小学数学基本概念合集

合集下载

小学数学概念及公式最全(完整版)

小学数学概念及公式最全(完整版)

小学数学概念及公式大全(完整版)一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

小学数学的所有概念大全

小学数学的所有概念大全

小学数学的所有概念大全一、代数知识:整数:1、质数一个数除了1和它本身,不再有其它的约数(因数),这个数叫做质数(质数也叫做素数)。

2、合数一个数除了1和它本身,还有别的约数(因数),这个数叫做合数注意:1只有一个约数(因数),就是它本身,1既不是质数,也不是合数。

最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下),其余的质数均为奇数(奇数解释见下)。

3、偶数偶数就是可以被2整除的自然数(包括0)也叫做双数。

偶数通常用“2k”表示。

4、奇数奇数就是不能被2整除的自然数,也叫做单数。

奇数通常用2k+1表示注:偶数除了2以外都是合数。

偶数:能被2整除的数。

(也包括0)奇数:不能被2整除的数。

5、自然数:表示物体的数量的数,最小的自然数是“0”自然数也是整数。

0是正整数与负整数的分界线。

6、合数:除了“1”和它本身以外还有别的约数(因数)的数。

最小的合数“4”。

7、质数:只有“1”和它本身两个约数(因数)的数。

最小的质数是“2”。

8、“1”既不是合数也不是质数9、互质数:只有公约数(因数)“1”的两个数。

10、公约数(因数):两个数公有的约数(因数)。

11、公倍数:两个数公有的倍数。

12、质因数:把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。

13、分解质因数:把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。

14、能被2、3、5整除数的特征:能被2整除数的特征:个位上的数字是0,2,4,6,8能被3整除数的特征:各位上的数字之和是3的倍数能被5整除数的特征:个位上的数字是0,5能被9整除数的特征:各位上的数字之和是9的倍数.能被4或25整除数的特征:末两位上的数是4或25的倍数.能被8或125整除数的特征:末三位数是8或125的倍数.15、小数:小数的基本性质:在小数末尾添上”0”或去掉”0”,小数的大小不变.无限小数:小数部分的为数是无限的。

无限循环小数:小数部分的数位有规律的.无限不循环小数:小数部分没规律(又叫无理数)纯循环小数:从小数部分第一位开始循环`混循环小数:不是从小数部分第一位开始循环循环节:从小数部分的某一位起.开是依次不断重复一个或几个数字.这些数字叫做循环节.16、分数分数的意义:把单位”1”平均分成若干份,取其中的一份或几份的数叫做分数.分数的基本性质:分数的分子和分母同时乘或除以一个数(0除外).分数的大小不变.真分数<1. 假分数≥1将一个分数的分子与分母同时同时除以他们的最大公因数,这个过程叫约分.而得到的这个分数叫最简分数.最简分数:分母与分子互质的时候.这个分数就叫最简分数.将几个异分母的分数利用分数的基本性质将分母变成一样.这个过程叫通分.在分数大小的比较中会广泛遇到通分.二、几何知识:一个封闭式图形,将他的周围围上1圈,这个圈的长度是他的周长.一个物体所占空间的大小叫做这个物体的体积.一个物体所能容纳别的物体的体积叫做这个物体的容积一个物体表面的面积叫表面积三角形的内角和是180度.四边形的内角和是360度.N边形的内角和是(边长-2)×180度.外角:1条边的反向延长线与相邻的一条边所夹的角叫做外角.三角形的外角是不相邻的两个内角之和,任何封闭式的图形的外角和都是360度1、线:直线:没有端点,没有长度,无限延长射线:有一个端点,没有长度,无限延长线段:有两个端点,有长度.由一个点引出的两条射线,这两条射线所夹的这个部分叫做角,而那个点叫做顶点.角分为几种角:锐角(大于0度小于90度),直角(等于90度),钝角(大于90度小于180度),平角(等于180度),周角(等于360度)由1点做一条线段的垂线,这个点叫做垂足.当两条直线永远不相交时,就说明这两条直线互相平行.2、平面图形:三角形:三角形中最大的角是钝角的话这个三角形叫钝角三角形.三角形中最大的角是直角的话这个三角形叫直角三角形三角形中最大的角是锐角的话这个三角形叫锐角三角形从顶点做与他对边的垂线段.这个垂线段的长度叫做这个三角形的高.1个三角形有三条高.当三角形有两条边的长度相等时,这个三角形叫等腰三角形,等腰三角形长度相等的两个边叫做腰,而剩下的叫底.当三角形3条边相等时,这个三角形叫等边三角形,等边三角形是特殊的等腰三角形.他的3个角都是60度.四边形:一个四边形的四个角都是直角.且任意不相邻的两条边互相平行时,这个四边形叫长方形.当四条边都相等时,且每个角是90度时,这是个正方形.正方形是特殊的长方形.当四边形的任意两条边互相平行时,这个图形是平行四边形(长方形是特殊的平行四边形).平行四边形有无数条高.当4条边长度相等时.这个图形叫菱形(菱形是特殊的平行四边形).只有一组对边互相平行时,这个图形叫梯形.梯形上面那条边叫上底.下面那条边叫下底.而梯形的左右两条边叫梯形的腰.当左右两条边的长度相等时.这个梯形叫等腰梯形.圆的周长与直径的比值始终是定值。

小学数学概念及公式大全(完整版)

小学数学概念及公式大全(完整版)

小学数学概念及公式大全(完整版) 一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

小学数学的所有概念大全

小学数学的所有概念大全

小学数学的所有概念大全一、代数知识:整数:1、质数一个数除了1和它本身,不再有其它的约数(因数),这个数叫做质数(质数也叫做素数).2、合数一个数除了1和它本身,还有别的约数(因数),这个数叫做合数注意:1只有一个约数(因数),就是它本身,1既不是质数,也不是合数。

最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下),其余的质数均为奇数(奇数解释见下)。

3、偶数偶数就是可以被2整除的自然数(包括0)也叫做双数。

偶数通常用“2k”表示。

4、奇数奇数就是不能被2整除的自然数,也叫做单数.奇数通常用2k+1表示注:偶数除了2以外都是合数。

偶数:能被2整除的数。

(也包括0)奇数:不能被2整除的数.5、自然数:表示物体的数量的数,最小的自然数是“0”自然数也是整数.0是正整数与负整数的分界线。

6、合数:除了“1”和它本身以外还有别的约数(因数)的数。

最小的合数“4”.7、质数:只有“1"和它本身两个约数(因数)的数。

最小的质数是“2”。

8、“1”既不是合数也不是质数9、互质数:只有公约数(因数)“1"的两个数。

10、公约数(因数):两个数公有的约数(因数)。

11、公倍数:两个数公有的倍数。

12、质因数:把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。

13、分解质因数:把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。

14、能被2、3、5整除数的特征:能被2整除数的特征:个位上的数字是0,2,4,6,8能被3整除数的特征:各位上的数字之和是3的倍数能被5整除数的特征:个位上的数字是0,5能被9整除数的特征:各位上的数字之和是9的倍数.能被4或25整除数的特征:末两位上的数是4或25的倍数.能被8或125整除数的特征:末三位数是8或125的倍数.15、小数:小数的基本性质:在小数末尾添上”0”或去掉”0",小数的大小不变.无限小数:小数部分的为数是无限的.无限循环小数:小数部分的数位有规律的。

小学数学概念大全

小学数学概念大全

小学数学概念大全Newly compiled on November 23, 2020整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。

一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十。

这种计数方法叫做十进制计数法。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

一个数字所在的数位不同,表示的数的大小也不同。

第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算。

1~6年级数学概念大全

1~6年级数学概念大全

数学概念全梳理
1~6年级数学概念大全
一、数的认识
● 1.1 整数与小数
⏹整数:包括正整数、0和负整数。

⏹小数:分为有限小数、无限循环小数和无限不循环小数。

⏹ 1.2 分数
⏹定义:表示整体的一部分。

⏹分类:真分数、假分数和带分数。

⏹ 1.3 十进制
⏹定义:计数法的一种,每相邻两个数位之间的进率是10。

二、数的运算
● 2.1 加法与减法
⏹基本运算规则。

⏹ 2.2 乘法与除法
⏹基本运算规则。

⏹ 2.3 四则混合运算
⏹定义:包含加减乘除的运算。

⏹运算顺序:先乘除后加减,括号内的优先。

三、图形与几何
● 3.1 基本图形
⏹直线、射线、线段、角、三角形、四边形等。

⏹ 3.2 面积与周长
⏹面积:表示图形所占的平面大小。

⏹周长:表示图形的边界长度。

⏹ 3.3 立体几何
⏹长方体、正方体、圆柱、圆锥等。

四、统计与概率
● 4.1 统计图表
⏹条形图、折线图、扇形图等。

⏹ 4.2 平均数、中位数和众数
⏹平均数:所有数的和除以数的个数。

⏹中位数:一组数按大小顺序排列后,位于中间位置的数。

⏹众数:一组数中出现次数最多的数。

⏹ 4.3 概率初步知识
⏹定义:某一事件发生的可能性大小。

五、综合与实践
● 5.1 数学问题解决策略
⏹分析法、综合法、枚举法等。

⏹ 5.2 数学游戏与数学谜题
⏹数独、魔方等数学智力游戏。

小学数学概念及公式大全(完整版)

小学数学概念及公式大全(完整版)

一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2 +4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式.9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算.即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减.12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1。

180条小学数学基础概念总结

180条小学数学基础概念总结

180条小学数学基础概念总结整数概念【自然数】我们在数物体的时候,用来表示物体个数的 , , , , , 叫做自然数。

一个物体也没有,用“ ”表示,“ ”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【计数单位】一,十,百,千,万,十万,百万,千万,亿 都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十。

这种计数方法叫做十进制计数法。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

一个数字所在的数位不同,表示的数的大小也不同。

第一个数位称为个位,依次是十位,百位,千位,万位,十万位 【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算。

【整除】两个整数相除,如果用字母表示可以这样说:整数♋除以整数♌☎♌不等于 ✆除得的商正好是整数而没有余数,我们就说♋能被♌整除,也可以说♌能整除♋。

180条小学数学基础概念总结

180条小学数学基础概念总结

180条小学数学基础概念总结整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,。

..叫做自然数.一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码.【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法.【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法.【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数.【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【计数单位】一,十,百,千,万,十万,百万,千万,亿。

.。

.。

都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十.这种计数方法叫做十进制计数法。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

一个数字所在的数位不同,表示的数的大小也不同.第一个数位称为个位,依次是十位,百位,千位,万位,十万位.。

.。

..【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算.【整除】两个整数相除,如果用字母表示可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。

小学数学基础概念(精编版)汇总

小学数学基础概念(精编版)汇总

整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。

一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十。

这种计数方法叫做十进制计数法。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

一个数字所在的数位不同,表示的数的大小也不同。

第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算。

【整除】两个整数相除,如果用字母表示可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。

小学数学基本概念汇总

小学数学基本概念汇总

最齐全的小学数学基本概念,没有之一! 下面是小学数学基础概念大全,家长收藏起来,一条一条讲给孩子听。

整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,..。

叫做自然数。

一个物体也没有,用“0"表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的.【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数.【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商.【计数单位】一,十,百,千,万,十万,百万,千万,亿.。

...都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十。

这种计数方法叫做十进制计数法。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.一个数字所在的数位不同,表示的数的大小也不同。

第一个数位称为个位,依次是十位,百位,千位,万位,十万位。

.。

【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算.【第二级运算】在四则运算中,乘法和除法叫做第二级运算.【整除】两个整数相除,如果用字母表示可以这样说:整数a除以整数b (b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。

小学数学基本概念汇总汇总

小学数学基本概念汇总汇总

基本观点第一章数和数的运算一观点(一)整数1整数的意义自然数和 0 都是整数。

2自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。

一个物体也没有,用0 表示。

0 也是自然数。

3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4数位计数单位依据必定的次序摆列起来,它们所占的地点叫做数位。

5数的整除b 整除,整数 a 除以整数b(b ≠)0,除得的商是整数而没有余数,我们就说a能被或许说 b 能整除 a 。

假如数 a 能被数 b( b ≠)0整除, a 就叫做 b 的倍数, b 就叫做 a 的约数(或 a 的因数)。

倍数和约数是互相依存的。

由于 35 能被 7 整除,因此 35 是 7 的倍数, 7 是 35 的约数。

一个数的约数的个数是有限的,此中最小的约数是 1,最大的约数是它自己。

比如: 10 的约数有 1、2、5、10,此中最小的约数是 1,最大的约数是 10。

一个数的倍数的个数是无穷的,此中最小的倍数是它自己。

3 的倍数有:3、6、9、12此中最小的倍数是 3 ,没有最大的倍数。

个位上是 0、2、 4、 6、 8 的数,都能被 2 整除,比如: 202、480、304,都能被 2 整除。

个位上是 0 或 5 的数,都能被 5 整除,比如: 5、30、405 都能被 5 整除。

一个数的各位上的数的和能被 3 整除,这个数就能被 3 整除,比如: 12、108、204都能被 3 整除。

一个数各位数上的和能被9 整除,这个数就能被9 整除。

能被 3 整除的数不必定能被9 整除,可是能被9 整除的数必定能被 3 整除。

一个数的末两位数能被4(或 25)整除,这个数就能被4(或 25)整除。

比如:16、404、1256 都能被 4 整除, 50、 325、500、1675 都能被 25 整除。

小学数学的所有概念大全

小学数学的所有概念大全

小学数学的所有概念大全一、代数知识:整数:1、质数一个数除了1和它本身,不再有其它的约数(因数),这个数叫做质数(质数也叫做素数)。

2、合数一个数除了1和它本身,还有别的约数(因数),这个数叫做合数注意:1只有一个约数(因数),就是它本身,1既不是质数,也不是合数。

最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下),其余的质数均为奇数(奇数解释见下)。

3、偶数偶数就是可以被2整除的自然数(包括)也叫做双数。

偶数通常用“2k”表示。

4、奇数奇数就是不能被2整除的自然数,也叫做单数。

奇数通常用2k+1表示注:偶数除了2以外都是合数。

偶数:能被2整除的数。

(也包括)奇数:不能被2整除的数。

5、自然数:表示物体的数量的数,最小的自然数是“0”自然数也是整数。

是正整数与负整数的分界线。

6、合数:除了“1”和它本身以外还有别的约数(因数)的数。

最小的合数“4”。

7、质数:只有“1”和它本身两个约数(因数)的数。

最小的质数是“2”。

8、“1”既不是合数也不是质数9、互质数:只有公约数(因数)“1”的两个数。

10、公约数(因数):两个数公有的约数(因数)。

11、公倍数:两个数私有的倍数。

12、质因数:把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。

13、分解质因数:把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。

14、能被2、3、5整除数的特性:能被2整除数的特性:个位上的数字是,2,4,6,8能被3整除数的特征:各位上的数字之和是3的倍数能被5整除数的特征:个位上的数字是,5能被9整除数的特征:各位上的数字之和是9的倍数.能被4或25整除数的特性:末两位上的数是4或25的倍数.能被8或125整除数的特征:末三位数是8或125的倍数.15、小数:小数的根本性质:在小数开端添上”0”或去掉”0”,小数的大小稳定.无限小数:小数部分的为数是无限的。

无限循环小数:小数局部的数位有纪律的.无限不循环小数:小数部分没规律(又叫无理数)纯循环小数:从小数部分第一位开始循环`混循环小数:不是从小数部分第一位开始循环循环节:从小数部分的某一位起.开是依次不断重复一个或几个数字.这些数字叫做循环节.16、分数分数的意义:把单位”1”平均分成若干份,取其中的一份或几份的数叫做分数.分数的基本性质:分数的分子和分母同时乘或除以一个数(除外).分数的大小不变.真分数<1.假分数≥1将一个分数的份子与分母同时同时除以他们的最大公因数,这个过程叫约分.而获得的这个分数叫最简分数.最简分数:分母与分子互质的时候.这个分数就叫最简分数.将几个异分母的分数使用分数的根本性质将分母变成一样.这个过程叫通分.在分数大小的比力中会遍及遇到通分.二、几何知识:一个封闭式图形,将他的周围围上1圈,这个圈的长度是他的周长.一个物体所占空间的大小叫做这个物体的体积.一个物体所能包容别的物体的体积叫做这个物体的容积一个物体表面的面积叫表面积三角形的内角和是180度.四边形的内角和是360度.N边形的内角和是(边长-2)×180度.外角:1条边的反向延长线与相邻的一条边所夹的角叫做外角.三角形的外角是不相邻的两个内角之和,任何关闭式的图形的外角和都是360度1、线:直线:没有端点,没有长度,无限延长射线:有一个端点,没有长度,无限延长线段:有两个端点,有长度.由一个点引出的两条射线,这两条射线所夹的这个局部叫做角,而XXX叫做极点.角分为几种角:锐角(大于度小于90度),直角(等于90度),钝角(大于90度小于180度),平角(等于180度),周角(等于360度)由1点做一条线段的垂线,这个点叫做垂足.当两条直线永久不订交时,就说明这两条直线相互平行.2、平面图形:三角形:三角形中最大的角是钝角的话这个三角形叫钝角三角形.三角形中最大的角是直角的话这个三角形叫直角三角形三角形中最大的角是锐角的话这个三角形叫锐角三角形从极点做与他对边的垂线段.这个垂线段的长度叫做这个三角形的高.1个三角形有三条高.当三角形有两条边的长度相等时,这个三角形叫等腰三角形,等腰三角形长度相等的两个边叫做腰,而剩下的叫底.当三角形3条边相等时,这个三角形叫等边三角形,等边三角形是非凡的等腰三角形.他的3个角都是60度.四边形:一个四边形的四个角都是直角.且任意不相邻的两条边互相平行时,这个四边形叫长方形.当四条边都相等时,且每个角是90度时,这是个正方形.正方形是特殊的长方形.当四边形的任意两条边互相平行时,这个图形是平行四边形(长方形是特殊的平行四边形).平行四边形有无数条高.当4条边长度相等时.这个图形叫菱形(菱形是特殊的平行四边形).只有一组对边相互平行时,这个图形叫梯形.梯形上面那条边叫上底.上面那条边叫下底.而梯形的左右两条边叫梯形的腰.当左右两条边的长度相等时.这个梯形叫等腰梯形.圆的周长与直径的比值始终是定值。

小学数学全部概念

小学数学全部概念

小学数学全部概念学习必备欢迎下载小学数学的全部概念三角形的面积=底×低÷2公式s=a×h÷2正方形的面积=边长×边长公式s=a×a长方形的面积=短×阔公式s=a×b平行四边形的面积=底×低公式s=a×h梯形的面积=(上底+下底)×低÷2公式s=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:v=abh长方体(或正方体)的体积=底面积×高公式:v=abh正方体的体积=棱长×棱长×棱长公式:v=aaa圆的周长=直径×π公式:l=πd=2πr圆的面积=半径×半径×π公式:s=πr2圆柱的表中(两端)面积:圆柱的表中(两端)面积等同于底面的周长乘高。

公式:s=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:s=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等同于底面积乘高。

公式:v=sh圆锥的体积=1/3底面×积高。

公式:v=1/3sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等同于除以这个数的倒数。

读懂理解会应用以下定义定理性质公式1、乘法交换律:两数相乘互换加数的边线,和维持不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相加,互换因数的边线,内积维持不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自然数 基 本 概 念第一章 数和数的运算一、概念(一)整 数1.自然数、负数和整数(1)自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

1是自然数的基本单位,任何一个自然数都是由若干个1组成。

0是最小的自然数,没有最大的自然数。

(2)负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。

正整数(1、2、3、4、……) (3)整 数 零 (0既不是正数也不是负数)负整数(-1、-2、-3、-4……)2、零的作用(1)表示数位。

读写数时,某个单位上一个单位也没有,就用0表示。

(2)占位作用。

(3)作为界限。

如“零上温度与零下温度的界限”。

3、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除 :整数a 除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。

(1)如果数a 能被数b (b ≠ 0)整除,a 就叫做b 的倍数,b 就叫做a 的约数(或a 的因数)。

倍数和约数是相互依存的。

如:因为35能被7整除,所以35是7的倍数,7是35的约数。

(2)一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。

如:3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

(5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

6、奇数和偶数能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

7、质数、合数、1(1)质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

100以的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

(2)合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

例如 4、6、8、9、12都是合数。

(3)1: 1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

8、公因数和最大公因数几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做这几个数的最大公约数。

例如:12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

9、公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数1 、小数的意义(1)把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……(3)一个小数由整数部分、小数部分和小数点部分组成。

数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

(4)在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数。

例如:0.25 、0.368 都是纯小数。

(2)带小数:整数部分不是零的小数,叫做带小数。

例如:3.25 、5.26 都是带小数。

(3)有限小数:小数部分的数位是有限的小数,叫做有限小数。

例如:41.7 、25.3 、0.23 都是有限小数。

(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如:4.33 ……3.1415926 ……(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

例如:π(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

例如:3.555 ……12.109109 ……(7)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99 …的循环节是“9 ”,0.5454 …的循环节是“54 ”。

(8)写循环小数的时候注意点:写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

例如:3.777 ……简写作:3. ;0.5302302 ……简写作:0.50 。

(三)分数1、分数的意义(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

(2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数表示两个数之间的倍比关系。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

二、方法(一)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把1254300000 改写成以万做单位的数是125430万;改写成以亿做单位的数12.543 亿。

2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015 省略亿后面的尾数是13 亿。

3、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

例如:省略345900 万后面的尾数约是35 万。

省略4725097420 亿后面的尾数约是47 亿。

4、大小比较(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

(2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(二)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2、分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(三)数的整除1、把一个合数分解质因数,通常用短除法。

先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

三、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

相关文档
最新文档