高考数学模拟试卷一

合集下载

高中数学试卷模拟高考

高中数学试卷模拟高考

一、选择题(每题5分,共50分)1. 若函数f(x) = x^2 - 4x + 3在区间[1, 3]上的最大值和最小值分别为m和n,则m + n的值为:A. 4B. 5C. 6D. 72. 已知等差数列{an}的前n项和为Sn,若S5 = 20,a1 + a5 = 8,则该数列的公差d为:A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点P(2, 3)关于直线y = x + 1的对称点为Q,则点Q的坐标为:A. (3, 2)B. (4, 1)C. (1, 4)D. (5, 0)4. 已知函数g(x) = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, 2),则下列说法正确的是:A. a > 0,b > 0,c > 0B. a > 0,b < 0,c > 0C. a < 0,b > 0,c > 0D. a < 0,b < 0,c > 05. 若复数z满足|z - 1| = |z + 1|,则复数z的取值范围是:A. 实部为0的复数B. 虚部为0的复数C. 实部为1的复数D. 虚部为1的复数6. 已知三角形ABC的边长分别为a、b、c,且满足a^2 + b^2 = c^2,则该三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 梯形7. 若函数h(x) = log2(x - 1)在区间[2, 3]上单调递增,则实数x的取值范围是:A. 2 ≤ x ≤ 3B. 1 < x ≤ 2C. 1 < x < 2D. x > 28. 在△ABC中,若角A、B、C的对边分别为a、b、c,且a = 3,b = 4,c = 5,则角C的度数为:A. 30°B. 45°C. 60°D. 90°9. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,则f(-1)的值为:A. -1B. 0C. 1D. 210. 若直线l的方程为2x - y + 3 = 0,则直线l与y轴的交点坐标为:A. (0, 3)B. (0, -3)C. (3, 0)D. (-3, 0)二、填空题(每题5分,共50分)11. 若等比数列{an}的首项a1 = 2,公比q = 3,则该数列的第4项a4为______。

新高考数学高三模拟试卷

新高考数学高三模拟试卷

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,则f(x)的对称中心为()。

A. (0,0)B. (1,0)C. (-1,0)D. (0,-3)2. 若复数z满足|z-1|=|z+1|,则复数z的几何意义为()。

A. z位于实轴上B. z位于虚轴上C. z位于直线y=x上D. z位于直线y=-x上3. 已知等差数列{an}的公差为d,且a1=3,S6=42,则d=()。

A. 2B. 3C. 4D. 54. 下列命题中,正确的是()。

A. 若函数f(x)在区间[a,b]上单调递增,则f(a)≤f(x)≤f(b)B. 若函数f(x)在区间[a,b]上连续,则f(a)≤f(x)≤f(b)C. 若函数f(x)在区间[a,b]上可导,则f(a)≤f(x)≤f(b)D. 若函数f(x)在区间[a,b]上可导,则f'(a)≤f'(x)≤f'(b)5. 若不等式x^2 + 4x + 3 < 0的解集为A,不等式x^2 - 4x - 3 < 0的解集为B,则A∩B=()。

A. (-∞,-3)B. (-3,1)C. (-∞,1)D. (1,+∞)6. 已知向量a=(1,2),向量b=(2,-1),则向量a与向量b的夹角余弦值为()。

A. 1/2B. 1/3C. 1/5D. 1/47. 若等比数列{an}的首项为a1,公比为q,且a1+a2+a3=24,a2+a3+a4=54,则q=()。

A. 2B. 3C. 4D. 58. 若函数f(x) = ax^2 + bx + c在区间[0,1]上单调递增,则a、b、c的关系为()。

A. a>0,b>0,c>0B. a>0,b>0,c≤0C. a>0,b≤0,c>0D. a>0,b≤0,c≤09. 已知等差数列{an}的公差为d,且a1=5,S10=100,则a10=()。

2024年高考数学仿真模拟(一)含解析(题型同九省联考,共 19 个题)

2024年高考数学仿真模拟(一)含解析(题型同九省联考,共 19 个题)

2024年高考仿真模拟数试题(一) 试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( )3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =( ) A .150B .120C .75D .68A .672B .864C .936D .1056说法正确的是( )( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.10.已知复数1z ,2z ,则下列命题成立的有( )11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(一)带答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( ) A .4 B .5C .6D .7A .150B .120C .75D .68此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p , 又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选D.5.有7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有( )种站排方式. A .672 B .864 C .936 D .1056A .P 的轨迹为圆B .P 到原点最短距离为1C .P 点轨迹是一个菱形D .点P 的轨迹所围成的图形面积为4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=答案 ABC解析 对于A ,令0x y ==,得()()23002f f =+ ,解得()01f =或()02f =, 若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,三、填空题:本题共3小题,每小题5分,共15分.O O 当外接球的球心O在线段12 =OO h四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)。

新高考数学第一次模拟试题(及答案)

新高考数学第一次模拟试题(及答案)
解析:
【解析】
【分析】
【详解】
设AB=2,作CO⊥面ABDE
OH⊥AB,则CH⊥AB,∠CHO为二面角C−AB−D的平面角,
CH=3√,OH=CHcos∠CHO=1,
结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,
故EM,AN所成角的余弦值 ,
18.1:8【解析】考查类比的方法所以体积比为1∶8
C. D.
二、填空题
13.设 是等差数列 的前 项和,且 ,则
14.若x,y满足约束条件 ,则 的最小值为______.
15.已知复数z=1+2i(i是虚数单位),则|z|=_________.
16. ________________.
17.等边三角形 与正方形 有一公共边 ,二面角 的余弦值为 , 分别是 的中点,则 所成角的余弦值等于.
18.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为▲
19.若 , 满足约束条件 ,则 的最大值为_____________.
20.设等比数列 满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.二、填Leabharlann 题13.25【解析】由可得所以
解析:25
【解析】
由 可得 ,所以 .
14.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A时取得最小值由解得代入计算所以的最小值为故答案为
解析:-1
【解析】
【分析】
【详解】
根据题中所给的约束条件,画出其对应的可行域,如图所示:

高中数学 2023年河北省衡水市名校高考数学模拟试卷(一)

高中数学 2023年河北省衡水市名校高考数学模拟试卷(一)

2023年河北省衡水市桃城区衡水中学、石家庄二中、雅礼中学、长郡中学等名校高考数学模拟试卷(一)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.A .{2}B .{5}C .{1,3,4,5}D .{1,2,3,4}1.(5分)已知全集U ={l ,2,3,4,5},集合A ={1,2,4},B ={2,3},则(∁U A )∩(∁U B )=( )A .3B .4C .-3D .-42.(5分)复数25i 3+4i的虚部为( )A .OA 与OH 的夹角为π3B .OD +OF =OEC .|OA −OC |=22|DH |D .OA 在OD 上的投影向量为22e (其中e 为与OD 同向的单位向量)3.(5分)八卦是中国文化的基本学概念,图1是八卦模型图,其平面图形为图2所示的正八边形ABCDEFGH ,其中|OA |=1给出下列结论,其中正确的结论为( )→→→→→→→→√→→→√→→→A .67B .57C .914D .11144.(5分)从属于区间[2,8]的整数中任取两个数,则至少有一个数是质数的概率为( )A .[83,113)∪(4,143)B .[113,4)∪[143,173)C .[113,143)∪(5,173)D .[143,5)∪[173,203)5.(5分)已知函数f (x )=sin (ωx +π3)(ω>0)在[π3,π]上恰有3个零点,则ω的取值范围是( )A .2a =3b B .a 3b 2=1C .a 2=b 3D .a 3=b 26.(5分)在某款计算器上计算log a b 时,需依次按下“Log ”、“(”、“a ”、“,”、“b ”、“)”6个键.某同学使用该计算器计算log a b (a >1,b >1)时,误按下“Log ”、“(”、“b ”、“,”、“a ”、“)”这6键,所得到的值是正确结果的49倍,则( )二、选择题:本题共4小题,每小题5分,共20分。

2025年高考数学模拟试题

2025年高考数学模拟试题

高考数学试卷一、单选题 1.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤ D .0x ∀≤,210x x --≤2.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .103.已知由小到大排列的4个数据1、3、5、G,若这4个数据的极差是它们中位数的2倍,则这4个数据的第75百分位数是( )A.9B.7C.5D.3 4.要得到函数2sin xy e=的图像,只需将函数cos2xy e=的图像( )A .向右平移4π个单位B .向右平移2π个单位 C .向左平移4π个单位 D .向左平移2π个单位5.设32x y +=,则函数327x yz =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( )A.[)(]0,11,2B.[)(]0,11,4C.[0,1)D.(1,4] 9.下列计算正确的是A.()22x y x y +=+ B.()2222x y x xy y -=--C.()()2111x x x +-=-D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+=⎪⎝⎭( ) A.2525 5 D.511.平面α与平面β平行的充要条件是( )A. α内有无数条直线与β平行B. α,β垂直于同一个平面C. α,β平行于同一条直线D. α内有两条相交直线与β平行 二、选择题:在每小题给出的选项中,有多项符合题目要求。

深圳市育才中学2024年高三高考数学试题系列模拟卷(1)

深圳市育才中学2024年高三高考数学试题系列模拟卷(1)

深圳市育才中学2024年高三高考数学试题系列模拟卷(1)注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .12.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-53.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .4.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .125.已知向量(1,4)a =,(2,)b m =-,若||||a b a b +=-,则m =( )A .12-B .12C .-8D .86.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +-='交于M ,N 两点,若||6MN =,则MNF 的面积为( )A .28B .38C .328D .3247.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )变量x 01 2 3 变量y m35.57A .0.9B .0.85C .0.75D .0.58.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦, B .112⎛⎫ ⎪⎝⎭, C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭, 9.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+10.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .12.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。

2024_年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷

2024_年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷

2024年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷李昌成(乌鲁木齐市第八中学ꎬ新疆乌鲁木齐830002)中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)04-0094-10收稿日期:2023-11-05作者简介:李昌成ꎬ中学正高级教师ꎬ从事中学数学教学研究.㊀㊀一㊁单选题:本大题共8小题ꎬ共40.0分.在每小题列出的选项中ꎬ选出符合题目的一项.1.设集合U=RꎬA=x1<x<3{}ꎬB=xx<2{}ꎬ则图1中阴影部分表示的集合为(㊀㊀).㊀A.{x|xȡ2}㊀㊀㊀㊀B.{x|xɤ2}C.x1<xɤ2{}D.{x|2ɤx<3}图1㊀第1题图2.已知复数z满足2z-z=1+3iꎬ则zi=(㊀㊀).A.-1+i㊀B.1-i㊀C.1+i㊀D.-1-i3.正方形ABCD中ꎬMꎬN分别是BCꎬCD的中点ꎬ若ACң=λAMң+μBNңꎬ则λ+μ=(㊀㊀).A.65㊀㊀㊀B.85㊀㊀㊀C.2㊀㊀㊀D.834.已知三棱台ABC-A1B1C1中ꎬ三棱锥A-A1B1C1的体积为4ꎬ三棱锥A1-ABC的体积为8ꎬ则该三棱台的体积为(㊀㊀).A.12+33㊀㊀㊀B.12+42C.12+43D.12+475.从装有3个红球㊁2个白球的袋中任取2个球ꎬ则所取的2个球中至少有1个白球的概率是(㊀㊀).A.110㊀㊀㊀B.310㊀㊀㊀C.710㊀㊀㊀D.356.已知函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的部分图象如图2所示ꎬ则下列判断错误的是(㊀㊀).A.函数f(x)的最小正周期为2B.函数f(x)的值域为[-4ꎬ4]C.函数f(x)的图象关于点(103ꎬ0)中心对称D.函数f(x)的图象向左平移π3个单位长度后得到y=Asinωx的图象图2㊀第6题图497.若a>b>1ꎬ0<c<1ꎬ则下列结论正确的是(㊀㊀).A.ac<bc㊀㊀㊀㊀B.alogbc<blogacC.abc<bacD.logac<logbc8.某四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ该四棱锥内有一个半径为1的球ꎬ则该四棱锥的表面积的最小值是(㊀㊀).A.16㊀㊀B.8㊀㊀C.32㊀㊀D.24二㊁多选题:本大题共4小题ꎬ共20.0分.在每小题有多项符合题目要求.9.如图3ꎬ在棱长为1的正方体ABCD-A1B1C1D1中ꎬ点P是线段AD1上的动点ꎬ则下列命题正确的是(㊀㊀).A.异面直线C1P与CB1所成角的大小为定值B.三棱锥D-BPC1的体积是定值C.直线CP和平面ABC1D1所成的角的大小是定值D.若点Q是线段BD上动点ꎬ则直线PQ与A1C不可能平行图3㊀第9题图10.已知函数f(x)=x3-x+1ꎬg(x)=f(x)-ax(aɪR)ꎬ则(㊀㊀).A.f(x)有两个极值点B.f(x)的图象与x轴有三个交点C.点(0ꎬ1)是曲线y=f(x)的对称中心D.若g(x)存在单调递减区间ꎬ则aȡ-111.已知抛物线C:x2=2y的焦点为Fꎬ准线为lꎬAꎬB是C上的两点ꎬO为坐标原点ꎬ则(㊀㊀).A.l的方程为y=-1B.若AF=32ꎬ则әAOF的面积为24C.若OAң OBң=0ꎬ则OA OBȡ8D.若øAFB=120ʎꎬ过AB的中点D作DEʅl于点Eꎬ则ABȡ5DE12.设函数f(x)=xlnxꎬg(x)=12x2ꎬ给定下列命题ꎬ其中正确的是(㊀㊀).A.若方程f(x)=k有两个不同的实数根ꎬ则kɪ(-1eꎬ0)B.若方程kf(x)=x2恰好只有一个实数根ꎬ则k<0㊀C.若x1>x2>0ꎬ总有m[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ则mȡ1D.若函数F(x)=f(x)-2ag(x)有两个极值点ꎬ则实数aɪ(0ꎬ12)三㊁填空题:本大题共4小题ꎬ共20.0分13.(x2-x+2)5的展开式中x3的系数为.14.已知圆C:x2+y2-4x-2y+1=0ꎬ点P是直线y=4上的动点ꎬ过P作圆的两条切线ꎬ切点分别为AꎬBꎬ则AB的最小值为.15.已知函数f(x)=x3+mxꎬ若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则实数m的取值范围为.16.已知椭圆E:x24+y2=1ꎬ椭圆的左右焦点分别为F1ꎬF2ꎬ点A(mꎬn)为椭圆上一点且m>0ꎬn>0ꎬ过A作椭圆E的切线lꎬ分别交x=2ꎬx=-2于点CꎬD.连接CF1ꎬDF2ꎬCF1与DF2交于点Gꎬ并连接AG.若直线lꎬAG的斜率之和为32ꎬ则点A坐标为.四㊁解答题:本大题共6小题ꎬ共70.0分.解答应写出文字说明ꎬ证明过程或演算步骤.17.已知数列an{}满足a1=1ꎬan+1=an+2ꎬ数列bn{}的前n项和为Snꎬ且Sn=2-bn.(1)求数列an{}ꎬbn{}的通项公式ꎻ59(2)设cn=an+bnꎬ求数列cn{}的前n项和Tn.18.已知әABC中ꎬ角AꎬBꎬC所对的边分别为aꎬbꎬcꎬsinAcosC+cosAsinCc+b-a=sinC+sinAa-bꎬ且a=13.(1)求әABC外接圆的半径ꎻ(2)若c=3ꎬ求әABC的面积.19.如图4ꎬ直三棱柱ABC-A1B1C1中ꎬAA1=AB=AC=1ꎬEꎬF分别是CC1ꎬBC的中点ꎬAEʅA1B1ꎬD为棱A1B1上的点.图4㊀第19题图(1)证明:DFʅAEꎻ(2)是否存在一点Dꎬ使得平面DEF与平面ABC的夹角的余弦值为1414若存在ꎬ说明点D的位置ꎬ若不存在ꎬ说明理由.20.某剧场的座位数量是固定的ꎬ管理人员统计了最近在该剧场举办的五场表演的票价xi(单位:元)和上座率yi(上座人数与总座位数的比值)的数据ꎬ其中i=1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ并根据统计数据得到如图5的散点图:图5㊀第20题图(1)由散点图判断y=bx+a与y=clnx+d哪个模型能更好地对y与x的关系进行拟合(给出判断即可ꎬ不必说明理由)ꎬ并根据你的判断结果求回归方程ꎻ(2)根据(1)所求的回归方程ꎬ预测票价为多少时ꎬ剧场的门票收入最多.参考数据:x=240ꎬy=0.5ꎬð5i=1x2i=365000ꎬð5i=1xiyi=457.5ꎻ设zi=lnxiꎬ则ð5i=1ziʈ27ꎬð5i=1z2iʈ147.4ꎬð5i=1ziyiʈ12.7ꎻe5.2ʈ180ꎬe5.4ʈ220ꎬe6.4ʈ600.参考公式:对于一组数据(u1|v1)ꎬ(u2|v2)ꎬ ꎬ(un|vn)ꎬ其回归直线v︿=α︿+β︿u的斜率和截距的最小二乘估计分别为:β=ðni=1uivi-nuvðni=1u2i-nu=ðni=1(ui-u)(vi-v)ðni=1(ui-u)2ꎬα︿=v-β︿u.21.已知双曲线C:x2a2-y2b2=1(a>0ꎬb>0)经过点P(4ꎬ2)ꎬ双曲线C的右焦点F到其渐近线的距离为2.(1)求双曲线C的方程ꎻ(2)已知Q(0ꎬ-2)ꎬD为PQ的中点ꎬ作PQ的平行线l与双曲线C交于不同的两点AꎬBꎬ直线AQ与双曲线C交于另一点Mꎬ直线BQ与双曲线C交于另一点Nꎬ证明:MꎬNꎬD三点共线.22.已知函数f(x)=aln(x+1)-sinx.(1)若y=f(x)在[π4ꎬπ2]上单调递减ꎬ求a的取值范围ꎻ(2)证明:当a=1时ꎬf(x)在(π2ꎬ+ɕ)上有且仅有一个零点.参考答案1.由Venn图可知ꎬ阴影部分的元素由属于集合A但不属于集合B的元素构成ꎬ所以阴影部分表示的集合为Aɘ(∁UB).因为集合U=RꎬA={x|1<x<3}ꎬB={x|x<2}ꎬ所以∁UB={x|xȡ2}.所以Aɘ(∁UB)={x|2ɤx<3}.所以图中阴影部分表示69的集合为{x|2ɤx<3}.故选D.2.设z=a+bi(aꎬbɪR)ꎬ则2z-z-=2(a+bi)-(a-bi)=a+3bi=1+3i.所以a=1ꎬ3b=3ꎬ{即a=1ꎬb=1.所以z=1+i.所以zi=1+ii=(1+i)(-i)i(-i)=1-i.故选B.3.以ABꎬAD为坐标轴建立平面直角坐标系ꎬ如图6ꎬ设正方形边长为1ꎬMꎬN分别是BCꎬCD的中点ꎬ所以AMң=(1ꎬ12)ꎬBNң=(-12ꎬ1)ꎬACң=(1ꎬ1).图6㊀第3题解析图因为ACң=λAMң+μBNңꎬ所以λ-12μ=1ꎬ12λ+μ=1.ìîíïïïï所以λ=65ꎬμ=25.所以λ+μ=85.故选B.4.设SәABC=S1ꎬSәA1B1C1=S2ꎬ棱台的高为hꎬ由已知ꎬ得VA-A1B1C1=13S2h=4ꎬ得S2=12hꎬVA1-ABC=13S1h=8ꎬ则S1=24h.所以三棱台ABC-A1B1C1的体积V=13h(S1+S2+S1S2)=13h(12h+24h2+12ˑ24h2)=12+42.故选B.5.根据题意ꎬ首先分析从5个球中任取2个球ꎬ设3个红球为a1ꎬa2ꎬa3ꎬꎬ2个白球为b1ꎬb2ꎬ所以样本空间Ω={a1a2ꎬa1a3ꎬa1b1ꎬa1b2ꎬa2a3ꎬa2b1ꎬa2b2ꎬa3b1ꎬa3b2ꎬb1b2}ꎬ共10个等可能的样本点.设事件A= 所取的2个球中至少有1个白球 ꎬ则事件A=所取的2个球中没有白球 ꎬA={a1a2ꎬa1a3ꎬa2a3}ꎬ则P(A)=310ꎬP(A)=1-310=710.则所取的3个球中至少有1个白球的概率是710.故选C.6.根据题意可得ꎬ12T=43-13ꎬ解得T=2ꎬ故函数f(x)的最小正周期为2ꎬA正确.所以ω=2πT=π.又因为函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的图象过点(13ꎬ0)ꎬ所以Asin(π3+φ)=0ꎬ解得φ=kπ-π3ꎬkɪZ.又因为-π<φ<0ꎬ所以φ=-π3.而函数f(x)=Asin(ωx+φ)的图象过点(0ꎬ-23)ꎬ所以Asin(πˑ0-π3)=-23ꎬ解得A=4ꎬ即f(x)的值域为[-4ꎬ4]ꎬ故B正确.所以f(x)=4sin(πx-π3).令πx-π3=kπꎬ解得x=k+13ꎬkɪZꎬ其中一个对称中心为(103ꎬ0)ꎬC正确.所以f(x)的图象向左移13个单位长度后得到y=4sinπxꎬD错误.故选D.7.因为a>b>1ꎬ0<c<1ꎬ所以ac>bcꎬ故A错误.alogbc=alogcclogcb=alogcbꎬ79blogac=blogcclogca=blogcaꎬalogcb-blogca=logc(aa/bb)logca logcbꎬ因为a>b>1ꎬ0<c<1ꎬ所以aa>ba>bb.即aabb>1.所以logcaabb<0ꎬlogca<0ꎬlogcb<0.所以alogcb<blogca.即alogbc<blogacꎬ故B正确.abcbac=(ab)1-cꎬ因为a>b>1ꎬ0<c<1ꎬ所以ab>1ꎬ1-c>0.㊀所以(ab)1-c>(ab)0=1.所以abcbac>1.即abc>bacꎬ故C错误.因为a>b>1ꎬ0<c<1ꎬ所以logac>logbcꎬ故D错误.故选B.8.因为四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ所以该四棱锥是正四棱锥ꎬ设正四棱锥P-ABCDꎬ当半径为1的球是正四棱锥P-ABCD的内切球时ꎬ该四棱锥的表面积最小ꎬ设正方形ABCD的边长为2aꎬ设ACɘBD=Oꎬ连接POꎬ则POʅ面ABCDꎬ所以正四棱锥P-ABCD的高为POꎬ设PO=hꎬ正四棱锥P-ABCD的表面积为Sꎬ由V=13 SABCD PO=13(4SәPAB+S四边形ABCD)ˑ1=13Sꎬ即为13ˑ2aˑ2ah=13(4ˑ12ˑ2aˑa2+h2+2aˑ2a)ˑ1ꎬ整理可得:a(h-1)=a2+h2.所以a2(h-1)2=a2+h2ꎬ可得a2=h2h2-2h.所以正四棱锥P-ABCD体积为V=13ˑ4a2h.则S=3V=3ˑ13ˑ4a2ˑh=4a2h=4a3h2-2h=4h2h-2(h>2).设t=h-2>0ꎬ可得h=t+2.所以S=4(t+2)2t=4(t+4t+4)ȡ4(2t4t+4)=32ꎬ当且仅当t=4t即t=2ꎬh=4时ꎬ等号成立.该四棱锥的表面积最小值是32.故选C.9.因为CB1ʅBC1ꎬCB1ʅABꎬBC1ɘAB=Bꎬ所以CB1ʅ平面ABC1D1.又C1P⊂平面ABC1D1ꎬ得CB1ʅC1Pꎬ所以异面直线C1P与CB1垂直ꎬ选项A正确.三棱锥D-BPC1以BDC1为底面ꎬ因为AD1ʊ平面BDC1ꎬ所以点P到平面BDC1的距离为定值ꎬ故三棱锥D-BPC1的体积是定值ꎬ选项B正确.点C在平面ABC1D1的射影是定点(BC1与B1C的交点)ꎬ线段CP长度显然随位置变化而变化ꎬ故直线CP和平面ABC1D1所成的角的正弦在变化ꎬ角的大小不是定值ꎬ选项C错误.以点D为原点ꎬDAꎬDCꎬDD1所在的直线分别为xꎬyꎬz轴ꎬ建立如图7所示空间直角坐标系ꎬ则CA1ң=(1ꎬ-1ꎬ1)ꎬ点P坐标取(23ꎬ0ꎬ13)ꎬ点Q坐标取(13ꎬ13ꎬ0)时ꎬPQң=(-13ꎬ13ꎬ-13)ꎬPQ//A1C成立ꎬ选项D错误.故选AB.图7㊀第9题解析图8910.已知f(x)=x3-x+1ꎬ则fᶄ(x)=3x2-1.由fᶄ(x)>0ꎬ得x<-33或x>33ꎻ由fᶄ(x)<0ꎬ得-33<x<33ꎬ所以函数f(x)在(-ɕꎬ-33)ꎬ(33ꎬ+ɕ)上单调递增ꎬ在(-33ꎬ33)上单调递减.则当x=-33时ꎬ函数f(x)取得极大值ꎬ当x=33时ꎬ函数f(x)取得极小值ꎬ故A项正确.而f(-33)=1+239>0ꎬf(33)=1-239>0ꎬ得函数f(x)的图象与x轴有一个交点ꎬ故B项错误.㊀令fᶄ(x)=3x2-1=h(x)ꎬ得hᶄ(x)=6x=0ꎬ得x=0ꎬ此时f(0)=1ꎬ得曲线y=f(x)的对称中心为(0ꎬ1)ꎬ故C项正确.由g(x)=f(x)-axꎬ得gᶄ(x)=fᶄ(x)-a=3x2-1-aꎬ若g(x)存在单调递减区间ꎬ即gᶄ(x)<0有解ꎬ得a>3x2-1有解ꎬ等价于a>(3x2-1)minꎬ则a>-1ꎬ故D项错误.故选AC.11.A选项:l的方程为y=-12ꎬ错误ꎻB选项:因为|AF|=32ꎬ可得yA=1ꎬ|xA|=2ꎬSәAOF=12|OF| |xA|=24ꎬ正确ꎻC选项:设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ则OAң OBң=x1x2+y1y2=0ꎬ即x1x2=-y1y2ꎬ而y1y2=(x1x22)2=-x1x2ꎬ解得x1x2=-4ꎬy1y2=4ꎬ(|OA| |OB|)2=(x21+y21)(x22+y22)=32+x21y22+x22y21ȡ32+2|x1x2| |y1y2|=64ꎬ所以|OA| |OB|ȡ8ꎬ正确ꎻD选项:如图8ꎬ过点A作AA1ʅl于点A1ꎬ过点B作BB1ʅl于点B1ꎬ设|AF|=aꎬ|BF|=bꎬ所以|DE|=12(a+b).因为|AB|2=a2+b2-2ab cosøAFB=a2+b2+ab=(a+b)2-abȡ(a+b)2-(a+b2)2=3 (a+b2)2=3|DE|2ꎬ所以|AB|ȡ3|DE|ꎬ错误.故选BC.图8㊀第11题解析图12.对于Aꎬf(x)的定义域为(0ꎬ+ɕ)ꎬfᶄ(x)=lnx+1ꎬ令fᶄ(x)>0ꎬ得到x>1eꎬ令fᶄ(x)<0ꎬ得到0<x<1e.所以f(x)在(0ꎬ1e)上单调递减ꎬ在(1eꎬ+ɕ)上单调递增.所以[f(x)]min=f(1e)=-1eꎬ且当xң0时ꎬf(x)ң0.又f(1)=0ꎬ从而要使方程f(x)=k有两个不同的实根ꎬ即y=f(x)与y=k有两个不同的交点ꎬ所以kɪ(-1eꎬ0)ꎬ故A正确.对于Bꎬ易知x=1不是该方程的根ꎬ当xʂ1时ꎬf(x)ʂ0ꎬ方程kf(x)=x2有且只有一个实数根ꎬ等价于y=k和y=xlnx只有一个交点ꎬyᶄ=lnx-1(lnx)2ꎬ又x>0且xʂ1ꎬ令yᶄ>0ꎬ有x>eꎬ令yᶄ<0ꎬ有0<x<1或1<x<eꎬ所以函数y=xlnx在(0ꎬ1)和(1ꎬe)单调递减ꎬ在(eꎬ+ɕ)单调递增ꎬx=1是一条渐近线ꎬ极小值为e.由y=xlnx的大致图象(如图9)可知k<990或k=eꎬ故B错.图9㊀第12题解析图对于Cꎬ当x1>x2>0时ꎬm[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ等价于mg(x1)-f(x1)>mg(x2)-f(x2)恒成立ꎬ即函数y=mg(x)-f(x)在(0ꎬ+ɕ)上单调递增ꎬ所以yᶄ=mgᶄ(x)-fᶄ(x)=mx-lnx-1ȡ0恒成立ꎬ即mȡlnx+1x在(0ꎬ+ɕ)上恒成立.令r(x)=lnx+1xꎬ则rᶄ(x)=-lnxx2.令rᶄ(x)>0得0<x<1ꎬ令rᶄ(x)<0得x>1ꎬ从而r(x)在(0ꎬ1)上单调递增ꎬ在(1ꎬ+ɕ)上单调递减ꎬ则r(x)max=r(1)=1ꎬ于是mȡ1ꎬ故C正确.对于Dꎬ函数F(x)=f(x)-2ag(x)有两个极值点ꎬ即F(x)=xlnx-ax2(x>0)有两个不同极值点ꎬ等价于Fᶄ(x)=lnx+1-2ax=0有两个不同的正根ꎬ即方程2a=lnx+1x有两个不同的正根ꎬ由C可知ꎬ0<2a<1ꎬ即0<a<12ꎬ则D正确.故选ACD.13.式子(x2-x+2)5=[(x2-x)+2]5的展开式的通项公式为Tr+1=Cr5 (x2-x)5-r 2rꎬ对于(x2-x)5-rꎬ它的通项公式为Trᶄ+1=(-1)rᶄ Crᶄ5-rx10-2r-rᶄꎬ其中ꎬ0ɤrᶄɤ5-rꎬ0ɤrɤ5ꎬrꎬrᶄ都是自然数.令10-2r-rᶄ=3ꎬ可得r=2ꎬrᶄ=3{或r=3ꎬrᶄ=1.{故x3项的系数为C2522(-C33)+C3523(-C12)=-200ꎬ故答案为-200.14.圆C:x2+y2-4x-2y+1=0ꎬ即(x-2)2+(y-1)2=4.图10㊀第14题解析图如图10ꎬ由于PAꎬPB分别切圆C于点AꎬBꎬ则PA=PBꎬCAʅPAꎬCBʅPBꎬ所以S四边形APBC=2SәACP=CA PA.因为CA=CB=r=2ꎬ所以S四边形APBC=2PA.又PCʅABꎬ所以S四边形APBC=12AB CP.所以PA=14AB CP.即AB=4PACP=41-4CP2.所以AB最短时ꎬCP最短ꎬ点C到直线y=4的距离即为CP的最小值ꎬ所以CPmin=3.所以AB的最小值为41-49=453.故答案为453.15.令y=ex-(x+1)ꎬ所以yᶄ=ex-1.显然当x>0时ꎬyᶄ>0ꎬ则y在(0ꎬ+ɕ)上单调递增ꎻ当x<0时ꎬyᶄ<0ꎬ则y在(-ɕꎬ0)上单调递减.即x=0时取得最小值ymin=0ꎬ故exȡx+1恒成立.若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则f(x)在R上单调递增ꎬ则fᶄ(x)ȡ0恒成立ꎬfᶄ(x)=3x2+mȡ0ꎬmȡ-3x2ꎬ又(-3x2)max=0ꎬ故mȡ0.故答案为[0ꎬ+ɕ).16.设直线l的方程y=kx+bꎬ由y=kx+bꎬx24+y2=1{得001(1+4k2)x2+8kbx+4b2-4=0.如图11ꎬ因为直线l与椭圆E相切ꎬ所以ә=(8kb)2-4(4k2+1)(4b2-4)=0ꎬ解得4k2=b2-1.因为m=-4kb1+4k2ꎬn=km+bꎬ所以n=b1+4k2.所以mn=-4kꎬ即k=-m4nꎬb=1n.所以直线l的方程为mx4+ny=1.图11㊀第16题解析图分别令x=2和x=-2ꎬ得C(2ꎬ1n(1-m2))ꎬD(-2ꎬ1n(1+m2))ꎬ所以直线DF2方程为y=-(1/n)(1+m/2)2+3(x-3)ꎬ直线CF1方程为y=(1/n)(1-m/2)2+3(x+3).联立得DF2与CF1交点G(32mꎬ(23-3)n).因为kAE=(23-4)n3m/2-m=4nmꎬ所以kAG kl=4nm.(-m4n)=-1.所以由kAG kl=-1ꎬkAG+kl=32ꎬ得kl=-m4n=-12ꎬkAG=2.即m=2n.又m24+n2=1ꎬ则m=2ꎬn=22ꎬ即A(2ꎬ22).17.(1)由题知ꎬa1=1ꎬan+1-an=2ꎬ所以数列{an}是首项为1ꎬ公差为2的等差数列.所以an=1+(n-1)ˑ2=2n-1.当n=1时ꎬb1=S1=2-b1ꎬ所以b1=1.当nȡ2时ꎬSn=2-bnꎬ①Sn-1=2-bn-1.②由①-②ꎬ得bn=-bn+bn-1.即bnbn-1=12(nȡ2).所以数列{bn}是首项为1ꎬ公比为12的等比数列ꎬ故bn=(12)n-1.(2)由(1)知ꎬcn=an+bn=2n-1+(12)n-1.利用分组求和可得ꎬTn=n(1+2n-1)2+1-(1/2)n1-1/2=n2+2-(12)n-1.18.(1)依题意sin(A+C)sinC+sinA=c+b-aa-b.即bc+a=c+b-aa-b=ca-b-1.整理ꎬ得b2+c2-a2=-bc.所以cosA=b2+c2-a22bc=-12.因为0<A<πꎬ所以A=2π3.故所求外接圆半径r=a2sinA=133=393.(2)因为a=13ꎬc=3ꎬA=2π3ꎬ所以由余弦定理ꎬ得13=b2+9-2ˑ3ˑbˑcos2π3.解得b=1或b=-4(舍).则SәABC=12bcsinA=12ˑ1ˑ3ˑ32=334.19.(1)因为AEʅA1B1ꎬA1B1ʊABꎬ101所以AEʅAB.又因为AA1ʅ平面ABCꎬAB⊂平面ABCꎬ所以AA1ʅAB.又AA1ɘAE=AꎬAA1ꎬAE⊂平面A1ACC1ꎬ所以ABʅ平面A1ACC1.图12㊀第19题解析图又因为AC⊂平面A1ACC1ꎬ所以ABʅAC.所以ABꎬACꎬAA1两两垂直.以A为原点建立如图12所示的空间直角坐标系A-xyzꎬ则有A(0ꎬ0ꎬ0)ꎬE(0ꎬ1ꎬ12)ꎬF(12ꎬ12ꎬ0)ꎬA1(0ꎬ0ꎬ1)ꎬB1(1ꎬ0ꎬ1)ꎬ设D(xꎬyꎬz)ꎬA1Dң=λA1B1ңꎬ且λɪ[0ꎬ1]ꎬ即(xꎬyꎬz-1)=λ(1ꎬ0ꎬ0).则D(λꎬ0ꎬ1)ꎬDFң=(12-λꎬ12ꎬ-1).因为AEң=(0ꎬ1ꎬ12)ꎬ所以DFң AEң=0.所以DFʅAE.(2)存在一点D且D为A1B1的中点ꎬ使平面DEF与平面ABC夹角的余弦值为1414.理由如下:由题可知面ABC的法向量m=(0ꎬ0ꎬ1)ꎬ设面DEF的法向量为n=(xꎬyꎬz)ꎬ则n FEң=0ꎬn DFң=0.{则-x+y+z=0ꎬ(1-2λ)x+y-2z=0.{令x=3ꎬ则y=1+2λꎬz=2(1-λ).则n=(3ꎬ1+2λꎬ2(1-λ)).因为平面DEF与平面ABC夹角的余弦值为1414ꎬ所以|cos<mꎬn>|=|m n|m| |n||=1414.即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414.解得λ=12或λ=74(舍).所以当D为A1B1中点时满足要求.20.(1)y=clnx+d能更好地对y与x的关系进行拟合.设z=lnxꎬ先求y关于z的线性回归方程.由已知得z=15ð5i=1ziʈ275=5.4ꎬ所以c=ð5i=1ziyi-5zyð5i=1z2i-5z2ʈ12.7-5ˑ5.4ˑ0.5147.4-5ˑ5.42=12.7-13.5147.4-145.8=-0.81.6=-0.5ꎬd=y-cz=0.5-(-0.5)ˑ5.4=3.2ꎬ所以y关于z的线性回归方程为y=-0.5z+3.2.所以y关于x的回归方程为y=-0.5lnx+3.2.(2)设该剧场的总座位数为Mꎬ由题意得门票收入为M(-0.5xlnx+3.2x)ꎬ设函数f(x)=-0.5xlnx+3.2xꎬ则fᶄ(x)=-0.5lnx+2.7ꎬ当fᶄ(x)<0ꎬ即x>e5.4时ꎬ函数单调递减ꎬ当fᶄ(x)>0ꎬ即0<x<e5.4时ꎬ函数单调递增ꎬ所以f(x)在x=e5.4ʈ220处取最大值.故预测票价为220元时ꎬ剧场的门票收入最多.21.(1)因为双曲线C的渐近线方程为y=ʃbaxꎬ所以双曲线C的右焦点F到其渐近线的距离为bca2+b2=b=2.因为双曲线C经过点P(4ꎬ2)ꎬ所以16a2-422=1ꎬ解得a2=8.故双曲线C的方程为x28-y24=1.(2)因为P(4ꎬ2)ꎬQ(0ꎬ-2)ꎬD为PQ的中点ꎬ所以D(2ꎬ0)ꎬkPQ=1.设直线l的方程为y=x+mꎬA(x1ꎬy1)ꎬB(x2ꎬy2)ꎬM(xMꎬyM)ꎬN(xNꎬyN)ꎬ201所以kAQ=y1+2x1ꎬkBQ=y2+2x2.直线AQ的方程为y=y1+2x1x-2ꎬ直线BQ的方程为y=y2+2x2x-2.联立y=y1+2x1x-2ꎬx28-y24=1ꎬìîíïïïï可得[1-2(y1+2)2x21]x2+8(y1+2)x1x-16=0.所以x1+xM=-8(y1+2)/x11-2(y1+2)2/x21=-8x1(y1+2)x12-2(y1+2)2.又因为x218-y214=1ꎬ所以x1+xM=x1+2x1y1.则xM=2x1y1ꎬyM=y1+2x1xM-2=4y1.同理可得xN=2x2y2ꎬyN=4y2.kMN=4/y1-4/y22x1/y1-2x2/y2=2ˑy2-y1x1y2-x2y1=2ˑx2-x1x1(x2+m)-x2(x1+m)=-2mꎬkMD=4/y1-02x1/y1-2=2x1-y1=-2mꎬ所以kMN=kMD.故MꎬNꎬD三点共线.22.(1)由题意得:函数定义域为(-1ꎬ+ɕ).fᶄ(x)=ax+1-cosx.若f(x)在[π4ꎬπ2]上单调递减ꎬ则fᶄ(x)ɤ0在[π4ꎬπ2]上恒成立.所以aɤ(x+1)cosx在[π4ꎬπ2]上恒成立.令g(x)=(x+1)cosxꎬ则gᶄ(x)=cosx-(x+1)sinx.当xɪ[π4ꎬπ2)时ꎬgᶄ(x)=cosx[1-(x+1) tanx].因为当xɪ[π4ꎬπ2)时ꎬcosx>0ꎬx+1>1ꎬtanx>1ꎬ所以gᶄ(x)<0.所以g(x)在[π4ꎬπ2)上单调递减ꎬ所以当xɪ[π4ꎬπ2]时ꎬg(x)ȡg(π2)=(π2+1)cosπ2=0.所以aɤ[g(x)]min=0.即a的取值范围为(-ɕꎬ0].(2)当a=1时ꎬf(x)=ln(x+1)-sinxꎬ则fᶄ(x)=1x+1-cosx.当x>e-1时ꎬln(x+1)>lne=1ȡsinxꎬ所以f(x)>0在(e-1ꎬ+ɕ)上恒成立.所以只需证f(x)在(π2ꎬe-1]上有且仅有一个零点.因为e-1<πꎬ所以当xɪ(π2ꎬe-1]时ꎬcosx<0ꎬ1x+1>0.所以fᶄ(x)>0在(π2ꎬe-1]上恒成立.所以f(x)在(π2ꎬe-1]上单调递增.又f(π2)=ln(π2+1)-sinπ2=ln(π2+1)-1<0ꎬf(e-1)=1-sin(e-1)>0ꎬ所以f(x)在(π2ꎬe-1]上有且仅有一个零点.即f(x)在(π2ꎬ+ɕ)上有且仅有一个零点.[责任编辑:李㊀璟]301。

2024届广东省新改革高三模拟高考预测卷一(九省联考题型)数学试卷(1)

2024届广东省新改革高三模拟高考预测卷一(九省联考题型)数学试卷(1)

一、单选题二、多选题1.下列函数中,在上单调递增的是( )A.B.C.D.2. 设全集,,集合,则集合( )A.B.C.D.3. 与直线和圆都相切的半径最小的圆的方程是A.B.C.D.4. 函数的定义域为( )A.B.C.D.5. 已知某圆锥的母线长为3,则当该圆锥的体积最大时,其侧面展开图的圆心角的弧度数为( )A.B.C.D.6. 已知,,若,则向量的夹角的余弦值为( )A.B.C.D.7. 设全集,集合,集合,则图中阴影部分所示的集合是()A.B.C.D.8.某车间生产一种圆台型纸杯,其杯底直径为,杯口直径为,高为ℎ,将该纸杯装满水(水面与杯口齐平),现将一直径为的小铁球缓慢放入杯中,待小铁球完全沉入水中并静止后,从杯口溢出水的体积为纸杯容积的,则( )A.B.C.D.9.在的展开式中,则( )A .二项式系数最大的项为第3项和第4项B .所有项的系数和为0C.常数项为D .所有项的二项式系数和为6410.已知正方体的棱长为分别是棱的中点,是棱上的一动点,则( )A .存在点,使得B.对任意的点C.存在点,使得直线与平面所成角的大小是D .对任意的点,三棱锥的体积是定值11.已知正项数列的前n 项和为,且有,则下列结论正确的是( ).2024届广东省新改革高三模拟高考预测卷一(九省联考题型)数学试卷(1)2024届广东省新改革高三模拟高考预测卷一(九省联考题型)数学试卷(1)三、填空题四、解答题A.B .数列为等差数列C.D.12. 已知曲线的方程为,则下列结论正确的是( )A .当时,曲线为椭圆,其焦距为B .当时,曲线为双曲线,其离心率为C .存在实数使得曲线为焦点在轴上的双曲线D .当时,曲线为双曲线,其渐近线与圆相切13. 已知平面向量,,若,则___________.14.已知函数,则不等式的解集为____15.在中,角,,的对边分别为,,,已知,,则_______________.16. 某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:cm ).经统计,高度均在区间[20,50]内,将其按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50]分成6组,制成如图所示的频率分布直方图,其中高度不低于40cm的树苗为优质树苗.(1)已知所抽取的这100棵树苗来自甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?(2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X ,求X 的分布列和数学期望.甲地区乙地区合计优质树苗5非优质树苗25合计附:K 2=,其中n =a +b +c +dP (K 2≥k 0)0.0250.0100.0050.001k 05.0246.6357.87910.82817. 已知函数在处取得极值,其中.(Ⅰ)求的值;(Ⅱ)当时,求的最大值.18. 如图,在三棱锥中,平面平面,为等腰直角三角形,其中,为中点.(1)证明:平面平面;(2)已知,二面角的大小为,求三棱锥的体积.19. 已知数列满足.(1)求的通项公式;(2)在和之间插入n个数,使这个数构成等差数列,记这个等差数列的公差为,求数列的前n项和.20. 设函数,.(1)若函数在上单调递增,求的取值范围;(2)设函数,若对任意的,都有,求的取值范围;(3)设,点是函数与的一个交点,且函数与在点处的切线互相垂直,求证:存在唯一的满足题意,且.21. 已知函数.(1)求的定义域;(2)设是锐角,且,求的值.。

高考自创模拟数学试卷

高考自创模拟数学试卷

一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(-2,3),则下列说法正确的是:A. a > 0,b < 0,c < 0B. a < 0,b > 0,c > 0C. a > 0,b > 0,c > 0D. a < 0,b < 0,c < 02. 在直角坐标系中,点A(2,3),B(-3,-4),C(5,-2)的斜率分别为k1、k2、k3,则下列说法正确的是:A. k1 > k2 > k3B. k1 < k2 < k3C. k1 = k2 = k3D. k1、k2、k3无法比较3. 若等差数列{an}的公差为d,且a1 = 3,a4 = 9,则d的值为:A. 3B. 6C. 9D. 124. 若复数z满足|z - 1| = 2,则复数z的实部a的取值范围是:A. -1 ≤ a ≤ 3B. -3 ≤ a ≤ 1C. a ≥ 1 或 a ≤ -3D. a ≤ 1 或 a ≥ -35. 若不等式|2x - 1| < 3的解集为A,不等式|x + 2| ≥ 4的解集为B,则A∩B 的结果是:A. {x | -3 ≤ x < 2}B. {x | -1 ≤ x < 2}C. {x | -2 ≤ x < 1}D. {x | -1 ≤ x ≤ 2}6. 若函数f(x) = x^3 - 3x + 2在区间[-2,2]上的最大值为M,最小值为m,则M - m的值为:A. 6B. 8C. 10D. 127. 若等比数列{bn}的公比为q,且b1 = 2,b3 = 8,则q的值为:A. 2B. 4C. 8D. 168. 若平面直角坐标系中,点P(1,2)到直线y = -2x + 5的距离为d,则d的值为:A. 1B. 2C. 3D. 49. 若函数f(x) = x^2 + 2x + 1在区间[-1,3]上的图像关于点(1,2)对称,则下列说法正确的是:A. f(0) = f(2)B. f(-1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)10. 若等差数列{an}的前n项和为Sn,且S5 = 25,S10 = 75,则a1的值为:A. 1B. 2C. 3D. 411. 若复数z = 3 + 4i的共轭复数为z',则|z - z'|的值为:A. 5B. 10C. 15D. 2012. 若函数f(x) = (x - 1)^2在区间[0,2]上的图像关于点(1,0)对称,则下列说法正确的是:A. f(0) = f(2)B. f(1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)二、填空题(本大题共4小题,每小题10分,共40分)13. 若函数f(x) = x^3 - 3x^2 + 2x - 1在x = 1处的切线斜率为k,则k的值为______。

高考模拟数学试卷及答案

高考模拟数学试卷及答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x - 3,若对于任意的x1、x2 ∈ R,都有f(x1) + f(x2) = f(x1 + x2),则f(1)的值为:A. 0B. 1C. 2D. 32. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为:A. 0B. 1C. -1D. 23. 下列各数中,不是等差数列的通项公式的是:A. an = 3n + 2B. an = 2n - 1C. an = 4n - 3D. an = n^2 + 14. 已知等比数列{an}的前三项分别为a1、a2、a3,若a1 + a2 + a3 = 9,a1 a2 a3 = 27,则该等比数列的公比为:A. 1B. 3C. 9D. 275. 下列函数中,在区间[0, 2]上单调递增的是:A. f(x) = x^2B. f(x) = 2x - 1C. f(x) = -x^2D. f(x) = x^2 - 16. 下列各图中,表示y = x^2 - 4x + 4的图像是:A. B. C. D.7. 若等差数列{an}的前n项和为Sn,且S5 = 15,S10 = 55,则该等差数列的首项为:A. 1B. 2C. 3D. 48. 下列不等式中,正确的是:A. 2x > x + 1B. 3x < 2x + 1C. 4x ≤ 2x + 2D. 5x ≥ 3x + 19. 下列各数中,是绝对值不等式|x| > 3的解集的是:A. x < -3 或x > 3B. x ≤ -3 或x ≥ 3C. x < 3 或 x > -3D. x ≤3 或x ≥ -310. 已知函数f(x) = x^3 - 3x^2 + 4x,若f(x)在区间[0, 2]上有极值,则f(0)的值为:A. 0B. 1C. 2D. 311. 下列各数中,是正比例函数y = kx的图象经过第一、二、三象限的是:A. k = 1B. k = -1C. k = 2D. k = -212. 下列各式中,正确的是:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^2二、填空题(本大题共6小题,每小题5分,共30分)13. 已知函数f(x) = ax^2 + bx + c,若f(1) = 3,f(2) = 7,则a + b + c = _______。

高考数学全真模拟试卷一及答案

高考数学全真模拟试卷一及答案

(第5题)高考数学全真模拟试卷一试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}0A x x =≥,{}1B x x =<,则A B = ▲ .【答案】R2. 某公司生产三种型号A ,B ,C 的轿车,产量分别为1200辆,6000辆,2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A 的轿车应抽取 ▲ 辆. 【答案】63. 在平面直角坐标系xOy 中,抛物线22(0)x py p =>的焦点坐标为(0 1),,则实数p 的值为 ▲ . 【答案】24. 已知集合{}0 A ππππ2π3π5π=π6432346,,,,,,,,.现从集合A 中随机选取一个元素,则该元素的 余弦值为正数的概率为 ▲ . 【答案】495. 如图,是一个算法的程序框图,当输出的y 值为2时,若将输入的x 的所有可能值按从小到大的顺序排列得到一个数列{}n a ,则该数列的通项公式为n a = ▲ . 【答案】34n a n =-6. 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的D ,d 的基因遗传是等可能的(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显示矮茎),则第二子代为高茎的概率为 ▲ . 【答案】347. 在平面直角坐标系xOy 中,已知向量(1 2)=,a ,1(2 1)5-=-,a b ,则⋅=a b ▲ . 【答案】25ABCO (第13题)BACD 1B1A1C1D (第9题)E F8. 已知x y ,为正实数,满足26x y xy +=+,则xy 的最小值为 ▲ .【答案】189. 如图,已知正四棱柱1111ABCD A B C D -的体积为36,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四 棱锥1A AEFD -的体积为 ▲ . 【答案】1210. 设定义在区间[] -11,的函数()sin()f x x ϕ=π+(其中0ϕ<<π)是偶函数,则函数()f x 的单调 减区间为 ▲ . 【答案】(0 1),【解析】依题意,ϕπ=2,则()cos f x x =π的减区间为(0 1),.11.在平面直角坐标系xOy 中,已知圆C :22()(21)2x a y a -++-=(11)a -≤≤,直线l :y x b =+()b ∈R .若动圆C 总在直线l 的下方且它们至多有1个交点,则实数b 的最小值是 ▲ .【答案】2【解析】依题意,圆心( 12)C a a -,(11)a -≤≤的轨迹为线段12y x=-(11)x -≤≤, 当且仅当1a =-时,实数b 的最小,此时2b =.12.如图,三次函数32y ax bxcx d =+++的零点为112-, , ,则该函数的单调减区间为 ▲ . 【答案】【解析】设()(1)(1)(2)f x a x x x=+--,其中0a >,令 ()0f x '<x <<所以该函数的单调减区间为;13.如图,点O 为△ABC 的重心,且OA OB ⊥,6AB =,则AC BC ⋅的值为 ▲ . 【答案】72【解析】以AB 的中点M 为坐标原点,AB 为x 轴建立 平面直角坐标系,则()30A -,,()30B ,,设()C x y ,,则O ()33yx ,,(第12题)因为OA ⊥OB ,所以0AO BO ⋅=, 从而()()()2330333yx x +⋅-+=,化简得,2281x y +=,所以222(3)(3)972AC BC x x y x y ⋅=+-+=+-=14.设k b ,均为非零常数,给出如下三个条件:①{}n a 与{}n ka b +均为等比数列; ②{}n a 为等差数列,{}n ka b +为等比数列; ③{}n a 为等比数列,{}n ka b +为等差数列,其中一定能推导出数列{}n a 为常数列的是 ▲ .(填上所有满足要求的条件的序号) 【答案】①②③【解析】①易得()()()211n n n k x b k x b k x b -+⋅+=⋅+⋅+,即2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++, 因为211n n n x x x -+=,且0kb ≠,所以112n n n x x x -+=+,即证; ②由①知2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++,因为112n n n x x x -+=+,所以211n n n x x x -+=,即证; ③易得()()()112n n n k x b k x b k x b -+⋅+=⋅++⋅+,且0k ≠,故112n n n x x x -+=+,又211n n n x x x -+=,即证.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证 明过程或演算步骤. 15.(本题满分14分)已知()π02α∈,,()ππ2β∈,,1cos 3β=-,()7sin 9αβ+=. (1)求tan2β的值;(2)求sin α的值.解:(1)因为22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222βββββββββ--=-==++,且1cos 3β=-,所以221tan 1231tan2ββ-=-+,解得2tan 22β=,(4分)因为()ππ2β∈,,所以()ππ242β∈,,从而tan 02β>,所以tan2β=(6分)(2)因为()ππ2β∈,,1cos 3β=-,所以sin β=,(8分) 又()π02α∈,,故()π3π22αβ+∈,,从而()cos αβ+===,(10分)所以[]sin sin ()sin()cos cos()sin ααββαββαββ=+-=+-+()7193=⨯-(13-=.(14分)16.(本题满分14分)如图,在长方体1111ABCD A B C D -中, 已知11AD AA ==,2AB =,点E 是AB 的中点. (1)求三棱锥1C DD E -的体积; (2)求证:11D E A D ⊥.【解】(1)由长方体性质可得,1DD ⊥ 平面DEC ,所以1DD 是三棱锥1D DCE -的高, 又点E 是AB 的中点,11AD AA ==,AB =2,所以DE CE ==222DE EC CD +=,90DEC ∠=, 三棱锥1D DCE -的体积1111323V DD DE CE =⨯⨯=;(7分)(2)连结1AD ,AEBCD1A 1D 1C 1B (第16题)因为11A ADD 是正方形,所以11AD A D ⊥ ,又AE ⊥面11ADD A ,1A D ⊂面11ADD A , 所以1AE A D ⊥, 又1AD AE A =,1AD AE ⊂,平面1AD E ,所以1A D ⊥平面1AD E ,(12分) 而1D E ⊂平面1AD E , 所以11D E A D ⊥.(14分)17.(本题满分14分)请你为某养路处设计一个用于储藏食盐的仓库(供融化高速公路上的积雪之用).它的上部是底 面圆半径为5m 的圆锥,下部是底面圆半径为5m 的圆柱,且该仓库的总高度为5m .经过预算, 制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/2m ,1百元/2m ,设圆锥母线与底 面所成角为θ,且()π0 4θ∈,,问当θ为多少时,该仓库的侧面总造价(单位:百元)最少?并 求出此时圆锥的高度.解:设该仓库的侧面总造价为y ,则[]152π55(1tan )12π542cos y θθ⎡⎤=⨯⨯-⨯+⨯⨯⨯⨯⎢⎥⎣⎦()2sin 50π1+cos θθ-=,(6分)由()22sin 1cos 50π0y θθ-'==得1sin 2θ=,()π0 4θ∈,, 所以π6θ=,(10分)列表: π6θ=时,侧面总造价y 最小,此时圆锥所以当(第17题).(14分)18.(本题满分16分)定义:如果一个菱形的四个顶点均在一个椭圆上,那么该菱形叫做这个椭圆的内接菱形,且该菱形的对角线的交点为这个椭圆的中心.如图,在平面直角坐标系xOy 中,设椭圆2214x y +=的所有内接菱形构成的集合为F .(1)求F 中菱形的最小的面积;(2)是否存在定圆与F 中的菱形都相切?若存在, 求出定圆的方程;若不存在,说明理由; (3)当菱形的一边经过椭圆的右焦点时,求这条边所在的直线的方程.解:(1)如图,设11( )A x y ,,22( )B x y ,, 1︒当菱形ABCD 的对角线在坐标轴上时,其面积为142142⨯⨯⨯=;2︒当菱形ABCD 的对角线不在坐标轴上时,设直线AC 的方程为:y kx =,① 则直线BD 的方程为:1y x k=-,又椭圆2214xy +=, ②由①②得,212441x k =+,2212441k y k =+, 从而22221124(1)41k OA x y k +=+=+,同理可得,()()2222222221414(1)4141kk OB x y k k⎡⎤-+⎢⎥+⎣⎦=+==+-+,(3分) 所以菱形ABCD 的面积为2OA OB ⨯⨯====≥165= (当且仅当1k =±时等号成立),综上得,菱形ABCD 的最小面积为165;(6分)(第20题)(2)存在定圆2245x y +=与F 中菱形的都相切,设原点到菱形任一边的距离为d ,下证:d ,证明:由(1)知,当菱形ABCD的对角线在坐标轴上时,d ,当菱形ABCD 的对角线不在坐标轴上时,22222OA OB d OA OB ⨯=+222222224(1)4(1)4144(1)4(1)414k k k k k k k k ++⨯++=+++++ 2222224(1)(1)(4)(1)(41)k k k k k +=+++++22224(1)45(1)(55)k k k +==++,即得d , 综上,存在定圆2245x y +=与F 中的菱形都相切;(12分)(3)设直线AD的方程为(y t x =,即0tx y -=,则点(0 0)O ,到直线AD=解得t =, 所以直线AD的方程为y x =.(16分)19.(本题满分16分)设a ,b ,c 为实数,函数32()f x x ax bx c =--+为R 上的奇函数,且在区间[)1 +∞,上单调.(1)求a ,b ,c 应满足的条件; (2)求函数()f x 的单调区间;(3)设001 ()1x f x ≥,≥,且[]00()f f x x =,求证:00()f x x =. 解:(1)因为32()f x x ax bx c =--+为R 上的奇函数,所以()()f x f x -=-,即32x ax bx c --++=32x ax bx c -++-, 变形得,20ax c +=, 所以0a c ==, (2分)此时3()f x x bx =-在区间[)1 +∞,上单调, 则2()30f x x b '=-≥在区间[)1 +∞,上恒成立,得3b ≤;(5分)(2)2()3f x x b '=-,且3b ≤,当0b ≤时,2()30f x x b '=-≥,所以函数()f x 的单调增区间为( )-∞+∞,;(7分)当0b >时,2()30f x x b '=->得,函数()f x 的单调减区间为(,单调增区间为( -∞,,)+∞;(10分)(3)设0()f x t =,则1t ≥,0()1f t x =≥, 即有300x bx t -=,且30t bt x -=, 两式相减得,()()33000x bx t bt t x ---=-, 即()()2200010x t x x t t b -+++-=,因为1t ≥,01x ≥,3b ≤,所以220011x x t t b ++-+≥, 故0x t =,即00()f x x =.(16分)20.(本题满分16分)若存在非零常数p ,对任意的正整数n ,212n n n a a a p ++=+,则称数列{}n a 是“T 数列”.(1)若数列{}n a 的前n 项和()2n S n n *=∈N ,求证:{}n a 是“T 数列”; (2)设{}n a 是各项均不为0的“T 数列”. ①若0p <,求证:{}n a 不是等差数列;②若0p >,求证:当1a ,2a ,3a 成等差时,{}n a 是等差数列. 解:(1)当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-, 所以21n a n =-,n *∈N ,(3分)则{}n a 是“T 数列”⇔存在非零常数p ,2(21)(21)(23)n n n p +=-++ 显然4p =满足题意,所以{}n a 是“T 数列”;( 5分) (2)①假设{}n a 是等差数列,设1(1)n a a n d =+-,则由212n n n a a a p ++=+得,()[][]2111(1)(1)a nd a n d a n d p +=+-+++, 解得20p d =≥,这与0p <矛盾,故假设不成立, 从而{}n a 不是等差数列;(10分) ②因为212n n n a a a p ++=+()0p >, ① 所以()211 2n n n a a a p n -+=+≥, ②①-②得,221211n n n n n n a a a a a a ++-+-=-(2)n ≥, 因为{}n a 的各项均不为0, 所以1121n n n n n n a a a a a a +---++=(2)n ≥, 从而11n n n a a a +-+⎧⎫⎨⎬⎩⎭()2n ≥是常数列,因为1a ,2a ,3a 成等差,所以3122a aa +=,从而112n n na a a +-+=()2n ≥,即112n n n a a a +-+=()2n ≥,即证.(16分)试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)如图,已知凸四边形ABCD 的顶点在一个圆周上, 另一个圆的圆心O 在AB 上,且与四边形ABCD 的其余三边相切.点E 在边AB 上,且AE AD =. 求证: O ,E ,C ,D 四点共圆. 证明:因为AD AE =,所以()11802AED A ∠=-∠,因为四边形ABCD 的顶点在一个圆周上, 所以180A BCD -∠=∠,从而AED DCO ∠=∠,所以O ,E ,C ,D 四点共圆.(10分) B .(矩阵与变换)在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -2,y ), 求1x y -⎡⎤⎢⎥⎣⎦M .解:依题意,1234⎡⎤⎢⎥⎣⎦5x ⎡⎤=⎢⎥⎣⎦2y y -⎡⎤⎢⎥⎣⎦,即102 320 x y x y +=-⎧⎨+=⎩,,解得4 8 x y =-⎧⎨=⎩,, (4分) 由逆矩阵公式知,矩阵M 1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=-⎢⎥⎣⎦M ,(8分) 所以1x y -⎡⎤⎢⎥⎣⎦M 213122-⎡⎤⎢⎥=-⎢⎥⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦.(10分)C .(极坐标与参数方程) 在极坐标系中,设直线l 过点)Aπ6,,()3 B 0,,且直线l 与曲线C :cos (0)a a ρθ=>有且只有一个公共点,求实数a 的值. 解:依题意,)Aπ6,,()3 B 0,的直角坐标方程为(32A ,()3 B 0,, 从而直线l的普通方程为30x -=,(4分) 曲线C :cos (0)a a ρθ=>的普通方程为()22224aa x y -+=(0)a >,(8分) 因为直线l 与曲线C 有且只有一个公共点,所以3222a a -=(0)a >,解得2a =(负值已舍).(10分)D .(不等式选讲)设正数a ,b ,c 满足3a b c ++≤,求证:11131112a b c +++++≥.证明:由柯西不等式得,PAB CD(第22题)E[]()111(1)(1)(1)111a b c a b c +++++⋅+++++2≥23=,(6分) 所以1119931113332a b c a b c ++=+++++++≥≥.(10分)【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤.22.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,90ABC BAD ∠=∠=,且PA AB BC == 112AD ==,PA ⊥平面ABCD .(1)求PB 与平面PCD 所成角的正弦值; (2)棱PD 上是否存在一点E 满足AEC ∠=90?若存在,求AE 的长;若不存在,说明理由.解:(1)依题意,以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系O xyz -,则(0 0 1)P ,,,(1 0 0)B ,,,(1 1 0)C ,,,(0 2 0)D ,,, 从而(1 0 1)PB =-,,,(1 1 1)PC =-,,,(0 2 1)PD =-,,,(2分)设平面PCD 的法向量为( )a b c =,,n ,则⋅n 0PC =,且⋅n 0PD =, 即0a b c +-=,且20b c -=,不妨取2c =,则1b =,1a =, 所以平面PCD 的一个法向量为(1 1 2)=,,n ,(4分)此时cos PB 〈〉=,n ,所以PB 与平面PCD ;(6分)(2)设(01)PE PD λλ=≤≤,则(0 2 1)E λλ-,,, 则(1 21 1)CE λλ=---,,,(0 2 1)AE λλ=-,,, 由AEC ∠=90得,AE ⋅22(21)+(1)0CE λλλ=--=, 化简得,25410λλ-+=,该方程无解,所以,棱PD 上不存在一点E 满足AEC ∠=90.(10分)23.设整数n ≥3,集合P ={1,2,3,…,n },A ,B 是P 的两个非空子集.记a n 为所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数. (1)求a 3; (2)求a n .解:(1)当n =3时,P ={1,2,3 },其非空子集为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 则所有满足题意的集合对(A ,B )为:({1},{2}),({1},{3}),({2},{3}), ({1},{2,3}),({1,2},{3})共5对, 所以a 35=;(3分)(2)设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=,(5分) B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,k 可在B 中,但不能都不在B 中,故B 的个数为:12C C C 21n k n kn k n k n k -----++⋅⋅⋅+=-,(7分) 从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---, 所以a n ()11111111222(1)2(2)2112n n n k n n k n n ------=-=-=-⋅-=-⋅+-∑.(10分)。

2022年高考数学模拟试卷(一) 原卷版

2022年高考数学模拟试卷(一)  原卷版

2022年高考数学模拟试卷(一)(考试用时:120分钟 试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

3.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A.-3∈A B.3∉B C.A ∩B =BD.A ∪B =B2. 若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3 D .-1,43. 已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα=+,则3cos 2πα⎛⎫+= ⎪⎝⎭( )A .15BCD .4. 已知数列{}a n 的前n 项和为S n ,且S n =2(a n -1),则a 2等于( ) A .4 B .2 C .1 D .-25. 若α∈⎝⎛⎭⎫π2,π,且3cos2α=sin ⎝⎛⎭⎫π4-α,则sin2α的值为( )A.118 B .-118 C.1718 D .-17186. 已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A .33B .34C .35D .36 7. 如图所示,程序框图(算法流程图)的输出结果是( )A.16 B.2524 C. 34 D.11128. 函数 f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若 f (1-m )+f (-m )<0,则 m 的取值范围是( )A .B . (-1,1)C .D . (-1,0)∪9. 已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M 、N 分别是圆C 1、C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A.53-4 B.52-4 C.53-3D.52-310. 某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+ 5B .2+2 5 C.43D.2311. 设2ln1.01a =,ln1.02b =,1c =.则( ) A. a b c <<B. b c a <<C. b a c <<D. c a b <<12. 已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1、x 2,且x 1∈[-2,-1],x 2∈[1,2],则f (-1)的取值范围是( )A.⎣⎡⎦⎤-32,3B.⎣⎡⎦⎤32,6 C.[3,12] D.⎣⎡⎦⎤-32,12 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13. 在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为____________. 14. 已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是_______________.15. 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平分圆C :(x -1)2+(y -2)2=1的周长,此双曲线的离心率等于________.16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17. (12分)已知△ABC 的内角A 、B 、C 满足.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值.18. (12分)如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE, ∠BAC =45° ,求平面FGH 与平面ACFD 所成的角(锐角)的大小.sin sin sin sin sin sin sin sin A B C BC A B C-+=+-19. (12分)张先生家住H 小区,他工作在C 科技园区,从家到公司上班的路上有L 1,L 2两条路线(如图所示),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率;(2)若走L 2路线,求遇到红灯的次数X 的数学期望;(3)按照“遇到红灯的平均次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.20. (12分)设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,M ∈C ,以M 为圆心的圆M 与l 相切于点Q ,Q 的纵坐标为3p ,E (5,0)是圆M 与x 轴的不同于F 的一个交点.(1)求抛物线C 与圆M 的方程;(2)过F 且斜率为43的直线n 与C 交于A ,B 两点,求△ABQ 的面积.21. (12分) 已知函数f (x )=ax +x ln x 的图象在点x =e(e 为自然对数的底数)处的切线斜率为3. (1)求实数a 的值;(2)若k ∈Z ,且k <f (x )x -1对任意x >1恒成立,求k 的最大值.以下题目二选一(10分)22. 选修4-4:坐标系与参数方程极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=22sin ⎝⎛⎭⎫θ+π4,曲线C 2的极坐标方程为ρsin θ=a (a >0),射线θ=φ,θ=φ+π4,θ=φ-π4,θ=π2+φ与曲线C 1分别交异于极点O 的四点A ,B ,C ,D .(1)若曲线C 1关于曲线C 2对称,求a 的值,并把曲线C 1和C 2化成直角坐标方程; (2)求|OA |·|OC |+|OB |·|OD |的值.23.选修4-5:不等式选讲 已知函数f (x )=|2x -a |+a .(1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数n 使f (n )≤m -f (-n )成立,求实数m 的取值范围.。

2024年高考数学“九省联考”全真模拟试卷1(新高考、新结构)(考试版)

2024年高考数学“九省联考”全真模拟试卷1(新高考、新结构)(考试版)

2024年高考数学“九省联考”全真模拟试卷1(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}14,{3}A xx B x x =-≤≤=<∣∣,则A B =( ) A .{13}x x -≤<∣ B .{}14x x -≤≤∣ C .{}4x x ≤∣ D .{3}xx <∣ 2.已知单位向量,a b 的夹角为π3,则56+=a b ( ) A .9 B 91C .10 D .3103.清初著名数学家孔林宗曾提出一种“蒺藜形多面体”,其可由相同的两个正交的正四面体组合而成(如图1),也可由正方体切割而成(如图2).在“蒺藜形多面体”中,若正四面体的棱长为2,则该几何体的体积为( )A 2B .2C .22D .44.548除以7,所得余数为( )A .1B .3C .5D .6 5.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为( )A 2B 3C .2D 56.在ABC 中,点D 在AC 上,2π3CDB ∠=,24AD CD ==,则BC BA 的最大值为( ) A 31-B 31+ C 31 D 217.若过点(),m n 可作函数()120y x x x =+>图象的两条切线,则必有( ) A .102m n m <+< B .02n m <<C .122m n m m <<+D .2n m <8.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是( )A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z=a+b i (a,b ∈R ),其共轭复数为z ,则下列结果为实数的是( )A .2zB .2zC .(1)(1)z z ++D .2023()i z z -⋅10.过抛物线C :24y x =的焦点F 作直线l 交C 于,A B 两点,则( )A .C 的准线方程为2x =-B .以AB 为直径的圆与C 的准线相切 C .若5AB =,则线段AB 中点的横坐标为32D .若AB 4=,则直线l 有且只有一条11.若()sin 33cos x x x x f x =-,则下列说法正确的是( )A .()f x 的最小正周期是π2B .()f x 的对称轴方程为ππ212k x =-,()k ∈Z C .存在实数a ,使得对任意的x ∈R ,都存在125π,012,x x ⎡⎤∈-⎢⎥⎣⎦且12x x ≠,满足()()()210k f x af x f x -+=⎡⎤⎣⎦,()1,2k =D .若函数()()2g x f x b =+,25π0,12x ⎡⎤∈⎢⎥⎣⎦,(b 是实常数),有奇数个零点()12221,,,,N n n x x x x n +⋅⋅⋅∈,则()12322150π23n n x x x x x ++++⋅⋅⋅++= 三、填空题:本题共3小题,每小题5分,共15分.12.已知22log 3a a b b +=+=,求2a b += .13.如图,正方形ABCD 和正方形ABEF 的边长都是1,且它们所在的平面所成的二面角D AB F --的大小是60︒,则直线AC 和BF 夹角的余弦值为 .若,M N 分别是,AC BF 上的动点,且AM BN =,则MN 的最小值是 .14.某蓝莓基地种植蓝莓,按1个蓝莓果重量Z (克)分为4级:10Z ≥的为A 级,810Z ≤<的为B 级,68Z ≤<的为C 级,46Z ≤<的为D 级,4Z <的为废果.将A 级与B 级果称为优等果.已知蓝莓果重量Z 服从正态分布()5,9N .对该蓝莓基地的蓝莓进行随机抽查,每次抽出1个蓝莓果.记每次抽到优等果的概率为p (可精确到0.1).若为优等果,则抽查终止,否则继续抽查直到抽出优等果,但抽查次数最多不超过n 次,若抽查次数X 的期望值不超过3,n 的最大值为.附:0().6827P Z μσμσ-<≤+=,2205().945P Z μσμσ-<≤+=,(33)0.9773P Z μσμσ-<≤+=三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)大学生刘铭去某工厂实习,实习结束时从自己制作的某种零件中随机选取了10个样品,测量每个零件的横截面积(单位:2mm )和耗材量(单位:3mm ),得到如下数据: 样本号i 1 2 3 4 5 6 7 8 9 10 总和零件的横截面积i x 0.03 0.05 0.04 0.07 0.07 0.04 0.05 0.06 0.06 0.05 0.52耗材量i y0.24 0.40 0.23 0.55 0.50 0.34 0.35 0.45 0.43 0.413.9 并计算得101010222111241010.2143, 1.49013610i i i i i i i x y x x y y -===⎛⎫⎛⎫==⨯ ⎪⎪⎝⎭⎝⎭--∑∑∑.(1)估算刘铭同学制作的这种零件平均每个零件的横截面积以及平均一个零件的耗材量;(2)求刘铭同学制作的这种零件的横截面积和耗材量的样本相关系数(精确到0.01);(3)刘铭同学测量了自己实习期制作的所有这种零件的横截面积,并得到所有这种零件的横截面积的和为2182mm ,若这种零件的耗材量和其横截面积近似成正比,请帮刘铭计算一下他制作的零件的总耗材量的估计值.附:相关系数1222211 1.49136 1.221n i ii n n i i i i x y nx y r x nx y n y ===-=≈⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑.16.(15分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AB BC ⊥,AB AD ⊥,2AD BC =,2DE PE =.(1)证明://BP 平面ACE ;(2)已知2AD =,2AP =10PD =平面PAD ⊥底面ABCD ,若平面PAC 与平面EAC 的夹角的余弦值为15,求AB . 17.(15分)已知函数()e log e x a f x a x =--,其中1a >.(1)若e a =,证明()f x 0≥; (2)讨论()f x 的极值点的个数.18.(17分)已知椭圆()2222:10x y C a b a b+=>>,1F ,2F 分别是椭圆C 的左、右焦点,点A 为左顶点,椭圆上的点到左焦点距离的最小值是焦距的14. (1)求椭圆C 的离心率;(2)直线l 过椭圆C 的右焦点2F ,与椭圆C 交于P ,O 两点(点P 在第一象限).且APQ △面积的最大值为253, ①求椭圆C 的方程;②若直线AP ,AQ 分别与直线34x =交于M ,N 两点,求证:以MN 为直径的圆恒过右焦点2F . 19.(17分)若有穷数列12:,,,(4)n A a a a n >满足:()1,1,2,,i n i a a c c i n +-+=∈=R ,则称此数列具有性质c P .(1)若数列23:2,,,2,6A a a -具有性质c P ,求23,,a a c 的值;(2)设数列A 具有性质0P ,且12,n a a a n <<<为奇数,当(),01,i j a a i j n >≤≤时,存在正整数k ,使得j i k a a a -=,求证:数列A 为等差数列; (3)把具有性质c P ,且满足212k k a a m -+=(*,,2n k k m ∈≤N 为常数)的数列A 构成的集合记作(),c T n m .求出所有的n ,使得对任意给定的,m c ,当数列(),c A T n m ∈时,数列A 中一定有相同的两项,即存在(),1,i j a a i j i j n =≠≤≤.。

全国高考模拟数学试卷

全国高考模拟数学试卷

一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -1C. 1D. 52. 在直角坐标系中,点A(2,3),点B(-1,2),则线段AB的中点坐标为()A. (0,2.5)B. (1,2.5)C. (1,1.5)D. (0,1.5)3. 下列函数中,定义域为全体实数的是()A. f(x) = √(x+1)B. f(x) = 1/xC. f(x) = x²D. f(x) = log2(x-1)4. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 29B. 32C. 35D. 385. 若a,b是方程x² - 2ax + 1 = 0的两个实根,则a+b的值为()A. 2B. -2C. 0D. 46. 已知函数f(x) = x² - 4x + 3,则f(x)的对称轴方程为()A. x = 2B. x = 1C. x = 3D. x = 07. 在等腰三角形ABC中,AB=AC,∠BAC=60°,则∠ABC的度数为()A. 30°B. 45°C. 60°D. 90°8. 下列不等式中,正确的是()A. 2x + 3 > 5x - 2B. 3x - 2 < 2x + 1C. x + 1 > 2x - 3D. x - 1 < 2x + 39. 若复数z满足|z-1| = |z+1|,则z的实部为()A. 0B. 1C. -1D. 210. 已知等比数列{an}的首项为3,公比为2,则第n项an的值为()A. 3×2^(n-1)B. 3×2^nC. 3×2^(n+1)D. 3×2^(n-2)11. 若函数f(x) = ax² + bx + c在x=1时取得极值,则a+b+c的值为()A. 0B. 1C. 2D. 312. 在平面直角坐标系中,点P(1,2)关于直线y=x的对称点为()A. (2,1)B. (1,2)C. (-2,-1)D. (-1,-2)二、填空题(本大题共8小题,每小题5分,共40分)13. 若函数f(x) = x³ - 3x² + 2x + 1在x=1处取得极值,则极值为________。

新高考高考数学试卷模拟

新高考高考数学试卷模拟

一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x^3 - 3x^2 + 4x + 1,则f(x)的图像大致为()A. 单调递增B. 单调递减C. 先增后减D. 先减后增2. 在△ABC中,∠A=60°,∠B=45°,则△ABC的周长与面积之比为()A. 2√3 : 3B. 3 : 2√3C. √3 : 2D. 2 : √33. 已知数列{an}是等差数列,且a1 + a5 = 20,a3 = 10,则数列{an}的公差d 为()A. 2B. 4C. 6D. 84. 设复数z = a + bi(a,b∈R),若|z - 1| = |z + 1|,则z在复平面上的轨迹为()A. 线段[1, -1]B. 线段[-1, 1]C. 圆心在原点,半径为1的圆D. 圆心在原点,半径为2的圆5. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像关于点()A. (1, 0)B. (2, 0)C. (0, 1)D. (0, 2)6. 在直角坐标系中,点P(m, n)到直线y = x的距离为√2,则点P的轨迹方程为()A. x^2 + y^2 = 2B. x^2 - y^2 = 2C. x^2 + y^2 = 4D. x^2 - y^2 = 47. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的最小值为()A. 0B. 2C. 4D. 68. 已知数列{an}是等比数列,且a1 = 2,a3 = 32,则数列{an}的公比q为()A. 2B. 4C. 8D. 169. 在△ABC中,若∠A = 90°,∠B = 30°,则△ABC的面积S为()A. 1/2B. √3/2C. 1D. √310. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(x)的图像开口向上,且f(1) = 3,f(2) = 8,则a的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x) = (x - 1)^2 + 1,则f(x)的最小值为______。

四川省成都市2024年数学(高考)统编版模拟(自测卷)模拟试卷

四川省成都市2024年数学(高考)统编版模拟(自测卷)模拟试卷

四川省成都市2024年数学(高考)统编版模拟(自测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知向量,若与垂直,则与夹角的余弦值为()A.B.C.D.第(2)题已知数列满足,,n=3,4,…,若,则等于()A.B.3C.4D.5第(3)题已知,是z的共轭复数,则()A.B.C.D.第(4)题已知集合,则()A.B.C.D.第(5)题如图,将一个圆柱等分切割,再将其重新组合成一个与圆柱等底等高的几何体,越大,重新组合成的几何体就越接近一个“长方体”.若新几何体的表面积比原圆柱的表面积增加了10,则圆柱的侧面积为()A.B.C.D.第(6)题已知函数的周期为,且在区间内单调递增,则可能是()A.B.C.D.第(7)题如图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个公共点,4个小球的球心是以大球球心为中心的正方形的4个顶点,为小球相交部分(图中阴影部分)的体积,为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是()A.B.C.D.第(8)题已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,的定义域均为,其导函数分别为,.若,,且,则()A.函数为偶函数B.函数的图像关于点对称C.D.第(2)题为了解中学生喜爱足球运动与性别是否有关,甲、乙两校的课题组分别随机抽取了本校部分学生进行调查,得到如下两个表格:喜爱足球运动不喜爱足球运动合计男性15520女性81220合计231740甲校样本喜爱足球运动不喜爱足球运动合计男性7030100女性4555100合计11585200乙校样本(参考公式及数据:).0.10.010.0012.706 6.63510.828则下列判断中正确的是()A.样本中,甲校男学生喜爱足球运动的比例高于乙校男学生喜爱足球运动的比例B.样本中,甲校女学生喜爱足球运动的比例高于乙校女学生喜爱足球运动的比例C.根据甲校样本有的把握认为中学生喜爱足球运动与性别有关D.根据乙校样本有的把握认为中学生喜爱足球运动与性别有关第(3)题若函数,则()A.B.有两个极值点C.曲线的切线的斜率可以为D.点是曲线的对称中心三、填空(本题包含3个小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A) a >-2
(B) a <4
(C)-2≤ a <4
(D)-2< a ≤4
第Ⅱ卷
注意事项: 1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用 2B 铅笔). 2.本卷共 13 题,共 84 分.
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
13.计算 x5 x3 的结果等于
合函数的图象,求
x1
+ x2 2
+
x3
的取值范围.
(A) 2 2
(B) 2 3
(C)4
(D)8
10.若点(
−6

y1
),(2,
y2
),(3,
y3
)都是反比例函数
y
=
−a2 −1 x
的图象上的点,
则下列各式中正确的是
(A) y1 < y3 < y2
(B) y2 < y3 < y1
(C) y3 < y2 < y1
(D) y1 < y2 < y3
11.如图,在 Rt△ ABC 中, C = 90°, AC = 8 , BC = 6 , P 为 AC 边上的一动点,以
x
y
= =
6, −4
(C)
(D)
(B)5 和 6 之间 (D)7 和 8 之间
(B) 2 + b (D) 2 + b
2a + b
(B)
x y
= =
6, −2
(D)
x y
= =
0, 2
9.如图,菱形 ABCD 的周长为 16,C = 120°,E ,F 分别为 AB , AD 的中点,则 EF 的长为
P
针旋转 30°得到线段 BP ,连接 AP 并延长交 CD 于点 E ,连
E
接 PC ,则三角形 PCE 的面积为

B
C
18.如图,在每个小正方形的边长为1 的网格中,点 A , B , C , D 均在格点上, AB 与
CD 相交于点 E .
(Ⅰ) CD 的长等于

D
(Ⅱ) F 是线段 DE 上一点,且 3EF = 5FD ,
把三角形纸片 OAB 放置在平面直角坐标系中,点 A ( 16 ,12 ),点 B 在 x 轴的正半 55
轴上,且 OB = 5 .
(Ⅰ)如图①,求 OA , AB 的长及点 B 的坐标;
(Ⅱ)如图②,点 C 是 OB 的中点,将△ ABC 沿 AC 翻折得到△ ADC ,
①求四边形 ADCB 的面积;
②求证:△ ABC 是等腰三角形;
③求 OD 的长(直接写出结果即可).
y A
y A
D
O
Bx
O
图①
C
Bx
图②
25.(本小题 10 分)
在平面直角坐标系中,O 为坐标原点,抛物线 C :y = x2 + 4x + 3 的顶点为 M ,与 y 轴
的交点为 N . (Ⅰ)求点 M , N 的坐标; (Ⅱ)已知点 P (4,2),将抛物线 C 向上平移得抛物线 C ,点 N 平移后的对应点

14.计算( 6 + 2)( 6 − 2)的结果等于

15.不透明袋子中装有 7 个球,其中有 2 个红球、 3 个绿球和 2 个蓝球,这些球除颜色外
无其他差别.从袋子中随机取出1 个球,则它是红球的概率是

16.直线 y = x − 6 与 x 轴交点坐标为

A
D
17.如图,在正方形 ABCD 中, AD = 4 3 ,把边 BC 绕点 B 逆时
(A)
(B)
6.估计 48 的值在
(A)4 和 5 之间 (C)6 和 7 之间 7.计算 2 + b 的结果为
2a + b 2a + b (A)1
(C) 2 − b 2a + b
8.方程组
1 2 1 2
x x
+ +
3y = −6 y = 2.
, 的解是
(A)
x y
= 12, = −4
(C)
PB , PA 为边构造平行四边形 APBQ ,则对角线 PQ 的最小值为 A
(A)4
(B)6 P
(C)8
(D)10
B
C
12.已知二次函数 y = (x − a −1)(x − a + 1) − 2a + 9 ( a 是常数)的图象与 x 轴没有公共点,
且当 x <-2 时, y 随 x 的增大而减小,则实数 a 的取值范围是
为 N ,且 PN = ON ,求抛物线 C 的解析式;
(Ⅲ)将抛物线 C : y = x2 + 4x + 3 沿 y 轴翻折,得抛物线 C ,抛物线 C 与 x 轴交
于点 A , B (点 A 在点 B 的左侧),与 y 轴交于点 D ,平行于 x 轴的直线 l 与抛物线 C 交
于点 E ( x1 , y1 ), F ( x2 , y2 ),与直线 BD 交于点 G ( x3 , y3 ),若 x1 < x2 < x3 ,结
设小明在同一个店一次购买种子的数量为 x kg ( x 0 ). (Ⅰ)根据题意填表:
一次购买数量∕ kg
1.5
2
3.5
6

在甲店花费∕元
6.75
15.75

在乙店花费∕元
7.5
16

(Ⅱ)设在甲店花费 y1 元,在乙店花费 y2 元,分别求 y1 , y2 关于 x 的函数解析式;
(Ⅲ)根据题意填空:
和平区 2019-2020 学年度第二学期九年级第一次 质量调查数学学科试卷
温馨提示:本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第 1 页 至第 3 页,第Ⅱ卷为第 4 页至第 8 页.试卷满分 120 分.考试时间 100 分钟.
第Ⅰ卷
注意事项: 1.每题选出答案后,用 2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如
(A)1
(B) 3
(C)3
(D) 3 3
3.将 68 000 000 用科学记数法表示应为
(A) 680 105 (B) 68 106 (C) 6.8 107 (D) 0.68 108 4.下列图形中,是轴对称图形但不是中心对称图形的是
(A)
(B)
(C)
(D)
5.如 图 是一个由 6 个相同的正方体组成的立体图形,它的俯 视图是
在线 段 BF 上有一点 P ,满 足 BP = 4 , 请 PF 5
在如图所示的网格中,用无.刻.度.的直尺,画出
点 P ,并简要说明点 P 的位置是如何找到的
A E
(不要求证明)

B
C
三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程) 19.(本小题 8 分)
①和图②.请根据相关信息,解答下列问题:
8分 m%
9分 32%
7分
20%
6分 8%
10分 12%
图①
人数 8 6 4 2 0
8 7
5
3 2
6
7
8
9
10 得分/分
图②
(Ⅰ)参加这次比赛的人数为
,图①中 m 的值为

(Ⅱ)求统计的这组学生朗诵比赛成绩数据的平均数、众数和中位数.
21.(本小题 10 分) 已知 AB 是⊙ O 的直径,点 C 在⊙ O 上. (Ⅰ)如图①,点 D 在⊙ O 上,且 AC = CD ,若 CDA = 20°,求 BOD 的大小; (Ⅱ)如图②,过点 C 作⊙ O 的切线,交 BA 的延长线于点 E ,若⊙ O 的直径为 2 3 ,
解不等式组
x + 3≥2x + 3x − 2≥-8.
2,
① ②
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得

(Ⅱ)解不等式②,得

(Ⅲ)把不等式①和②的解集在数轴上表示出来:
−3 −2 −1 0 1 2
(Ⅳ)原不等式组的解集为

20.(本小题 8 分)来自某校举办朗诵比赛,比赛结束后,对学生的成绩进行了统计.绘制出如下的统计图
AC = 3 ,求 EA 的长.
D C
A
O
B
C
E
A
O
B
图①
图②
22.(本小题 10 分) 如图,建筑物 BC 上有一宣传牌 AB ,从 D 处测得宣传牌底部 B 的仰角为 35°,前
进 4 m 到达 E 处,从 E 处测得宣传牌顶部 A 的仰角为 45°.已知建筑物 BC 的高是 16 m, 求宣传牌 AB 的高度(结果精确到 0.1 m).
需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 2.本卷共 12 题,共 36 分.
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,
只有一项是符合题目要求的)
1.计算 8-(-8)的结果等于
(A)-16
(B)0
(C)4
(D)16
2.3 tan 45o 的值等于
参考数据: sin 35 0.57 , cos 35 0.82 , tan 35 0.70 . A
B
C
ED
23.(本小题 10 分) 甲、乙两店销售同一种蔬菜种子.在甲店,不论一次购买数量是多少,价格均为 4.5
元 / kg .在乙店价格为 5 元 / kg ,如果一次购买 2kg 以上的种子,超出 2kg 部分的种子价 格打 8 折.
① 若小明在甲店和在乙店一次购买种子的数量相同,且花费相同,则他在同一个店
相关文档
最新文档