,则其表现出周期性.若函数f(x)有对称轴为x=a和x=b,则T=2|a-b|;若有对称中心为(a,0),(b,0),则T=2|a-b|;若有对称中心为(a,0),对称轴为x=b,则T=4|a-b|.b.利用函数性质比较大小2.(2019·全国Ⅲ,11,5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()答案:Cc.由单调性求参数3.(2019·北京,13,5分)设函数f (x )=e x +a e -x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.答案:-1 (-∞,0] 解析:∵f (x )=e x +a e -x (a 为常数)的定义域为R , ∴f (0)=e 0+a e -0=1+a =0,∴a =-1. ∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x -a e x . ∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x ≥ae x 在R 上恒成立,∴a ≤e 2x 在R 上恒成立. 又e 2x >0,∴a ≤0,即a 的取值范围是(-∞,0]. 小提示:利用对称性、单调性比较大小,应先将自变量转化为同一单调区间,不等式的求解可利用数形结合,褪掉抽象符号f .[对点提升]1.(2019·江西南昌第一中学模拟)已知函数f (x )=(e x +e -x )ln 1-x1+x -1,若f (a )=1,则f (-a )=________.答案:-3 解析:∵y =ex+e -x 是偶函数,y =ln1-x 1+x在(-1,1)上为奇函数,∴φ(x )=(ex+e -x )·ln1-x1+x为奇函数. ∵f (a )=φ(a )-1=1,∴φ(a )=2. ∴f (-a )=φ(-a )-1=-φ(a )-1=-3.2.(2019·四川成都外国语学校阶段考)函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是________.答案:(-4,4] 解析:因为函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,所以当x ∈[2,+∞)时,x 2-ax +3a >0且函数g (x )=x 2-ax +3a 为增函数,即a2≤2且f (2)=4+a >0,解得-4<a ≤4.提醒 完成专题训练(五)第2讲基本初等函数、函数与方程[记牢方能用活]一、一元二次方程ax2+bx+c=0(a>0)的实根分布二、指数函数与对数函数的图象与性质三、函数的零点1.函数的零点与方程的根、函数图象的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.2.判断函数零点个数的常用方法(1)解方程法:令f(x)=0,如果有解,则有几个解就有几个零点.(2)利用零点存在性定理:利用该定理不仅要求函数图象在[a,b]上的图象是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)数形结合法:转化为两个相应函数图象的交点的个数问题,有几个交点就有几个零点.四、应用函数模型解决实际问题的一般程序读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.调研1 幂函数与二次函数 a .幂函数的性质1.(2018·上海,7,5分)已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=________.答案:-1 解析:本题主要考查幂函数的性质. ∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减, ∴α<0,故α=-1. b .二次函数的性质2.(2019·浙江,16,4分)已知a ∈R ,函数f (x )=ax 3-x .若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是________.答案:43 解析:由题意,得f (t +2)-f (t ) =a (t +2)3-(t +2)-(at 3-t ) =a [(t +2)3-t 3]-2=a (t +2-t )[(t +2)2+(t +2)·t +t 2]-2 =2a (3t 2+6t +4)-2 =2a [3(t +1)2+1]-2. 由|f (t +2)-f (t )|≤23, 得|2a [3(t +1)2+1]-2|≤23, 即-23≤2a [3(t +1)2+1]-2≤23, 23≤a [3(t +1)2+1]≤43,∴23·13(t +1)2+1≤a ≤43·13(t +1)2+1.设g (t )=43·13(t +1)2+1,则当t =-1时,g (t )max =43.∴当t =-1时,a 取得最大值43,满足题意. 小提示:幂函数y =x α(α∈R)的性质及图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1); 2.如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数; 3.如果α<0,则幂函数的图象在区间(0,+∞)上为减函数;4.当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数. [对点提升]1.(2019·河南濮阳二模)已知函数f (x )=(m 2-m -1)·x m 2+2m -3是幂函数,且其图象与两坐标轴都没有交点,则实数m =( )A .-1B .2C .3D .2或-1答案:A 解析:∵函数f (x )=(m 2-m -1)x m 2+2m -3 是幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,f (x )=x 5,其图象与两坐标轴有交点,不合题意;当m =-1时,f (x )=1x 4,其图象与两坐标轴都没有交点,符合题意,故m =-1,故选A.2.(2019·河南南阳模拟)设函数f (x )=mx 2-mx -1,若对于x ∈[1,3],f (x )<-m +4恒成立,则实数m 的取值范围为( )A .(-∞,0] B.⎣⎢⎡⎭⎪⎫0,57 C .(-∞,0)∪⎝ ⎛⎭⎪⎫0,57 D.⎝ ⎛⎭⎪⎫-∞,57 答案:D 解析:由题意,f (x )<-m +4对于x ∈[1,3]恒成立,即m (x 2-x +1)<5对于x ∈[1,3]恒成立.∵当x ∈[1,3]时,x 2-x +1∈[1,7],∴不等式f (x )<-m +4等价于m <5x 2-x +1.∵当x =3时,5x 2-x +1取最小值57,∴若要不等式m <5x 2-x +1对于x ∈[1,3]恒成立,则必须满足m <57,因此,实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,57,故选D. 调研2 指数、对数函数 a .指数式、对数式的大小比较1.(2019·全国Ⅰ,3,5分)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a答案:B 解析:因为a =log 20.2<0,b =20.2>1,0<c =0.20.3<1,所以b >c >a .故选B.2.(2019·天津,6,5分)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案:A 解析:因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.小提示:指数式、对数式的大小比较,常利用函数的单调性或中间值进行比较,要根据具体式子的特点,选择恰当的函数,有时还需要借助幂函数比较.对于比较的式子,要先化简转化,再比较大小.b .指数函数、对数函数的图象与性质3.(2018·上海,11,5分)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝⎛⎭⎪⎫q ,-15.若2p +q =36pq ,则a =________. 答案:6 解析:本题主要考查指数式的运算.由已知条件知,f (p )=65,f (q )=-15,所以⎩⎨⎧2p2p+ap =65,①2q 2q+aq=-15,②①+②,得2p (2q +aq )+2q (2p +ap )(2p +ap )(2q +aq )=1,整理得2p +q =a 2pq ,又2p +q =36pq ,∴36pq =a 2pq ,又pq ≠0,∴a 2=36,∴a =6或a =-6,又a >0,得a =6. c .对数式的大小比较4.(2019·安徽安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .(1,e 1e)答案:D 解析:f (x )=log a x 的定义域与值域相同, 等价于方程f (x )=log a x =x 有两个不等的实数解. ∵log a x =x ,∴ln xln a =x , ∴ln a =ln xx 有两个不等实数解,问题等价于直线y =ln a 与函数y =ln xx 的图象有两个交点. 作函数y =ln xx 的图象,如图所示.根据图象可知,当0<ln a <1e ,即1<a <e 1e时,直线y =ln a 与函数y =ln xx 的图象有两个交点.故选D.[对点提升]1.(2019·湖北华中师大第一附属中学模拟)设a =2 01612 017,b =log 20162 017,c =log 2 017 2 016,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >b C .b >a >cD .c >b >a答案:A 解析:∵a =2 01612 017>2 0160=1,1=log 2 0162 016>b =log 20162 017>log 2 016 2 016=12,c =log 2 017 2 016<log 2 017 2 017=12,所以a >b >c .故选A.2.(2019·山东淄博模拟)已知函数f (x )=e x ,g (x )=ln x 2+12,对任意a ∈R ,存在b ∈(0,+∞),使f (a )=g (b ),则b -a 的最小值为( )A .2e -1B .e 2-12 C .2-ln 2 D .2+ln 2答案:D调研3 函数的零点 a .零点个数的判断1.(2018·全国Ⅲ,15,5分)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.答案:3 解析:由题意可知,当3x +π6=k π+π2(k ∈Z)时,f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6=0.∵x ∈[0,π], ∴3x +π6∈⎣⎢⎡⎦⎥⎤π6,19π6,∴当3x +π6取值为π2,3π2,5π2时,f (x )=0, 即函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为3.2.(2017·江苏,14,5分)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎨⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.答案:8 解析:由于f (x )∈[0,1),则只需考虑1≤x <10的情况. 在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,p ,q ∈N *,p ≥2且p ,q 互质,若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =q p ,则10n =⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lgx ∉Q ,因此lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期x ∉D 部分的交点.画出函数草图.图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程解的个数为8.b .由零点个数求参数3.(2019·浙江,9,4分)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则( )A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >0答案:C解析:由题意,b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.即以上两个函数的图象恰有3个交点,根据选项进行讨论. ①当a <-1时,1-a >0,可知g (x )在(-∞,0)上单调递增; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知g (x )在(0,+∞)上单调递增.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故A ,B 排除. ②当a >-1,即a +1>0时, 因为g ′(x )=x [x -(a +1)](x ≥0), 所以当x ≥0时,由g ′(x )<0可得0<x <a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在有3个交点的情况,不合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在有3个交点的情况,不合题意,舍去.综上,-1<a <1,b <0.故选C.4.(2018·全国Ⅰ,9,5分)已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)答案:C 解析:令h (x )=-x -a ,则g (x )=f (x )-h (x ). 在同一坐标系中画出y =f (x ),y =h (x )图象的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y=h(x)的图象,可知当直线y=-x-a过点(0,1)时,有2个交点,此时1=-0-a,a=-1.当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合题意;当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意.综上,a的取值范围为[-1,+∞).故选C.小提示:已知函数零点的个数求参数范围的方法已知函数零点的个数求参数范围,常利用数形结合法将其转化为两个函数的图象的交点个数问题,需准确画出两个函数的图象,利用图象写出满足条件的参数范围.[对点提升]1.(2019·黑龙江哈师大附中模拟)若函数y=f(x)(x∈R)是奇函数,其零点分别为x1,x2,…,x2 017,且x1+x2+…+x2 017=m,则关于x的方程2x+x-2=m的根所在区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)答案:A解析:因为函数y=f(x)(x∈R)是奇函数,故其零点x1,x2,…,x2 017关于原点对称,且其中一个为0,所以x1+x2+…+x2 017=m=0.则关于x 的方程为2x+x-2=0,令h(x)=2x+x-2,则h(x)为(-∞,+∞)上的增函数.因为h(0)=20+0-2=-1<0,h(1)=21+1-2=1>0,所以关于x的方程2x +x-2=m的根所在区间是(0,1).2.(2019·河南安阳二模)设函数f(x)=ln(x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是()A.[0,1] B.[-1,0]C.[0,2] D.[-1,1]答案:A解析:令f(x)=0,可得ln(x+1)=-a(x2-x),令g(x)=ln(x+1),h(x)=-a(x2-x).∵f(x)在区间(0,+∞)上无零点,∴g(x)=ln(x+1)与h(x)=-a(x2-x)的图象在y轴右侧无交点.显然当a=0时符合题意;当a<0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图1所示,显然两函数图象在y轴右侧必有一交点,不符合题意;当a>0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图2所示,若两函数图象在y轴右侧无交点,则h′(0)≤g′(0),即a≤1.综上,0≤a≤1.故选A.调研4函数模型及综合应用a.函数关系在实际问题中的应用1.(2019·全国Ⅱ,4,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1 (R+r)2+M2r2=(R+r)M1R3.设α=rR.由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A.M 2M 1RB.M 22M 1RC.33M 2M 1R D.3M 23M 1R答案:D 解析:由α=r R ,得r =αR ,代入M 1(R +r )2+M 2r 2=(R +r )·M 1R 3,整理得3α3+3α4+α5(1+α)2=M 2M 1. 又∵3α3+3α4+α5(1+α)2≈3α3,∴3α3≈M 2M 1,∴α≈3M 23M 1, ∴r =αR ≈3M 23M 1R .故选D.b.函数模型在实际问题中的应用2.(2019·湖北荆门模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱 1 000元,存入银行,年利率为 2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1 000元选择合适方式存满5年,可以多获利息( )(参考数据:1.022 54=1.093,1.022 55=1.118,1.040 15=1.217) A .176元 B .104.5元 C .77元 D .88元答案:B 解析:将1 000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为1 000×1.040 15=1 217(元),故共得利息1 217-1 000=217(元).将1 000元存入银行,不选择复利的计算方法,则存满5年后的利息为1 000×0.022 5×5=112.5(元),故可以多获利息217-112.5=104.5(元),故选B.小提示:在实际应用中,对数量关系的理解很重要,若考查图象问题,可由特殊值、特殊信息来验证;若考查求值计算,应用方程思想,把条件转化为条件方程.[对点提升4](2019·江苏盐城中学期末)我校为丰富师生课余活动,计划在一块直角三角形ABC 的空地上修建一个占地面积为S (平方米)的矩形健身场地AMPN .如图,点M 在AC 上,点N 在AB 上,点P 在斜边BC 上.已知∠ACB =60°,|AC |=30米,|AM |=x 米,x ∈[10,20].设矩形健身场地AMPN 每平方米的造价为37kS元,再把矩形AMPN 以外(阴影部分)铺上草坪,每平方米的造价为12kS元(k 为正常数).(1)试用x 表示S ,并求S 的取值范围; (2)求总造价T 关于面积S 的函数T =f (S );(3)如何选取|AM |,使总造价T 最低(不要求求出最低造价)?解:(1)在Rt △PMC 中,显然|MC |=30-x ,∠PCM =60°,|PM |=|MC |·tan ∠PCM =3(30-x ),∴矩形AMPN 的面积S =|PM |·|AM |=3x (30-x ),x ∈[10,20], ∴2003≤S ≤225 3.(2)矩形健身场地AMPN 造价T 1=37k S ,又∵△ABC 的面积为12×30×tan 60°×30=4503, ∴草坪造价T 2=12kS (4503-S ).∴总造价T =T 1+T 2=25k S +5 400k 3S,2003≤S ≤225 3. (3)∵S +2163S ≥1263,当且仅当S =2163S ,即S =2163时等号成立,此时3x (30-x )=2163,解得x =12或x =18.∴选取|AM |为12米或18米时总造价T 最低.提醒 完成专题训练(六)第3讲 导数及其应用(单调性与极值)[记牢方能用活]一、导数的运算及几何意义函数f(x)在点P(x0,y0)处的切线方程,是指点P(x0,y0)即为切点,切线为y -y0=f′(x0)(x-x0);而过点P(x0,y0)的切线方程,则点P(x0,y0)不一定是切点,设切点为P′(x1,y1),写出切线表达式y-y1=f′(x1)(x-x1),将P(x0,y0)代入切线方程求解x1,从而得到切线方程.二、导数与函数单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,f(x)为常数函数,函数不具有单调性.三、函数的极值设函数y=f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数y=f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)>f(x0),则f(x0)是函数y=f(x)的一=f(x0).极大值与极小值统称为极值.个极小值,记作y极小值四、函数的最值1.在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2.设函数f(x)在[a,b]上连续,在(a,b)内可导,先求f(x)在(a,b)内的极值;再将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.极值点不一定是最值点,最值点也不一定是极值点,但如果连续函数在开区间(a,b)内只有一个极值点,那么极大值点就是最大值点,极小值点就是最小值点.调研1导数的运算及几何意义a.导数的运算求值1.(2019·福建福州八县联考)已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(1)+ln 1x,则f(1)=()A.-e B.2 C.-2 D.e答案:B解析:由已知,得f′(x)=2f′(1)-1x,令x=1得f′(1)=2f′(1)-1,解得f′(1)=1,则f(1)=2f′(1)=2.b.导数的几何意义2.(2019·全国Ⅰ,13,5分)曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.答案:y=3x解析:y′=3(2x+1)e x+3(x2+x)e x=e x(3x2+9x+3),∴斜率k=e0×3=3,∴切线方程为y=3x.c.应用导数的几何意义求参数3.(2019·全国Ⅲ,6,5分)已知曲线y=a e x+x ln x在点(1,a e)处的切线方程为y=2x+b,则()A.a=e,b=-1 B.a=e,b=1C.a=e-1,b=1 D.a=e-1,b=-1答案:D解析:y′=a e x+ln x+1,k=y′|x=1=a e+1,∴切线方程为y-a e=(a e+1)(x-1),即y=(a e+1)x-1.又∵切线方程为y=2x+b,∴⎩⎪⎨⎪⎧ a e +1=2,b =-1,即⎩⎪⎨⎪⎧a =e -1,b =-1.故选D . 小提示:1.第1题中的f ′(1)理解为常数,求导后构造方程.2.第3题中应用点(1,a e)既在直线上,也在曲线上,可列方程组⎩⎪⎨⎪⎧f ′(1)=2,f (1)=2+b求值. [对点提升]1.(2019·广东深圳二模)已知函数f (x )=ax 2+(1-a )x +2x 是奇函数,则曲线y =f (x )在x =1处的切线的倾斜角为( )A .π4B .3π4 C.π3D .2π3答案:B 解析:由函数f (x )=ax 2+(1-a )x +2x 是奇函数,得f (-x )=-f (x ),可得a =0,则f (x )=x +2x ,f ′(x )=1-2x 2,故曲线y =f (x )在x =1处的切线斜率k =1-2=-1,可得所求切线的倾斜角为3π4,故选B .2.(2019·山东名校调研)已知曲线y =e x +a 与y =x 2恰好存在两条公切线,则实数a 的取值范围是( )A .[2ln 2-2,+∞)B .(2ln 2,+∞)C .(-∞,2ln 2-2]D .(-∞,2ln 2-2)答案:D 解析:由题意可设直线y =kx +b (k >0)为它们的公切线,联立⎩⎪⎨⎪⎧y =kx +b ,y =x2可得x 2-kx -b =0,由Δ=0,得k 2+4b =0.①由y =e x +a 求导可得y ′=e x +a ,令e x +a =k ,可得x =ln k -a ,∴切点坐标为(ln k -a ,k ln k -ak +b ),代入y =e x +a 可得k =k ln k -ak +b .②联立①②可得k 2+4k +4ak -4k ln k =0.化简得4+4a=4ln k-k.令g(k)=4ln k-k,则g′(k)=4k-1,令g′(k)=0,得k=4,令g′(k)>0,得0<k<4,令g′(k)<0,得k>4.∴g(k)在(0,4)上单调递增,在(4,+∞)上单调递减,∴g(k)max=g(4)=4ln 4-4,且当k→0时,g(k)→-∞,当k→+∞时,g(k)→-∞.∵有两条公切线,∴方程4+4a=4ln k-k有两解,∴4+4a<4ln 4-4,∴a<2ln 2-2.故选D.调研2利用导数研究函数的单调性a.含参函数单调性的讨论1.(2017·全国Ⅰ,21,12分)已知函数f(x)=a e2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解:(1)f(x)的定义域为(-∞,+∞),f′(x)=2a e2x+(a-2)e x-1=(a e x-1)(2e x+1).(ⅰ)若a≤0,则f′(x)<0,所以f(x)在(-∞,+∞)上单调递减.(ⅱ)若a>0,则由f′(x)=0,得x=-ln a.当x∈(-∞,-ln a)时,f′(x)<0;当x∈(-ln a,+∞)时,f′(x)>0.所以f(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.(2)(ⅰ)若a≤0,由(1)知,f(x)至多有一个零点.(ⅱ)若a>0,由(1)知,当x=-ln a时,f(x)取得最小值,最小值为f(-lna)=1-1a+ln a.①当a=1时,由于f(-ln a)=0,故f(x)只有一个零点;②当a∈(1,+∞)时,由于1-1a+ln a>0,即f(-ln a)>0,故f(x)没有零点;③当a∈(0,1)时,1-1a+ln a<0,即f(-ln a)<0.又f(-2)=a e-4+(a-2)e-2+2>-2e-2+2>0,故f(x)在(-∞,-ln a)上有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a -1,则f (n 0)=e n 0 (a e n 0+a -2)-n 0>e n 0-n 0>2 n 0-n 0>0. 由于ln ⎝ ⎛⎭⎪⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)上有一个零点. 综上,a 的取值范围为(0,1). 小提示:单调区间的讨论,常伴随着求导后的因式分解,讨论含参因子的符号变化,也常有对极值点和定义域的讨论.第(2)问中函数有两零点,不但要求极小值f (-ln a )<0,而且需要寻找极值点两侧存在两个自变量x 1,x 2满足其值为正值,此两点的判断是难点.b .利用单调性解决零点个数2.(2019·全国Ⅰ,20,12分)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点;(2)f (x )有且仅有2个零点. 证明:(1)设g (x )=f ′(x ), 则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2. 当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α. 则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0.所以g (x )在(-1,α)上单调递增,在⎝ ⎛⎭⎪⎫α,π2上单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点,即f ′(x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点.(2)f (x )的定义域为(-1,+∞).①当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)上单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)上单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.②当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)上单调递增,在⎝ ⎛⎭⎪⎫α,π2上单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)上单调递增,在⎝ ⎛⎭⎪⎫β,π2上单调递减.又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝ ⎛⎦⎥⎤0,π2没有零点.③当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点.④当x ∈(π,+∞)时,ln(x +1)>1.所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点. 小提示:此问题中两零点的证明与上一题处理方式不同.利用零点存在性定理,结合函数单调性.[对点提升]1.(2019·河南安阳模拟)已知函数f (x )与其导函数f ′(x )的图象如图,则函数g (x )=f (x )e x 的单调减区间为( )A .(0,4)B .⎝ ⎛⎭⎪⎫0,43C .(0,1),(4,+∞)D .(-∞,1),⎝ ⎛⎭⎪⎫43,+∞答案:C 解析:由题意可知导函数是二次函数,原函数是三次函数,由g (x )=f (x )e x ,得g ′(x )=e xf ′(x )-e xf (x )e 2x =f ′(x )-f (x )e x ,由题图可知,当x ∈(-∞,0)时,f ′(x )-f (x )>0,g ′(x )>0,当x ∈(0,1)时,f ′(x )-f (x )<0,g ′(x )<0,当x∈(1,4)时,f ′(x )-f (x )>0,g ′(x )>0,当x ∈(4,+∞)时,f ′(x )-f (x )<0,g ′(x )<0.∴函数g (x )=f (x )e x 的单调减区间为(0,1),(4,+∞).故选C.2.(2019·湖南娄底二模)已知函数f (x )=ln x -ax +a 在x ∈[1,e]上有两个零点,则a 的取值范围是( )A .⎣⎢⎡⎭⎪⎫e 1-e ,-1B .⎣⎢⎡⎭⎪⎫e 1-e ,1C.⎣⎢⎡⎦⎥⎤e 1-e ,-1 D .[-1,e)答案:A 解析:f ′(x )=1x +a x 2=x +ax 2,当a ≥-1时,f ′(x )>0,f (x )在[1,e]上单调递增,不合题意.当a ≤-e 时,f ′(x )<0,f (x )在[1,e]上单调递减,也不合题意.当-e<a <-1时,当x ∈(1,-a )时,f ′(x )<0,f (x )在[1,-a )上单调递减;x ∈(-a ,e)时,f ′(x )>0,f (x )在(-a ,e]上单调递增.又f (1)=0,所以f (x )在[1,e]上有两个零点,只需f (e)=1-a e +a ≥0即可,所以e1-e ≤a <-1.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫e 1-e ,-1,故选A . 调研3 利用导数研究函数的极值、最值问题 a .利用导数求解最值1.(2019·全国Ⅲ,20,12分)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性.(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.(1)解:f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a 3,+∞时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫0,a 3时,f ′(x )<0.故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,a 3上单调递减.若a =0,则f (x )在(-∞,+∞)上单调递增. 若a <0,则当x ∈⎝ ⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫a 3,0时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫a 3,0上单调递减.(2)解:满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝ ⎛⎭⎪⎫a 3=-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.小提示:(1)求出f ′(x )=0的两根,比较根的大小并分类讨论.(2)利用(1)中的单调区间讨论f (x )在[0,1]上的最值,最终确定参数a ,b 的值. 第(2)问中分类讨论的标准是单调区间的端点与0,1的大小关系,从而确定函数在[0,1]上的最值.b .由极值求参数2.(2018·全国Ⅲ,21,12分)已知函数f (x )=(2+x +ax 2)ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)若x =0是f (x )的极大值点,求a .(1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x 1+x. 设函数g (x )=f ′(x )=ln(1+x )-x 1+x, 则g ′(x )=x(1+x )2. 当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,故当x >-1时,g (x )≥g (0)=0,当且仅当x =0时,g (x )=0,从而f ′(x )≥0,当且仅当x =0时,f ′(x )=0.所以f (x )在(-1,+∞)上单调递增.又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)解:(ⅰ)若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾. (ⅱ)若a <0, 设函数h (x )=f (x )2+x +ax 2=ln(1+x )-2x2+x +ax 2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0, 故h (x )与f (x )符号相同.又h (0)=f (0)=0,故x =0是f (x )的极大值点, 当且仅当x =0是h (x )的极大值点. h ′(x )=11+x -2(2+x +ax 2)-2x (1+2ax )(2+x +ax 2)2=x 2(a 2x 2+4ax +6a +1)(x +1)(ax 2+x +2)2.若6a +1>0,则当0<x <-6a +14a ,且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0,故x =0不是h (x )的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0, 故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0, 所以x =0不是h (x )的极大值点.若6a +1=0,则h ′(x )=x 3(x -24)(x +1)(x 2-6x -12)2,则当x ∈(-1,0)时,h ′(x )>0;当x ∈(0,1)时,h ′(x )<0. 所以x =0是h (x )的极大值点,从而x =0是f (x )的极大值点.综上,a =-16. 小提示: 1.解题指导:(1)当a =0时,写出f (x )的解析式,对f (x )求导,易得f (0)=0,结合单调性可将问题解决.(2)对a 进行分类讨论,分析各类情况下的极大值点,进而求得参数a 的值. 2.易错警示: 容易忽略函数定义域.函数解析式中含有对数型的式子,则其真数部分应大于零. [对点提升](2018·北京,18,13分)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得,f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.提醒 完成专题训练(七)第4讲 导数的综合应用(不等式、零点问题)[记牢方能用活]一、利用导数证明不等式问题1.解决含参不等式恒成立(或有解)问题的方法(1)直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.(2)先分离参变量,再构造函数,进而把问题转化为函数的最值问题. 2.解决有关不等式的证明问题的方法 (1)直接构造函数,转化为函数的最值问题. (2)证明f (x )≥g (x )时可转化为证明f (x )min ≥g (x )max . 3.常用的函数不等式第一组:与对数函数有关的不等式ln x ≤x -1(x >0),ln x<x (x >0),ln x ≤xe (x >0), ln x ≤x 2-x (x >0),ln x ≥1-1x (x >0), ln(1+x )≤x (x >-1), ln x<12⎝ ⎛⎭⎪⎫x -1x (x >1),ln x>12⎝ ⎛⎭⎪⎫x -1x (0<x <1),ln x<x -1x (x >1),ln x>x -1x(0<x <1), ln x>2(x -1)x +1(x >1),ln x<2(x -1)x +1(0<x <1),ln(x +1)≥x1+x(x >-1). 第二组:与指数函数有关的不等式 e x ≥x +1,e x >x ,e x ≥e x ,e x ≤11-x(x <1), e x <-1x (x <0),e x >x 2(x >0), e x≥1+x +12x 2(x >0).4.不等式与函数最值关系。
2020高考数学(文科)二轮总复习保分专题1 函数与导数第一部分 层级二 专题1 第1讲
课时跟踪检测(一) 函数的图象与性质一、选择题1.已知函数f (x )的定义域为[3,6],则函数y =的定义域为( )A.⎣⎢⎡⎭⎪⎫32,+∞B.⎣⎢⎡⎭⎪⎫32,2 C.⎝ ⎛⎭⎪⎫32,+∞ D.⎣⎢⎡⎭⎪⎫12,2 解析:选B 要使函数y =有意义,需满足⎩⎨⎧3≤2x ≤6,log 12(2-x )>0,即⎩⎨⎧32≤x ≤3,0<2-x <1,解得32≤x <2.2.已知函数f (x )=⎩⎨⎧x 2,x ≥0,-x ,x <0,则f [f (-2)]=( )A .4B .3C .2D .1解析:选A 因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x ,x <0,所以f (-2)=-(-2)=2, 所以f [f (-2)]=f (2)=22=4.3.设函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,则实数m 的值为( )A .-1B .1C .2D .-2解析:选A 解法一:因为函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以-x 3(a -x +m ·a x )=x 3(a x +m ·a-x ),即x 3(1+m )(a x +a -x )=0对任意的x ∈R 恒成立,所以1+m =0,即m =-1.解法二:因为f (x )=x 3(a x +m ·a -x )是偶函数,所以g (x )=a x +m ·a -x 是奇函数,且g (x )在x =0处有意义,所以g (0)=0,即1+m =0,所以m =-1.4.下列函数中,满足“∀x 1,x 2∈(0,+∞),且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=1x -x B .f (x )=x 3 C .f (x )=ln xD .f (x )=2x解析:选A 由题意可知,函数f (x )在(0,+∞)上为减函数,故选A. 5.(2019·南昌模拟)函数y =ln(2-|x |)的大致图象为( )解析:选A 令f (x )=ln(2-|x |),易知函数f (x )的定义域为{x |-2<x <2},排除选项C ;且f (-x )=ln(2-|-x |)=ln(2-|x |)=f (x ),所以函数f (x )为偶函数,排除选项D ;当x =32时,f ⎝ ⎛⎭⎪⎫32=ln 12<0,排除选项B.故选A.6.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎨⎧log 2(x +1),x ≥0,g (x ),x <0,则g [f (-7)]=( )A .3B .-3C .2D .-2解析:选D 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以令x <0,则-x >0,f (-x )=log 2(-x +1), 因为f (-x )=-f (x ),所以f (x )=-f (-x )=-log 2(-x +1), 故g (x )=-log 2(-x +1)(x <0),所以f (-7)=g (-7)=-log 2(7+1)=-3, 所以g (-3)=-log 2(3+1)=-2.7.已知奇函数f (x )在R 上是减函数,且a =-f ⎝ ⎛⎭⎪⎫log 3110,b =f (log 39.1),c =f (20.8),则a ,b ,c 的大小关系为( )A .a >b >cB .c >b >aC .b >a >cD .c >a >b解析:选B ∵f (x )是奇函数,∴a =-f ⎝ ⎛⎭⎪⎫log 3110=f ⎝ ⎛⎭⎪⎫-log 3110=f (log 310).又∵log 310>log 39.1>log 39=2>20.8,且f (x )在R 上单调递减,∴f (log 310)<f (log 39.1)<f (20.8),即c >b >a ,故选B.8.已知函数f (x )在(-1,1)上既是奇函数,又是减函数,则满足f (1-x )+f (3x -2)<0的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫12,1 C.⎝ ⎛⎭⎪⎫34,+∞ D.⎝ ⎛⎭⎪⎫34,1 解析:选B 由已知得f (3x -2)<f (x -1), ∴⎩⎪⎨⎪⎧-1<3x -2<1,-1<x -1<1,3x -2>x -1,解得12<x <1,故选B.9.(2019·唐山模拟)已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=()A.0 B.1C.-1 D.2解析:选C由f(x+1)=f(1-x)及f(-x)=-f(x),得f(x+2)=f[(x+1)+1]=f[1-(x+1)]=f(-x)=-f(x),则f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),∴函数f(x)是以4为周期的周期函数,∴f(31)=f(4×8-1)=f(-1)=-f(1)=-log2(1+1)=-1,故选C.10.(2019·江西红色七校联考)若f(x)=e x-a e-x为奇函数,则满足f(x-1)>1e2-e2的x取值的范围是()A.(-2,+∞) B.(-1,+∞)C.(2,+∞) D.(3,+∞)解析:选B由f(x)=e x-a e-x为奇函数,得f(-x)=-f(x),即e-x-a e x=a e-x-e x,得a=1,所以f(x)=e x-e-x,则f(x)在R上单调递增,又f(x-1)>1e2-e2=f(-2),所以x-1>-2,解得x>-1,故选B.11.如图,把周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从点A开始逆时针绕圆运动一周,记AM=x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为()解析:选D 当x 由0→12时,t 从-∞→0,且单调递增,当x 由12→1时,t 从0→+∞,且单调递增,所以排除A 、B 、C ,故选D.12.已知函数f (x )=⎩⎨⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0解析:选D 函数f (x )的图象如图所示.f (-x )=f (x ),则函数f (x )是偶函数,且在x =0处取得最小值.又0<|x 1|<|x 2|则f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.二、填空题13.已知函数f (x )=x +1x -1,f (a )=2,则f (-a )=________.解析:由已知得,f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -1=-⎝ ⎛⎭⎪⎫a +1a -1=-3-1=-4.答案:-414.已知函数f (x )的图象关于点(-3,2)对称,则函数h (x )=f (x +1)-3的图象的对称中心为________.解析:函数h (x )=f (x +1)-3的图象是由函数f (x )的图象向左平移1个单位长度,再向下平移3个单位长度得到的,又f (x )的图象关于点(-3,2)对称,所以函数h (x )的图象的对称中心为(-4,-1).答案:(-4,-1)15.(2019·广州模拟)已知f (x )是定义域为R 的偶函数,且函数y =f (x +1)为奇函数,当0≤x <1时,f (x )=x 2,则f ⎝ ⎛⎭⎪⎫52=________.解析:因为f (x )是R 上的偶函数,y =f (x +1)为奇函数,所以f (x +1)=-f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),f (x +4)=f (x ),即f (x )的周期T =4,因为0≤x <1时,f (x )=x 2,所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫52-4=f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫1+12=-f ⎝ ⎛⎭⎪⎫12=-14.答案:-1416.设函数f (x )=⎩⎨⎧2|x -a |,x ≤1,x +1,x >1,若f (1)是f (x )的最小值,则实数a 的取值范围为________.解析:∵f (1)是f (x )的最小值,∴y =2|x -a |在(-∞,1]上单调递减,∴⎩⎪⎨⎪⎧ a ≥1,2|1-a |≤2,即⎩⎪⎨⎪⎧a ≥1,|1-a |≤1,∴⎩⎪⎨⎪⎧a ≥1,0≤a ≤2,∴1≤a ≤2. 答案:[1,2]。
2020高考数学(文科)专题复习课标 通用版(课件): 专题1 不等式、函数与导数专题1 第1讲
x+y-2≤0,
xx- ≥y-+12,≥0,则目标函数 z=-4x+y 的最大值为(
)
y≥-1,
A.2
B.3
C.5
D.6
答案 C
解析 已知不等式组表示的平面区域
如图中的阴影部分所示,目标函数的几
何意义是直线y=4x+z在y轴上的截距,
故目标函数在点A处取得最大值.由
x-y+2=0, x=-1,
得 A(-1,1),所以 zmax=-4×(-1)+1=
D.既不充分也不必要条件
答案 A 解析 当 a>0,b>0 时,a+b≥2 ab,则当 a+b≤4 时,有 2 ab≤a+b≤4,解得 ab≤4,充分性成立;当 a =1,b=4 时,满足 ab≤4,但此时 a+b=5>4,必要性 不成立.综上所述,“a+b≤4”是“ab≤4”的充分不 必要条件.故选 A 项.
A.[0,1]
B.[0,2]
的 的
C.[0,e]
D.[1,e]
答案 C 解析 因为f(0)≥0,即a≥0.当0≤a≤1时,f(x)=x2-2ax + 2a = (x - a)2 + 2a - a2≥2a - a2 = a(2 - a)≥0 ; 当 a > 1 时,f(1)=1>0.故当a≥0时,x2-2ax+2a≥0在(-∞,1]上 恒成立.
答案 [1,4]
【变式】 若本例的条件不变,则x+y 3的取值范围为
________. 解析 令 k=x+y 3,则 k 为可行域内的动点 P(x,y)与
定点 M(-3,0)连线的斜率,当点 P 分别在 A(0,2),C(1,1)
两点时,k 取最值,则 k 的取值范围为14,23. 答案 14,23
2.(2019·江苏卷)函数 y= 7+6x-x2的定义域是 ________.
2020届高考文科数学二轮专题复习课件:专题1 函数与导数2.1.高考小题 1
5.已知函数f(x)是定义在R上的偶函数,且对于任意的 x∈R,都有f(x+4)=f(x)+f(2),f(1)=4,则f(3)+f(10)的 值为________.
【解析】由f(x+4)=f(x)+f(2), 令x=-2,得f(-2+4)=f(-2)+f(2), 因为f(x)为偶函数,所以f(-2)=f(2), 所以f(2)=0,所以f(x+4)=f(x),又f(1)=4, 所以f(3)+f(10)=f(-1)+f(2) =f(1)+f(2)=4+0=4. 答案:4
所以
3
f (2 2 )
2
f (2 3 )
f (log3
1 ). 4
2.定义在R上的函数f(x)=-x3+m, 与函数g(x)=f(x)-kx
在[-1,1]上具有相同的单调性,则k的取值范围是( )
A.(-∞,0]
B.(-∞,-3]
C.[-3,+∞)
D.[0,+∞)
【解析】选D.f′(x)=-3x2≤0在[-1,1]上恒成立,故 f(x)在[-1,1]上单调递减,结合题意知,g(x)=-x3+m-kx 在[-1,1]上单调递减,故g′(x)=-3x2-k≤0在[-1,1]上 恒成立,故k≥-3x2在[-1,1]上恒成立,故k≥0.
实数根,则k的取值范围是 ( )
A.[0,1 ) 3
C.[1 , 1 ) 32
B.[1 , 2 ) 34
D.[ 2 ,1) 4
【解析】选B.当x∈(0,2]时,f(x)= 1)2+y2=1,y≥0.
1 x,即1(x2 -
又f(x)为奇函数,其图象关于原点对称,其周期为4,如
2020高考数学(文科)专题复习课标 通用版(课件) 专题1 不等式、函数与导数微专题1
,
所
以
fx
gx
′
=
f′xg[xg-xf]2xg′x<0,即函数gfxx=ax 单调递减,所以
0<a<1.又gf11+gf--11=52,即 a+1a=52,所以解得 a=12
或 a=2(舍去).
第二十页,共35页。
所以gfxx=12x,即gfnn=12n,数列12n是首项为 a1=12, 公比为 q=12的等比数列,所以 Sn=1-12n,由 Sn=1-12 n=3312,解得 n=5.
第五页,共35页。
解析 令h(x)=xf(x),因为(yīn wèi)函数y=f(x)关 于y轴对称,所以函数y=f(x)为偶函数,又y=x 为奇函数,所以函数h(x)=xf(x)为奇函数.因为 (yīn wèi)h′(x)=[xf(x)]′=f(x)+xf′(x),所以当 x∈(-∞,0)时,h′(x)=[xf(x)]′=f(x)+xf′(x)<0, 函数h(x)单调递减,因为(yīn wèi)h(x)为奇函数, 所以当x∈(0,+∞)时,函数h(x)单调递减.因 为(yīn wèi)1<20.2<2,0<logπ3<1,log39=2, 所以0<logπ3<20.2<log39,所以b>a>c.故选D 项.
g(x);
若遇到 f′(x)>aa≠0,则可构造 h(x)=f(x)-ax.
第三页,共35页。
(2)对于 f′(x)+g′(x)>0,构造 h(x)=f(x)+g(x). (3)对于 f′(x)+f(x)>0,构造 h(x)=exf(x). (4)对于 f′(x)>f(x)[或 f′(x)-f(x)>0],构造 h(x)=fexx. (5)对于 xf′(x)+f(x)>0,构造 h(x)=xf(x). (6)对于 xf′(x)-f(x)>0,构造 h(x)=fxx.
2020版高考数学大二轮专题突破文科通用版课件:第一部分 第2讲 一、函数与方程思想
������6 4 -������
2
=
���������2��� 4-1.
令 g(q)=���������2���4-1(q>1),g'(q)=2���(���������32(���-���12)-22).
分析可得:当 1<q< 2时,g'(q)<0,g(q)在(0, 2)内为减函数,
当 q> 2时,g'(q)>0,g(q)在( 2,+∞)内为增函数,
2a≤1A+.e(-时∞,f1(-xe))>g(x)在(1,+∞)上恒B成. 立1+2.当e,+2∞a>1+e 时,f(x)<g(x)在
(1,+∞C).上(-∞有,1解-e,)符∪合1题+2 e意,+.综∞上,a 的D取. 值1+2范e,围+∞是(-∞,1-e)∪ 1+2e,+∞ .
故选 C.
关闭
C
-3-
应用一 函数思想与方程思想的转换
例1设函数f(x)=
1 ������
,g(x)=ax2+bx(a,b∈R,a≠0),若y=f(x)的图象与
关闭
在y=同g(一x)坐的标图系象中有分且别仅画有出两两个个不函同数的的公图共象点,A当(xa1,<y10),时B(,x要2,y想2),满则足下条列件判,
1 2
������12
=
2ln
������2-
1 2
������22.
消去
x2
得,2ln������212
+
2
������
2 1
−