最新版精选2019年七年级上册数学期末总复习测试版题(含参考答案)
人教版2019-2020学年七年级(上)期末数学试卷 含答案解析
人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。
新人教版七年级上数学期末复习:《有理数》解答题精选含答案
《有理数》解答题精选1.(2019秋•普宁市期末)已知:数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应的数为﹣3.(1)请在如图所示的数轴上表示出点A、C对应的位置;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,点Q运动到点C立刻原速返回,到达点B后停止运动;点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动时点P随之停止运动.请在备用图中画出整个运动过程两动点P、Q同时到达数轴上某点的大致示意图,并求出该点在数轴上表示的数.2.(2019秋•香洲区期末)的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,﹣3,+3,﹣4,+5,+4,﹣7,﹣2.(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若的士的收费标准为:起步价10元(不超过2.5千米),超过2.5千米,超过部分每千米2.6元.则李师傅在上午9:00~10:15一共收入多少元?(精确到1元)3.(2019秋•中山市期末)如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.4.(2019秋•垦利区期末)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m ﹣n |.如数轴上数x 与5两点之间的距离等于|x ﹣5|,(2)如果表示数a 和﹣2的两点之间的距离是3,那么a = ;若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a 取何值时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是多少?请说明理由. 5.(2019秋•连州市期末)计算: (1)10﹣(﹣5)+(﹣9)+6 (2)﹣12018﹣6÷(﹣2)×|−13|6.(2019秋•云浮期末)计算:﹣22×(﹣9)+16÷(﹣2)3﹣|﹣4×5| 7.(2019秋•宣城期末)计算:(−1)2017+|−22+4|−(12−14+18)×(−24). 8.(2019秋•揭西县期末)计算: (1)﹣13﹣(﹣22)+(﹣28) (2)﹣22﹣|﹣12|×(23−34)9.(2019秋•恩平市期末)计算:0.25×|﹣4|﹣4÷(﹣2)2+(﹣3)×56. 10.(2018秋•福田区校级期末)计算 (1)16﹣(﹣10+3)+(﹣2) (2)(﹣4)2×18−27÷(﹣3)3 (3)﹣12﹣(12)2×(−23−13)÷7811.(2018秋•惠阳区校级期末)计算:﹣22+(﹣1)2019+27÷(﹣3)2 12.(2018秋•黄埔区期末)计算:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7) (2)(﹣2)2÷4+(﹣3) (3)(﹣2)3×(12−38)﹣|﹣2|13.(2018秋•潮南区期末)计算:﹣1﹣(1+0.5)×|−13|÷(﹣4) 14.(2018秋•潮安区期末)计算:﹣32÷(﹣1)2018+6×|−12| 15.(2018秋•揭西县期末)计算:﹣32﹣|﹣20|×(1−14).16.(2018秋•普宁市期末)计算:(﹣1)2019÷{[(﹣4)×(−58)÷(−13)+(﹣3)×(+12)]×(﹣2)2+(﹣6)}17.(2018秋•普宁市期末)计算:(﹣3)2﹣112×29−6÷|−23|2﹣(﹣22).18.(2018秋•福田区期末)计算 (1)﹣12﹣(﹣9)﹣2 (2)(﹣2)3﹣(﹣3)2+1 (3)(﹣36)×(−23+34−512) 19.(2019秋•越秀区期末)计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20) (2)25÷56×(−25)+(﹣2)×(﹣1)2019 20.(2019秋•龙岗区校级期末)计算: (1)﹣10﹣8÷(﹣2)×(−12); (2)(−34+16−38)×12+(﹣1)2020. 21.(2019秋•潮州期末)计算题: (1)(﹣7)+(﹣4)﹣(﹣10); (2)(﹣113)÷(﹣214)×34;(3)(﹣7)×(﹣5)﹣90÷(﹣15)+3×(﹣1); (4)−14×(﹣2)2﹣(−12)×42.22.(2019秋•黄埔区期末)已知有理数a 、b 、c 在数轴上的位置如图所示:(1)判断正负,用“>”、“<”或“=”填空:a +b 0,a ﹣b 0,a +b +c 0; (2)化简:|a +c |﹣|a +b +c |+|a ﹣b |.23.(2019秋•江城区期末)计算:﹣0.52+14−|22﹣4|24.(2019秋•惠来县期末)计算:﹣12020+24÷(﹣4)+3×|−13|﹣(﹣6) 25.(2019秋•黄埔区期末)某市公共交通收费如下:公交票价里程(千米)票价(元)刷卡优惠后付款(元)0﹣10 2 1 10﹣15 3 1.5 15﹣20 4 2 20﹣25 5 2.5 25﹣3063以后每增加5千米增加1元 增加0.5元地铁票价里程(千米)票价(元)0﹣6 3 6﹣12 4 12﹣22 5 22﹣32 6 32﹣52 7 52﹣72 8 以后每增加20千米增加1元(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题: ①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少? ①若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么? 26.(2019秋•黄埔区期末)(1)(﹣20)﹣(+3)﹣(﹣5)﹣(+7) (2)(﹣12)÷(﹣4)÷(﹣115)(3)2×(﹣3)2﹣4×(﹣32)﹣1527.(2019秋•白云区期末)点A 在数轴的﹣1处,点B 表示的有理数比点A 表示的有理数小1,将点A 向右移动8个单位得到点C ,点D 、点E 是线段BC 的两个三等分点.在所给的数轴(如图)上标出B 、C 、D 、E 各点,再写出它们各自对应的有理数.28.(2019秋•白云区期末)计算:(1)11+(﹣21)÷3+(﹣4)×(﹣2) (2)−124×(32−5)−14÷|−123|+|1−722| 29.(2019秋•揭阳期末)计算:(﹣2)3÷4﹣(﹣1)2019×|﹣3|. 30.(2019秋•光明区期末)计算 (1)﹣8+14﹣6+20(2)(−12+34−56)×(−12)31.(2019秋•番禺区期末)计算下列各式的值: (1)(−23)+|0−516|+|−456|+(−913) (2)42×(−23)+(−34)÷(−0.25) 32.(2019秋•海珠区期末)计算: (1)﹣5﹣(﹣3)+(﹣2)+8 (2)(﹣1)2×2+(﹣2)3÷|﹣4| 33.(2019秋•五华县期末)计算: (1)﹣10﹣8÷(﹣2)×(−12)(2)﹣12﹣(1﹣0.5)×13×[19﹣(﹣5)2] 34.(2019秋•南沙区期末)计算: (1)20+(﹣7)﹣(﹣8) (2)(﹣1)2019×(13−1)÷2235.(2019秋•云浮期末)计算: (1)﹣7﹣2÷(−12)+3; (2)(﹣34)×49+(﹣16)36.(2019秋•东莞市期末)计算:(−1)3−(1−0.5)×13×(3−32) 37.(2019秋•荔湾区期末)计算: (1)﹣2.4+(﹣3.7)﹣4.6+5.7 (2)﹣3×56×145×(−0.25) 38.(2019秋•荔湾区期末)计算: (1)﹣4﹣12×(13−14)(2)﹣24﹣(﹣1)5×2+(﹣2)4 39.(2019秋•龙华区期末)计算 (1)48×(58−56)+|−6+3| (2)−12+23÷(−4)2+3×(−1)201940.(2019秋•新会区期末)把下面未化简的数先化简,然后在数轴上表示出来,再用“<”把它们连接起来:﹣3,4.5,0,|﹣1﹣(﹣3)|,−12的倒数参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵|a+7|+(c﹣1)2020=0,∴a+7=0或c﹣1=0,∴a=﹣7,c=1,即点A表示的数为﹣7,C点表示的数为1;如图,(2)设P、Q点运动的时间为t(s)时相遇,AB=﹣3﹣(﹣7)=4,CB=1﹣(﹣3)=4,AC=8,当P点从A点向C点运动,Q点从B点向C点运动时,如图1,3t﹣t=4,解得t=2,此时相遇点表示的数为﹣3+t=﹣3+2=﹣1;当P点从A点运动到C点,折返后再从C点向A点运动,Q点从B点向C点运动,如图2,3t﹣8+t=4,解得t=3,此时相遇点表示的数为﹣3+3t=﹣3+3=0;当P点从A点到达C点折返,再从C点运动到A点,接着折返向C点运动,Q点从B点运动到C点时,折返后向B点运动,如图3,3t﹣16+t﹣4=8,解得t=7,此时相遇点表示的数为﹣3+4﹣(t﹣4)=﹣2,综上所述,整个运动过程两动点P、Q同时到达数轴上某点表示的数为﹣2或0或﹣1.2.【解答】解:(1)(+2)+(﹣3)+(+3)+(﹣4)+(+5)+(+4)+(﹣7)+(﹣2)=﹣2答:李师傅距第一批乘客出发地的西面,距离出发地2千米.(2)(3﹣2.5)+(3﹣2.5)+(4﹣2.5)+(5﹣2.5)+(4﹣2.5)+(7﹣2.5)=11(千米)10+10+(10×6+11×2.6)=108.6≈109(元)答:李师傅上午9:00~10:15一共收入约109元.3.【解答】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.4.【解答】解:(1)观察数轴可得:数轴上表示4和1的两点之间的距离是3;数轴上表示﹣3和2两点之间的距离是5;故答案为:3;5;(2)如果表示数a和﹣2的两点之间的距离是3,那么|a﹣(﹣2)|=3∴|a+2|=3∴a+2=3或a+2=﹣3∴a=1或a=﹣5;故答案为:1或﹣5;∵|a +4|+|a ﹣2|表示数a 与﹣4的距离与a 和2的距离之和;若数轴上表示数a 的点位于﹣4与2之间,则|a +4|+|a ﹣2|的值等于2和﹣4之间的距离,等于6 ∴|a +4|+|a ﹣2|的值为6;(3)|a +5|+|a ﹣1|+|a ﹣4|表示一点到﹣5,1,4三点的距离的和 ∴当a =1时,该式的值最小,最小值为6+0+3=9. ∴当a =1时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是9. 5.【解答】解:(1)原式=10+5﹣9+6 =21﹣9 =12;(2)原式=﹣1+3×13=﹣1+1 =06.【解答】解:原式=﹣4×(﹣9)+16÷(﹣8)﹣|﹣20| =36﹣2﹣20 =14.7.【解答】解:原式=﹣1+0+12﹣6+3=8. 8.【解答】解:(1)﹣13﹣(﹣22)+(﹣28) =﹣13+22﹣28 =9﹣28 =﹣19(2)﹣22﹣|﹣12|×(23−34)=﹣4﹣12×(23−34)=﹣4﹣12×23+12×34=﹣4﹣8+9=﹣12+9 =﹣39.【解答】解:原式=0.25×4﹣4÷4﹣3×56=1﹣1−52=−52. 10.【解答】解:(1)原式=16﹣(﹣7)+(﹣2) =16+7﹣2=21;(2)原式=16×18−27÷(﹣27) =2﹣(﹣1) =2+1 =3;(3)原式=﹣1−14×(﹣1)×87=﹣1+27 =−57.11.【解答】解:﹣22+(﹣1)2019+27÷(﹣3)2 =﹣4+(﹣1)+27÷9 =﹣4+(﹣1)+3 =﹣2.12.【解答】解:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7) =(﹣10)+3+(﹣5)+7 =﹣5;(2)(﹣2)2÷4+(﹣3) =4÷4+(﹣3) =1+(﹣3) =﹣2;(3)(﹣2)3×(12−38)﹣|﹣2|=(﹣8)×(12−38)﹣2=(﹣4)+3+(﹣2) =﹣3.13.【解答】解:﹣1﹣(1+0.5)×|−13|÷(﹣4) =﹣1−32×13×(−14) =﹣1+18 =−78.14.【解答】解:﹣32÷(﹣1)2018+6×|−12| =﹣9÷1+6×12 =﹣9+315.【解答】解:原式=﹣9﹣20×34=﹣9﹣15=﹣24.16.【解答】解:原式=﹣1÷[(−152−32)×4﹣6]=﹣1÷(﹣9×4﹣6)=﹣1÷(﹣36﹣6)=﹣1÷(﹣42)=142. 17.【解答】解:原式=9−13−6÷49+4=9−13−272+4 =﹣456+4=−56.18.【解答】解:(1)原式=﹣12+9﹣2=﹣5;(2)原式=﹣8﹣9+1=﹣16;(3)原式=−23×(﹣36)+34×(﹣36)−512×(﹣36) =24﹣27+15=12.19.【解答】解:(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)=﹣5+7+3﹣20=﹣25+10=﹣15;(2)25÷56×(−25)+(﹣2)×(﹣1)2019=25×65×(−25)+(﹣2)×(﹣1)=﹣12+2=﹣10.20.【解答】解:(1)−10−8÷(−2)×(−12)=−10−8×12×12=﹣12;(2)(−34+16−38)×12+(−1)2020=−34×12+16×12−38×12+1=−9+2−92+1=−212.21.【解答】解:(1)原式=﹣7﹣4+10=﹣1;(2)原式=43×49×34=49;(3)原式=35+6﹣3=38;(4)原式=−14×4+12×16=﹣1+8=7.22.【解答】解:(1)根据数轴可知:0<a<1,﹣1<b<0,c<﹣1,且|a|<|b|,则a+b<0,a﹣b>0,a+b+c<0;故答案为:<,>,<.(2)|a+c|﹣|a+b+c|+|a﹣b|=﹣a﹣c+a+b+c+a﹣b=a.23.【解答】解:﹣0.52+14−|22﹣4|=﹣0.25+14−|4﹣4|=﹣0.25+14−0=0.24.【解答】解:﹣12020+24÷(﹣4)+3×|−13|﹣(﹣6)=﹣1﹣6+3×13+6=﹣1﹣6+1+6=0.25.【解答】解:(1)①由表格中的数据可得,乘坐公交车行驶24千米,需要车票为5元,乘坐地铁需要6元,因此选择乘坐公交车费用较少;①乘坐公交车行驶路程为:(10﹣2)×5+10=50千米,乘坐地铁行驶的路程为:(10﹣6)×20+32=112千米,因此乘坐地铁行驶路程较远;(2)根据表格中数据变化可得,行驶路程x千米,x≤85时,公交省钱;当85<x≤90时,公交费(9元)=地铁费(9元),费用一样;当90<x≤92时,公交费(9.5元)<地铁费(9元),地铁省钱;当92<x≤95时,公交费(9.5元)<地铁费(10元),公交省钱;当95<x≤100时,公交费(10元)=地铁费(10元),费用一样;当100<x≤120时,地铁省钱.26.【解答】解:(1)原式=﹣20﹣3+5﹣7=﹣23﹣2=﹣25;(2)原式=﹣12×14×56=−52;(3)原式=2×9﹣4×(﹣9)﹣15=18+36﹣15=54﹣15=39.27.【解答】解:∵点A在数轴的﹣1处,点B表示的有理数比点A表示的有理数小1,∴点B所表示的数为﹣1﹣1=﹣2,将点A向右移动8个单位得到点C,因此点C所表示的数为﹣1+8=7,∵点D、点E是线段BC的两个三等分点.BC=7﹣(﹣2)=9,∴点D所表示的数为﹣2+13×9=1,点E所表示的数为﹣2+23×9=4,因此点B、C、D、E所表示的数分别为﹣2,7,1,4.28.【解答】解:(1)11+(﹣21)÷3+(﹣4)×(﹣2)=11+(﹣7)+8=12;(2)−124×(32−5)−14÷|−123|+|1−722|=−116×(9﹣5)−14×8+|1−74|=−116×4﹣2+34=−14−2+34=−32.29.【解答】解:(﹣2)3÷4﹣(﹣1)2019×|﹣3|=(﹣8)÷4﹣(﹣1)×3=(﹣2)+3=1.30.【解答】解:(1)﹣8+14﹣6+20=6﹣6+20=20(2)(−12+34−56)×(−12)=(−12)×(﹣12)+34×(﹣12)−56×(﹣12)=6﹣9+10=731.【解答】解:(1)(−23)+|0−516|+|−456|+(−913)=(−23)+516+456+(﹣913)=0;(2)42×(−23)+(−34)÷(−0.25)=﹣28+(−34)×(﹣4)=﹣28+3=﹣25.32.【解答】解:(1)﹣5﹣(﹣3)+(﹣2)+8=﹣2﹣2+8=4(2)(﹣1)2×2+(﹣2)3÷|﹣4|=1×2﹣8÷4=2﹣2=033.【解答】解:(1)原式=﹣10﹣2=﹣10+(﹣2)=﹣12;(2)原式=﹣1﹣0.5×13×(19﹣25)=﹣1﹣0.5×13×(﹣6)=﹣1﹣(﹣1)=0.34.【解答】解:(1)20+(﹣7)﹣(﹣8) =20+(﹣7)+8=21;(2)(﹣1)2019×(13−1)÷22=﹣1×(−23)÷4=﹣1×(−23)×14=16.35.【解答】解:(1)原式=﹣7+4+3=0;(2)原式=﹣81×49−16=﹣36﹣16=﹣52.36.【解答】解:原式=−1−12×13×(3−9)=−1−16×(−6)=﹣1+1=0.37.【解答】解:(1)﹣2.4+(﹣3.7)﹣4.6+5.7 =(﹣2.4﹣4.6)+(﹣3.7+5.7)=﹣7+2=﹣5;(2)﹣3×56×145×(−0.25)=﹣3×56×95×(−14)=98.38.【解答】解:(1)﹣4﹣12×(13−14)=﹣4﹣4+3=﹣5;(2)﹣24﹣(﹣1)5×2+(﹣2)4=﹣16+1×2+16=﹣16+2+16=2.39.【解答】解:(1)原式=30﹣40+3=﹣7;(2)原式=−12+8÷16﹣3=−12+12−3=﹣3.40.【解答】解:|﹣1﹣(﹣3)|=2,−12的倒数是﹣2,如图:﹣3<−12的倒数<0<|﹣1﹣(﹣3)|<4.5.。
人教版2018-2019学年第一学期七年级数学期末测试题(含答案)
2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。
精品解析:浙江省杭州市萧山区2019-2020学年七年级上学期期末数学试题(解析版)
1 萧山区2019学年第一学期期末教学质量检测七年级数学试题卷
一、选择题
1.美丽的萧山是一个充满生机和活力的地域,它古老而又年轻,区内耕地面积约为760000亩.则760000用科学计数法可表示为( )
A. 47610⨯
B. 57610⨯
C. 57.610⨯
D. 67.610⨯
【答案】C
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为a×10n ,其中1⩽|a|<10,n 为整数,据此判断即可.
【详解】解:760000=7.6×105
故选C .
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1⩽|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
2.如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A. 两点之间,线段最短
B. 两点确定一条直线
C. 过一点,有无数条直线
D. 连接两点之间的线段叫做两点间的距离
【答案】A
【解析】
【分析】 根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段。
精编2019年七年级上册数学期末总复习测试版题(含参考答案)
2019年七年级上册数学期末总复习期末总复习模拟测试题一、选择题1.小红设计了一个计算程序,并按此程序进行了两次计算.在计算中输入了不同的x 值, 但一次没有结果,另一次输出的结果是42,则这两次输入的x 值不可能是( )A . 0,2B . -1,-2C . 0,1D .6,-32.-7,-12,+2 的代数和比它们绝对值的和小 ( )A .-38B .-4C .38D .43.若 3 个不相等的有理数的代数和为 0,则下面结论正确的是( )A .3 个加数全为 0B .最少有 2 个加数是负数C .至少有 1 个加数是负数D .最少有 2 个加数是正数4.两数相加,其和小于其中一个加数而大于另一个加数,那么( )A .这两个加数都是正数B .这两个加数都是负数C .这两个加数是一正一负D .这两个加数的符号不能确定5.用科学记数法表示430000是( )A .43×104B . 4.3×l05C .4.3×104D .4.3×1066.数学课上老师给出下面的数据,精确的是( )A .2002年美国在阿富汗的战争每月耗费10亿美元B .地球上煤储量为5万亿吨以上C .人的大脑有l ×1010个细胞D .七年级某班有51个人7.下列运算结果为负值的是( )A .(-7)×(-4)B .(-6)+(-5)C . 82-⨯-D .O ×(-2)×88.实数a ,b 在数轴上的位置如图所示,那么下列式子中不成立的是( )A .a b >B .a b <C .0ab >D .0a b>9.若k 为自然数,25k p p x y +与3312k x y +-是同类项,则满足条件的k 的值有( ) A .1 个B .2 个C .3个D .无数个 10.在-5,110-,-3. 5,-0.01,-2,-12各数中,最大的数是( ) A .-12 B .110- C .-0.01 D .-511.梯形的面积为 S ,上底为 a ,下底为 b ,那么高h 等于( )A .1()2S a b + B .2S a b + C .2S()a b + D .2()a b S+ 12. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032x x -=-.这个方程所表示的意义是( )A .飞机往返一次的总时间不变B .顺风与逆风飞行,飞机自身的速度不变C .飞机往返一次的总路程不变D .顺风与逆风的风速相等13.如图是某校九年级(1)班的全体同学最喜欢的球类运动的统计图,则下列说法中,正确 的是( )A .从图中可以直接看出喜欢各种球类的具体人数B .从图中可以直接看出全班的总人数C .从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D .从图中可以直接看出全班同学现在最喜欢各种球类的人数的比例14.下列说法中,正确的是( )A .a -是负数B .a 一定是非负数C .不论a 是什么数,都有11a a ⋅=D .7a 一定是分数 15.轮船在静水中速度为20 km /h .水流速度为每小时4 km /h ,从甲码头顺流航行到乙码 头,再返回甲码头,共用5 h (不计停留时间),求甲、乙两码头的距离.设两码头间距离为x (km ),则列出方程正确的是( )A .(20+4)x+(20-4) x =5B .20 x+4 x =5C .5204x x +=D .5204204x x +=+- 16.方程2x+1=0的解是( )A . 12B . 12-C . 2D .-2 17.下面的图表是护士统计的一位病人一天的体温变化情况:通过图表,估计这个病人下午16:00时的体温是( )A .38.0℃B .39.1℃C .37.6℃D .38.6℃18.下列叙述正确的是 ( )①线段AB 可表示为线段BA ;②射线AB 可表示为射线BA ;③直线AB 可表示为直线BA .A .①②B .①③C .②③D .①②③19.一个角的补角是( )A .锐角B .直角C .钝角D .以上三种都有可能20.如图 ,A 、B 、C 、D 四点在同一条直线上,M 是AB 的中点,N 是CD 的中点,MN=a ,BC =b ,则线段AD 的长等于( )A .a b +B .2a b +C .2b a -D .2a b -21.用四舍五入法得到的近似数0.002030的有效数字有 ( )A .6个B .4个C .3个D .2个22 )A . 9B . 9±C .3D .3±23.下列合并同类项正确的是( )A .22523x x -=B .6713x y xy +=C .2222a b a b a b -+=D .523x x -= 24.2007年12月某日,我国部分城市的平均气温情况如下表,记温度零上为正(单位:℃),则当天平均气温最低的城市是( )A .广州B .哈尔滨C .北京D .上海 二、填空题25.商场一款服装进价为a 元,商家将其价格提高50%后以八折出售,则该款服装的售价是 元.26.已知A 、B 是数轴上的两点,它们分别表示有理数-2和x,若线段AB 的长是3,则x 的值是____ ____.27.如图,在2×2的方格中,连结AB 、AC 、AD ,则∠2= ;∠1+∠2+∠3= .28.看图填空.(A 、0、B 在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C 平分∠AOD ,0E 平分∠BOD ,则∠AOD=2 =2 .∠BOE= =12 .29. 甲水池有水 42吨,乙水池有水18 吨,若甲水池的水每小时流入乙水池 2吨,则 小时后,甲水池的水与乙水池的水一样多.30.爸爸和儿子的年龄分别是40岁和l3岁,请问几年后,爸爸的年龄是儿子年龄的2倍?设x 年后,爸爸的年龄是儿子年龄的2倍,可列出方程: ,解答x = 年.31.某人以4 km /h 的速度由甲地到乙地,然后又以6 km /h 的速度从乙地返回甲地,那么 他往返一次的平均速度是 .32.单项式313ab -的系数为 ,次数为 .33.在多项式2343253x x y x π-+-中,最高次项的系数是 ,最低次项是 .34.比较大小: (1)13- 0; (2) 0.05 -1; (3)23- -0.6. 35.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .36.用四舍五入法取l00955的近似数,保留2个有效数字是 ,保留4个有效数字是 .37.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .38. 有理数中,是整数而不是负数的是 ,是负有理数而不是分数的是 .三、解答题39.先化简,再求值:()()2225235a a a a ---+,其中a =-1.40.一个角的补角比它的余角的2倍还大18°,求这个角.41.学期结束前,学校为了解学生对这学期食品公司提供的营养午餐的满意程度,向全校600名学生作问卷调查,其结果如下:(1)作出反映此调查结果的条形统计图;(2)计算每一种反馈意见所占总人数的比例,并作出扇形统计图;(3)你认为本调查结果对校领导选择午餐的供应商有影响吗?为什么?42.某超市出售的一种饼干的单价是7.89元/袋,一种蛋卷的单价是8.99元 /罐,小明购买蛋卷的罐数比购买饼干的袋数的一半少1.(1)设购买饼干的袋数为n ,请用代数式表示购买饼干和蛋卷的总价;(2)若6n =,总价为多少?43.暑假两名教师带 8 名学生外出旅游,旅游费教师每人a 元、学生每人 b 元,因是团 体,给予优惠,教师打八折,学生按六五折优惠,共需旅游费多少无?并计算当 a=30,b=20 时,旅游费的总金额.44.如果一个正数的平方根为27a -和4a +,求这个正数.45.下列哪些数有平方根?如果有,求出它的平方根;如果没有,请说明理由.-81 2500 0 -0. 49 1. 4446.计算下列各题:(1)331(1)222-⨯+;(2)22332(2)2(2)----+-;.(3)4231(5)()0.815-÷-⨯-+- .47.2008年四川省遭受地震灾害,全国人民万众一心,众志成城,抗震救灾.如图(1)是某市一所中学根据“献出爱心,抗震救灾”自愿捐款活动期间学生捐款情况制成的条形统计图,图(2)是该中学学生人数比例统计图(该校共有学生 1450人).(1)该校九年级学生共捐款多少元?(2)该校学生 均每人捐款多少元?48.七(1)班一次数学测验平均成绩是 85 分,老师以平均成绩为基准,记为 0,超过 85 分的记为正,那么92 分、78 分各记作什么?若老师把某 3 名同学的成绩简记为:-5,0,+8,则这3 名同学的实际成绩分别为多少分?49.公司推销某种产品,付给推销员每月的工资有两种方案:方案一:不论推销多少都有 500 元的底薪,每推销一件产品加付推销费 2 元.方案二:不付底薪,每推销一件产品,付给推销费 5元.若小王一个月推销产品 200 件,则小王会选择哪一种工资方案?50.你能根据图中标出的数值,写出数轴上点A和点B之间,点C和点D之间,点B和点C 之间的所有整数吗?。
最新2019-2020年度人教版七年级数学上册期末质量检测及答案解析-经典试题
第一学期期末教学质量监测七年级数学试卷一、选择题(每小题3分,共30分,请把正确选项填在相应题号下的空格里.) 1.3的相反数是( ) A.3 B. -3 C . 31 D .312下列运算中,正确的是( )A .(-2)×(-3)=6 B.(-2)2=-4 C . 3m+2n =5mn D .3m -m =2 3.如图所示的几何体是由一些小立方块搭成的, 则这个几何体的左视图是 ( )4.我国每年大约要消耗掉150亿个一次性餐盒,这个数据用科学记数法表示为 ( ) A .1.5×109 B .1.5×1010 C. 15×109 D .1.5×10115.去括号-a -(b -2)=( )题号 一 二 三 18 19 20 21 总分 得分A .-a -b -2B .a+b -2C .-a -b+2D .-a+b -26.某工厂2015年总产值是a 万元,预计2016年总产值比2015年增长20%,则该工厂2016年生产总值是( )A. (a+20%) 万元B. (1+20%)a 万元C. %201-a 万元D. %201+a万元7.当前,“低头族”已成为热门话题之一,小颖为了了解路边行人边走路边低头看手机的情况,她应采用的收集数据的方式是( ) 。
A .对学校的同学发放问卷进行调查B .对在路边行走的学生随机发放问卷进行调查C .对在图书馆里看书的人发放问卷进行调查D .对在路边行走的路人随机发放问卷进行调查8.若x=2是方程ax+2x=16-a 的解,则a 的值是( )A. 3B. 6C. 5D. 49.如图,已知点C 在线段AB 上,则下列等式AB =2BC ;AC+BC =AB ;AC =21AB ;AC =BC 。
能说明点C 是线段AB 的中点的等式有( )A. 1个 B 2个 C 3个 D 4个10.把一副三角尺 ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为( ) A 600 B 67.50 C 750 D 850二.填空题(每小题3分,共12分)11.计算:(-2)3-2÷(21-)= .12.合并同类项:x-y+3x-4y=.13.北京时间5时正时,时针与分针所成的角的度数是 .座位号14.小明用18元钱买了数学、英语两种练习薄共10本,单价分别为数学薄每本1元、英语薄每本2元,每种练习本小明各买多少本?如果设小明买数学薄x 本,那么可列出方程为 . 三.解答题 (共7小题,共58分) 15. 计算(每小题4分,共8分) (1)-12-(-23)+(-35)(2)-23+30-×(3121-)16. 化简(5分) -2(x 2-3xy)+6(x 2-xy)17.先化简再求值(7分)(x-2y )2-(x+2y)2-8 ,其中x=2,y=-21四.解方程(每小题5分,共10分) 18. (1)2x+3=4(x-1) (2)421334=+--x x19.(本题8分)某兴趣小组为了了解本学校学生对交通知识的了解,随机对部分学生进行了一次“交通知识知多D”的知识测试,并抽取其中七年级学生的测试成绩(得分取整数)进行整理后,绘制了如下两幅尚不完整的统计图(图19-1,图19-2)请根据统计图中所提供的信息解答下列问题:(1)参加此次测试的七年级学生有多少人?(2)请补全图19-1中的频数分布直方图。
七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区
惠城区2019-2020学年度第一学期期末教学质量检测七年级数学试题说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内. 2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1.2-等于( )A .-2B .12-C .2D .122.如图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .3.地球上的海洋面积约为36100000km 2,用科学记数法可表示为( )km 2A .3.61×106B .3.61×107C .0.361×108D .3.61×109 4.下面运算正确的是( )A .3ab +3ac =6abcB . 4a 2b -4b 2a =0C .2x 2+7x 2=9x 4D .3y 2-2y 2=y 2 5.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y7.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x +3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x +3)=68.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店请你帮助他选择一条最近的路线是( ) A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B第8题图 第9题图9.如图,把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°10. 下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .58B .66C .74D .112二、填空题:(本大题共6小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.13-______-0.3 ( 用“<”,“>”,“=”填空 ). 12.若212n ab +与3222n a b --是同类项,则=n .13.小红在计算3+2a 的值时,误将“+”号看成“-”号,结果得13,那么3+2a 的值应为 .14.一个角的5倍等于71°4′30″,这个角的余角是 .15.因为∠1+∠2=180°,∠2+∠3=180°,所以∠1=∠3,根据是 . 16.若25x xy -=,426xy y +=-,则23x xy y -+= .B2 8424 62246 844m 6三、解答题:(每小题6分,共18分) 17.计算:2321353752⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:()()222321231x y x y xy ---+,其中,12x =-,2y =-19.如图,小雅家(图中点O 处)门前有一条东西走向的公路,测得学校(图中点A 处)在距她家北偏西60°方向的500米处,文具商店在距她家正东方向的1500米处,请你在图中标出文具商店的位置(保留画图痕迹).四、解答题:(每小题7分,共21分) 20.已知方程23101124x x -+-=与关于x 的方程23xax -=的解相同,求a 的值.21.如图,点M 为AB 中点,BN =12AN ,MB =3 cm ,求AB 和MN 的长.22.100cm )年数(n )高度(cm ) 1 100+12 2 100+24 3 100+36 4 100+48 …………假设以后各年树苗高度的变化与年数的关系保持上述关系,回答下列问题:⑴ 生长了10年的树高是 cm ,用式子表示生长了n 年的树高是 cm ⑵ 种植该种树多少年后,树高才能达到2.8m ?五、解答题:(每小题9分,共27分)23.某电器商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,故进货量减少了10台. ⑴ 商场第二次购进这款电风扇时,进货价为 元; ⑵ 这两次各购进电风扇多少台?⑶ 商场以210元/台的售价卖完这两批电风扇,商场获利多少元?24. 如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、 ∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数;⑶ 求∠AOB 与∠AOC 的度数.25.阅读下面材料并回答问题.Ⅰ 阅读:数轴上表示-2和-5的两点之间的距离等于(-2)-(-5)=3 数轴上表示1和-3的两点之间的距离等于1-(-3)=4一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数. Ⅱ 问题:如图,O 为数轴原点,A 、B 、C 是数轴上的三点,A 、C 两点对应的数互为相反数,且A 点对应的数为-6,B 点对应的数是最大负整数. ⑴ 点B 对应的数是 ,并请在数轴上标出点B 位置;⑵ 已知点P 在线段BC 上,且PB =25PC ,求线段AP 中点对应的数; ⑶ 若数轴上一动点Q 表示的数为x ,当QB =2时,求22100a c x bx +⋅-+的值(a,b,c 是点A 、B 、C 在数轴上对应的数).密封线内不要答题2019~2020学年度第一学期期末教学质量检查七年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11.12.13.14.15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:四、解答题(二)(本题共3小题,每小题7分,共21分)20.解:21.解:22.解:五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:五、解答题(三)(本题共3小题,每小题9分,共27分)24.解:25.解:密封线内不要答题惠城区2019-2020学年度第一学期期末教学质量检测七年级数学答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABDDADBDC二、填空题:(本大题共6小题,每小题4分,共24分)11. < 12.3 13.-714. 75°47′6″ 15.同角的补角相等 (或等量减等量差相等)16.12三、解答题:(每小题6分,共18分) 17.解:原式=()118-+-……4分 =19=-……6分18.解:原式=22263622x y x y xy --+- =225xy -……4分当12x =-,2y =-时, 原式=()2122592⎛⎫⨯-⨯--=- ⎪⎝⎭……6分19.解:……5分如图点B 为文具商店的位置……6分四、解答题:(每小题7分,共21分)20.解:解方程23101124x x -+-=,得3x =-……4分 将3x =-代入方程23xax -=,得231a +=- 解得:1a =-……7分21.解:∵点M 为AB 中点∴ AB =2MB =6……3分 ∴ AN +NB =6∵ BN =12AN ∴ 2BN +NB =6 ∴ NB =2……6分∴ MN =MB -NB =1……7分22解.⑴ 220 cm ,(100+12 n ) cm ……4分⑵ 设种植该种树n 年后,树高达到2.8m 由100+12 n =280,得 n =15答:种植该种树15年后,树高才能达到2.8m ……7分五、解答题:(每小题9分,共27分)23.解:⑴ 180元……1分⑵ 设第一次购进了x 台,根据题意得:150x =(150+30)(x -10) ……4分化简得 30x =1800, 解得 x =60.所以 x -10=60-10=50.答:第一次购进了60台,第二次购进了50台. ……5分 ⑶(210-150)×60+(210-180)×50=3600+1500=5100(元). ……7分24.解:⑴ ∠COD =∠AOB .理由如下: 如图 ∵点O 在直线AD 上∴∠AOC +∠COD =180°又∵∠AOC 与∠AOB 互补 ∴∠AOC +∠AOB =180° ∴∠COD =∠AOB⑵ ∵ OM 、ON 分别是∠AOC 、∠AOB 的平分线 ∴∠AOM =∠COM ,∠AON =∠BON∴∠BOC =∠BOM +∠COM11 =∠BOM +∠AOM=(∠MON -∠BON )+(∠MON +∠AON ) =2 ∠MON=112°⑶由⑴得:∠COD =∠AOB∵ ∠AOB +∠BOC + +∠COD =180°∴ ∠AOB =12(180°-∠B OC )=12(180°-112°)=34° ∴ ∠AOC =180°-∠AOB =180°-34°=146°.25.解:⑴点B 对应的数是 -1 ……1分点B 位置如图:……2分⑵ 设点P 对应的数为p∵ 点P 在线段BC 上∴ PB =p -(-1)=p +1PC =6-p ∵ PB =25PC ∴ p +1=25(6-p ) ∴p =1设AP 中点对应的数为t则t -(-6)=1-t∴ t =-2.5∴AP 中点对应的数为-2.5……5分⑶ 由题意:a +c =0,b =-1当点Q 在点B 左侧时,-1 - x =2,x =-3∴ 22100a c x bx +⋅-+=0-(-1)×(-3)+2=-1……7分 当点Q 在点B 右侧时,x -(-1)=2,x =1∴ 22100a c x bx +⋅-+=0-(-1)×1+2=3……9分。
人教版七年级上册数学期末考试复习:第1章《有理数》填空题精选(含答案)
第1章《有理数》填空题精选1.(2019秋•翠屏区期末)如图,数轴上的点A 所表示的数为a ,化简|a |﹣|1﹣a |的结果为 .2.(2019秋•顺德区期末)手机已成现代入生活的一个重要组成部分,它给人们生活带来了许多方便.假如你家刚刚添置了一部手机,手机资费宣传单如下表:当通话时间为200min 时,选套餐 更优惠.(填“A ”或“B ”)套餐项目 月租 通话A 12元 0.2元/minB 0元 0.25元/min3.(2019秋•龙岗区校级期末)若a +b +c =0且a >b >c ,则下列几个数中:①a +b ;①ab ;①ab 2;①b 2﹣ac ; ①﹣(b +c ),一定是正数的有 (填序号).4.(2019秋•惠来县期末)A 为数轴上表示2的点,将点A 沿数轴向左平移5个单位到点B ,则点B 所表示的数的绝对值为 .5.(2019秋•揭阳期末)2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为 .6.(2019秋•黄埔区期末)如果收入100元记作+100元,那么支出120元记作 元.7.(2019秋•斗门区期末)比较大小:﹣(﹣9) ﹣(+9)填“>”,“<”,或”=”符号)8.(2019秋•高明区期末)一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售 .9.(2019秋•白云区期末)十八大以来我国改革开放持续向纵深发展,国民经济迅猛发展,数据显示,2018年度全国城镇固定资产投资约为636000000000元,用科学记数法表示为 .10.(2019秋•海珠区期末)截止2019年10月底,广州建成5G 基站约12000座,多个项目列入广东省首批5G 融合应用项目,将数12000用科学记数法表示,可记为 .11.(2019秋•南山区期末)通常在生产图纸上,对每个产品的合格范围有明确的规定.例如,图纸上注明一个零件的直径是φ30±0.020.03,φ30±0.020.03表示这个零件直径的标准尺寸是30mm ,实际产品的直径最大可以是30.03mm ,最小可以是 .12.(2019秋•海珠区期末)计算2×(﹣5)的结果是 .13.(2019秋•顺德区期末)将520000用科学记数法表示为 .14.(2019秋•顺德区期末)如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为 .15.(2019秋•高明区期末)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额126900000000元,126900000000用科学记数法表示为 .16.(2019秋•花都区期末)如图,在数轴上A 、B 两点表示的数分别为﹣4、3,则线段AB 的长为 .17.(2019秋•花都区期末)比较大小:3 ﹣5(填“>”或“<”或“=”)18.(2019秋•荔湾区期末)亚洲陆地面积约为44000000平方千米,将44000000用科学记数法表示为 .19.(2019秋•龙华区期末)北京市某天的最高气温是10℃,最低气温是﹣5℃,则北京市这一天的温差是 ℃.20.(2019秋•南海区期末)在(−38)4中,底数是 .21.(2019秋•揭西县期末)计算:1﹣(﹣2)2×(−18)= .22.(2019秋•大埔县期末)计算:36×(12−13)2= .23.(2019秋•龙岗区期末)小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现连同他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):A (+4,﹣2),B (+6,﹣5).经过A ,B 这两站点后,车上还有 人.24.(2019秋•罗湖区期末)计算:﹣8﹣(﹣1)= .25.(2019秋•宝安区期末)某地中午的气温是+5℃,晚上气温比中午下降了8℃,则该地晚上的气温是 ℃.26.(2019秋•怀集县期末)如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示﹣4,点G 表示8,点C 表示 .27.(2019秋•怀集县期末)把有一列数:0,3,﹣1,﹣2.5,用“<”连接得: .28.(2019秋•怀集县期末)计算:﹣42+(﹣4)2的值是 .29.(2019秋•中山市期末)用“>”或“<”填空:13 35;−223 ﹣3.30.(2019秋•中山市期末)若|x |=3,|y |=2,则|x +y |= .31.(2019秋•中山市期末)小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为 .32.(2019秋•盐田区期末)点A ,B ,C 在同一数轴上,其中点A ,B 分别表示﹣3,1.若BC =2,则AC = (多选).A .2B .3C .5D .633.(2019秋•盐田区期末)(多选)下列各式中,计算结果为正数的是 .A .﹣(﹣1)B .﹣|﹣1|C .(﹣1)2D .(﹣1)334.(2019秋•盐田区期末)爱德华•卡斯纳与詹姆斯•纽曼在《数学和想象》一书中,引入名为“Googol ”的大数,即在1这个数字后面跟上100个0.将“Goog 1”用科学记数法表示是1× .35.(2019秋•龙岗区期末)定义新运算:a ①b =ab +b ,例如:3①2=3×2+2=8,则(﹣3)①4= .36.(2019秋•中山区期末)银行把存入9万元记作+9万元,那么支取6万元应记作 元.37.(2019秋•东莞市期末)一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作 .38.(2019秋•东莞市期末)−112的相反数是 ,1.5的倒数是 .39.(2019秋•东莞市期末)在数轴上与表示﹣4的数相距4个单位长度的点对应的数是 .40.(2019秋•揭阳期末)如果a ,b ,c 是整数,且a c =b ,那么我们规定一种记号(a ,b )=c ,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,16)= .41.(2019秋•南沙区期末)有理数a 、b 在数轴上的位置如图所示,则化简|a +b |+|a ﹣b |的结果为 .42.(2019秋•肇庆期末)按照下列程序计算输出值为2018时,输入的x 值为 .43.(2019秋•福田区校级期末)通常山的高度每升高100米,气温下降0.6℃,如地面气温是﹣4℃,那么高度是2400米高的山上的气温是 .44.(2019秋•潮州期末)在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .45.(2018秋•天河区期末)观察下列式子:1①3=1×2+3=5,3①1=3×2+1=7,5①4=5×2+4=14.请你想一想:(a ﹣b )①(a +b )= .(用含a ,b 的代数式表示)46.(2018秋•顺德区期末)如图,方格中的格子填上数,使得每一行、每一列以及两条对角线所填的数字之和均相等,则x 的值为 .第1章《有理数》填空题精选参考答案与试题解析一.填空题(共46小题)1.【解答】解:由数轴上A点位置可得:1<a<2,则1﹣a<0,故|a|﹣|1﹣a|=a﹣(a﹣1)=1.故答案为:1.2.【解答】解:选择A套餐费用为:12+0.2×200=52(元),选择B套餐的费用为:0.25×200=50(元),50<52,∴选择B套餐更优惠,故答案为B.3.【解答】解:∵a+b+c=0且a>b>c,∴a>0,c<0,b可以是正数,负数或0,∴①a+b=﹣c>0,①ab可以为正数,负数或0,①ab2可以是正数或0,①ac<0,∴b2﹣ac>0,①﹣(b+c)=a>0.故答案为:①①①.4.【解答】解:∵A为数轴上表示2的点,∴B点表示的数为2﹣5=﹣3,∴点B所表示的数的绝对值3,故答案为3.5.【解答】解:2684亿=268400000000=2.684×1011.故答案为:2.684×1011.6.【解答】解:“正”和“负”相对,所以,如果收入100元记作+100元,那么支出120元记作﹣120元.故答案为:﹣1207.【解答】解:∵﹣(﹣9)=9,﹣(+9)=﹣9,∴﹣(﹣9)>﹣(+9).故答案为:>8.【解答】解:由题意可知,八折后的售价为200×0.8=160元,故答案为160元.9.【解答】解:636000000000=6.36×1011.故答案为:6.36×1011.10.【解答】解:12000=1.2×104,故答案为:1.2×104.11.【解答】解:由题意可得30﹣0.02=29.98mm,则最小可以是29.98mm,故答案为29.98mm.12.【解答】解:2×(﹣5)=﹣10.故答案为:﹣10.13.【解答】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.14.【解答】解:如图所示:x的值为2或5.故答案为:2或5.15.【解答】解:126900000000=1.269×1011,故答案为:1.269×1011.16.【解答】解:∵A 、B 两点表示的数分别为﹣4、3,∴线段AB 的长=3﹣(﹣4)=7.故答案为7.17.【解答】解:3>﹣5.故答案为:>.18.【解答】解:44000000=4.4×107.故答案为:4.4×107.19.【解答】解:10﹣(﹣5)=10+5=15(℃).故答案为:1520.【解答】解:在(−38)4中,底数为−38.故答案为:−38.21.【解答】解:原式=1﹣4×(−18)=1+12=112, 故答案为:11222.【解答】解:36×(12−13)2=36×(16)2=36×136 =1.故答案为:1.23.【解答】解:13+4﹣2+6﹣5=16人,故答案为:16.24.【解答】解:﹣8﹣(﹣1)=﹣7故答案为:﹣7.25.【解答】解:+5﹣8=﹣3(℃)答:该地晚上的气温是﹣3℃.故答案为:﹣3.26.【解答】解:AG =8﹣(﹣4)=12,图中相邻的两个点之间的距离是2个单位长度,则C 表示﹣2+2=0,是原点.故答案为:原点.27.【解答】解:﹣2.5<﹣1<0<3.故答案为:﹣2.5<﹣1<0<3.28.【解答】解:﹣42+(﹣4)2=﹣16+16=0,故答案为:0.29.【解答】解:13<35;−223>−3.故答案为:<、>.30.【解答】解:∵|x |=3,|y |=2,∴x =±3,y =±2,(1)x =3,y =2时,|x +y |=|3+2|=5(2)x =3,y =﹣2时,|x +y |=|3+(﹣2)|=1(3)x =﹣3,y =2时,|x +y |=|﹣3+2|=1(4)x =﹣3,y =﹣2时,|x +y |=|(﹣3)+(﹣2)|=5故答案为:1或5.31.【解答】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.32.【解答】解:点A ,B 在数轴上表示﹣3,1.且BC =2,当点C 在点B 的右侧时,则点C 表示的数为3,此时AC =3﹣(﹣3)=6;当点C 在点B 的左侧时,则点C 表示的数为﹣1,此时AC =﹣1﹣(﹣3)=2;因此AC 的长为2或6.故答案为:A 或D .33.【解答】解:A .﹣(﹣1)=1,故A 符合题意;B .﹣|﹣1|=﹣1,故B 不合题意;C .(﹣1)2=1,故C 符合题意;D .(﹣1)3=﹣1,故C 符合题意.故答案为:A 、C34.【解答】解:Goog 1=1×10100.故答案为:1010035.【解答】解:∵a ①b =ab +b ,∴(﹣3)①4=(﹣3)×4+4=﹣12+4=﹣8.故答案为:﹣8.36.【解答】解:由题意得,存入记为“+”,则支取记为“﹣”,则支取6万元应记作:﹣6万元.故答案为:﹣6万37.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .38.【解答】解:﹣112的相反数是112;1.5的倒数是23,故答案为:112,23.39.【解答】解:在﹣4的左边时,﹣4﹣4=﹣8,。
2019-2020学年人教版七年级上册数学期末质量评估试卷(有答案)-优质版
期末质量评估试卷[时间:90分钟 分值:120分]一、选择题(每小题3分,共30分)1.在实数-2,2,0,-1中,最小的数是( ) A .-2 B .2 C .0D .-12.在0,-(-1),(-3)2,-32,-|-3|,-324,a 2中,正数的个数为( )A .1个B .2个C .3个D .4个3.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( ) A .-3 B .0 C .3D .64.某同学在解方程3x -1=□x +2时,把□处的数字看错了,解得x =-1,则该同学把□看成了( )A .3B .13C .6D .-165.如图1,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =57.65°,则∠AOD 的度数是( )图1A.122°20′B.122°21′C.122°22′D.122°23′6.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ) A.不赚不赔B.赚9元C.赔18元D.赚18元7.下列结论正确的是( )A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.一条直线就是一个平角8.为了参加社区文艺演出,某校组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队人数的3倍,设从舞蹈队中抽调了x人参加合唱队,则可列方程为( )A.3(46-x)=30+x B.46+x=3(30-x)C.46-3x=30+x D.46-x=3(30-x)9.如图2,数轴上的点A所表示的数为k,化简|k|+|1-k|的结果为( )图2A.1 B.2k-1C.2k+1 D.1-2k10.我国古代的“河图”是由3×3的方格构成(如图3所示),每个方格内各有数目不等的点图,每一行,每一列以及每一条对角线上的三个点图的点数之和都相等.那么P方格内所对应的点图是( )图3二、填空题(每小题4分,共24分)11.若a与b互为倒数,c与d互为相反数,则(-ab)2 018-3(c+d)2 019= .12.全球每天发生雷电次数约为16 000 000次,将16 000 000用科学记数法表示是 .13.已知关于x的方程2x-a-4=0的解是x=2,则a的值为 .14.若|a|=4,|b|=3,且a<0<b,则a b的值为 .15.按如图4的程序流程计算,若开始输入x的值为3,则最后输出的结果是 .图416.在求1+3+32+33+34+35+36+37+38的值时,李敏发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①然后在①式的两边都乘3,得3S=3+32+33+34+35+36+37+38+39②②-①得,3S-S=39-1,即2S=39-1,所以S =39-12.得出答案后,爱动脑筋的张红想:如果把“3”换成字母a (a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2 017的值?如能求出,其正确答案是 .三、解答题(共66分)17.(8分)计算:(1)-32-|(-5)3|×⎝ ⎛⎭⎪⎫-252-18÷|-(-3)2|;(2)⎝ ⎛⎭⎪⎫-34-59+712÷136.18.(8分)[2016·哈尔滨月考]解方程: (1)2x -(x +10)=5x +2(x -1); (2)3x +12-2=3x -210-2x +35.19.(10分)某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?20.(10分)[2016·定州月考]如图5,已知直线AB ,CD 相交于点O ,OE 平分∠AOD ,FO ⊥AB ,垂足为O ,32∠BOD =∠DOE .图5(1)求∠BOF 的度数;(2)请写出图中与∠BOD 相等的所有的角.21.(10分)我们规定运算符号⊗的意义是:当a >b 时,a ⊗b =a -b ;当a <b 时,a ⊗b =a +b .(1)计算:6⊗1= ;(-3)⊗2= ; (2)棍据运算符号⊗的意义且其他运算符号意义不变的条件下:①计算:-14+15×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-23⊗⎝ ⎛⎭⎪⎫-35-(32⊗23)÷(-7);②若x ,y 在数轴上的位置如图6所示:图6a .填空:x 2+1 y (填“>“或“<”);b.化简:[(x2+x+1)⊗(x+y)]+[(y-x2)⊗(y+2)].22.(10分)某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物时,所有商品均可享受九折优惠;优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠.(1)若用x表示商品价格,请你用含x的式子分别表示两种购物方式优惠后所花的钱数.(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?(3)若某人计划在该超市购买一台价格为2 700元的电脑,请分析选择哪种优惠方式更省钱.23.(12分)如图7,直线AB上有一点P,点M,N分别为线段PA,PB 的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:①当P在AB之间(含A或B);②当P 在A 左边; ③当P 在B 右边; 你发现了什么规律?(3)如图8,若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA -PB PC的值不变;②PA +PB PC的值不变,请选择一个正确的结论并求其值.参考答案期末质量评估试卷1.A 2.B 3.C 4.C 5.B 6.C 7.B 8.B 9.B 10.A 11.1 12.1.6×107 13.0 14.-64 15.23116.a 2 017-1a -1(a ≠0且a ≠1)17.(1)-31 (2)-26 18.(1)x =-43. (2)x =716.19.每天加工大齿轮的有20人,每天加工小齿轮的有64人. 20.(1)∠BOF =90°. (2)图中与∠BOD 相等的所有的角为∠AOC ,∠COF .21.(1)5 -1 (2)①原式=-1967. ②a.> b .原式=y +3.22.(1)优惠一方式付费为0.9x 元,优惠二方式付费为(200+0.8x )元.(2)当商品价格是2 000元时,用两种方式购物后所花钱数相同. (3)选择优惠二方式更省钱.23.(1)MN =7. (2)①点P 在AB 之间,MN =7. ②点P 在A 左边,MN =7. ③点P 在B 右边,MN =7. 规律:无论点P 在什么位置,MN 的长度不变,为7.(3)选择②.设AC =BC =x ,PB =y .①PA -PB PC =AB x +y =14x +y(在变化);②PA +PB PC =2x +2yx +y=2(定值).。
新版精选2019年七年级上册数学期末总复习完整版考核题(含参考答案)
2019年七年级上册数学期末总复习期末总复习模拟测试题一、选择题1.某商场为促销将一种商品 A 按标价的九析出售,仍可获利润 10%. 若商品A 的标价是33元,那么该商品的进价为( )A .31元B .30.2元C .29.7元D .27元2.如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB 、DC 重合,则所围成的几何体是( )A .B .C .D .3.钟表上l2时l5分时,时针与分针的夹角为( )A .90°B 82.5°C .67.5°D .60°4.如图所示的螺丝可以看成是 ( )A .圆柱和圆锥的组合体B .圆柱和棱柱的组合体C .圆锥和棱柱的组合体D .棱柱和棱锥的组合体5.唐僧师徒四人行至一片树林中休息,悟空与八戒闲来无事,就比赛解方程解闷. 下面是他们解方程过程中去分母的一步,其中正确的是( )21101136x x +--=A .211011x x +--=B .421016x x +--=C .4210x 11x +-+=D .4210x 16x +-+=6.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( )A .甲票10元∕张,乙票8元∕张B .甲票8元∕张,乙票10元∕张C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张7.下列各组代数式中,不是同类项的一组是( )A .和0B .和C .和D .和12-213ab c -2cab 2xy 2x y 3xy xy -8.的结果为( )21A . 61B .19C .-21D .-89.下列说法:①两个无理数的和必是无理数②两个无理数的积必是无理数③有理数与无理数分别平方后,不可能相等④有理数都有倒数其中正确的个数是( )A .1 个B .2 个C .3 个D .4 个10.如果两个有理数的积是正数,和也是正数,那么这两个有理数( )A .同号,且均为负数B .异号,且正数的绝对值比负数的绝对值大C .同号,且均为正数D .异号,且负数的绝对值比正数的绝对值大11.用计算器求0.35×15时,按键顺序正确的是 ( )A .B .C .D .以上都不正确12.1.4149保留三个有效数字的近似数是( )A .1.41B . 1.42C .1.420D .1.41513.下列说法错误的是( )A .一个教同 0相乘,仍得0B .一个数同 1 相乘,仍得原教C .一个数同一 1 相乘,得原教的相反数D .互为相反数的两数积为负数14.白云商店购进某种商品的进价是每件8元,销售价是每件l0元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低2%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x 应等于 ( )A .1B .1.8C .2D .10二、填空题15.若一个角的余角等于它的补角的,则这个角是 .1516. 用“<”、“=”或“>”把下列每组中的两数连接起来.(1) 0 -5 ;-8 -7;(3) .2-2+17.某天早晨的气温为-6℃,中午上升了 8℃,半夜又下降了6℃,则半夜的气温是 .18.若,则= ;= .2(4)|2|0a b -+-=b a 2a b a b+-19.用四舍五入法取l29543的近似值,保留3个有效数字,并用科学记数法表示是 . 20.程序相应的算式是 .21.一电冰箱冷冻室的温度是-18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高 ℃.22.去括号.(1)(a-b)+(-c-d)= ;(2)(a-b)-(-c-d)= ;(3) -(a-b)+(-c-d)= ;(4) -(a-b)-(-c-d)= .23.国庆期间,“新世纪百货”搞换季打折.简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了 元.24.如果与是同类项,那么m= ,n= .13212m n a b +-44n a b +-25.买千克苹果,付出元,找回元角,则每千克苹果的价格是_______元.6103426.“红星”商场对商品进行清仓处理,全场商品一律八折,小亮在该商场购买了一双运动鞋,比按原价购买该鞋节省了16元,他购买该鞋实际用 元.27.宁波市2008年初中毕业生学业考试各科的满分值如下:科目语文数学英语科学社政体育满分值1201201101508030若把表中各科满分值按比例绘成扇形统计图,则表示数学科学的扇形的圆心角应是 度(结果保留3个有效数字).28.在一幅扇形统计图中,所有扇形的百分比之和是 .29.将一付常规三角板拼成如图所示的图形,则∠ABC =_______度.30.用计算器探索:按一定规律排列的一组数:,,,…,,110111112119120,如果从中选若干个数,使它们的和大于0.5,那么至少要选 个数.31.在有理数中,平方等于它本身的数有 ,立方等于它本身的数有 .32. ,,,…211122+=⨯=222236+=⨯=2333412+=⨯=试猜想= × = .29999+三、解答题33.去括号,并合并同类项:(1) -(5m+n)-7(m-3n)(2)2222(3)[2(5)2]xy y y xy x xy ----++34.如图,0A 为圆的半径,以0A 为角的一边,0为角的顶点画∠AOB=72°,0B 交圆周于点B ,然后依次画∠BOC=∠COD=∠DOE=72°,分别交圆周于点C 、D 、E ,每隔一点连结两点之间的线段,观察所成的图形是一个什么图案.35.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利l5%,并可用本和利再投资其它商品,到月底又可获利l0%;如果月末出售可获利30%,但要付仓储费700元,请问根据商场的资金状况,如何购销才能获利最多?36.某校将在下月召开运动会,开幕式上有一个女生彩旗方队表演,参加方队的学生的身高尽可能一致,老师从备选学生中进行身高测量,发现身高为 1. 56米的女生人数最多,但还缺少 3 人. 现在把 1. 56 米作为基准,把超过 0.01 米的记作+ 0.01 米,低了 0.01 米的记作-0.01 米,备选人员中另外 10 人的身高分别记为(单位:米):+0.01 +0.05 -0. O2 -0.Ol +0.O3 +0.O2 -0.01 -0.O2 +0.02 -0.04请你从上述 10 人中选出三人,并用绝对值的知识进行说明.37.把下列各数的序号填在相应的数集内:① 1;②;③) + 3. 2; ④0;⑤;⑥-5;⑦+ l08;⑧)- 6.5; ⑨.35-13467(1)正整数集{ }(2)正分数集{ }(3)负分数集{ }(4)有理数集{ }38.计算:(1) (+56) +(-23) +(-56) +(-68);(2)(-43)+[(-16)+(+25)+(-47)];(3)2132((((13443-+-+-+-39.A 市辖区内的B 、C 、D 、E 四县市正被日益严重的水污染所困扰,居民的饮用水长期达不到较高的标准.为了人民的身体健康,该市与四个县市的领导、专家多次研究,计划从A 市某水库引水,供给四县市的城市居民.五个市县间的距离如图所示(单位:km).已知铺设引水管道需费用14500元/km 如果不考虑其它因素,请你设计出几种不同的引水管道铺设方案.并指出哪种铺设方案最经济.40.求下列各式中的.x (1);380x +=(2)3102027x -=41.按要求完成作图,并回答问题.如图,已知线段AB 、BC 、CA.(1)作线段BC 的中点D ,并连接AD ;(2)过点A 作BC 的垂线,垂足为点E ;(3)过点B 作AB 的平行线,交AC 于点F ;(4)作∠ABC 的平分线,交AC 于点 G ;(5} 根据上述作图,若∠ABC = 60°,则∠GBC= .42.有长为的篱笆,现要用这个篱笆和一面墙围成矩形的园子(如图),园子的宽为.l t (1)用含、的代数式表示园子的面积;l t (2)当米,米时,求园子的面积.100l =30t =43.根据题意列出方程:某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组的人数比第二组多6人,问这两组各有多少人?44.一轮船以18 km/h的速度从甲地航行到乙地,而原路返回时速度为12km/h,若此次航行共用40 h,求甲、乙两地间的距离.45.随机抽取某城市30天的空气质量状况,污染指数和天数分别是:40,3;70,5;90,10;110,7;120,4;140,1为了更直观地反映空气质量状况,可对数据作怎样的整理?46.如图,射线OC和OD把平角AOB三等分,OE平分∠AOC,OF平分∠BOD.(1)求∠COD的度数;(2)写出图中所有的直角;(3)写出∠COD的所有余角和补角.47.如图,AB、CD相交于点0,∠FOC=90°,∠1=100°,∠2=20°,求∠3、∠4、∠5、∠6的度数.48. 小王上周五在股市以收盘价 ( 收市时的价格)每股 25 元买进某公司的股票1000股.在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况(单位:元):星期一二三四五每股涨跌(元)+2-0. 5+1. 5-1.8+0.8根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?49.用计算器计算:(1)25.15+(-3.2)+18.36;(2)6×182-25; (3)(-5)4-2×(-3)2;(4)48+24×53÷(-21.5-3.5).50.把下列各数按从小到大的顺序用“<”号连结起来.,,-83. 3%,,.5(6--|0.83|-8||10-[(83)]---5[(83)]83.3%0.8|0.83|()6---<-<-<-<--。
人教版2019-2020学年七年级上册期末数学试卷含答案解析
人教版2019-2020学年七年级上册期末数学试卷含答案解析一、选择题(每小题2分,共20分)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.43.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a46.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)27.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=60009.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18二、填空题(每小题3分,共30分)11.单项式的系数是,次数是.12.﹣8的立方根是,9的算术平方根是.13.近似数13.7万精确到位.14.用度表示30°9′36″为.15.已知2x6y2和﹣是同类项,则m﹣n的值是.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的位数.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是.三、解答题(本大题共有8小题,共50分)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|22.解下列方程(1)4+3(x﹣2)=x(3)=1﹣.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是;(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”;(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x=,y=.参考答案与试题解析一.选择题(共10小题)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.4【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:在所列6个数中无理数有、这两个,故选:B.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:因为两点之间线段最短.故选:D.5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a4【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.6.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)2【分析】根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=6000【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,40x+60(x﹣20)=6000,故选:A.9.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a﹣2b>0,c﹣2b>0,则原式=a+c﹣a+2b﹣c+2b=4b.故选:B.10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18【分析】根据题意可以得到本次考试的实际满分是多少,从而可以计算出某一个同学按照这个规则的最后分数是93分,他实际考试被扣了多少分,本题得以解决.【解答】解:由题意可得,这次考试总分为:82+(100﹣82)×2=118(分),如果某一个同学按照这个规则的最后分数是93分,则这个同学的实际考试被扣了:118﹣[82+(93﹣82)×2]=118﹣(82+11×2)=118﹣(82+22)=118﹣104=14(分),故选:B.二.填空题(共10小题)11.单项式的系数是,次数是 4 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式的系数是,次数是4;故答案为:;4.12.﹣8的立方根是﹣2 ,9的算术平方根是 3 .【分析】根据立方根和算术平方根的定义求解可得.【解答】解:﹣8的立方根是﹣2,9的算术平方根是3,故答案为:﹣2、3.13.近似数13.7万精确到千位.【分析】根据近似数的精确度求解.【解答】解:近似数13.7万精确到千位.故答案为千.14.用度表示30°9′36″为30.16°.【分析】根据度分秒的进率为60,再进行换算即可.【解答】解:30°9′36″=30.16°,故答案为:30.16°15.已知2x6y2和﹣是同类项,则m﹣n的值是0 .【分析】根据同类项得定义得出m、n的值,继而代入计算可得.【解答】解:根据题意知3m=6,即m=2、n=2,所以m﹣n=2﹣2=0,故答案为:0.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为 2 .【分析】根据新定义列出关于x的方程,解之可得.【解答】解:由题意得2(5x﹣3)﹣3(1﹣3x)=29,10x﹣6﹣3+9x=29,10x+9x=29+6+3,19x=38,x=2,故答案为:2.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为0 .【分析】根据a、b互为相反数,m、n互为倒数,可以求得a+b和mn的值,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数,m、n互为倒数,∴a+b=0,mn=1,∴2018a+2017b+mnb=2017(a+b)+a+b=2017×0+0=0,故答案为:0.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有⑥(填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解答】解:∵AB,CD相交于点O,∠BOE=90°,∴①∠AOC与∠COE互为余角,正确;②∠BOD与∠COE互为余角,正确;③∠AOC=∠BOD,正确;④∠COE与∠DOE互为补角,正确;⑤∠AOC与∠BOC=∠DOE互为补角,正确;⑥∠AOC=∠BOD≠∠COE,错误;故答案为:⑥.19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的9 位数.【分析】根据题意得28=256,29=512,根据规律可知最高位应是1×28,故可求共由有9位数.【解答】解:∵28=256,29=512,且256<365<512,∴最高位应是1×28,则共有8+1=9位数,故答案为:9.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是 1 .【分析】从题目中可见这是一组奇数的排列,求一共有1011个数的代数和的绝对值,根据奇数做差可求出最小值.【解答】解:根据题意,要求出其代数和的绝对值最小值,相邻两位做差,差值都为2,则其中1010个数做差的绝对值最小值为:(1010÷2)×2=1010如果剩余的一个数取﹣1009或﹣1011,整个代数和最小,即|1010﹣1009|=1或|1010﹣1011|=1所以其代数和的绝对值最小值是:1故答案为:1三.解答题(共8小题)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣1+36×=﹣1+6=5;(2)原式=2+﹣3=.22.解下列方程(1)4+3(x﹣2)=x(2)=1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4+3x﹣6=x,移项合并得:2x=2,解得:x=1;(2)去分母得:8x﹣2=6﹣3x+1,移项合并得:11x=9,解得:x=.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.【分析】原式去括号合并得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=﹣8m2+7m2﹣2m﹣3m2+4m=﹣4m2+2m,当m=﹣时,原式=﹣1﹣1=﹣2.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.【分析】(1)画线段AD,BC即可;(2)画射线AB与直线CD,交点记为E点;(3)根据垂线段最短作出垂线段即可求解.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:理由是垂线段最短.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.【分析】(1)根据M、N分别是AC、BC的中点,求出MC、CN的长度,MN=MC+CN;(2)根据(1)的方法求出MN=AB;(3)作出图形,MC=AC,CN=BC,所以MN=AC﹣CB.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=×4+×6=5cm,所以MN的长为5cm.(2)同(1),MN=AC+CB=(AC+CB)=(a+b).(3)图如右,MN=(a﹣b).理由:由图知MN=MC﹣NC=AC﹣BC=a﹣b=(a﹣b).26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是(0,0);(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”(4,);(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.【分析】(1)根据“有趣数对”的定义即可得到结论;(2)根据“有趣数对”的定义列方程即可得到结论;(3)根据根据“有趣数对”的定义即可得到结论;(4)根据“有趣数对”的定义列方程即可得到结论.【解答】解:(1)∵0+0=0×0,∴数对(0,0)是“有趣数对”;∵5+=,5×=,∴(5,)不是“有趣数对”,故答案为:(0,0);(2)∵(a,)是“有趣数对”,∴a=a+,解得:a=﹣3;(3)符合条件的“有趣数对”如(4,);故答案为:(4,);(4)∵(a2+a,4)是“有趣数对”∴a2+a+4=4(a2+a),解得:a2+a=,∴﹣2a2﹣2a=﹣2(a2+a)=﹣2×=﹣,∴3﹣2a2﹣2a=3﹣=.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为20﹣x;则乙厂家运往A地的自行车的量数为30﹣x;则乙厂家运往B地的自行车的量数为30+x;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?【分析】(1)根据表格中的数据填空;(2)根据总运费是470元列出方程并解答.【解答】解:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为 20﹣x;则乙厂家运往A地的自行车的量数为 30﹣x;则乙厂家运往B地的自行车的量数为 30+x;故答案是:20﹣x;30﹣x;30+x.(2)根据题意,得5x+6(20﹣x)+10(30﹣x)+4(30+x)=470解得x=10则20﹣x=10(辆)30﹣x=20(辆)30+x=40(辆)答:甲厂家运往B地的自行车的量数为10辆,则甲厂向B运算自行车的数量是10辆;乙厂家运往A地的自行车的量数为20辆;乙厂家运往B地的自行车的量数为40辆.28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为9x;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是21 ;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x= 1 ,y=19 .【分析】观察数字之间的关系,根据每行、每列、每条对角线上的三个数之和相等;(1)(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)(2)﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6将数从小到大排序,最中间的数填入中心位置,大小匹配填﹣2的两侧;(3)三个数之和18+x,2边填16,以此为突破口;(4)设第一行最后一个数是m,则每一个横或斜方向的线段的和是28+m,以此展开推理;【解答】解:(1)三阶幻方如图所示:用x的代数式表示幻方中9个数的和S=(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)=9x;故答案为9x;(2)三阶幻方如图所示:(3)故答案为21;(4)如图所示:x=1,y=19;故答案气为1,19;。
人教版2019-2020年度七年级(上)期末数学试卷 含答案解析
人教版2019-2020年度七年级(上)期末数学试卷含答案解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作()A.259 B.﹣960 C.﹣259 D.4422.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.63.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.6.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6D.﹣的系数是7.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=38.钟表上的时间指示为两点半,这时时针和分针之间形成的角(小于平角)的度数为()A.120°B.90°C.100°D.105°9.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)11.如图,数轴上的A、B、C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A与点B之间B.点B与点C之间C.点B与点C之间(靠近点C)D.点B与点C之间(靠近点C)或点C的右边12.将正偶数按表1排成5列:根据上面的排列规律,2018应在()A.第252行,第1列B.第252行,第4列C.第253行,第2列D.第253行,第5列二、填空题(本大题共6小题,每小题4分,共24分)13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.方程﹣2x﹣1=1的解为x=15.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.16.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,如(4,2)表示整数8.则(62,55)表示的数是.三、解答题(本大题共9小题,共78分。
(人教版)2019—2020年七年级上册期末数学试卷(含解析)
(人教版)2019—(人教版)2019—2020年七年级上册期末数学试卷(含解析)一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=52.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c3.下列四个实数中;是无理数的为()A.B.C.D.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.25.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= .12.实数27的立方根是.13.列等式表示“比a的3倍大5的数等于a的4倍”为.14.把命题“对顶角相等”改写成“如果…那么…”的形式:.15.已知(x﹣1)2=4;则负数x的值为.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于度.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 度.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为千米.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2()又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE()∴∠CDE+ =180°()又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD()∴∠A=∠4()24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?27.如图;在平面直角坐标系中;点O为坐标系原点;点A(3a;2a)在第一象限;过点A向x轴作垂线;垂足为点B;连接OA;S△AOB=12.点M从点O出发;沿y轴的正半轴以每秒2个单位长度的速度运动;点N从点B出发;沿射线BO以每秒3个单位长度的速度运动;点M与点N同时出发;设点M的运动时间为t秒;连接AM ;AN;MN.(1)求a的值;(2)当0<t<2时;①请探究∠ANM;∠OMN;∠BAN之间的数量关系;并说明理由;②试判断四边形AMON的面积是否变化?若不变化;请求出;若变化;请说明理由.(3)当OM=ON时;请求出t的值及△AMN的面积.2015-2016学年黑龙江省哈尔滨市南岗区七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元);且未知数的次数是1;这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程;故此选项错误;B、是一元一次方程;故此选项正确;C、是二元一次方程;故此选项错误;D、是二元二次方程;故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义;关键是掌握只含有一个未知数;未知数的指数是1;一次项系数不是0.2.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c【考点】平行线;垂线.【分析】根据题意画出图形;从而可做出判断.【解答】解:先根据要求画出图形;图形如下图所示:根据所画图形可知:A正确.故选:A.【点评】本题主要考查的是平行线;根据题意画出符合题意的图形是解题的关键.3.下列四个实数中;是无理数的为()A.B.C.D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念;一定要同时理解有理数的概念;有理数是整数与分数的统称.即有限小数和无限循环小数是有理数;而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数;故A错误;B、是有理数;故B错误;C、是有理数;故C错误;D、是无理数;故D正确;故选:D.【点评】此题主要考查了无理数的定义;其中初中范围内学习的无理数有:π;2π等;开方开不尽的数;以及像0.1010010001…;等有这样规律的数.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.2【考点】一元一次方程的解.【分析】把x=﹣2代入原方程;得到关于a的一元一次方程;解方程得到答案.【解答】解:由题意得;2×(﹣2)+a﹣4=0;解得:a=8;故选:C.【点评】本题考查的是方程的解的定义;使方程两边的值相等的未知数的值是方程的解.5.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.【考点】坐标与图形变化-平移.【分析】根据横坐标;右移加;左移减;纵坐标;上移加;下移减可得平移后对应点的坐标是(﹣1+2;4+3);再计算即可.【解答】解:点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;平移后对应点的坐标是(﹣1+2;4+3);即(1;7);故选:A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移;关键是掌握点的坐标的变化规律.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;B、根据内错角相等;两直线平行可得AB∥CD;故此选项正确;C、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;D、根据同旁内角互补;两直线平行可得BD∥AC;故此选项错误;故选:B.【点评】此题主要考查了平行线的判定;关键是掌握平行线的判定定理.7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.【考点】坐标与图形性质;矩形的性质.【分析】本题可在画出图后;根据矩形的性质;得知第四个顶点的横坐标应为3;纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3;2).故选:B.【点评】本题考查学生的动手能力;画出图后可很快得到答案.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地;根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地;根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用;关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°【考点】平行线的性质.【分析】首先根据邻补角的定义求得∠2的度数;则∠3即可求得;然后根据平行线的性质求得∠5;进而求得∠4.【解答】解:∠2=180°﹣∠1=180°﹣70°=110°;∵∠2﹣∠3=30°;∴∠3=∠2﹣30°=110°﹣30°=80°;∵a∥b;∴∠5=∠3=80°;∴∠4=180°﹣∠5=180°﹣80°=100°.故选A.【点评】本题考查了邻补角的定义和平行线的性质;两直线平行;同位角相等;理解角之间的位置关系是关键.10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个【考点】实数大小比较.【专题】推理填空题;实数.【分析】①两个正数;哪个数的越大;则它的算术平方根就越大;据此判断即可.②首先分别求出、8的平方各是多少;然后根据两个正数;哪个数的平方越大;则这个数就越大;判断出、8的大小关系即可.③根据﹣1所得的差的正负;判断出、1的大小关系即可.④根据﹣0.5所得的差的正负;判断出、0.5的大小关系即可.【解答】解:∵8<10;∴<;∴①正确;=65;82=64;∵65>64;∴>8;∴②不正确;∵﹣1=<=0;∴<1;∴③正确;∵﹣0.5=>=0;∴>0.5;∴④正确.综上;可得大小关系正确的式子的个数是3个:①③④.故选:C.【点评】(1)此题主要考查了实数大小比较的方法;要熟练掌握;解答此题的关键是要明确:正实数>0>负实数;两个负实数绝对值大的反而小.(2)解答此题的关键还要明确:两个正数;哪个数的平方越大;则这个数就越大.二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= 0 .【考点】点的坐标.【分析】根据x轴上点的纵坐标等于零;可得b的值;根据有理数的乘法;可得答案.【解答】解:由点A(a;b)在x轴上;得b=0.则ab=0;故答案为:0.【点评】本题考查了点的坐标;利用x轴上点的纵坐标等于零得出b的值是解题关键.12.实数27的立方根是 3 .【考点】立方根.【专题】计算题.【分析】如果一个数x的立方等于a;那么x是a的立方根;根据此定义求解即可.【解答】解:∵3的立方等于27;∴27的立方根等于3.故答案为3.【点评】此题主要考查了求一个数的立方根;解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算;用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.列等式表示“比a的3倍大5的数等于a的4倍”为3a+5=4a .【考点】等式的性质.【分析】根据等量关系;可得方程.【解答】解:由题意;得3a+5=4a;故答案为:3a+5=4a.【点评】本题主要考查了等式的基本性质;理解题意是解题关键.14.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角;那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等;放在“如果”的后面;结论是这两个角的补角相等;应放在“那么”的后面.【解答】解:题设为:对顶角;结论为:相等;故写成“如果…那么…”的形式是:如果两个角是对顶角;那么它们相等;故答案为:如果两个角是对顶角;那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式;“如果”后面是命题的条件;“那么”后面是条件的结论;解决本题的关键是找到相应的条件和结论;比较简单.15.已知(x﹣1)2=4;则负数x的值为﹣1 .【考点】有理数的乘方.【专题】计算题;实数.【分析】方程利用平方根定义求出解;即可确定出负数x的值.【解答】解:方程(x﹣1)2=4;开方得:x﹣1=2或x﹣1=﹣2;解得:x=3或x=﹣1;则负数x的值为﹣1.故答案为:﹣1.【点评】此题考查了有理数的乘方;熟练掌握运算法则是解本题的关键.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于70 度.【考点】平行线的性质.【分析】根据两条直线平行;同旁内角互补可以得∠1+∠2=140°;求出∠2;再利用平行线的性质得出∠4.【解答】解:∵a∥b;∴∠2+∠1+∠3=180°;∵∠1=∠2;∠3=40°;∴∠2=70°;∴∠4=70°;故答案为:70【点评】此题考查平行线的性质;关键是主要运用了平行线的性质解答.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1;而其中某三个相邻数的和是5103;设第一个的数为x;由此即可得到关于x的方程;解方程即可求解.【解答】解:设第一个的数为x;依题意得x﹣3x+9x=5103;∴x=729;∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律;解题的关键是首先认真观察所给数字;然后找出隐含的规律即可解决问题.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 52 度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义;可得∠AOE=90°;根据角的和差;可得∠AOD的度数;根据邻补角的定义;可得答案.【解答】解:∵OE⊥AB;∴∠AOE=90°;∴∠AOD=∠AOE+∠EOD=90°+38°=128°;∴∠AOC=180°﹣∠AOD=180°﹣128°=52°;故答案为:52.【点评】本题考查了垂线的定义;对顶角相等;邻补角的和等于180°;要注意领会由垂直得直角这一要点.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为①③.【考点】命题与定理.【分析】根据在同一平面内;过一点有且只有一条直线与已知直线垂直;两条平行的直线被第三条直线所截;同旁内角互补;数轴上的点与实数是一一对应关系;点P(x;y)的坐标满足xy<0;则点P的横纵坐标符号相反;可得P在二、四象限进行分析.【解答】解:①在同一平面内;过一点有且只有一条直线与已知直线垂直;说法正确;②两条直线被第三条直线所截;同旁内角互补;说法错误;③数轴上的每一个点都表示一个实数;说法正确;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限;说法错误;正确的命题有①③;故答案为:①③.【点评】此题主要考查了命题与定理;关键是熟练掌握课本上所学的定理.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为2016 千米.【考点】一元一次方程的应用.【分析】设无风时飞机的航速是x千米/时;根据顺风速度×顺风时间=逆风速度×逆风时间;列出方程求出x的值;进而求解即可.【解答】解:设无风时飞机的航速是x千米/时;依题意得:2.8×(x+24)=3×(x﹣24);解得:x=696;则3×(696﹣24)=2016(千米).答:A;B两机场之间的航程是2016千米.故答案为2016.【点评】此题考查了一元一次方程的应用;用到的知识点是顺风速度=无风时的速度+风速;逆风速度=无风时的速度﹣风速;关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用立方根及算术平方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简;合并即可得到结果.【解答】解:(1)原式=4﹣9=﹣5;(2)原式=﹣1.7+1.8﹣=0.1.【点评】此题考查了实数的运算;熟练掌握运算法则是解本题的关键.22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)根据解方程的一般步骤:去括号、移项、合并同类项、系数化为1;可得方程的解;(2)两边都乘以分母的最小公倍数6去分母后;去括号、移项、合并同类项、系数化为1后可得方程的解.【解答】解:(1)去括号;得:2x+16=3x﹣3;移项;得:2x﹣3x=﹣3﹣16;合并同类项;得:﹣x=﹣19;系数化为1;得:x=19;(2)去分母;得:18x+3(x﹣1)=2(2x﹣1);去括号;得:18x+3x﹣3=4x﹣2;移项;得:18x+3x﹣4x=﹣2+3;合并同类项;得:17x=1;系数化为1;得:x=.【点评】本题主要考查解一元一次方程的基本技能;熟练掌握去分母、去括号、移项、合并同类项、系数化为1是关键.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2(对顶角相等)又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行)∴∠CDE+ ∠C =180°(两直线平行;同旁内角互补)又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD(内错角相等;两直线平行)∴∠A=∠4(两直线平行;内错角相等)【考点】平行线的判定与性质.【专题】推理填空题.【分析】欲证明∠A=∠4;只需推知AB∥CD;利用平行线的性质即可证得结论.【解答】证明:∵∠1=∠2(对顶角相等);又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行);∴∠CDE+∠C=180°(两直线平行;同旁内角互补);又∠CDE+∠B=180°;∴∠B=∠C.∴AB∥CD(内错角相等;两直线平行);∴∠A=∠4(两直线平行;内错角相等).故答案是:对顶角相等;同旁内角互补;两直线平行;∠C;两直线平行;同旁内角互补;错角相等;两直线平行;两直线平行;内错角相等.【点评】本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.【考点】一元一次方程的应用.【专题】阅读型.【分析】先设0.=x;由0.=0.9898…;得100x=98.9898…;100x﹣x=98;再解方程即可.【解答】解:设0.=x;由0.=0.9898…;得100x=98.9898…;所以100x﹣x=98;解方程得:x=.于是0.=.【点评】此题主要考查了一元一次方程的应用;解答本题的关键是找出其中的规律;即通过方程形式;把无限小数化成整数形式.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.【考点】平行线的判定;角的计算.【分析】(1)根据邻补角的定义求出∠EOC;再根据角平分线的定义求出∠AOC;然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°;得出∠ONF=90°;求出∠OFM=54°;延长∠OFG=2∠OFM=108°;证出∠OFG+∠EOC=180°;即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3;∴∠EOC=180°×=72°;∵OA平分∠EOC;∴∠AOC=∠EOC=×72°=36°;∴∠BOD=∠AOC=36°.(2)延长FM交AB于N;如图所示:∵∠MFH﹣∠BOD=90°;FM平分∠OFG;∴∠MFC=∠MFH=∠BOD+90°=126°;∴∠ONF=126°﹣36°=90°;∴∠OFM=90°﹣36°=54°;∴∠OFG=2∠OFM=108°;∴∠OFG+∠EOC=180°;∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键;(2)有一定难度.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?【考点】一元一次方程的应用.【分析】(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;题中的等量关系为:A种型号玩具的个数×A种型号玩具的批发价+B种型号玩具的个数×B种型号玩具的批发价=1344元;依此列出方程;解方程求出x的值;则当天赚的钱=(A种型号玩具的零售价﹣批发价)×A种型号玩具的个数+(B种型号玩具的零售价﹣批发价)×B种型号玩具的个数;(2)分三种情况:①购买A;B两种型号玩具;②购买A;C两种型号玩具;③购买B;C两种型号玩具.分别求出每一种情况下全部售完后赚的钱;比较即可.【解答】解:(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;由题意得:20x+24(59﹣x)=1344;解得x=18;所以59﹣x=41.则18×(25﹣20)+41×(30﹣24)=336(元).答:这两种型号玩具当天全部售完后一共能赚336元钱;(2)该玩具店用第一天全部售完后的总零售价为:1344+336=1680(元).分三种情况:①购买A;B两种型号玩具.设A种型号玩具批发了a个;则B种型号玩具批发了(68﹣a)个;由题意得:20a+24(68﹣a)=1680;解得a=12;所以68﹣a=56.则12×(25﹣20)+56×(30﹣24)=396(元);②购买A;C两种型号玩具.设A种型号玩具批发了b个;则B种型号玩具批发了(68﹣b)个;由题意得:20b+28(68﹣a)=1680;解得b=28;。
湘教版2019年秋季七年级上册数学期末复习:数形结合专项题含解析
湘教版2019年秋季七年级上册数学期末复习:数形结合专项题一、选择题。
1.如图,下列语句错误的是()A. 射线CA和CD不是同一条射线B.C. 射线AC和AB是同一条射线D. 直线BC和BD是不同的直线2.已知数a,b,c的大小关系如图所示,则下列各式:;;;;,其中正确的有( )个.A. 1B. 2C. 3D. 43.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A. B.C. D.4.如图,O为直线AB上一点,OM平分∠AOC,ON平分∠BOC,则图中互余的角有()A. 4对B. 3对C. 2对D. 1对5.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a-b;③-a+b;④-a-b;⑤ab;⑥;⑦;⑧a3b3;⑨b3-a3.A. 4个B. 5个C. 6个D. 7个6.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A. M或RB. N或PC. M或ND. P或R7.一副三角板按如图所示的方式摆放,且∠1的度数是∠2的3倍,则∠2的度数为()A. 20°B. 22.5°C. 25°D. 67.5°8.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A. 33B. 36C. 39D. 429.如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是()A. 甲公司近年的销售收入增长速度比乙公司快B. 乙公司近年的销售收入增长速度比甲公司快C. 甲、乙两公司近年的销售收入增长速度一样快D. 不能确定甲、乙两公司近年销售收入增长速度的快慢二、填空题。
10.已知,如图,BE平分∠ABC,∠1=∠2,请说明∠AED=∠C.根据提示填空.∵BE平分∠ABC(已知)∴∠1=∠3 (_____________)又∵∠1=∠2(已知)∴______=∠2 (_____________)∴______∥______(______________)∴∠AED=______(_______________).11.若a、b、c在数轴上的位置如图,则|a|-|b-c|+|c|= ______ .12.根据如图所示的程序计算,若输入x的值为1,则输出的y的值为____________.13.如图,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是______ .14.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= ______ .15.如图,点A,B,C,D在同一条直线上,则图中共有线段________条;直线有________条;射线有________条.16.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了______场.17.某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为______度.三、解答题。
最新2018-2019年七年级上期末数学试卷含答案解析
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案
2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案【年12月4日】初一( )班 学号: 姓名: 成绩: 一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中) 1. 我国以年11月1日零时为标准时点,进行了第六次全国人口普查. 查得常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127510⨯B. 12.7610⨯C. 1.27710⨯D. 1.27810⨯2. 9442y x π的系数与次数分别为( * )A. 94,7B. π94,6C. π4,6D. π94,43. 对方程13122=--x x 去分母正确的是( * )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x4. 有理数3.645精确到百分位的近似数为( * )A. 3.6B. 3.64C. 3.7D. 3.65 5. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( * )A. 15--xB. 15+xC. -x 13 1D.11362-+x x6. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( * )A. -6B. 2C. 16D. -27. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( * )A. 5cmB. 7cmC.8cmD. 9cm 8.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( * )A.10岁B.15岁C.20岁D.30岁9.关于x 的方程(2k -1)x 2-(2k +1)x +3=0是一元一次方程,则k 值为( * )A.12 B.21- C.0 D.110.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则连续翻转次后,数轴上数所对应的点是( * ) A.点A B.点B C.点C D.点D二、填空题(每小题3分,共18分) 11.代数式2245--x x 的值为6,则2522--x x 的值为 .12.x 的三倍减去7,等于它的两倍加上5,用方程表示为 .13.若b a x 325-与5453+-y b a 是同类项,则=x __________,=y __________.14. 一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是(用m 表示). 15. 若34+x 与53互为倒数,则x = . 16. 下列图形都是由同样大小的平行四边形按一定的规律组成。
2019-2020年浙教版七年级数学上册期末复习测试卷 (667)
浙教版初中数学试卷2019-2020年七年级数学上册期末复习测试卷学校:__________一、选择题1.(2分)下列选项中,正确的是( )A . 27的立方根是 3±B 4±C . 9的算术平方根是3D .带根号的数都是无理数2.(2分)国家游泳中心——“水立方”是北京2008年奥运会场馆之-,它的外层膜的展开面积约为260 000平方米,用科学记数法表示260000,并保留二个有效数字,结果可表示为 ( ) A.26B .26×104C.2.6×105D.2.6×1063.(2分)在NBA 的篮球队员中,有两位出色的中国球员,他们是姚明和易建联. 经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有( )人 A . 9B . 11C . 13D . 84.(2分)下列四个代数式中与其他三个不是同类项的一个是 ( ) A .x 2B .2xC .x 2D .x 23−5.(2分)直线b 外有一点A ,A 到b 的距离为3 cm ,P 为直线b 上任意一点,则( ) A .AP>3B .AP ≥3C .AP=3D .AP<36.(2分)据国家商务部消息,2005年一季度,我国进口总额达2952亿美元.用科学记数法表示这个数是( )A .2.952×102亿美元B .0.2952×103亿美元C .2.952×103亿美元D .0.2952×104亿美元7.(2分)在实数 0.31,3π,0.80108中,无理数的个数为 ( ) A .1个B . 2个C .3个D .4个8.(2分)如图是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两个家庭的教育支出占全年总支出的百分比的判断中,正确的是()A.甲户大于乙户 B.乙户大于甲户C.甲、乙两户一样大 D.无法确定哪一户大评卷人得分二、填空题9.(2分)已知小明家五月份总支出共计1200元,各项支出如图所示,那么其中用于教育上的支出是元.10.(2分)已知一个角的补角是这个角的余角的3倍,那么这个角的度数是_______.11.(2分)据宁波市假日办统计数据显示,今年五一黄金周期间,全市旅游总收入达12.9亿元人民币,创历年新高,用科学计数法可记作元.12.(2分)5的相反数是,-2的倒数是,-6的绝对值是.13.(2分) 联系生活实际,给出一个能用方程(110%)1050x+=解决的实际问题的背景.14.(2分)某城市自来水收费实行阶梯水价,收费标准如下表所示,用户 5 月份交水费 45 元,则所用水为度.月用水量不超过12度的部分超过 12度不超过 18度的部分超过 18度的部分收费标准(元/度) 2.00 2.50 3. 0015.(2分)a、b、c、d为实数,现规定一种新的运算a cad bcb d=−,当241815x=−时,x= .16.(2分)若一个角的余角等于它的补角的15,则这个角是 .17.(2分)我国最新研制的“曙光3000超级服务器”在全世界运算速度最快的 500 台高性能计算机中排在第80位左右,它的峰值计算速度每秒钟达到403 200000000次. 该峰值计算速度用科学记数法表示为次/秒.18.(2分)若温度上升10℃记作+10℃,那么-8℃表示 . 19.(2分)已知2246130x y x y ++−+=,那么y x = .20.(2分)小明和小亮做游戏. 小明背对小亮,,让小亮接下列四个步骤操作: 第一 步,分发左、中、右三堆,每堆牌不少于两张,且各堆牌 的张数相同; 第二步,从左边一堆拿出两张,放入中间一堆; 第三步,从右边一堆拿出一张,放入中间一堆;第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边-堆.这时,小明准确说出了中间一堆牌现有的张数. 你认为中间一堆牌的张数是 . 21.(2分)某一天杭州的最低气温是零下3℃,最高气温是零上8℃,则这一天杭州的最大温差是 ℃.三、解答题22.(7分)某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大? (2)补全图6中的条形统计图.(3)写出A 品牌粽子在图7中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货? 请你提一条合理化的建议.图 7图 623.(7分)某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其他”在扇形统计图中所占的圆心角是多少度? (3)补全条形统计图.24.(7分)有这样一道题,计算)3()2(2)433(323323223y y x x y xy x xy y x x −+−++−−−−的值,其中3,51−==y x ,有位同学说即使不告诉他x 的值,他也能求出来,你觉得他说的有道理吗?为什么?25.(7分)如图所示资料来源于2003年(南宁统计年鉴). □ 表示南宁市农民人均纯收入(元) 表示南宁市城市居比人均可支配收入(元)(1)分别指出南宁市农民人均纯收入和城市居民人均可支配收入,相对上一年哪年增长最快? (2)据统计.2000~2002年南宁市农民年人均纯收入的平均增长率为7.5%,城市居民年人均可支配收入的平均增长率为8.7%,假设年平均增长率不变,请你分别预计2004年南宁市农民人均纯收入和城市居民人均可支配收入各是多少?(精确到1元) (3)从城乡年人均收入增长率看,你有哪些积极的建议?(写出一条建议)26.(7分) 如图,已知O 是直线MN 上的一点,∠AOB =90°,OC 平分∠BON ,∠3 =24°,求 ∠1 和∠MOC 的度数.27.(7分) 计算或化简: (1)6(6)(1)(8)−−−−⨯− (2)22315(5)||(10)25−+−−−⨯− (3)2329(12)24⨯− (4)先化简,再求值:22132()()223y x x y x −−+−+,其中14x =,12y =−.28.(7分)下面是小马虎解的一道数学题.29.(7分)有长为l的篱笆,现要用这个篱笆和一面墙围成矩形的园子(如图),园子的宽为t.(1)用含l、t的代数式表示园子的面积;(2)当100l=米,30t=米时,求园子的面积.30.(7分)先化简代数式,再取一个你喜欢的数代入求值:222226()332aa −+⨯−−.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C2.C3.A4.C5.B6.C7.B8.B评卷人得分二、填空题9.216 10.45°11.1.29×91012.-5,-12,613.略14.2015.316.67.5°17.114.03210⨯18.温度下降8℃19.-8.20.521.11三、解答题22.解: (1)C品牌;(2)略(B品牌的销售量是800个);(3)60°;(4)略23.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人)“其他”人数=100-30-20-40=10 (人)“其他”在扇形统计图中所占的圆心角=360°×10100=36°(3)略24.有道理,原式=-3y3,与x值无关,当3y=−时,原式=8125.(1)南宁市农民人均纯收入和城市居民人均可支配收入,相对于上一年都是2002年增长最快.(2)预计2004年农民人均收入:2524(1+7.5%)2≈2917(元)预计居民人均可支配收入:8796(1+8.7%)2≈10393(元)(3)建议:如加快农业建设步伐等等.26.∠l=33°,∠MOC=147°27.(1)4 (2)40 (3)13592− (4)23x y−+;12−28. 题目:在同一平面内,若∠BOA=70°,∠BOC =150°,求∠AOC 的度数. 解:根据题意可作出如图 所示的图形.因为∠AOC =∠BOA-∠BOC=70°- 15°=55°,所以∠AOC=55°. 若你是老师,会给小马虎满分吗?若会,说明理由; 若不会,请你指出小马虎的错误,并给出你认为正确的解法.不会给小马虎满分.小马虎只考虑了∠BOC 在∠BOA 的内部一种情况,其实∠BOC 也可以在∠BOA 的外部(如 图 所示). 所以本题的正确解法为:若∠BOC 在∠BOA 的内部,则∠AOC=∠BOA- ∠BOC=70° -15°= 55°; 若∠LBOC 在∠BOA 的外部,则∠AOC=∠BOA+∠BOC=70°+15°=85° 即∠AOC 的度数为 55°或 85°29.(1)园子的宽为t ,则长为2l t −,∴园子的面积为(2)t l t −;(2)当100l =米,30t =米时,园子的面积为(2)30(100230)1200t l t −=−⨯=(平方米)30.222222226()34433632a a a a a −+⨯−−=−+−−=−当2a =时,原式=2266224−=−⨯=−。
新版精选2019年七年级数学上册期末总复习完整版考核题(含参考答案)
2019年七年级上册数学期末总复习期末总复习模拟测试题一、选择题1.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.2312.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走 100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到邮局;丙:邮局在火车站正西方向200米处.根据三人的描述,若从图书馆出发,下列走法中,终点是火车站的是()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走600米C.向南直走700米,再向西直走200米,D.向南直走700米,再向西直走600米3.如图,图中共有()A.9个角和 7条线段B.10个角和 8条线段C.11个角和 9条线段D.12个角和10条线段4.两个完全相同的长方体的长、宽、高分别为 3、2、1,把它们叠放在一起组成一个新的长方体. 在组成的这些新长方体中、表面积的最小值为()A.42 B.38 C.20 D.325.巴广高速路的设计者准备在西华山再设计修建一个隧道,以缩短两地之间的里程,其主要依据是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D .过直线外一点有且只有一条直线平行于已知直线 6.下列物体的形状类似于球的是( ) A .茶杯B .羽毛球C .乒乓球D .白炽灯泡7.一艘轮船从点A 出发,沿南偏西60°方向航行到B 点,再从8点出发沿北偏东15°方向航行到C 点,则∠ABC= ( ) A .45°B .75°C .105°D .135°8.如图,P 是线段MN 的中点,Q 是MN 上的点,判断下列说法中:①PQ=12PN ;②PQ=MP-QN ;③PQ=MQ-PN ;④PQ=12MN-QN ,其中正确的有( )A .1个B .2个C .3个D .4个9.翔翔、帆帆两人赛跑,翔翔每秒钟跑7米,帆帆每秒钟跑6.5米,翔翔让帆帆先跑5米,设x 秒后,翔翔追上帆帆,则下列四个方程中,错误的是( ) A . 7 6.55x x =+B . 75 6.5x -=C .(7 6.5)5x -=D .6.575x =-10.在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( )A .32+x=2×18B .32+x=2(38-x )C .52-x =2(18+x )D .52-x=2×18 11.在下列方程:①1-2x=2x-1;②12(1)2x x -=--;③-2x=-1 中,解为12x =的方程有0.30.3ax -( )A .0 个B .1 个C .2 个D .3 个12.下列四种说法:①正实数和负实数统称实数;②实数包括有理数和无理数;③分数都是实数;④数轴上的点可以表示无理数,其中正确的有( ) A .1 种B .2 种C .3种D .4 种13.3.1449精确到百分位的近似数是 ( ) A .3.14B .3.15C .3.20D .3.14514.下列说法错误的是( ) A .一个教同 0相乘,仍得0 B .一个数同 1 相乘,仍得原教 C .一个数同一 1 相乘,得原教的相反数 D .互为相反数的两数积为负数15.如果两个数的积为零,那么这两个数( ) A . 都为0B .至多有一个为 0C .不都为0D .至少有一个为0二、填空题16.当 x= 0.5 时,||23x x-= . 17.找规律填数:1,12-,+ 3,14-,+ 5, , , ,… 18.比较数的大小:0 -0.4,5-- -3,0.00l -1000. 19.2-的相反数是 .20.用四舍五入法,保留l 个有效数字,则取80600的近似值为 ,保留2个有效数 字的近似值为 . 21.( )2=16;( )3=64.22.太阳的半径约是69660千米,用科学记数法表示(保留3个有效数字)约是 千米.23.计算:(1)(5)(2)-⨯-= ; (2)136()3÷-= .24.任何实数的绝对值都是 数.25.已知数a 为负数,且数轴上表示a 的点到原点的距离等于 3,将该点向右移动 6 个单位后得到的数的相反数是 .26.一 只蜘蛛有 8 条腿,n 只蜘蛛有 条腿. 27.在12-,14.3,2004,5-,%7-,23--各数中,属于负分数的有 个,最小的有理数为.28.a 、b 、c 、d 为实数,现规定一种新的运算ac ad bc b d=-,当241815x =-时,x = .29.在x=4,x= -3 中,是方程 2x-6 =3(x-1)的解的是 .30.小车和大车从相距60 km 的两地同时出发,相向而行,经20 min 两车相遇,如果小车的速度是大车速度的l .5倍,则大车的速度为 km /h ,小车的速度为 km /h . 31.一件工作,甲独做要 3 h 完成,乙独做要5 h 完成,若两人合作完成这件工作的45,则需要 h 完成.32.国家规定存款利息的纳税办法是:利息税=利息×20,银行一年定期储蓄的年利率为 1. 98,今年小刚取出一年到期的本金及利息时,缴纳了 3. 96 元利息税,则小刚一年前存入银行的钱为 .33.若关于x 的方程39x =与4x k +=有相同的解,则代数式212k k -的值为 .34.体育老师手上有九年级同学立定跳远的成绩,现要求对体育成绩分性别进行统计,并统计出成绩为优秀的人数,良好的人数,合格的人数,不合格的人数.(1)在这里涉及个数据,分别是;(2)统计时,把表格中“A、B、C、D、E、F、G、H、I、J、K、L”所代表的要统计项目的具体内容填写完整.35.福顺路交通拥堵现象十分严重.上周末,陈新同学在福顺人行天桥处对3 000名过往行人作了问卷调查,问题是:从这里横过福顺路时,你是否自觉走人行天桥?供选择的答案有:A.是;(B)否;(C)无所谓.他将得到的数据处理后,画出了扇形统计图(如图).根据这个扇形统计图,可知被调查者中自觉走人行天桥的有人.36.如图,∠AOC=50°,∠BOD=40°,∠AOD=60°.则∠l= ,∠2= ,∠3= .37.1= ,1的相反数是 .38.绝对值小于 2 的整数有个,它们分别是.三、解答题39.如图,直线AB、CD相交于点0,OB平分∠DOE,若∠DOE=64°,求∠ACC的度数.40.在依次标有数字3、6、9、12……的卡片中,小明拿到3张卡片,它们的数字相邻,且数字之和为117.(1)小明拿到的卡片是标有哪些数字的?(2)你能否拿到数字相邻的4张卡片,使其数字之和为177?若能,请指出这4张卡片中数字最大的卡片,若不能,请说明理由.41.根据条件列方程:(1)某数的5倍比这个数大3(2)某数的相反数比这个数大6(3)爸爸和儿子的年龄分别是40岁和l3岁,请问几年后,爸爸的年龄是儿子年龄的2倍?42.如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点叫格点,以格点为顶点分别接下列要求画图形.(1)画一个面积为 4 的三角形(在图①中画一个即可).(2)画一个面积为 8 的正方形(在图②中画一个即可).43.利用计算器比较下列各数的大小,并用<”号连结:ππ<44.利用计算器比较下列各数的大小,并用<”号连结:ππ<<45.受强冷空气的影响,某地某日上午11时的气温为4℃,下午4时的气温已降为-2.5℃,平均每小时气温下降多少摄氏度?46.计算:(1)(-32)+(-512)+52+(-712) (2)25409+-- (3)(-18)÷241×94÷(-16) (4))1816191(36--⨯-47.计算:(1)231221110.75(1)(1)()223-÷-+-⨯-;(2)[(-3)2-(-5)2]÷(-2).48.列式计算:(1)13 的相反数,加上-27 的绝对值,再加上负 31 的和. (2)从-3 中减去712-与16-的和,所得的差是多少? (3)和为-8. 6,一个加数为 -3. 2,求另一个加数.49.计算: (1)31+(-28)+28+69;(2)21( 1.125)(3)()(0.6)58++-+-+-(3)11(6)( 3.2)(3)5(6)( 3.2)44++-+-++-++(4) ( -25)+34+(-65) +156.50.画一条数轴,并在上面标出下列各点:0.1,112-,1.5,+5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年七年级上册数学期末总复习期末总复习模拟测试题一、选择题1.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b - 2. 在-2,38-,0,31 各数中,有理数有( ) A .4 个 B .3 个 C .2 个 D .1 个3.在数|3|-,2-+,(0.5)--,|0|+-中负数共有( )A .1 个B .2 个C .3 个D .4 个4.已知|2006||2007|0x y -++=,则x 与y 的大小关系是( )A .x y <B .x y >C .0x y <-<D .0x y >->5.在3(3)-,2(3)-,(3)--,|3|--四个数中,负数个数有( )A .1 个B .2 个C .3 个D .4 个6.设a 是大于 1 的有理数,若a 、23a +、213a +在数轴上的对应点分别记作 A .B 、C ,则A 、B 、C 三点在数轴上自左至右的顺序是( )A .C 、B 、AB .B 、C 、A C .A 、B 、CD .C .A 、B 7.若|2|a -与2(3)b +互为相反数,则a b 的值为( )A .-6B . 18C .8D .98.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最爱好的阳光体育运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如上的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为( )A .120oB .144oC .180oD .72o9.下列等式中是一元一次方程的是( )A .31x y =-B .11x x =+C .312(1)4x x +=--+D .23213x -=10.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条11.如果M 是3次多项式,N 是3次多项式,则M+N 一定是( )A .6次多项式B .次数不高于 3的整式C .3次多项式D .次数不低于 3的多项式12.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,则下列方程正确的是( )①8256x x -=+;②5(8)6(2)y y -=+;③5(8)6(2)y y +=-;④8256x x +=-. A .①③ B .②④ C .①② D .③④13.一件标价为600元的上衣,按8折(即按标价的80%)销售仍可获利20元.设这件上衣的成本价为x 元,根据题意,下面所列方程正确的是( )A .6000.820x ⨯-=B .600820x ⨯-=C .6000.820x ⨯=-D .600820x ⨯=-14.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个15.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( )A .1个B .2个C .3个D .4个16.下列说法中不正确的是( )A .在同一平面内,若OA ⊥OB ,OB ⊥OC 垂足为0,则A 、0、C 在同一直线上B .直线外一点P 与直线l 上各点连结的线段中,最短的线段长为2 cm ,则点P 到直线l 的距离为2 cmC .过点M 画MN ⊥l ,则MN 就是垂线段D .测量跳远成绩时,一定要使皮尺与起跳线垂直17.如果一个数的平方与这个数的差等于0,那么这个数只能是( )A . 0B . -1C . 1D .0或 1二、填空题18.已知某圆恰好分成三个扇形A 、B 、C , 扇形A 、B 所占的百分比分别为 25%、45%, 又知整个圆代表学校总人数.且C 中有l50人,则该校的总人数是 人.19.如图,∠1=30°,∠2=40°,则∠EOB= ,∠AOF= .20.(1)用度、分、秒表示:①123.38°= ;②(3154)°= ;(2)用度表示:①51°25′48″= ;②128°20′42″= .21.如图,在线段AB 上任取C 、D 两点,若M 、P 分别是线段AC 、DB 上的点,且AM=MC ,PB=12BD ,CD=3 cm ,AB=9 cm ,则MP= cm .22.已知A 、B 是数轴上两点,AB=2,点B 表示-1,那么点A 表示 .23.已知关于x 的方程)0(332≠-=+ab bx x a 的解是x=-2,则代数式ba 的值为 . 24.根据条件“x 的 2倍与-9 的差等于x 的15与 6 的和”列出方程 . 25.在某个月的日历上,一个竖列上相邻3个数之和是45,那么这3天的日期分别是 .26.针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整. 已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为 元.27.某城市按以下规定收取每月的煤气费:用气不超过 60 米3,按每立方米 0. 8 元收费;如果超过 60 米3,超过部分每立方米按 1. 2元收费,已知某户用煤气 x(米3)(x>60),则该户应交煤气费 元.28.观察如下规律排列的一列数:2,4,6,8,10,…并回答下列问题.(1)排在第 5 位的数是 ;(2)排在第 n 位的数是 ;(3)排在第 100 位的数是 .29.在6(2)-中,底数是 ,指数是 ,运算结果是 ;在62-中,底数是 ,指数是 ;运算结果是 .30.最大的负整数是 ,绝对值最小的数是 .三、解答题31.化简并求值:(1)()()223321x y x y --++,其中2,0.5x y ==-.(2)()()2234222a ab a a ab ⎡⎤--+-+⎣⎦,其中2a =-.32.计算: (1)231221110.75(1)(1)()223-÷-+-⨯-; (2)[(-3)2-(-5)2]÷(-2).33.小明买了6个梨的总质量是0.95 kg ,那么平均每个梨的质量约为多少(精确到0.01 kg)?34. 利用字母表示数来表示下列数学规律.(1)两个互为相反数的数的和为零;(2)一个数的立方根的立方就是这个数本身.35.举一个可以用 5x 表示结果的实际问题.36.用代数式表示:(1)a 的绝对值;(2)a(a≠0)的倒数;(3)a 的相反数;(4)a 的平方根(a≥0);(5)a 的立方根.37.某地区夏季高山上的温度从山脚处开始每升高 100 m 降低 0.7℃,如果山脚温度是28℃,那么山上 300 m 处的温度是多少度?一般山上 x(m)处的温度是多少?38.先化简,再求值. 22222222(22)[(33)(33)]x y xy x y x y x y xy---++-,其中12x=-,2y=.39.聪聪爸爸驾驶一辆汽车从A 地出发. 先向东行驶15千米;再向西行驶25千米,然后又向东行驶20千米,又向西行驶40千米.(1)利用数轴说明汽车最后停在何处;(2)若已知这种汽车行驶 100千米消耗的油量为8.9升,则聪聪爸爸这天消耗了多少升汽油?40.某超市出售的一种饼干的单价是7.89元/袋,一种蛋卷的单价是8.99元 /罐,小明购买蛋卷的罐数比购买饼干的袋数的一半少1.(1)设购买饼干的袋数为n,请用代数式表示购买饼干和蛋卷的总价;(2)若6n=,总价为多少?41.计算:(1) -12-(-8);(2)213502()5+÷⨯-42.已知2x=是方程32ax+=的解,求a的值. 43.解方程:(1)13432x x-=+ (2)5x-2(x-1)=14(3)2211632x x x-+--=+(4)0.5110.20.3x x+-=44.通过对某区2005年至2007年旅游景点发展情况的调查,制成了该区旅游景点个数情况的条形统计图和每年旅游景点游客人数平均数情况的条形统计图,利用这两张统计图提供的信息,解答下列问题.(1)这三年接待游客最多的年份是哪一年?(2)这三年中平均每年接待游客多少人?45.已知A、B、C、D是四个点,分别根据下列要求画图.(1)画线段AC;(2)连结BD;(3)画射线BC;(4)画直线CD.46.任取线段a、b、c(a<b<c).画图表示:(1)b-a+c; (2)c+a-b.47.如图,一个长方体,(1)用符号表示出与棱A1B1平行的棱;(2)用符号表示出过棱AB的端点且垂直于AB的棱;(3)棱DD1与棱BC没有交点,它们平行吗?48.已知一个角的补角比它的余角的2倍多100,求这个角的度数.49.解下列方程:(1)156178x x+=-(2)2419 36x xx -+=-(3)10.50.12 0.30.2x x---=50.自然数中有许多奇妙而有趣的现象,很多秘密等待我们探索. 比如:写出一个你喜欢欢的数,把这个数乘以 2,再加上 2,把结果乘以 5,再减去 10,再除以 10,结果你会重新得到原来的数.假设一开始写出的数为n,根据这个例子的每一步,列出最后的表达式.。