最新大学高等数学上考试题库(附答案)

合集下载

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。

1.下列各组函数中,是相同的函数的是()。

A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。

A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。

A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。

A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。

A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。

A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。

A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。

A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。

A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。

A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。

大学高等数学上考试题库(附答案)——2022年整理

大学高等数学上考试题库(附答案)——2022年整理

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()()20ln 10x f x x a x -≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctanln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x- 7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()()20ln 10x f x x a x -≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积..《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e,则()f x =( ).(A) ()121xx e - (B) 12xx e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五.sin 1,122dy dy tt t y dxdx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;.3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2YB 、 ()),0(0,1+∞-YC 、),0()0,1(+∞-ID 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)(φx b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

(完整版)大学高等数学上考试题库(附答案)

(完整版)大学高等数学上考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数29y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2YB 、 ()),0(0,1+∞-YC 、),0()0,1(+∞-ID 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)(φx b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

高等数学试题库及答案doc

高等数学试题库及答案doc

高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。

答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。

答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。

解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。

解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。

证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。

由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。

因此,函数 f(x) 是严格单调递增的。

五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。

求物体在前 3 秒内的位移。

解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。

六、论述题1. 论述微积分在物理学中的应用。

答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。

微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共30 分).1.下列各组函数中,是相同的函数的是().(A ) 2f x ln x 和g x 2ln x (B)f x | x|和2 g x x(C)f x x 和2g x x(D)f x| x |x 和g x 1 sin x 4 2f x ln 1 x x 02.函数在x 0 处连续,则a () .a x 0(A )0 (B)14(C)1(D)23.曲线y xln x 的平行于直线x y 1 0 的切线方程为() .(A )y x 1 (B)y (x1) (C)y ln x 1 x 1 (D)y x4.设函数 f x | x|,则函数在点x 0处().(A )连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x 0 是函数4y x 的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1|x|的渐近线情况是().(A )只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线1 1 7. 2fdxx x 的结果是().(A )1f Cx(B)1f Cx(C)1f Cx(D)1fCx8.dxx xe e的结果是().(A )arctan x e C (B)arctan xe C(C)x x x x e e C (D)ln( e e ) C9.下列定积分为零的是().(A ) 44 arctan x1 2 x dx (B) 4x a rcsin x dx (C)4xx ee112dx (D)112x x sin x dx10.设f x 为连续函数,则 10 f 2x dx 等于().(A )f 2 f 0 (B)12f 11 f 0(C)12f f (D)f 1 f2 0二.填空题(每题 4 分,共20 分)2 1xef x x x 01.设函数在x 0 处连续,则a .a x 02.已知曲线y f x 在x 2 处的切线的倾斜角为56 ,则f2 .3.yx2 1x的垂直渐近线有条.4.dx2x 1 ln x.5. 2 4 x sin x cosx dx .2三.计算(每小题 5 分,共30 分)1.求极限①limx 1 xx2x②limx 0x sin x2xx e12.求曲线y ln x y 所确定的隐函数的导数y .x 3.求不定积分①dxx 1 x 3 ②dx2 2x aa 0 ③xxe dx四.应用题(每题10 分,共20 分)1.作出函数3 3 2y x x 的图像.2.求曲线 2 2y x和直线y x 4所围图形的面积.《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C二.填空题 1.22.33 3. 24. arctan ln x c5.2三.计算题 1① 2 e② 1 62. yx1x y13. ① 1 x 1 ln | |2x 3C ②2 2xln | x a x | C③e x 1C四.应用题 1.略 2. S 18《高数》试卷 2(上)一. 选择题 ( 将答案代号填入括号内 , 每题 3 分, 共 30 分) 1.下列各组函数中 ,是相同函数的是 ( ). (A) f x x 和 2g xx(B)f x2 1 xx 1和 y x 1 (C)f xx 和 2 2gx x(sin x cos x)(D)2f x ln x 和g x2ln xsin 2 x 1 x 1 x 1 f x2x 12.设函数,则2x 1x 1l im x 1f x ().(A)(B)1(C)2(D)不存在3.设函数 y f x 在点 x 0 处可导,且 f x >0, 曲线则 y f x 在点 x 0, f x 0 处的切线的倾斜角为 {}.(A)(B)(C) 锐角 (D) 钝角24.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ( ).(A)2,ln 1 2(B)2, ln1 2 (C) 1 2 ,ln 2 (D) 1 2 , ln 25.函数2 xy x e 及图象在 1,2 内是().(A) 单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ( ). (A) 若 x 0 为函数 y f x 的驻点 ,则 x 0 必为函数 y f x 的极值点 .(B) 函数 y f x 导数不存在的点 ,一定不是函数 yf x 的极值点 .(C) 若函数 y f x 在 x 0 处取得极值 ,且 f x 0 存在,则必有 f x 0 =0. (D) 若函数 yf x 在 x 0 处连续 ,则 f x 0 一定存在 .17.设函数 y f x 的一个原函数为 2 xx e ,则 f x=().1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D) 2 x e x8.若 f x dx F xc ,则 sin xf cos x dx ().(A)F sin x c (B) F sin xc (C) F cos x c (D) F cosx c9.设 F x 为连续函数 ,则1x fdx=().2(A)f 1 f 0 (B) 2 f 1 f 0 (C) 2 f 2f 0(D)1 2 f f210.定积分 b adxa b 在几何上的表示().(A) 线段长 b a (B) 线段长 a b (C) 矩形面积 a b 1 (D) 矩形面积 b a 1二. 填空题 ( 每题 4 分, 共 20 分)2ln 1x f xx1 cosx 01.设, 在 x 0连续,则a =________.ax 02.设 2y sin x , 则dy _________________ d sin x .x3.函数21yx 1的水平和垂直渐近线共有_______条.4.不定积分x ln xdx ______________________.5. 定积分1 12x sin x 1 dx21 x___________.三. 计算题 ( 每小题 5 分, 共 30 分)1.求下列极限 : ① 1lim 1 2x x②x 0lim x2 a rctan x 1xy2.求由方程y 1 xe 所确定的隐函数的导数 y x .3.求下列不定积分 :① 3tan x s ec xdx②dx22xaa 0③ 2 xx e dx四. 应用题 ( 每题 10 分, 共 20 分)1.作出函数 13 y x x 的图象 .(要求列出表格 )32.计算由两条抛物线:2, 2yx y x 所围成的图形的面积 .《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题: 1.-2 2. 2sin x 3.3 4. 1 12 2x ln x x c5.2 42三.计算题:1. ①2e ②12.yx yye23.①3sec3xc②2 2ln x a x c ③ 2 2 2 xx x ec四.应用题:1.略2. S 13《高数》试卷3(上)一、填空题( 每小题3 分, 共24 分)1. 函数y 9 12x的定义域为________________________.sin 4xf x x , x 02. 设函数, 则当a=_________时, f x 在x 0处连续.a, x 03. 函数f (x)2x12x 3x 2的无穷型间断点为________________.x4. 设f (x) 可导, y f (e ) , 则y ____________.5.2x 1lim _________________.2x x x2 56. 113 2x sin x4 2x x 1dx =______________.7. ddx2xte dt _______________________.8. 3 0y y y 是_______阶微分方程.二、求下列极限( 每小题5 分, 共15 分)1. limx 0xesin1xx; 2. lim 2x 3x39; 3.x1lim1 .x 2x三、求下列导数或微分( 每小题5 分, 共15 分)1. xy , 求y (0) . 2.x 2cos xy e , 求dy .3. 设x yxy e , 求dy dx .四、求下列积分( 每小题5 分, 共15 分)1. 1 2sin x dxx . 2. x ln(1x )dx .3. 1 2xe dx五、(8 分) 求曲线x ty 1 cost在t 处的切线与法线方程.2六、(8 分) 求由曲线2 1,y x 直线y 0, x 0 和x 1所围成的平面图形的面积, 以及此图形绕y轴旋转所得旋转体的体积.七、(8 分) 求微分方程 y 6y 13y 0 的通解. 八、(7 分) 求微分方程y xy e x满足初始条件 y 10的特解.《高数》试卷 3 参考答案一.1. x3 2. a 43. x 24.'( )x xe f e5. 126.07.xe 8. 二阶x 22x 二.1. 原式= lim 1x 0x2. l imx x 311 3 63. 原式=1 112 x 22lim[(1) ] ex2x三.1.2 1 y ', y '(0)2(x 2) 22. cosxdysin xe dx3. 两边对 x 求写:'(1 ')x yyxy eyy 'x y e y xy y x yx e x xy四.1. 原式=lim x2cos x C2. 原式=22x x 12lim(1 x)d ( ) lim(1 x) x d[lim(1 x)] 2 x 2= 2 1 2 1 1 x x x lim(1 x) dx lim(1 x) ( x 1 )dx 2 2 1 x 2 2 1x = 2 2x1 x lim(1 x) [ x lim(1 x)] C2 2 23.原式= 1 1 2 1 2 1 1 2x x 1 1 21 2 1 1 2e d (2 x) e (e 1)222dydy五.sin 1 ,1t t ty 且dxdx22 切线:1,1 0yx即y x 2 2 法线:1( ),1 0 yx即y x 22六.121213 S(x1)dx ( xx)2 21 221 42V(x 1) dx ( x2x1)dx5x2 28 21( x x)5315七. 特征方程: 2r6r 13 0r 32i3xy e (C cos 2x C sin 2x)12八. 1 1 dx xdx xxy e( e e dx C)1 x x[( x 1)e C ] 由y x 1 0,C 0x 1 x y ex《高数》试卷 4(上)一、选择题(每小题 3 分) 1、函数y ln(1 x) x 2 的定义域是().A2,1B2,1C2,1D2,12、极限 xlim e 的值是( ).xA 、B 、 0C 、D 、 不存在sin( x 1)3、2limx11 x(). A 、1B 、 0C 、1 2 D 、1 23x4、曲线 y x2 在点 (1, 0) 处的切线方程是()A 、 y 2(x 1)B 、 y 4( x 1)C 、 y4x 1D 、 y 3(x 1)5、下列各微分式正确的是( ). 2A 、 xdx d(x )B 、 cos 2xdxd (sin 2x)C 、 dxd(5 x)D 、d (x dx2 ) ( ) 2 )( )2x 6、设f (x )dx 2 c osC ,则 f (x) ().2A 、 sin x 2B 、sin x 2x C 、 sin CD 、22 sin x22 ln x 7、dxx ().2 1 2A 、 2ln x C x21 2B 、(2 ln x)C 21 ln x C 、ln 2 ln x CD 、C2x8、曲线2y x , x 1 , y 0所围成的图形绕 y 轴旋转所得旋转体体积 V().A 、1 0xB 、 4dx 4dx1 0ydyC 、 1 0(1 y) d y D 、 1(1 x dx 4 )4 )9、 1 01xe xe dx ().A 、ln1 e2 e 1 e 1B 、C 、D 、lnlnln22 32e210、微分方程y y y2x 2e 的一个特解为().A 、 y 3 72x e B 、 y 3 7 x e C 、 y272xexD 、 y 2 72xe二、填空题(每小题 4 分) 1、设函数 xy xe ,则 y; 2、如果3 s in mx limx 0x22 3, 则 m .3、 1 x; 3cos xdx 3 cos xdx14、微分方程 y 4y4y 0 的通解是. 5、函数f (x) x 2 x 在区间 0,4 上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限limx 0 1 x 1 xx1 2;2、求y cot x lnsin x2的导数;3、求函数3x 1y 的微分;4、求不定积分3x 1dx1 x 1;5、求定积分e1 ln x dx ;6、解方程edydx yx1 x 2;四、应用题(每小题10 分)1、求抛物线2y x 与 2y 2 x 所围成的平面图形的面积.2、利用导数作出函数2 3y 3x x 的图象.参考答案一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A ;10、D;二、1、x(x 2)e ;2、49;3、0 ;4、y 2x(C1 C x)e ;5、8,0226x三、1、1;2、cot 3 x ;3、dx3 2(x 1)1;4、2 x 1 2 l n(1 x 1) C ;5、2(2 )e2 2 12 ;;6、y xC四、1、83 ;2、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数1y 2 x 的定义域是().lg( x 1)A、2, 1 0,B、1,0 (0, )C、( 1,0 )(0, )D、( 1,)2、下列各式中,极限存在的是().A、lim c o s xx 0 B、lim arctan x C、lim sin x D、x xlimx2 x3、xx lim ( )(). x 1 xA 、e B、2e C、1D、1e4、曲线y xln x 的平行于直线x y 1 0的切线方程是().A、y xB、y (ln x 1)( x 1)C、y x 1D、y (x1)5、已知y x s in 3x ,则dy ().A、( cos3x 3 s in 3x )dxB、(sin 3x 3x c os3x) d xC、(cos 3x sin 3 x)dxD、(sin 3x x c os3x)dx6、下列等式成立的是().11A、x dx x C1x lnx B、 a dx a x C1 C 、 cos x dxsin x CD 、 tan xdxC21 xsinxsin cos7、计算 e x xdx的结果中正确的是().sin B 、e sin x cos x CxA 、e C C 、ex Csin xsin D 、e sin x (sin x 1) C8、曲线 2yx , x 1 , y 0所围成的图形绕 x轴旋转所得旋转体体积V().A 、 1 0 xB 、 4dx 4dx 1 0ydy C 、 1 0 (1 y) d y D 、1 0 (1 x dx 4 )4 )a2( ).29、设a ﹥0 ,则ax dxA 、 2aB 、 22aC 、 1 4 2aD 、 1 4 a2 10、方程( )是一阶线性微分方程 .y 2xA 、 x y ln 0B 、 ye y 0 xC 、(1x )sin0 D 、 xy dx( y6 )0 2yyy2x dy二、填空题(每小题 4 分) 1、设 f ( x) x e ax 1, , b x x 0 0,则有 lim f (x)x 0 , lim f (x)x 0;2、设 xyxe ,则y;23、函数f (x) ln(1 x ) 在区间 1,2 的最大值是,最小值是;4、 1x;3 cos xdx 3 cos xdx15、微分方程y 3y 2y 0 的通解是.三、计算题(每小题 5 分) 13 1、求极限 lim() 2x1xxx 21;22、求y1 x arccosx 的导数;3、求函数xy的微分;21 x1 4、求不定积分dxx 2 ln x;5、求定积分e1 ln x dx ;e26、求方程x y xy y1满足初始条件y( ) 4 的特解.2四、应用题(每小题10 分)1、求由曲线 2y 2 x 和直线x y 0 所围成的平面图形的面积.3xx 22、利用导数作出函数y x694 的图象 .参考答案( B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ;6、C ;7、D ;8、A ;9、D ; 10、B.二、1、 2 ,b ;2、( x2) e x ; 3、 ln 5 ,0 ; 4、0 ; 5、C e xC e 2 x1.2三、1、1 3 x ;2、arccosx 121 x1;3、dx(1 x x2 ) 122 )12;1 4、 22 ln x C ;5、 2(2 ) e;6、 y 2 x2 e 1x;四、1、 9 2 ; 2、图略。

高等数学考试题库(附答案解析)

高等数学考试题库(附答案解析)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

).
(A) f 2 f 0
(B)
1 2
f
11
f
0
(C)
1 2
f
2
f
0 (D)
f
1
f
0
二.填空题(每题 4 分,共 20 分)
1.设函数
f
x
e2
x
1
x
x0
在 x 0 处连续,则 a
.
a x 0
2.已知曲线 y f x 在 x 2 处的切线的倾斜角为 5 ,则 f 2
.
《高数》试卷 1(上)
一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).
1.下列各组函数中,是相同的函数的是(
(A) f x ln x2 和 g x 2 ln x
).
(B) f x | x | 和 g x x2
(C) f x x 和 g x
2
x
(D) f x | x | 和 g x 1
6.以下结论正确的是(
).
(A) 若 x0 为函数 y f x 的驻点,则 x0 必为函数 y f x 的极值点.
(B) 函数 y f x 导数不存在的点,一定不是函数 y f x 的极值点.
(C) 若函数 y f x 在 x0 处取得极值,且 f x0 存在,则必有 f x0 =0. (D) 若函数 y f x 在 x0 处连续,则 f x0 一定存在.
1.下列各组函数中,是相同函数的是(
).
(A) f x x 和 g x x2
(B) f x x2 1 和 y x 1
x 1
(C) f x x 和 g x x(sin2 x cos2 x) (D) f x ln x2 和 g x 2 ln x

大学高等数学上考试题库(附答案)

大学高等数学上考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x= 和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰ ②()220dxa x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 则曲线()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12x x x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx-=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xxln 2( ). A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰104dx x π B 、⎰1ydy π C 、⎰-10)1(dy y π D 、⎰-14)1(dx x π 9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ). A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ;2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 xx x x --+→11lim; 2、求x x y s i n ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx ; 5、求定积分 ⎰ee dx x 1ln ; 6、解方程 21xy x dx dy -= ;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ;10、D ;二、1、x e x )2(+; 2、94 ; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ;四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是( ). A 、()()+∞--,01,2 B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞-2、下列各式中,极限存在的是( ).A 、 x x c o s lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、x x 2lim +∞→3、=+∞→xx x x)1(lim ( ).A 、eB 、2eC 、1D 、e 14、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ).A 、 x y =B 、)1)(1(ln --=x x yC 、 1-=x yD 、)1(+-=x y5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin +6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C e x +sinB 、C x e x +cos sinC 、C x e x +sin sinD 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V (). A 、⎰104dx x π B 、⎰10ydy πC 、⎰-10)1(dy y πD 、⎰-104)1(dx x π9、设 a ﹥0,则 =-⎰dx x a a022( ).A 、2aB 、22a πC 、241a 0D 、241a π10、方程( )是一阶线性微分方程.A 、0ln 2=+'xy y x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ; 2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分)1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21x x y -=的微分;4、求不定积分⎰+dx x x ln 21 ;5、求定积分⎰e e dx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 6、x e xy 122-= ; 四、1、29 ; 2、图略。

最新大学高等数学上考试题库及答案

最新大学高等数学上考试题库及答案

最新大学高等数学上考试题库及答案最新大学高等数学上考试题库及答案《高数》试卷1( 上)一. 选择题(将答案代号填入括号内,每题3分,共30分).1. 卜冽各组函数中,是相同的函数的是().(A) ()()21 n21 nfxxgxx==和(B ) ()||fxx =和()2gxx =(C) 0fxx"l()02gxx =(D) Oilxfxx=和Ogx=12.函数()()sin42OlnilOxxfxxax f+-* IJ I=1 在0 乂=处连续,则。

=().(A) 0 (B ) 14(C ) 1 (D ) 23.曲线Inyxx=的平行于直线1 Oxy-+=的切线方程为().(A ) lyx=- (B)(l)yx=-+ (C ) OQln llyxx=- (D ) yx = 4. 设函数()||fxx =,则函数在点Ox =处().(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5. 点Ox = 是函数4yx=A J ().(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6. 曲线1IIy x =的渐近线情况是().(A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又冇垂直渐近线( D )既无水平渐近线又无垂直渐近线7.齣/的犁是()?( A) IfCxI 1-+\\)((B \ IfCxI 1(G) IfCx A + I\J ((Di) IfCxI 1-+\\)8.xxdxee-+J■的结果是().(A ) arcta n x e C + (B ) arcta n xC -+ (C) xxeeC-+ (D ) ln() xxeeC-++ 9.下列定积分为零的是().(A ) 424arctan lxdxx nTT-+J (B ) 44arcsin x x dx TUT J (C ) 112xx eedx-+J (D ) 121sinxxxdx-+J 10.设()fx 为连续函数, 2fxdx'J 等于().(A) Q020ff- (B )00iuo2ff JU (c)001 202ff.flJ (D ) ()()10ff ?。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

.《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共30 分).1.下列各组函数中,是相同的函数的是().(A )2f x ln x 和g x 2ln x (B)f x| x|和2g xx(C) f x x 和2g x x(D)f x| x|x 和g x1sin x 4 2 f x ln 1 x x 0在x0处连续,则a (). 2.函数a x 0(A)0 (B)14(C)1(D)23.曲线y xln x 的平行于直线x y 1 0 的切线方程为() .(A)y x 1 (B)y (x1) (C)y ln x 1 x 1 (D)y x 4.设函数 f x | x |,则函数在点x 0处().(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x 0是函数 4y x 的().(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1| x|的渐近线情况是().(A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.1 1fdx2x x的结果是().(A )1f Cx(B)1f Cx(C)1f Cx(D)1fCx8.dxxx e e的结果是().x x(A)arctan e C (B)arctan e C (C)x x x xe e C (D)ln( e e ) C9.下列定积分为零的是().(A)44 arctan1 2 xxdx (B)44x arcsin x dx(C)xx ee112dx(D)112x x sin xdx10.设 f x 为连续函数,则1f 2x dx 等于() .(A)f 2 f 0 (B)12f11 f 0(C)12f 2 f 0 (D)f 1f 0二.填空题(每题 4 分,共20 分)2x1ef xx x在x 0处连续,则 a. 1.设函数ax 02.已知曲线 y f x 在 x 2处的切线的倾斜角为56 ,则 f2 .3. yx21x 的垂直渐近线有 条.4. dx 2x 1 ln x. 5.24x sin x cosxdx .2三.计算(每小题 5 分,共 30 分) 1.求极限 ①lim x1 x x2 x②lim x 0x sin x 2 xx e1 2.求曲线 y ln x y所确定的隐函数的导数y x .3.求不定积分 ①dxx 1 x 3② dx 22x aa 0③xxedx四.应用题(每题 10 分,共 20 分)1. 作出函数3 3 2 y x x 的图像 .2.求曲线2 2y x 和直线 y x 4所围图形的面积 .《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1. 2 2.33 3.24.a rctanln x c5.2三.计算题1①2e②162. yx1xy13. ①1x 1ln ||2 x 3C ② 2 2 xln | x a x | C ③ e x1 C四.应用题1.略2.S 18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题 3 分,共30 分)4.下列各组函数中,是相同函数的是( ).(A) f x x 和2g x x (B) f x 2 1xx 1和y x1(C) f x x和2 2g x x(sin x cos x)(D)2f x ln x 和g x2ln xsin 2 x 1x 1x15.设函数f x 2 x12x 1 x 1 ,则l imx 1f x().(A) 0 (B) 1 (C) 2 (D) 不存在6.设函数y f x 在点x0 处可导,且 f x >0, 曲线则y f x 在点x0 , f x0 处的切线的倾斜角为{ }.(A) 0 (B) (C) 锐角(D) 钝角27.曲线y ln x 上某点的切线平行于直线y 2x 3,则该点坐标是( ).(A) 2,ln 12(B) 2,ln12(C)12,ln 2 (D)12,ln28.函数 2 xy x e 及图象在1,2 内是( ).(A) 单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D) 单调增加且是凹的9.以下结论正确的是( ).(A) 若x0 为函数y f x 的驻点,则x0 必为函数y f x 的极值点.(B) 函数y f x 导数不存在的点,一定不是函数y f x 的极值点.(C) 若函数y f x 在x0 处取得极值,且f x 存在,则必有f x=0.(D) 若函数y f x 在x0 处连续,则f x 一定存在.110.设函数y f x 的一个原函数为 2 xx e ,则f x=( ).1 1 1 1(A) 2x 1 e x (B) 2x e x (C) 2x 1 e x(D) 2 x e x11.若 f x dx F x c,则sin xf cosx dx ( ).(A) F sin x c (B) F sin x c (C) F cosx c (D) F cos x c12.设F x 为连续函数,则1 xf dx=( ).0 2(A) f 1 f 0 (B) 2 f 1 f 0 (C) 2 f 2 f 0 (D)12 f f 0213.定积分badx a b 在几何上的表示( ).(A) 线段长b a (B) 线段长a b (C) 矩形面积 a b 1 (D) 矩形面积 b a 1二.填空题(每题 4 分,共20 分)2ln 1x f xx1 cos x 01.设, 在x 0连续,则a =________.a x 02.设 2y sin x , 则dy _________________ dsin x .3.函数y x21x 1 的水平和垂直渐近线共有_______条.4.不定积分xln xdx ______________________.5. 定积分112x sin x 1dx21 x___________.三.计算题(每小题 5 分,共30 分)1.求下列极限:①1lim 1 2x x②x 0limx2arctanx1xy2.求由方程y 1 xe 所确定的隐函数的导数y x .3.求下列不定积分:① 3tan xsec xdx②dx2 2x aa0 ③ 2 xx edx四.应用题(每题10 分,共20 分)1.作出函数13y x x的图象.(要求列出表格)32.计算由两条抛物 2 , 2线:y x y x 所围成的图形的面积..《高数》试卷 2 参考答案一.选择题: CDCDB CADDD 二填空题: 1.-2 2. 2sin x3.34.1 12 2 x ln x xc5.242三.计算题: 1. ①2e ②12. yxyey 2 14.① 3 sec 3 x c ②22lnxaxc ③22 2 xx x ec四.应用题: 1.略2.S1 3《高数》试卷 3(上)一、 填空题(每小题 3 分, 共 24 分)6. 函数y 9 1 2 x 的定义域为________________________.sin4x f xx , x 0 7.设函数, 则当 a =_________时, f x 在 x 0处连续.a,x 08.函数 f (x) 2x1 2x3x2的无穷型间断点为________________. x9.设 f (x) 可导, yf (e ) , 则 y ____________.10.2x1lim_________________.2x2x x 5.15.113 2x sinx4 2x x1dx =______________.16.ddx2x te dt_______________________.17. 3 0y y y 是_______阶微分方程.二、求下列极限(每小题5 分, 共15 分)11.limx 0 xe si n 1x;2.limx 3x2x39;3.x1lim1 .x 2x三、求下列导数或微分(每小题 5 分, 共15 分)x4.y , 求y (0) . 2.x 2cos xy e , 求dy .3.设x yxy e ,求dydx.四、求下列积分(每小题 5 分, 共15 分)1. 1x2sin xdx. 2. x ln(1x)dx.3. 1 2xedx五、(8 分)求曲线x ty 1cost在t 处的切线与法线方程.2六、(8 分)求由曲线2 1,y x 直线y 0, x 0 和x 1所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8 分)求微分方程y 6y13 y 0的通解.八、(7 分)求微分方程yxyex满足初始条件y 1 0的特解.《高数》试卷 3 参考答案一.1.x 3 2.a 4 3. x 2 4. '( )x xe f e5. 12 6.07.2 x e x28.二阶二.1.原式=x lim 1x 0x2. limx 3x 1 1 3 63.原式=1112 22x lim[(1 ) ] ex 2x三.1 .21y' , y '(0)2(x 2)22. cosxdy sin xedx3.两边对x 求写:' (1 ')y xy e yx yy ' x ye yxy yx yx e xxy四.1.原式= lim x2cos x C2.原式=22x x 12lim(1 x)d ( ) lim(1 x) x d[lim(1 x)] 2 x 2= 2 2 x 1 x x 1 1lim(1 x) dx lim(1 x) (x 1 )dx 2 2 1 x 2 2 1 x= 2 2 x 1 x lim(1 x) [ x lim(1 x)] C 2 2 23.原式=1 12 1 2 1 12 xxe d(2 x) e (e 1)222dydy五.sin 1, 1tt ty且dxdx2 2. 切线: 1 , 1 0y x 即y x2 2法线: 1 ( ), 1 0y x 即y x2 2六.1 2 2 113S (x1)dx ( x x)221 12 2 4 2V (x 1) dx (x2x 1)dx0 05x 2 282 1( x x)5 3 15七.特征方程:2r 6r 13 0 r3 2i3 xy e (C cos 2x C sin 2x)1 2八.1 1dx dxxx xy e ( e e dx C)1xx[ (x1e)C ]由y x 1 0, C 0x 1 xy ex《高数》试卷4(上)一、选择题(每小题 3 分)1、函数y ln( 1x) x 2 的定义域是().A 2,1B 2,1C 2,1D 2,12、极限xlim e 的值是().xA、B、0 C、D、不存在3、sin(xlimxx1 121)().A、1B、0C、12D、123 x4、曲线y x 2 在点(1, 0) 处的切线方程是()A、y 2(x 1)B、y 4(x 1)C、y 4x 1D、y 3( x 1)5、下列各微分式正确的是().2A、xdx d(x )B、cos 2xdx d (sin 2x)C、dx d(5 x)D、d(xdx 2 )( )2 )( )2 x6、设 f (x)dx 2 cos C ,则 f (x) ().2A 、sinx2B、sinx2xC 、sin CD、22s inx2 2 ln x7、dxx ().2 12A、 2 ln x Cx 212 B、(2 ln x) C2.1 ln xC 、 ln 2 ln x CD 、C2x8、曲线2y x,x 1 , y 0所围成的图形绕 y 轴旋转所得旋转体体积 V().A 、 1 0x B 、 4dx 4dx1yd y C 、 10 (1 y) d y D 、10 (1 x dx 4 )4 ) 9、 1 0 1 x e x e dx ( ).A 、 ln 1 e 2 e 1 e 1ln lnlnB 、C 、D 、2232e210、微分方程 y yy 2 x2e的一个特解为() .A 、y3 7 2x eB 、y 3 7 xeC 、y2 7 2x xe D 、y2 7 2x e二、填空题(每小题 4 分) 1、设函数 xy xe ,则y ;2、如果3sin mx lim x 0 2x23 , 则 m.3、 1 x; 3 cos xdx 3 cos xdx14、微分方程 y 4y 4y 0 的通解是. 5、函数 f (x)x 2 x 在区间 0,4 上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限 lim x1 x 1 xx1 2;2、求 ycot x ln sin x2 的导数;3、求函数3x 1 y的微分;4、求不定积分3x1dx1x 1; 5、求定积分e 1 ln x dx ;6、解方程ed y dx yx21 x; 四、应用题(每小题 10 分)1、 求抛物线2y x 与2y 2 x 所围成的平面图形的面积 .2、利用导数作出函数2 3y 3x x 的图象.参考答案.一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A;10、D;二、1、x(x 2)e ;2、49;3、0;4、y 2x(C1 C x)e ;5、8,0226x3三、1、1;2、cot x ;3、dx3 2(x 1)1;4、2 x 1 2 ln(1 x 1) C ;5、2(2 )e2 2 12 ;;6、y x C四、1、8 3 ;2、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数1y 2 x 的定义域是().lg( x 1)A、2, 1 0,B、1,0 (0, )C、( 1,0 )(0, )D、( 1, )2、下列各式中,极限存在的是().A、lim c osxx 0 B、l im arctanx C、l im sin xD、x xlimxx23、xx lim ( )(). x 1 xA、eB、2e C、1D、1e4、曲线y xln x 的平行于直线x y 1 0 的切线方程是().A、y xB、y (ln x 1)( x 1)C、y x 1D、y (x1)5、已知y x s in 3x ,则dy ().A、( cos 3x 3 s in 3x)dxB、(sin 3x 3x cos3x) dxC、(cos 3x sin 3x) dxD、(sin 3x x cos3 x)dx6、下列等式成立的是().11x x lnA、x dx x CB、 a dx a x C11C、cosxdx sin x CD、tan xdx C21 x.sinx sin cos 7、计算 e x xdx 的结果中正确的是() .sin B、e x Cx sin x cos A、e C sin x sin D、e sin x (sin x 1) C C、e x C8、曲线2y x ,x 1 ,y 0所围成的图形绕x 轴旋转所得旋转体体积V ().A、1xB 、4dx4dx1ydyC、1(1 y) d yD、1(1 xdx4 )4 )a2 29、设 a ﹥0,则 a x dx0 ().A 、2aB、22aC、142a 0D、142a10、方程()是一阶线性微分方程.y2 xA、x y ln 0B、y e y 0x2 y y y 2 x dyC、(1 x ) sin 0D、xy dx ( y 6 ) 0二、填空题(每小题 4 分)1、设f ( x)xeax1,b,xx0 ,则有lim f (x)x 0,lim f (x)x 0;2、设xy xe ,则y ;23、函数 f (x) ln( 1x ) 在区间1,2 的最大值是,最小值是;4、1x; 3 cos xdx 3 cos xdx 15、微分方程y 3y2y0 的通解是.三、计算题(每小题 5 分)1 31、求极限lim( )2x 1 x 1 x x2;2 2、求y 1 x arccosx 的导数;3、求函数xy 的微分;21 x14、求不定积分dxx 2 ln x;.5、求定积分e1 ln x dx ;e26、求方程x y xy y1满足初始条件y( ) 4 的特解.2四、应用题(每小题10 分)1、求由曲线 2y 2 x 和直线x y 0 所围成的平面图形的面积.3 x2 x2、利用导数作出函数y x 6 9 4 的图象.参考答案( B 卷)一、1、B;2、A;3、D;4、C;5、B;6、C;7、D;8、A;9、D;10 、B.二、1、2 ,b ;2、x( x 2)e ;3、ln 5 ,0;4、0;5、x C e2xC1e.2三、1、13x;2、arccosx 121 x1;3、dx(1 x x2 ) 12 ) 12;14、2 2 ln x C ;5、2(2 )e ;6、y2x2e1x;四、1、92;2、图略。

高数考试试题及答案

高数考试试题及答案

高数考试试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 \)在区间[-1, 2]上的最大值是:A. 1B. 2C. 4D. 32. 微分方程\( y'' - y' - 6y = 0 \)的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 - 6 = 0 \)C.\( r^2 + r - 6 = 0 \) D. \( r^2 + 6 = 0 \)3. 若\( \lim_{x \to 0} \frac{f(x)}{x} = 1 \),则\( f(0) \)的值是:A. 0B. 1C. 无法确定D. 无穷大4. 曲线\( y = x^3 \)在点(1, 1)处的切线斜率是:A. 3B. 1C. 0D. -35. 函数\( f(x) = \ln(x) \)的原函数是:A. \( x^2 \)B. \( x^3 \)C. \( e^x \)D. \( x \ln(x) - x \)6. 定积分\( \int_{0}^{1} x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{4} \)C.\( \frac{1}{2} \) D. 17. 无穷级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是:A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C.\( e \) D. \( \ln(2) \)8. 若\( \lim_{n \to \infty} a_n = 0 \),则级数\( \sum_{n=1}^{\infty} a_n \):A. 一定收敛B. 一定发散C. 可能收敛也可能发散D. 无法判断9. 函数\( f(x) = \sin(x) + \cos(x) \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi/4 \)10. 函数\( f(x) = x^3 - 3x \)的极值点是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = 0 \)D.\( x = \pm 1 \)二、填空题(每题4分,共20分)1. 函数\( g(x) = 3x - 5 \)的反函数是 \( g^{-1}(x) = ______ \)。

大学高等数学 考试题库(附答案)

大学高等数学   考试题库(附答案)

最新《高数》题库一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x= 和 ()g x =1 2.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。

2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。

3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。

4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。

5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。

6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。

7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。

8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。

9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。

10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。

11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。

12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。

13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。

14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。

15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。

16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。

17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。

18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。

19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。

20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共30 分).1.下列各组函数中,是相同的函数的是().(A )2f x ln x 和g x 2ln x (B)f x| x|和2g xx(C)f x x 和2g x x(D)f x| x |x 和g x1sin x 4 2f x ln 1 x x 02.函数在x 0 处连续,则a () .a x 0(A )0 (B)14(C)1(D)23.曲线y xln x 的平行于直线x y 1 0 的切线方程为() .(A )y x 1 (B)y (x1) (C)y ln x 1 x 1 (D)y x4.设函数 f x | x|,则函数在点x 0处().(A )连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x 0 是函数4y x 的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1|x|的渐近线情况是().(A )只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线1 1 7. 2fdxx x 的结果是().(A )1f Cx(B)1f Cx(C)1f Cx(D)1fCx8.dxxxe e的结果是().(A )arctanxe C (B)arctanxe C(C)x x xxe e C (D)ln( ee ) C9.下列定积分为零的是().(A )44 arctanx1 2 xdx(B)4 x arcsin x dx(C)4xx ee112dx(D)112x x sin xdx10.设f x 为连续函数,则 10 f 2x dx 等于().(A )f 2 f 0 (B)12f11 f 0(C)12f f (D)f 1f 02 0二.填空题(每题 4 分,共20 分)2 1xef x x x 01.设函数在x 0 处连续,则a .a x 02.已知曲线y f x 在x 2 处的切线的倾斜角为56 ,则f2 .3.yx21x的垂直渐近线有条.4.dx2x 1 ln x.5. 2 4 x sin x cosxdx .2三.计算(每小题 5 分,共 30 分) 1.求极限① lim x1 xx2x②lim x 0x sinx 2 xx e1 2.求曲线 y ln x y所确定的隐函数的导数y.x3.求不定积分 ①dxx 1 x 3② dx 22x aa 0③ xxedx四.应用题(每题 10 分,共 20 分)1. 作出函数3 3 2y xx 的图像 .2.求曲线 2 2 y x 和直线 yx 4所围图形的面积 .《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C二.填空题 1.22.333. 24. arctan ln x c5.2三.计算题 1① 2e②1 62. yx1 xy13.①1 x 1 ln || 2 x 3C② 22xln | xax | C③ex1 C四.应用题 1.略 2. S 18《高数》试卷 2(上)一. 选择题 ( 将答案代号填入括号内 , 每题 3 分, 共 30 分) 1.下列各组函数中 ,是相同函数的是 ( ).(A) f x x 和2g xx(B)f x 21xx 1和 y x 1(C) f xx 和22g xx(sin x cos x) (D)2fx ln x 和 g x 2ln xsin 2 x 1x 1 x1 f x2 x 12.设函数,则2x1x 1lim x 1 f x().(A)(B)1(C)2(D)不存在3.设函数 y f x 在点 x 0 处可导,且 f x >0, 曲线则 yf x 在点 x 0, f x 0 处的切线的倾斜角为 {}.(A)(B)(C) 锐角(D)钝角24.曲线 y ln x 上某点的切线平行于直线y 2x 3 ,则该点坐标是 ( ).(A)2,ln 12(B)2, ln1 2(C)1 2,ln 2 (D) 1 2 , ln 25.函数2xyx e 及图象在 1,2 内是().(A) 单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ( ). (A) 若 x 0 为函数 y f x 的驻点 ,则 x 0 必为函数 y f x 的极值点 . (B) 函数 y f x 导数不存在的点 ,一定不是函数 yf x 的极值点 .(C) 若函数 yf x 在 x 0 处取得极值 ,且 f x 0 存在,则必有 f x 0 =0.(D) 若函数y f x 在x0 处连续,则f x0 一定存在.14.设函数 y f x 的一个原函数为 2 xx e ,则 f x=().1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D) 2 x e x5.若 f x dx F x c ,则 sin xf cos x dx ().(A)F sin x c (B)F sin xc (C) F cos x c (D) F cosx c6.设 F x 为连续函数 ,则1x fdx=().2(A)f 1f 0 (B) 2 f 1 f 0 (C) 2 f 2f 0(D)1 2 ff27.定积分 ba dx ab 在几何上的表示().(A) 线段长 b a (B) 线段长 a b (C) 矩形面积 a b 1 (D) 矩形面积 b a 1二. 填空题 ( 每题 4 分, 共 20 分)2ln 1xf x x1 cosx 07.设, 在 x0连续,则a =________.ax 08.设 2ysin x , 则dy _________________ dsin x .x9.函数21yx 1的水平和垂直渐近线共有_______条.10.不定积分 x ln xdx ______________________.11. 定积分1 1 2x sin x 1 dx 2 1 x___________.三. 计算题 ( 每小题 5 分, 共 30 分) 1.求下列极限 : ① 1lim 1 2x x②x 0lim x2arctan x 1 xy2.求由方程y 1 xe 所确定的隐函数的导数 y x .3.求下列不定积分 : ①3tan x sec xdx②dx22 xaa 0 ③ 2 x x edx四. 应用题 ( 每题 10 分, 共 20 分)1.作出函数 13 y x x 的图象 .(要求列出表格 )32.计算由两条抛物线:2, 2yx y x 所围成的图形的面积 .《高数》试卷 2 参考答案一.选择题: CDCDB CADDD 二填空题: 1.-2 2. 2sin x3.34.1 12 2 x ln x xc5.242三.计算题: 1.①2e ②1 2. yxy ye2 8.①3 sec 3 x c ②22lnxaxc ③22 2 x xx ec四.应用题: 1.略2.S1 3《高数》试卷 3(上)一、 填空题( 每小题 3 分, 共24 分) 12. 函数 y 9 12 x的定义域为 ________________________.sin4x f xx , x 0 13. 设函数, 则当 a=_________时, f x 在x 0处连续.a,x 014. 函数 f(x)2x 1 2x3x2的无穷型间断点为________________. x15. 设 f (x) 可导, y f (e ) , 则 y ____________.16.2x1lim_________________.2x x x 2 5 17. 1 13 2 x sin x 42 x x1 dx =______________. 18. d dx2 x 0 te dt _______________________.19.3y y y是_______阶微分方程 .二、求下列极限 ( 每小题 5 分, 共 15 分)4. lim x 0 xe si n1 x x ;2. lim 2x 3x3 9 ;3.x1lim 1. x2x三、求下列导数或微分 ( 每小题 5 分, 共 15 分)3. x y, 求 y (0) . 2.x 2cos xy e , 求dy .3. 设 x y xy e , 求dy dx .四、求下列积分 ( 每小题 5 分, 共15 分)1.1 2sin x dxx.2.x ln(1x )dx .3. 1 2xedx五、(8 分) 求曲线x ty 1cost在t 处的切线与法线方程.2六、(8 分) 求由曲线2 1,y x 直线y 0, x 0 和x 1所围成的平面图形的面积, 以及此图形绕y轴旋转所得旋转体的体积.七、(8 分) 求微分方程 y6y 13y 0 的通解.八、(7 分) 求微分方程yxy ex满足初始条件 y 10的特解.《高数》试卷 3 参考答案一.1. x32. a 43. x 24.'( )xxe f e9. 1 220. 7.xe8.二阶x 22x 二.1. 原式= lim1x 0x5. lim x x 3 1 13 66. 原式=1 1 12 x 22lim[(1) ]ex2x三.1.2 1y ', y '(0)2(x 2) 24. cosxdy sin xedx5.两边对 x 求写:'(1 ')x yyxyeyy' x ye yxy yx yx e xxy四.1. 原式=lim x2cos x C4. 原式=22x x 12lim(1 x)d ( ) lim(1 x) x d[lim(1 x)] 2 x 2=2 1 2 1 1 x x x lim(1 x) dx lim(1 x) ( x 1 )dx 2 2 1 x 2 2 1 x=2 2 x 1 x lim(1 x) [ x lim(1 x)] C 2 2 25. 原式=1 12 1 2 1 12x x1 121211 2 e d (2 x) e (e 1)222dydy五.sin 1, 1tt ty 且dxdx2 2切线:1 ,1 0yx 即y x2 2 法线:1( ),1 0yx 即y x 22六.121213S(x 1)dx ( xx)221 22 1 42V(x1) dx( x2x1)dx5x 2 282 1( x x)5 3 15七. 特征方程:2r 6r 13 0 r3 2i3xy e (C cos 2x C sin 2x)1 2八. 1 1dx x dxx xy e ( e e dxC)1 x x[( x 1)eC]由y x 1 0, C 0x 1 xy ex《高数》试卷4(上)一、选择题(每小题 3 分)1、函数y ln(1 x) x 2 的定义域是().A2,1B2,1C2,1D2,12、极限 xlim e 的值是( ).xA 、B 、 0C 、D 、 不存在sin( x 1) 3、2 limx 11 x().A 、1B 、 0C 、 1 2D 、1 23x4、曲线 y x2 在点 (1, 0) 处的切线方程是()A 、 y 2(x 1)B 、 y 4( x 1)C 、 y4x 1D 、 y 3(x 1)5、下列各微分式正确的是( ).2A 、 xdx d(x )B 、 cos 2xdx d (sin 2x)C 、 dxd(5 x)D 、d(xdx2 ) ( ) 2 ) ( )2x 6、设f (x )dx2 cos C ,则 f (x) ().2A 、 sin x2B 、 sin x 2xC 、 sinCD 、22 s inx22 ln x 7、dxx ( ).2 1 2A 、2ln x Cx21 2B 、(2 ln x)C21 ln xC 、ln 2 ln x CD 、C2x8、曲线 2yx , x 1 , y 0所围成的图形绕 y 轴旋转所得旋转体体积V().A 、 1 0xB 、 4dx 4dx1yd yC 、 1 0 (1 y) dyD 、1(1 x dx 4 )4 )9、 1 0 1 x e x e dx ( ).A 、 ln1 e2 e1 e 1 B 、 C 、D 、ln lnln2232e 210、微分方程 y yy 2x2e 的一个特解为().A 、y3 7 2x eB 、y3 7 x e C 、y 2 7 2 xe xD 、y2 7 2x e二、填空题(每小题 4 分) 1、设函数xy xe ,则y;2、如果 3 s in mx lim x 0 x 22 3 , 则m.3、1x; 3 cos xdx 3 cos xdx 14、微分方程y 4y4y0 的通解是.5、函数 f (x) x 2 x 在区间0,4 上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限limx 0 1x 1xx1 2;2、求y cot xln sin x2的导数;3、求函数3x 1y 的微分;4、求不定积分3x 1dx1 x 1;5、求定积分e1 ln x dx ;6、解方程edydx yx1x2;四、应用题(每小题10 分)1、求抛物线2y x与2y 2 x 所围成的平面图形的面积.2、利用导数作出函数2 3y 3x x 的图象.参考答案一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A ;10、D;二、1、x(x 2)e ;2、49;3、0 ;4、y 2x(C1 C x)e ;5、8,0226x三、1、1;2、cot 3 x ;3、dx3 2(x 1)1;4、2 x 1 2 ln(1 x 1) C ;5、2(2 )e2 2 12 ;;6、y x C四、1、83 ;2、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数1y 2 x 的定义域是().lg( x 1)A、2, 1 0,B、1,0 (0, )C、( 1,0 )(0, )D、( 1, )2、下列各式中,极限存在的是().A、lim c o s xx 0 B、lim arctan x C、lim sin xD、x xlimx2 x3、xx lim ( )(). x 1 xA 、e B、2e C、1D、1e4、曲线y xln x 的平行于直线x y 1 0的切线方程是().A、y xB、y (ln x 1)( x 1)C、y x 1D、y (x1)5、已知y x s in 3x ,则dy ().A、( cos3x 3 s in 3x )dxB、(sin 3x 3x cos3x) dxC、(cos 3x sin 3 x)dxD、(sin 3x x cos3x)dx6、下列等式成立的是().11A、x dx x C1x lnxB、 a dx a x C1C、cos xdx sin x CD、tan xdx C21 xsinx sin cos 7、计算 e x xdx 的结果中正确的是().sin B、e sin x cos x C xA、e CC、e x Csin x sin D、e sin x (sin x 1) C8、曲线2y x ,x 1 ,y 0所围成的图形绕x轴旋转所得旋转体体积V ().A、1xB 、4dx4dx1ydyC、1(1 y) dyD、1(1 xdx4 )4 )a2 ().29、设a﹥0 ,则 a x dxA 、2aB、22aC、142a 0D、14a210、方程()是一阶线性微分方程.y2 xA、x y ln 0B、y e y 0xC、(1 x ) sin 0D、xy dx ( y 6 ) 02 y y y 2 x dy二、填空题(每小题 4 分)1、设f ( x)xeax1,,bxx,则有lim f (x)x 0,lim f (x)x 0;2、设xy xe ,则y ;23、函数 f (x) ln(1 x ) 在区间1,2 的最大值是,最小值是;4、1x; 3 cos xdx 3 cos xdx 15、微分方程y 3y2y0 的通解是.三、计算题(每小题 5 分)1 3 1、求极限lim( )2x 1 x x x21 ;2 2、求y 1 x arccosx 的导数;3、求函数xy 的微分;21 x14、求不定积分dxx 2 ln x;5、求定积分e1 ln x dx ;e26、求方程x y xy y1满足初始条件y( ) 4 的特解.2四、应用题(每小题10 分)1、求由曲线 2y 2 x 和直线x y 0 所围成的平面图形的面积.3 x x22、利用导数作出函数y x 6 9 4 的图象.参考答案( B 卷)一、1、B;2、A ;3、D;4、C;5、B;6、C;7、D;8、A ;9、D;10、B.二、1、 2 ,b ;2、( x 2) e x ;3、ln 5 ,0 ;4、0 ;5、C e x C e2 x1 .2三、1、13x;2、arccosx 121 x1;3、dx(1 x x2 ) 1 22 ) 1 2;14、2 2 ln x C ;5、2(2 )e ;6、y2x2e1x;四、1、92;2、图略。

高等数学上册试题及答案

高等数学上册试题及答案

高等数学上册试题及答案一、选择题(每题4分,共40分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为()。

A. -3B. 0C. 3D. 42. 函数y=x^3-3x+1的导数为()。

A. 3x^2-3B. x^2-3C. 3x^2-3xD. x^3-33. 极限lim(x→0) (sinx/x)的值为()。

A. 0B. 1C. -1D. 24. 函数y=e^x的不定积分为()。

A. e^x + CB. e^x - CC. x*e^x + CD. x*e^x - C5. 以下哪个选项是微分方程y''-y=0的通解()。

A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*x^2+C2*x6. 曲线y=x^2在点(1,1)处的切线斜率为()。

A. 0B. 1C. 2D. 47. 已知函数f(x)=x^3-6x^2+11x-6,求f'(x)=()。

A. 3x^2-12x+11B. 3x^2-12x+6C. 3x^2-6x+11D. 3x^2-6x+68. 函数y=ln(x)的导数为()。

A. 1/xB. xC. ln(x)D. 19. 已知函数f(x)=x^2-2x+1,求f(2)=()。

A. 1B. 3C. 5D. 710. 极限lim(x→∞) (1/x)的值为()。

A. 0B. 1C. ∞D. -∞二、填空题(每题4分,共20分)1. 若函数f(x)=x^3+2x^2-5x+1,则f'(x)=______。

2. 求定积分∫(0 to 1) (2x+3)dx的值,结果为______。

3. 函数y=x^2-4x+c在x=2处的极值点,当c=______时,该点为极大值点。

4. 函数y=e^(-x^2)的二阶导数为______。

5. 曲线y=x^3-3x^2+2在点(1,0)处的切线方程为y=______。

高等数学练习题,考试题,复习题,试卷,试题,多元函数,积分学

高等数学练习题,考试题,复习题,试卷,试题,多元函数,积分学

《高等数学(上)》习题2第一部分一、单项选择题1.设1)(+=x x f ,则)1)((+x f f =( )。

A. x B. x + 1 C. x + 2D. x + 32. 若)1()(--=x x ae xf x ,0=x 为无穷间断点,1=x 为可去间断点,则=a ( )。

A. 1B. 0C. eD. e -13. 函数22224)2ln(y x y x z --+-+=的定义域为( )。

A .222≠+y x B .422≠+y xC .222≥+y xD.4222≤+<y x 4. 设0)(=x x f 在的某个邻域内连续,且0)0(=f ,12sin 2)(lim2=→xx f x ,则在点0=x 处)(x f ( )。

A. 不可导B. 可导,且0)0(≠'fC. 取得极大值D. 取得极小值5.=⎰+∞-dx xe x 02( )。

A .21B .-21 C .1D .-16.极限22x 3x 9limx 2x 3→---=( )。

A .0B .23C .32D .92二、填空题1.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩ 在0x =处连续,则a =。

2.已知曲线()y f x =在2x=处的切线的倾斜角为56π,则()2f '=。

3. 曲线y =21x x -的水平渐近线为_______。

4. 若⎰++=Cxdx x xf )1ln()(2,则⎰=dx x f )(1。

5. 则,2t x =-。

三、计算题1. 求极限221)1(1lim-+-→x x x x2. 求极限30sin tan lim x x x x -→3. 求dx xxx⎰-221arcsin4. 求不定积分dx xa x ⎰-222(a >0)5. 求定积分⎰1arctan xdx x第一部分参考答案三、计算题1. .∞==-+-→01)1(1lim 221x x x x2. ( 3030)cos 1(tan lim sin tan lim x x x x x x x x -=-→→ 3221limx x x x ⋅=→ 21= 3. dx xxx⎰-221arcsin ,令x aic t sin =,则原式=⎰⎰⎰⎰+-=-==tdt t t t td dt t dt t t cot cot cot csc sin 22 C x x x C t t ++--=++-=In 1arcsin sin In cot 24.dxxa x ⎰-222,设t a x sin =(1分),则原式=⎰tdta 22sin⎰-=dt ta 22cos 12Ct t a +⎪⎭⎫⎝⎛-=2sin 41212Cx a a xa x a +⎪⎭⎫⎝⎛--=2222arcsin 25. ⎰⎰=10210arctan 21arctan xdx xdx xdx x x x x ⎰+-=1022102121arctan 2110)arctan (218x x --=π214-=π第二部分一、填空题1.设2)(xx a a x f -+=,则函数的图形关于__________对称。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x=和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ).(A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1fC x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭8.x xdxe e -+⎰的结果是( ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++ 9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f - 二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条.4.()21ln dxx x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分①()()13dxx x ++⎰②()220dx a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分)1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积. 《高数》试卷1参考答案 一. 选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.33-3. 2 4.arctanln x c + 5.2 三.计算题1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++ ②22ln ||x a x C -++ ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B)12,ln 2⎛⎫- ⎪⎝⎭(C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点.(B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121xx e - (B) 12xx e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦(D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分ba dx ⎰()ab <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分)1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx. 四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x < 2.4a = 3.2x = 4.'()x x e f e 5.126.07.22x xe -8.二阶二.1.原式=0lim 1x x x→=2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+ 2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+ 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五.sin 1,122dydy t t t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰ 七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰由10,0y x C ==⇒=《高数》试卷4(上)一、 选择题(每小题3分)1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2-2、极限x x e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx =B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx xxln 2( ). A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21 C 、 C x ++ln 2ln D 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-10)1(dy y π D 、⎰-14)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ; 三、计算题(每小题5分)1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=; 四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 6、C x y =-+2212 ;四、 1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2YB 、 ()),0(0,1+∞-YC 、),0()0,1(+∞-ID 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、x x 2lim +∞→3、=+∞→xx xx )1(lim ( ).A 、eB 、2eC 、1D 、e14、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ). A 、C e x +sin B 、C x e x +cos sin C 、C x e x +sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-10)1(dy y π D 、⎰-14)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2aB 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x 二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)(φx b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 . 三、 计算题(每小题5分)1、求极限 )2311(lim 21-+--→x x x x ; 2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xx ln 21 ;5、求定积分⎰eedx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、 应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、29; 2、图略。

大学高等数学试题及答案

大学高等数学试题及答案

大学高等数学试题及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2在区间(-∞, -3)上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 不存在3. 微分方程y''+y=0的通解为:A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*ln(x)+C24. 函数f(x)=x^3-3x+1在x=1处的导数为:A. 1B. -1C. 3D. -35. 定积分∫(0 to 1) x^2 dx的值为:A. 1/3B. 1/2C. 2/3D. 1二、填空题(每题4分,共20分)6. 函数f(x)=x^2+2x+1的极小值点为______。

7. 函数f(x)=e^x的不定积分为______。

8. 曲线y=x^3-3x+2在点(1,0)处的切线斜率为______。

9. 函数f(x)=sin(x)的周期为______。

10. 极限lim(x→∞) (1/x)的值为______。

三、计算题(每题10分,共30分)11. 求极限lim(x→2) (x^2-4)/(x-2)。

12. 计算定积分∫(0 to 1) (2x+1) dx。

13. 求函数f(x)=x^3-6x^2+9x+1的二阶导数。

四、证明题(每题15分,共30分)14. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。

15. 证明极限lim(x→0) (1+x)^(1/x)=e。

答案:一、单项选择题1. B2. B3. A4. B5. A二、填空题6. x=-17. e^x+C8. 09. 2π10. 0三、计算题11. 412. 3/213. f''(x)=6x-12四、证明题14. 证明略15. 证明略结束语:本试题涵盖了高等数学的多个重要知识点,包括极限、导数、积分等,旨在检验学生对高等数学基本概念和计算方法的掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数29y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx ; 5、求定积分 ⎰ee dx x 1ln ; 6、解方程 21xy x dx dy -= ;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ;10、D ;二、1、x e x )2(+; 2、94 ; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ;四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是( ). A 、()()+∞--,01,2Y B 、 ()),0(0,1+∞-YC 、),0()0,1(+∞-ID 、),1(+∞-2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→ 3、=+∞→x x xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ).A 、 x y =B 、)1)(1(ln --=x x yC 、 1-=x yD 、)1(+-=x y5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin +6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C x xdx 211tan 7、计算⎰xdx x ex cos sin sin 的结果中正确的是( ).A 、C e x +sinB 、C x e x +cos sinC 、C x e x +sin sinD 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ).A 、⎰104dx x πB 、⎰10ydy π C 、⎰-10)1(dy y π D 、⎰-104)1(dx x π 9、设 a ﹥0,则=-⎰dx x a a 022( ). A 、2a B 、22a π C 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'x y y x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)(φx b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ; 2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分)1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21x x y -=的微分;4、求不定积分⎰+dx x x ln 21 ;5、求定积分⎰e e dx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ; 四、1、29 ; 2、图略。

相关文档
最新文档