【人教版】2019年春九年级数学下册教案:27.3 第1课时 位似图形的概念及画法
人教版九年级数学下册:27.3《位似》教案1
人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
人教版数学九年级下册27.3《位似(1)》教学设计
人教版数学九年级下册27.3《位似(1)》教学设计一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的概念,掌握位似图形的性质,并能够运用位似性质解决实际问题。
教材通过丰富的图形和实例,引导学生探究、发现位似的性质,培养学生的空间想象能力和抽象思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质和判定,具备了一定的几何知识基础。
但九年级学生的空间想象能力和抽象思维能力仍需进一步提高。
因此,在教学过程中,教师应注重引导学生通过观察、操作、思考、交流等活动,自主探究位似图形的性质,提高学生的空间想象能力和抽象思维能力。
三. 教学目标1.知识与技能:理解位似的概念,掌握位似图形的性质,能够运用位似性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:位似的概念,位似图形的性质。
2.难点:位似性质的证明和运用。
五. 教学方法1.情境教学法:通过丰富的图形和实例,引导学生观察、操作,激发学生的学习兴趣。
2.问题驱动法:设置问题引导学生思考,培养学生的问题解决能力。
3.合作学习法:分组讨论,培养学生团队合作意识和交流能力。
4.启发式教学法:引导学生自主探究,培养学生的抽象思维能力。
六. 教学准备1.准备相关的图形和实例,用于引导学生观察和操作。
2.准备投影仪或大屏幕,用于展示图形和实例。
3.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的位似图形,如放大或缩小的地图、图片等,引导学生观察并提问:“这些图形有什么共同特点?”让学生思考位似图形的性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过展示位似图形的定义和性质,引导学生理解和掌握位似的概念。
2019春人教版九年级数学下册教案:27.3位似
2019春人教版九年级数学下册教案:27.3位似一、教学目标1.了解位似的定义和性质。
2.能够判断两个图形是否位似。
3.能够找出两个位似图形的对应顶点。
4.能够利用位似的性质解决实际问题。
二、教学重点1.判断两个图形是否位似。
2.找出两个位似图形的对应顶点。
三、教学难点1.利用位似的性质解决实际问题。
四、教学过程1. 导入新知识引导学生回顾上节课学习的内容,复习相似图形的概念和性质。
2. 学习位似的定义和性质(1) 引入位似的概念•提问:什么是位似?能举个例子吗?•预期回答:位似是指两个图形的对应边平行且对应边的长度之比相等。
•示意图:无(2) 位似的性质•提问:位似的性质有哪些?•预期回答:位似的性质有:对应角相等、对应边平行、对应边的长度之比相等。
•示意图:无3. 判断图形是否位似(1) 实例讲解•示例:已知图形 ABCD 和图形 EFGH,判断是否位似。
•示意图:无(2) 指导学生判断•提问:根据位似的性质,我们应该如何判断两个图形是否位似?•预期回答:判断对应角是否相等、对应边是否平行、对应边的长度之比是否相等。
•示意图:无(3) 练习题•练习题:给定图形 ABCD 和图形 EFGH,判断是否位似。
•示意图:无4. 找出位似图形的对应顶点(1) 实例讲解•示例:已知图形 ABCD 和图形 EFGH 是位似图形,找出它们的对应顶点。
•示意图:无(2) 指导学生找出对应顶点•提问:根据位似的性质,我们应该如何找出位似图形的对应顶点?•预期回答:找出对应边的顶点。
•示意图:无(3) 练习题•练习题:已知图形 ABCD 和图形 EFGH 是位似图形,找出它们的对应顶点。
•示意图:无5. 应用位似解决实际问题(1) 实例讲解•示例:已知一个房屋的图纸,比例为 1:100,某个房间的宽度为 4 米,请计算这个房间在图纸上的宽度。
•示意图:无(2) 指导学生解决实际问题•提问:如何利用位似的性质解决实际问题?•预期回答:可以利用比例和已知长度,求出未知长度。
人教版数学九年级下册27.3《位似(第一课时)》表格优秀教学案例
1.分组讨论:我将学生分成若干小组,每个小组选择一个具体实例,分析其中的位似关系,并总结位似的性质。
2.小组汇报:每个小组选代表进行汇报,分享自己的发现和总结。其他小组成员和教师进行点评和补充。
(四)总结归纳
1.位似的定义和性质:我引导学生总结位似的定义和性质,使学生能够系统地掌握位似的概念。
三、教学策略
(一)情景创设
1.以生活实例引入:我选择了几个现实生活中常见的位似现象,如相似的建筑、动物的生长变化等,通过展示图片或视频,让学生直观地感受到位似的存在。这样的引入方式能够激发学生的兴趣,使他们更加关注本节课的内容。
2.几何图形展示:在课堂上,我展示了多种几何图形,让学生观察并分析其中的位似关系。通过观察和分析,学生能够发现位似的性质,并逐步理解位似的概念。
2.培养学生运用位似的概念解决实际问题的能力,提高学生的几何思维能力。
3.通过对位似概念的学习,使学生能够灵活运用位似性质,解决一些相关的几何问题。
为了实现这一目标,我在教学中采用了多种教学手段。首先,我通过生活实例引入位似的概念,让学生感受到位似在生活中的存在。然后,我通过几何图形的展示,引导学生发现位似的性质,并通过小组讨论的方式,让学生共同探讨位似的特征。在讲解位似图形的画法时,我以具体例子为例,引导学生动手操作,加深对位似概念的理解。
(四)反思与评价
1.学生自我反思:在课堂结束后,我要求学生进行自我反思,总结自己在课堂上的学习情况和收获。通过自我反思,学生能够更好地了解自己的学习状态,发现自己的不足之处,从而调整学习策略,提高学习效果。
2.教师评价:在课后,我对学生的学习情况进行评价。我注重评价学生的知识掌握程度、思维能力、团队合作能力等多个方面。通过教师的评价,学生能够了解自己的学习成果和不足之处,从而激发学生的学习动力,提高他们的学习效果。
人教版九年级数学下册:27.3《位似》说课稿1
人教版九年级数学下册:27.3《位似》说课稿1一. 教材分析《位似》是人教版九年级数学下册第27.3节的内容,属于几何学的范畴。
这部分内容是在学生学习了相似三角形、相似多边形的基础上进行的,是几何学习中的重要组成部分。
位似是指两个图形在形状上相似,但大小不一定相同的现象。
通过学习位似,学生可以更好地理解图形的内在联系,提高空间想象力,为后续学习圆锥、圆柱等几何体的性质打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础,对相似三角形、相似多边形有一定的了解。
但是,对于位似的理解还需要进一步的引导和培养。
此外,学生的空间想象力各不相同,需要在教学过程中注意因材施教,引导学生主动探究,提高空间想象力。
三. 说教学目标1.知识与技能目标:理解位似的定义,掌握位似的性质,能运用位似解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象力,提高解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:位似的定义,位似的性质。
2.教学难点:位似的性质的理解和运用,尤其是位似中心的确定。
五. 说教学方法与手段1.教学方法:采用问题驱动法、讨论法、案例教学法等,引导学生主动探究,提高空间想象力。
2.教学手段:多媒体课件、几何模型、黑板等。
六. 说教学过程1.导入:通过一个生活中的实例,引导学生思考位似的存在,激发学生的兴趣。
2.新课讲解:讲解位似的定义,通过几何模型和多媒体课件,展示位似的性质,引导学生动手操作,加深理解。
3.例题解析:分析几个典型的位似问题,引导学生运用位似性质解决实际问题。
4.课堂练习:设计一些练习题,让学生巩固所学知识,提高解决问题的能力。
5.总结:对本节课的内容进行总结,强调位似的性质和运用。
七. 说板书设计板书设计要清晰、简洁,能够突出位似的性质和关键点。
新人教版2019春九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案新版
27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有( )A.0个 B.1个 C.2个 D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA′,BB′,它们的交点就是位似中心.解:(1)连接对应点AE、BF,分别延长AE、BF,使AE、BF交于点O,点O就是位似中心;(2)连接对应点AN 、BM ,延长AN 、BM ,使AN 、BM 的延长线交于点O ,点O 就是位似中心;(3)连接AA ′、BB ′,AA ′、BB ′的交点就是位似中心O .方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题【类型三】 画位似图形按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍;(2)图②中,以O 为位似中心,把△ABC 缩小为原来的13.解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型四】 位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P 为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EF DC =25,解得EF =65.方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。
人教版九年级数学下册教案:27.3 位似
27.3位似第1课时位似图形出示目标1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.预习导学阅读教材P47-48,自学“思考”与“探究”,理解位似的概念,会找出位似图形的位似中心,并能按要求将图形进行放大或缩小的位似变换.自学反馈学生独立完成后集体订正①两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.②下列说法正确的是(C)A.位似图形必须是两个直角三角形B.全等图形必是位似图形C.位似图形对应点的连线必相交于一点D.相似图形一定是位似图形③下列说法正确的是(D)A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似④用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在(D)A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置⑤关于对位似图形的表述,下列命题正确的是(C)A.相似图形一定是位似图形,位似图形一定是相似图形B.位似图形不一定有位似中心C.如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形D.位似图形上任意两点与位似中心的距离之比等于位似比教师点拨:位似的三要素即是判定位似的依据,也是位似图形的性质.合作探究1活动1小组讨论例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.解:1.在原图形上取A、B、C、D、E、F、G,在图形外任取一点P;2.作射线AP、BP、CP、DP、EP、FP、GP;3.在这些射线上依次取A′、B′、C′、D′、E′、F′、G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=3PD,PE′=2PE,PF′=2PF,PG′=2PG;4.顺次连接点A′、B′、C′、D′、E′、F′、G′、A′.所得到的图形就是符合要求的图形.教师点拨:在作位似图形时,按要求作出各点的对应点后,注意对应点之间的连线不要错连.活动2跟踪训练(独立完成后展示学习成果)1.例1中的位似中心为点P ,如果把位似中心选在原图形的内部,那么所得图形是怎样的?如果点A′、B′、C′、D′、E′、F′、G′取在AP、BP、CP、DP、EP、FP、GP的延长线上时,所得的图形又是怎样的?(试着画一画)教师点拨:当位似中心在原图形的外部时,两个图形可能在位似中心的两侧或同侧.2.如图,△OAB和△OCD是位似图形,AB与CD平行吗?为什么?答:平行.因为位似的两个图形的对应边平行.第2题图第3题图3.如图,以O为位似中心,将△ABC放大为原来的两倍.教师点拨:第2小题可根据位似的三要素得出对应线段平行;第3小题可有两种情况,画出其中一种即可.4.下列选项中的两个图形是位似图形的是(AC)合作探究2活动1小组讨论例2请画出如图所示两个图形的位似中心.解:如图所示的点O1就是图1的位似中心.如图所示的点O2就是图2的位似中心.图1图2教师点拨:正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义得出,位似图形的对应点连线的交点就是位似中心.活动2跟踪训练(独立完成后展示学习成果)如图,图中的小方格都是边长为1的正方形,△ABC与△A1B1C1是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.①画出位似中心点O;②求出△ABC与△A1B1C1的相似比;③以点O为位似中心,再画一个△A2B2C2,使它与△ABC的相似比等于1.5.解:①如图所示.②1∶2.③如图所示.活动3课堂小结学生试述:这节课你学到了些什么?随堂训练教学至此,敬请使用学案随堂训练部分.第2课时位似图形对应顶点的坐标规律出示目标1.使学生理解掌握位似图形在平面直角坐标系上的应用,即会根据相似比,求位似图形顶点,以及根据位似图形对应点坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.2.让学生在应用有关知识解决问题的过程中,提高应用意识,体验数形结合的思想方法在解题中的运用.预习导学阅读教材P48-50,自觉“探究”与“例”,掌握以原点为位似中心的两个位似图形对应顶点的坐标规律.自学反馈学生独立完成后集体订正①如图,在平面直角坐标系中,有两点A(6,3)、B(6,0),以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?②在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点坐标的比为__k 或-k__.③△ABC 和△A 1B 1C 1关于原点位似且点A(-3,4),它的对应点A 1(6,-8),则△ABC 和△A 1B 1C 1的相似比是 12 .④已知△ABC 三顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O 为位似中心,相似比为2,把△ABC 放大得到△A 1B 1C 1,则△A 1B 1C 1各顶点的坐标分别为A 1 (2,4)或(-2,-4) ,B 1 (2,0)或(-2,0) ,C 1 (6,6)或(-6,-6) .教师点拨:注意分两种情况.⑤在平面直角坐标系中的图案如图,若将六个点的纵坐标保持不变,横坐标分别变成原来的2倍,连接各点所得图案与原图案相比( C )A.相同B.横向缩短一半C.横向拉长2倍D.纵向拉长2倍合作探究1活动1小组讨论例1将图形中的△ABC作下列移动,画出相应的图形,指出三个顶点的坐标所发生的变化.①向上平移4个单位;②关于y轴成轴对称;③以A点为位似中心,放大到原来的2倍.解:①平移后得△A1B1C1,横坐标不变,纵坐标都加4;②△ABC关于y轴成轴对称的图形为△A2B2C2,纵坐标不变,横坐标为对应点横坐标的相反数;③放大后得△AB3C3,A的坐标不变,B3在B的基础上纵坐标不变,横坐标加AB的长,C3的横坐标在C的横坐标的基础上加AB的长,纵坐标在C的纵坐标的基础上加BC的长.教师点拨:考虑图形在平面直角坐标系中作何种变换,弄清点的坐标的变化情况;作位似变换时,求出顶点坐标即可.活动2跟踪训练(独立完成后展示学习成果)1.某个图形上各点的横、纵坐标都变成原来的12,连接各点所得图形与原图形相比( C )A .完全没有变化B .扩大成原来的2倍C .面积缩小为原来的14D .关于纵轴成轴对称2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( B )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.四边形ABCD 的四个顶点坐标分别为A(-9,6)、B(-9,3)、C(-3,0)、D(-3,3),以原点O 为位似中心,相似比为13的位似图形各顶点的坐标分别为(-3,2)、(-3,1)、(-1,0)、(-1,1)或(3,-1)、(3,-2)、(1,0)、(1,-1);以y 轴为对称轴的轴对称图形的各顶点坐标分别为__(9,6)、(9,3)、(3,0)、(3,3);以x 轴为对称轴的轴对称图形的各顶点坐标分别为__(-9,-6)、(-9,-3)、(-3,0)(-3,-3)__;以原点为对称中心作中心对称变换所得的图形的各顶点的坐标分别为(9,-6)、(9,-3)、(3,0)、(3,-3).合作探究2活动1小组讨论例2如图所示的△ABC ,以A 点为位似中心,放大为原来的2倍,画出一个相应的图形,并写相应的点的坐标.解:根据题意,图中的△AB 1C 1就是满足题意的三角形,其中A 点的坐标不变,仍是(-3,-1),B 1、C 1的坐标分别为(3,-3),(1,3).教师点拨:解决本题的关键就是要作出正确的图形,否则求出的点的坐标就会发生错误.活动2 跟踪训练(独立完成后展示学习成果)在平面直角坐标系中,将坐标为(0,0)、(2,4)、(2,0)、(4,4)、(6,0)的点用线段顺次连接起来形成一个图案.①将这五个点的纵坐标不变,横坐标变为原来的12,求上述点的坐标,将所得的五个点用线段顺次连接起来,所得图案与原图案相比有什么变化?②横坐标不变,纵坐标分别减去3呢?③横坐标都加上3,纵坐标不变呢?④横、纵坐标都乘以-1呢?⑤横、纵坐标分别变成原来的2倍呢?面积如何变化?解:①横向缩小13 ②向下平移3个单位长度 ③向右平移3个单位长度 ④关于原点作中心对称变换 ⑤以原点为位似中心作位似变换,相似比为2,面积扩大4倍活动3 课堂小结1.本节学习的数学知识:以原点为位似中心,位似图形对应点之间的坐标的关系.2.本节学习的数学方法:运用数形结合的方法解题.随堂训练教学至此,敬请使用学案随堂训练部分.。
27.3 第1课时 位似 教案 九年级数学下册(人教版)
27.3 第1课时位似教案九年级数学下册(人教版)一、教学目标1.了解图形的位似概念,及其和相似图形的区别,会判断简单的位似图形和位似中心。
2.理解位似图形的性质,掌握位似图形的画法。
3.能利用位似将一个图形放大或缩小,解决一些简单的实际问题。
4.培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。
5.发展学生的合情推理能力和初步的逻辑推理能力。
6.通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。
二、教学重点和难点教学重点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
教学难点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
三、教学过程一、创设情境,激情导入观察图片,思考图片在发生怎样的变化,举生活实例演示幻灯机的播放过程让学生观察性质2:对应边平行或在同一直线上特点:(1)图形相似:(2)每组对应点所连直线交于一点。
二、位似图形的概念1.什么是位似图形,位似中心?如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
2.位似和相似有怎样的联系和区别?3.位似比也叫相似比4.怎样作一个图形的位似图形。
三、画位似图形例:把△ABC扩大为原来2倍1.任取一点O;2.以O为端点做射线在射线OA,上取点A'使OA':OA=2:13.同样的方法做出B',C',学生活动教学步骤教师活动教学形式展示现实生活中的位似图形,让学生体会本课的价值,激发学生的兴趣。
启发学生寻找图形的特点。
引出本节课题自主学习并通过观察,寻找图形的特点。
多媒体展示图片资料学生与师生互动通过对五个位似图形的判断,引导学生归纳出位似图形的概念。
初中数学人教版九年级下册优质说课稿27-3第1课时《位似图形的概念及画法》
初中数学人教版九年级下册优质说课稿27-3 第1课时《位似图形的概念及画法》一. 教材分析《位似图形的概念及画法》是人教版初中数学九年级下册第27-3课时的一节课程。
这部分内容是在学生已经掌握了相似图形的性质和判定基础上进行学习的,是进一步深化和拓展相似图形知识的重要环节。
通过本节课的学习,学生能够理解和掌握位似图形的概念、性质和画法,提高他们的空间想象能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似图形有一定的了解。
但是,对于位似图形的概念和画法,他们可能还比较陌生,需要通过具体实例和实践活动来逐步理解和掌握。
同时,学生的空间想象能力和逻辑思维能力参差不齐,需要在教学过程中给予不同的学生不同的指导和帮助。
三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解和掌握位似图形的概念、性质和画法,提高他们的空间想象能力和逻辑思维能力。
2.过程与方法目标:通过观察、操作、交流和思考,学生能够培养合作意识和问题解决能力。
3.情感态度与价值观目标:激发学生对数学的兴趣和热情,培养他们的创新精神和实践能力。
四. 说教学重难点1.教学重点:位似图形的概念、性质和画法。
2.教学难点:位似图形的性质和画法的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法和探究学习法等,引导学生主动参与、积极思考、合作交流。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过展示一些生活中的位似图形实例,引导学生观察和思考,激发他们对位似图形的兴趣和好奇心。
2.概念讲解:通过具体实例和几何画板演示,引导学生发现和总结位似图形的性质和判定方法。
3.实践活动:让学生分组合作,进行实际操作和画图,巩固位似图形的画法。
4.总结提升:通过问题讨论和思考,引导学生深入理解和掌握位似图形的概念和性质。
5.课堂小结:对本节课的内容进行回顾和总结,帮助学生形成知识体系。
人教版数学九年级下册教案27.3《位似》
人教版数学九年级下册教案27.3《位似》一. 教材分析《位似》是人教版数学九年级下册第27章第三节的内容,本节课主要让学生理解位似的性质,学会求位似图形的相似比。
通过本节课的学习,学生能够掌握位似的定义,理解位似与相似的关系,以及位似在实际问题中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的性质,能够求出两相似图形的相似比。
但位似这一概念对学生来说比较抽象,不易理解。
因此,在教学过程中,教师需要利用生活中的实例,引导学生直观地理解位似的含义,并学会求位似图形的相似比。
三. 教学目标1.理解位似的定义,掌握位似图形的性质。
2.学会求位似图形的相似比。
3.能够运用位似知识解决实际问题。
四. 教学重难点1.教学重点:位似的定义,位似图形的性质,求位似图形的相似比。
2.教学难点:位似与相似的关系,位似在实际问题中的应用。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过生活实例引入位似概念,引导学生直观地理解位似;通过具体案例,让学生学会求位似图形的相似比;通过小组合作学习,培养学生运用位似知识解决实际问题的能力。
六. 教学准备1.教学课件:位似的概念、位似图形的性质、求相似比的方法。
2.实例图片:生活中的位似现象。
3.练习题:巩固位似知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如相机拍照、放大镜观察等,引导学生直观地认识位似现象。
提问:这些现象中,你们发现了什么共同特点?2.呈现(10分钟)呈现位似的定义,引导学生理解位似的含义。
通过具体案例,让学生学会求位似图形的相似比。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,求出位似图形的相似比。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师讲解答案,巩固位似知识。
5.拓展(10分钟)引导学生运用位似知识解决实际问题,如设计图案、建筑布局等。
学生分组讨论,分享解题过程和答案。
人教版数学九年级下册27.3《位似》教案(一)
人教版数学九年级下册27.3《位似》教案(一)一. 教材分析人教版数学九年级下册27.3《位似》是本册的一个重点章节。
位似是几何中的一个重要概念,它涉及到图形之间的相似关系,是学生进一步学习函数、解析几何等数学分支的基础。
本节课的内容包括位似的定义、位似的性质以及位似的判定。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质和判定方法,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经学习了平面几何中的许多基本概念和性质,具备了一定的几何思维能力。
但是,对于位似这一概念,学生可能较为陌生,需要通过具体的实例和操作来理解和掌握。
同时,学生可能对于位似的判定方法感到困惑,需要通过大量的练习和讲解来加深理解。
三. 教学目标1.理解位似的含义,掌握位似的性质和判定方法。
2.能够运用位似解决一些实际问题。
3.培养学生的几何思维能力和解决问题的能力。
四. 教学重难点1.位似的定义和性质。
2.位似的判定方法。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探究,让学生主动发现和总结位似的性质和判定方法。
2.利用多媒体和实物模型等教学辅助工具,直观地展示位似的变化和性质,帮助学生理解和记忆。
3.学生进行小组讨论和合作交流,让学生通过互相解释和讨论,加深对位似概念的理解。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的图片,如相似的建筑、相似的生物形态等,引导学生思考这些图片之间的相似关系。
提问:你们认为这些图片之间有什么共同的特点?引导学生发现这些图片都是相似的,从而引入位似的概念。
2.呈现(15分钟)讲解位似的定义和性质。
位似是指两个图形之间的大小和形状都相似,但位置不同。
通过展示一些具体的图形和实例,让学生直观地理解位似的概念。
同时,引导学生发现位似具有对称性、传递性和唯一性等性质。
3.操练(15分钟)学生进行小组讨论和合作交流,让学生通过互相解释和讨论,加深对位似概念的理解。
人教版九年级下册 27.3《位似(第一课时)》教学教案
27.3.1位似教学目标:1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.教学重难点:【重点】位似图形的有关概念、性质及作位似图形.【难点】利用位似图形将一个图形放大或缩小.【教师准备】多媒体课件.【学生准备】预习课本P47~48.教学过程:导入一:【欣赏图片】【师生活动】教师用多媒体出示图片,引出课题,学生观察思考各图片中的两个图形有什么共同特征.导入二:【复习提问】(1)什么是相似图形?(2)相似图形的性质是什么?【师生活动】学生思考回答,教师点评.导入三:图中有相似多边形吗?如果有,这种相似有什么特征?【师生活动】学生观察、思考,小组合作交流,共同归纳总结图形特征,教师用多媒体出示图片,适当点拨,让学生大胆猜想、归纳.【课件展示】如果两个相似多边形的对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这点叫做位似中心.这时我们说这两个图形关于这点位似.【思考】(1)位似图形一定是相似图形吗?反之成立吗?(位似图形一定是相似图形,相似图形不一定是位似图形,位似图形是特殊的相似图形)(2)如何判断两个图形是位似图形?(首先判断两个图形是相似图形,其次判定每一对对应点所在的直线都经过同一点) (3)判断下列图形是不是位似图形?【师生活动】学生独立思考回答,教师适当点评.二、位似图形的性质思路一如图所示的两组多边形是位似图形,观察思考.(1)在各图中,位似图形的位似中心与这两个图形有什么位置关系?(2)在各图中,对应点到位似中心的距离与两个图形的相似比有什么关系?(3)在各图中,两个图形中的对应线段有什么位置关系?【师生活动】学生独立思考后,小组交流讨论,小组代表展示本小组成果,教师巡视时个别辅导学生,对学生的展示给予鼓励和表扬,师生共同归纳位似图形的性质.【课件展示】(1)位似图形可能在位似中心的同侧,也可能在位似中心的异侧.(2)位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比.(3)位似图形中的对应线段平行或在同一条直线上.思路二教师引导,共同分析归纳.如图所示(同思路一图),两组多边形都是位似图形,思考回答.(1)图(1)中的两个位似图形在位似中心的,图(2)中的两个位似图形在位似中心的,故位似图形和位似中心的位置关系是.(2)各图中两个图形的对应边的位置关系是.(教师举例说明位似的对应边可能在同一条直线上)(3)各图中, ,之间的数量关系是;它们与两个图形的相似比之间的数量关系是;故用语言叙述为.【师生活动】学生在教师的问题下思考、回答,教师点拨,共同归纳总结.【课件展示】(1)位似图形可能在位似中心的同侧,也可能在位似中心的异侧.(2)位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比.(3)位似图形中的对应线段平行或在同一条直线上.出下面的图形吧!(教材47页)如图所示,将四边形ABCD缩小为原来的.思路一【教师提示】将四边形缩小为原来的,可以画出与该四边形相似比为1∶2的位似图形,利用位似图形的性质可以将图形放大或缩小.【师生活动】学生独立思考,尝试画图后,小组合作交流,小组代表展示自己的画法,教师巡视过程中及时帮助有困难的学生,并对学生的展示给出点评.【教师继续提示】位似图形一定在位似中心的同侧吗?尝试画出位似图形在位似中心异侧的图形.【课件展示】作法:如图所示.(1)在四边形ABCD外任取一点O;(2)过O点分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A',B',C',D',使得====;(4)顺次连接A',B',C',D'.所得的四边形A'B'C'D'就是所求作的四边形.类似的方法可以画出在位似中心异侧的位似图形,如图所示.当位似中心选取在四边形内部时,画出的图形如图所示.归纳作位似图形的一般步骤:(1)确定位似中心,画位似图形时,位似中心可能在图形的内部,也可能在图形的外部,还可能在图形的边上.(2)找出关键点(多边形常取顶点),连接位似中心和关键点.(3)根据相似比,确定能代表所作的位似图形的关键点,顺次连接所得的关键点,得到新的图形.(4)写出作图的结论.思路二教师引导思考:(1)利用位似图形可以将一个图形放大或缩小吗?放大或缩小的比例与两个图形的相似比有什么关系?(利用位似图形可以将图形放大或缩小,放大或缩小的比例与相似比相等)(2)根据位似图形的性质,对应点到位似中心的距离比有什么数量关系?(位似图形对应点到位似中心的距离比等于相似比)(3)如何选取位似中心的位置?与四边形有什么位置关系?(平面上任意一点,可能在图形内部,也可能在图形外部,还可能在图形的边上)(4)如何选取缩小后图形的各个顶点?(连接位似中心和各个顶点,根据对应点到位似中心的距离比等于相似比得到各顶点) (5)顺次连接各顶点可得所求作的四边形.【师生活动】学生在教师的引导下思考,然后独立完成画图,教师及时发现学生画图中出现的错误,并及时纠正,强调易错点.【课件展示】归纳画位似图形的方法:(1)确定位似中心;(2)对应点与位似中心的距离比相等,且等于相似比.[知识拓展](1)位似是一种具有特殊位置关系的相似.两个图形是位似图形,必定是相似图形,而两个图形是相似图形,不一定是位似图形.(2)位似中心可以在两个图形内部,两个图形之间,两个图形的同一侧,也可以在一个图形的一条边上或某一顶点上.(3)利用位似,可以将一个图形放大或缩小.(4)平行于三角形一边的直线与其他两边或两边的延长线相交,所构成的三角形与原三角形位似.(5)作位似图形时,要弄清相似比.(6)一般情况下,作已知图形的位似图形的结果不唯一.课堂小结:1.位似图形的概念.2.位似图形与相似图形的关系:位似图形一定是相似图形,相似图形不一定是位似图形.3.位似图形的性质:位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比;位似图形中的对应线段平行或在同一条直线上.4.画位似图形: 确定位似中心;对应点与位似中心的距离比相等.巩固练习:1.下列说法:①相似图形一定是位似图形;②位似图形一定是相似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E'位似,则其中△ABC与△A'B'C'也是位似的,且相似比相等.其中正确的有()A.1个B.2个C.3个D.4个解析:利用位似的定义可知,位似图形一定是相似图形,因为它是一种特殊的相似,但是相似图形不一定是位似图形,所以①错误,②正确;两个位似图形若全等,根据对应点一定相交于一点,可得到位似中心在两个图形之间,③正确;④若五边形ABCDE与五边形A'B'C'D'E'位似,则在五边形中连线组成的△ABC与△A'B'C',画出图形,可得它们也是位似的,④正确.所以②③④正确.故选C.2.△ABC和△A'B'C'是位似图形,且面积之比为1∶9,则△ABC和△A'B'C'的对应边AB和A'B'的比为()A.3∶1B.1∶3C.1∶9D.1∶27解析:由△ABC和△A'B'C'是位似图形,且面积之比为1∶9,得△ABC和△A'B'C'的对应边AB与A'B'的比为1∶3.故选B.3.△ABC与△A'B'C'是位似图形,且△ABC与△A'B'C'的相似比是1∶2,已知△ABC的周长是3,则△A'B'C'的周长是.解析:由△ABC与△A'B'C'是位似图形,且相似比是1∶2,得△ABC与△A'B'C'的周长比是1∶2,又△ABC的周长是3,所以△A'B'C'的周长为6.故填6.4.如图所示,已知△EFH和△MNK是位似图形,那么其位似中心是点.解析:因为位似图形的对应点的连线相交于一点,即位似中心,所以位似中心为B点.故填B.5.如图所示,顶点都在网格线交点处的三角形叫做格点三角形,已知图中的每个小正方形的边长都是1个单位长度,在图中选择适当的位似中心,画一个与格点△DEF位似且相似比不等于1的格点三角形.解:本题答案不唯一.如图所示的△DE'F'就是符合题意的一个三角形.板书设计:第1课时1.位似图形的概念2.位似图形的性质3.将图形放大或缩小例题作业:【必做题】教材第51页习题27.3第1,2题.【选做题】教材第51页习题27.3第4题.。
27.3 位似(第1课时)(教学设计)九年级数学下册(人教版)
27.3位似(第1课时)1.通过观察实例理解位似图形的定义,能够熟练准确地找到位似中心.2.掌握位似图形的性质和画法,并且能够熟练准确地利用图形的位似将一个图形放大或缩小.3.掌握位似与相似的联系与区别.位似图形的定义、性质和画法.位似图形的性质和画法.新课导入在日常生活中,我们经常见到这样一类相似的图形.例如,(1)放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.(2)在照相馆中,摄影师通过照相机,把景物的形象缩小在底片上.这样的放大或缩小,没有改变图形形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和照片.【师生活动】教师展示图片,让学生观察特点.教学目标教学重点教学难点教学过程【设计意图】通过情境,展示位似图形的情况,为下面讲位似图形的概念作铺垫.新知探究一、探究学习【问题】与上面放映幻灯片时把图形放大或照相时把图形缩小类似,下图中的多边形相似,这种相似有什么特征?【师生活动】学生观察思考得出结论,让几名学生回答,教师总结.【答案】经过观察与测量计算发现,对应顶点的连线相交于一点O,且OAOA'=OBOB'=…=OPOP'=….【新知】如图,如果一个图形上的点A,B,…,P,…和另一个图形上的点A′,B′,…,P′,…分别对应,并且它们的连线AA′,BB′,…,PP′,…都经过同一点O,OAOA'=OBOB'=…=OPOP'=…,那么这两个图形叫做位似图形,点O是位似中心.【设计意图】通过这个问题,引出位似图形和位似中心的概念,提高学生观察、思考及概括的能力.【问题】位似图形与相似图形有什么区别呢?【师生活动】学生小组讨论,然后教师找学生代表回答.【答案】(1)相似只要求两个图形的形状完全相同,而位似不仅要求图形相似,还必须有特殊的位置关系,即对应顶点的连线相交于同一点;(2)如果两个图形是位似图形,那么这两个图形必是相似图形,但相似的两个图形不一定是位似图形.【设计意图】通过这个问题,让学生掌握位似图形与相似图形之间的关系,加深学生对位似图形的理解.【问题】类比位似图形的概念,你能给出位似多边形的概念吗?【师生活动】学生小组讨论,然后教师找学生代表回答,最后教师总结,得出结论.教师补充:本节课下面所讲的位似图形只包括位似多边形.【答案】对于两个多边形,如果它们的对应顶点的连线相交于一点,并且这点与对应顶点所连线段成比例,那么这两个多边形就是位似多边形.【设计意图】运用类比的方法,让学生了解位似多边形的概念,提高学生的抽象思维能力.【问题】下列各组图中的两个图形是不是位似图形,如果是位似图形,请指出其位似中心.【师生活动】学生动手画一画,并找4名学生板演.【答案】如图,它们都是位似图形,位似中心是点O.【追问】由此可知,位似中心可在两个图形的同侧,或两个图形的中间,除此之外,还有其他情况吗?【师生活动】学生思考并动手画一画,小组讨论,找几名学生代表举例,教师总结.【答案】如图,位似中心还可在图形内、边上、顶点处.【设计意图】让学生能够熟练准确地找到位似中心,并了解常见的位似中心的位置.【问题】位似图形有哪些性质呢?【师生活动】学生思考,小组讨论,找学生代表回答,学生比较容易得出下面的性质:(1)位似图形是相似图形,那么位似图形有相似图形的性质,即对应角相等,对应边成比例;(2)根据定义,位似图形的所有对应点的连线相交于一点,这个点就是位似中心;(3)根据定义,位似中心与对应顶点(在不重合的情况下)所连线段成比例.教师引导:(3)中这个比是多少呢?然后教师给出示例图形(前面找位似中心的图形即可),让学生猜想并给出简单证明思路,得出结论:根据相似三角形的判定和性质可知,位似图形上任意一对对应点到位似中心的距离之比等于相似比.教师继续引导:位似图形的对应边有什么位置关系吗?然后教师给出示例图形(前面找位似中心的图形即可),让学生猜想并给出简单证明思路,得出结论:位似图形的对应边互相平行(根据相似三角形的性质和平行线的判定可知),或在同一条直线上(观察可知).最后教师总结.【答案】(1)对应角相等,对应边成比例;(2)对应点的连线相交于一点;(3)位似图形上任意一对对应点(到位似中心的距离为0的点除外)到位似中心的距离之比等于相似比;(4)对应边互相平行或在同一条直线上.【设计意图】通过小组讨论及教师设置问题引导的方式,得到位似图形的性质,通过讨论探究,加深学生对位似图形的性质的理解与掌握.【问题】如何利用位似将一个图形放大或缩小呢?例如,把四边形ABCD缩小到原来的12.【师生活动】教师提示:结合探究位似图形的性质的过程,就能找到作图方法,动手试一试.学生思考,并动手画一画,小组讨论,找学生代表回答,教师修正,并出示规范的作图过程.【答案】①如图,在四边形外任选一点O.②分别在线段OA,OB,OC,OD上取点A′,B′,C′,D′,使得12 OA OB OC ODOA OB OC OD''''====.③顺次连接点A′,B′,C′,D′,所得四边形A′B′C′D′就是所要求的图形.【追问】如果在四边形外任选一个点O,分别在OA,OB,OC,OD的反向延长线上取A′,B′,C′,D′,使得12OA OB OC ODOA OB OC OD''''====呢?如果点O取在四边形ABCD内部呢?分别尝试画出对应的四边形A′B′C′D′.【师生活动】学生动手画一画,并找4名学生板演,教师讲评.【答案】如图,【归纳】画位似图形的一般步骤:1.确定位似中心并找出原图形的关键点;2.分别连接位似中心和原图形的关键点;3.根据相似比,在位似中心与各关键点所确定的直线上取点,确定所画位似图形的关键点的位置;4.顺次连接所作各点,得到放大或缩小的图形.【设计意图】通过这个问题,让学生能够熟练准确地利用图形的位似将一个图形缩小,锻炼学生的动手能力.二、典例精讲【例1】如图,以点O 为位似中心,将△ABC 放大为原来的2倍.【答案】解:①作射线OA ,OB ,OC .②分别在线段OA ,OB ,OC 上取点A′,B′,C′,使得2OA OB OC OA OB OC'''===. ③顺次连接A′,B′,C′,△A′B′C′就是所要求图形.【设计意图】检验学生对利用图形的位似将一个图形放大的掌握情况.【例2】下列图形中△ABC ∽△DEF ,但这两个三角形不是位似图形的是( ). A . B .C .D .【答案】B【解析】观察对应点的连线是否交于一点,若交于一点,则是位似图形;否则,不是位似图形.【归纳】位似图形必须同时满足两个条件:1.两个图形是相似图形;2.两个相似图形的对应顶点的连线相交于同一点.【设计意图】检验学生对判断所给图形是否是位似图形的掌握情况.课堂小结板书设计一、位似图形的概念二、位似图形的性质三、位似图形的画法课后任务完成教材第48页练习第1~2题.。
人教版数学九年级下册教学设计27.3《位似》
人教版数学九年级下册教学设计27.3《位似》一. 教材分析人教版数学九年级下册第27.3节《位似》主要介绍了位似的性质和位似图形的画法。
位似是几何中的一个重要概念,它涉及到图形之间的相似关系,是学生进一步学习几何图形的必要基础。
本节内容通过对位似的探讨,让学生了解位似的定义、性质和应用,提高学生的空间想象力。
二. 学情分析九年级的学生已经掌握了相似的基本知识,具备一定的空间想象力。
但在实际操作中,部分学生可能对位似的理解不够深入,对位似图形的画法不够熟练。
因此,在教学过程中,教师需要注重引导学生理解位似的本质,并通过适量练习,提高学生的实际操作能力。
三. 教学目标1.理解位似的定义,掌握位似的性质。
2.学会位似图形的画法,提高空间想象力。
3.能运用位似知识解决实际问题。
四. 教学重难点1.位似的定义和性质。
2.位似图形的画法。
五. 教学方法1.采用问题驱动法,引导学生探究位似的性质。
2.利用多媒体辅助教学,展示位似图形的画法。
3.运用实例分析法,让学生学会运用位似知识解决实际问题。
4.小组讨论,提高学生的合作能力。
六. 教学准备1.多媒体教学设备。
2.位似图形的相关图片。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似现象,如相似的建筑、生物体的结构等,引导学生关注位似现象,激发学生的学习兴趣。
2.呈现(15分钟)介绍位似的定义,通过示例让学生理解位似的性质。
示例1:两圆的半径之比等于它们面积之比。
示例2:两矩形的边长之比等于它们面积之比。
3.操练(15分钟)让学生动手画一些位似图形,体会位似图形的画法。
1.画出位似比为2:1的两个圆。
2.画出位似比为3:1的两个矩形。
4.巩固(10分钟)通过解答练习题,巩固位似的知识。
1.位似比为2:1的两个圆,半径之比为2:1,面积之比为4:1。
2.位似比为3:1的两个矩形,边长之比为3:1,面积之比为9:1。
5.拓展(10分钟)利用位似知识解决实际问题,如设计图案、建筑物的布局等。
初中数学人教版九年级下册优质教学设计27-3 第1课时《 位似图形的概念及画法》
初中数学人教版九年级下册优质教学设计27-3 第1课时《位似图形的概念及画法》一. 教材分析人教版九年级下册第27-3课时《位似图形的概念及画法》的内容,是在学生已经掌握了相似图形的性质和判定,以及坐标与图形的性质的基础上进行学习的。
本节课的主要内容是让学生了解位似图形的概念,掌握位似图形的性质,以及学会如何画出位似图形。
这一内容在数学中占有重要的地位,它不仅可以帮助学生更好地理解相似图形的概念,而且对于学生解决实际问题,提高解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的性质和判定,以及坐标与图形的性质。
但是对于位似图形的概念和画法可能还比较陌生,需要通过本节课的学习来掌握。
学生在学习过程中,可能对位似图形的性质和判定有一定的困难,需要教师通过实例和讲解来进行引导和帮助。
三. 教学目标1.了解位似图形的概念,掌握位似图形的性质。
2.学会如何画出位似图形。
3.能够运用位似图形的性质解决实际问题。
四. 教学重难点1.教学重点:位似图形的概念,位似图形的性质。
2.教学难点:位似图形的性质的判定,如何画出位似图形。
五. 教学方法采用问题驱动法,通过实例和讲解,引导学生了解和掌握位似图形的概念和性质。
同时,采用分组合作学习的方式,让学生在实践中学会如何画出位似图形。
六. 教学准备1.准备相关的实例和图片,用于讲解和展示位似图形的概念和性质。
2.准备纸张和绘图工具,让学生在实践中画出位似图形。
七. 教学过程1.导入(5分钟)通过展示一些实例,让学生观察和思考,引导学生了解位似图形的概念。
2.呈现(10分钟)讲解位似图形的性质,通过实例和讲解,让学生掌握位似图形的性质。
3.操练(10分钟)让学生分组合作,实践如何画出位似图形。
教师在过程中进行指导和帮助。
4.巩固(5分钟)通过一些练习题,让学生巩固所学的内容,加深对位似图形的理解和掌握。
5.拓展(5分钟)通过一些实际问题,让学生运用位似图形的性质进行解决,提高解决问题的能力。
2019届人教版九年级数学下册教案:27.3位似
27.3位似第1课时位似图形1.掌握位似图形的定义、性质和画法.2.掌握位似与相似的联系与区别.位似图形的定义.位似图形的作图.位似与相似的关系.位似图形的准确作图.一师一优课一课一名师(设计者:)一、创设情景明确目标先后观察、欣赏几组图片.(1)对比:(2)(3)教师提出问题:(1)观察第一张图片,有什么感觉?上下对比两张美术字,你喜欢哪张?(2)这几条热带鱼组成了一列纵队,这支队伍为什么那么整齐划一?(3)这张图片上画的是什么?怎样从胶片上的一朵小花得到屏幕上的那朵大花?这几幅图片表示出了图形之间的什么特殊关系?这就是我们本节课要学习的内容:位似.二、自主学习指向目标1.自主学习教材第47至48页.2.学习至此,请完成学生用书相应部分.三、合作探究达成目标探究点一位似图形的概念活动一:思考:下列图形中有多边形相似吗?如果有,那么这种相似有什么特征?展示点评:1.对应顶点的连线相交于一点;2.对应边互相平行;3.位置上的相似图形.小组讨论1:什么样的图形叫做位似图形?什么叫做位似中心?如何判断两个图形是否位似图形?反思小结:两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做位似图形,这个交点叫做位似中心.判断两个图形是不是位似图形,需要从两方面去考察:一是这两个图形是相似的,二是要有特殊的位置关系,即每组对应点所在的直线都经过同一点.【针对训练】1.画出下列图形的位似中心.解:画图略.探究点二位似图形的性质活动二:如图,BC∥ED,下列说法不正确的是( D )A.两个三角形是位似图形B.点A是两个三角形的位似中心C.B与D、C与E是对应位似点D.AE∶AD是相似比思考:位似图形和相似图形有什么联系和区别?位似图形有何性质?展示点评:位似图形一定是相似图形,但相似图形不一定是位似图形,位似图形具有相似图形的所有性质.小组讨论2:位似分为外位似和内位似,外位似的位似中心在连接两个对应点的线段之外;内位似的位似中心在连接两个对应点的线段上.那么本题图形属于哪种位似?反思小结:位似图形的所有对应点的连线所在的直线交于一点.位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.位似图形的相似比也叫做位似比,位似图形上任意一对对应点到位似中心的距离之比等于位似比.本题图形属于内位似.【针对训练】2.如图,四边形木框ABCD在灯泡发出的光照射下形成的影子是四边形A′B′C′D′,若AB∶A′B′=1∶2,则四边形ABCD的面积∶四边形A′B′C′D′的面积为( D ) A.4∶1 B.∶1C.1∶D.1∶4探究点三画位似图形活动三:阅读教材第47页.思考:如何利用位似将一个图形放大或缩小?画位似图形的一般步骤是什么?展示点评:画位似图形的一般步骤是:1.确定位似中心O(位似中心可以在图形外部,也可以在图形内部,还可以在图形的边上,还可以在某一个顶点上);2.连接图形各顶点与位似中心O的线段(或延长线);3.按位似比进行取点;4.顺次连接各点,所得的图形就是所求的图形.小组讨论3:画位似图形时需要注意什么问题?反思小结:画位似图形时,要弄清位似比,即分清是已知图形与新图形的相似比,还是已知新图形与原图形的相似比.另外,若问题没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心画图最简捷.【针对训练】3.如图,已知△ABC,画一个新△A′B′C′,使△A′B′C′与原△ABC的相似比为1∶2.解:画图略.四、总结梳理内化目标1.位似图形:如果两个多边形不仅相似,而且对应顶点的连线__相交于一点__,对应边__互相平行__,像这样的两个图形叫做位似图形,这个点叫做__位似中心__.2.位似图的性质:(1)位似图形一定__相似__,位似比等于__相似比__;(2)位似图形对应点和位似中心在__一条直线上__;(3)任意一对对应点到位似中心的距离之比等于__位似比__或__相似比__;(4)对应线段__平行__或者在__一条直线上__.五、达标检测反思目标1.下列说法正确的个数为( B )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′位似,则其中△ABC与△A′B′C′也是位似的,且位似比相等.A.1 B.2 C.3 D.42.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG =2∶3,则下列结论正确的是( B )A.2DE=3MN B.3DE=2MNC.3∠A=2∠F D.2∠A=3∠F第2题图第3题图3.(中考·沈阳)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB∶DE等于__2∶3__.4.如图,用直尺画出下面位似图形的位似中心.解:画图略.5.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请在网格中画出.....△OAB的一个位似图形,使两个图形以O为位似中心,且所画图形与△OAB 的位似比为2∶1.解:如图,△OA′B′就是所要画的图形.作业布置:1.上交作业课本P48练习1、2.2.课后作业见学生用书.教学反思:在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.第2课时平面直角坐标系中的位似1.理解平面直角坐标系中,位似图形对应点的坐标之间的联系.2.能够熟练准确地利用坐标变化将一个图形放大与缩小.归纳总结坐标变化规律.将一个图形放大与缩小.一师一优课一课一名师(设计者:)一、创设情景明确目标在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.本节课就来学习这方面的知识.二、自主学习指向目标1.自主学习教材第48至50页.2.学习至此,请完成学生用书相应部分.三、合作探究达成目标探究点一坐标系中的位似活动一:阅读教材第48页“探究”及第49页的例题.思考:如图所示,△AOB的A、B两顶点的坐标分别为A(3,0),B(3,2),若△AOB与△DOE 为位似图形,且位似比为3∶2,则D点坐标为________,E点的坐标为________.展示点评:(-2,0),(-2,-),注意坐标的符号特征.小组讨论1:1.在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作几个?2.所作位似图形与原图形在原点的同侧,那么对应顶点的坐标的比与其相似比是何关系?如果所作位似图形与原图形在原点的异侧呢?3.如何在平面直角坐标系中,以原点为位似中心,画一个图形的位似图形?反思小结:由图可知,△AOB与△DOE是以原点为位似中心、位似比为3∶2的位似图形,对应顶点的坐标之比为(-3)∶2,所以可由A、B的坐标计算出D和E的坐标.值得注意的是在解决位似图形中对应点的坐标关系时,不可忽略坐标比为-k这种情况.在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作两个.当位似图形在原点同侧时,其对应顶点的坐标的比为k;当位似图形在原点两侧时,其对应顶点的坐标的比为-k.当k>1时,图形扩大为原来的k倍;当0<k<1时,图形缩小为原来的k倍.【针对训练】1.如图,小朋在坐标系中以A为位似中心画了两个位似的直角三角形,可不小心把E 点弄脏了,则E点坐标为( A )A.(4,-3)B.(4,-2)C.(4,-4)D.(4,-6)探究点二平面直角坐标系中的图形变换活动二:将图中的△ABC做下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)沿y轴正向平移3个单位长度;(2)关于x轴对称;(3)以C为位似中心,将△ABC放大2倍;(4)以C为中心,将△ABC顺时针旋转180°.思考:截止现在,你总共学了哪些图形变换?它们有何异同点?展示点评:截止现在,学习了图形的平移、轴对称、旋转、位似,前三者都是全等变换,后者是相似比例为1的相似图形.小组讨论2:怎样用坐标变化来表示平移、翻折、旋转(中心对称)、位似这几种变换?反思小结:在平面直角坐标系中,图形经过平移、翻折、旋转(中心对称)、位似变换后,点的坐标会发生相应的变化,用坐标变化可以表示平移、翻折、旋转(中心对称)、位似等变换.至于平移、翻折、中心对称变换,请同学们回忆思考.【针对训练】2.如图,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′.(3)计算△A′B′C′的面积S.解:(1)画出原点O,x轴、y轴.B(2,1).(2)画出图形△A′B′C′.(3)S=×4×8=16.四、总结梳理内化目标在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.在坐标系中进行与位似有关的计算和画图,均是据此进行.五、达标检测反思目标1.将平面直角坐标系中某个图案的各点坐标作如下变化,其中属于位似变换的是( C ) A.将各点的纵坐标乘以2,横坐标不变B.将各点的横坐标除以2,纵坐标不变C.将各点的横坐标、纵坐标都乘以2D.将各点的纵坐标减去2,横坐标加上22.已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标分别变成原来的2倍,得到点A′,B′,C′.下列说法正确的是( B )A.△A′B′C′与△ABC是位似图形,位似中心是点(1,0)B.△A′B′C′与△ABC是位似图形,位似中心是点(0,0)C.△A′B′C′与△ABC是相似图形,但不是位似图形D.△A′B′C′与△ABC不是相似图形3.如图所示,某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,则小鱼上的点(a,b)对应大鱼上的点( A )A.(-2a,-2b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-b)4.如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是__(1,0)或(-5,-2)__.5.已知△ABC的三个顶点坐标如下表:(1)将下表补充完整,并在直角坐标系中,画出△A′B′C′;(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.(2)△A′B′C′是△ABC放大2倍的位似图形.也可写出有关两三角形形状、大小、位置等关系,如△ABC∽△A′B′C′、周长比、相似比、位似比等均可.作业布置:1.上交作业课本P51页第2、3、4、5.2.课后作业见学生用书.教学反思:这节课主要是让学生感受在平面直角坐标系中的位似图形根据坐标的变化而变化,教学过程中要提高学生学习积极性、使心情愉悦、思维活跃,这样才能真正激发学生学习数学的兴趣,提高课堂学习效率.。
【人教版】2019年春学期九年级数学下册27.3 第1课时 位似图形的概念及画法学案
27.3 位似第1课时 位似图形的概念及画法教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.一.创设情境活动1 提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.思考:观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-2 活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.)结论:________________________________________________二、利用位似,可以将一个图形放大或缩小活动2 提出问题:把图1中的四边形ABCD 缩小到原来的21.分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:作法二:作法三:三、课堂练习1下列图中的两个图形不是位似图形的是( )A .B .C .D .2下列四图中的两个三角形是位似三角形的是()A.图(3)、图(4)B.B.图(2)、图(3)、图(4)C.C.图(2)、图(3)D.D.图(1)、图(2)3.如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对。
2019年春人教版九年级下册数学教案:27.3位似
在今天的教学中,我尝试了多种方法来帮助学生理解位似的概念和性质。首先,通过日常生活中的实例导入新课,我发现学生们对位似的概念产生了浓厚的兴趣。他们能够积极参与讨论,提出自己的见解,这是一个很好的开始。
在理论讲解环节,我注意引导学生关注位似的关键特征,如对应边成比例、对应角相等。通过具体案例的分析,学生们能够更好地理解这些抽象的性质。然而,我也注意到在相似比的计算和位似中心的识别上,部分学生仍然存在困难。这可能是因为这些知识点较为抽象,需要更多实际操作来加深理解。
本节课将围绕以下内容展开:
-位似的概念及性质;
-位似图形的判定;
-位似变换的应用;
-相似比和位似中心的理解;
-实际问题中的位似图形求解。
二、核心素养目标
1.培养学生的几何直观和空间想象能力,使其能够理解和运用位似变换,把握图形之间的内在联系;
2.提升学生的逻辑推理和问题解决能力,通过位似图形的判定和性质分析,解决实际问题;
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了位似的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对位似的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调位似的概念和性质、位似图形的判定这两个重点。对于难点部分,如位似中心的理解和相似比的计算,我会通过举例和比较来帮助大家理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.3 位似
第1课时位似图形的概念及画法
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)
一、情境导入
生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.
观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?
二、合作探究
探究点:位似图形
【类型一】
下列3( )
A.0个B.1个C.2个D.3个
解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.
方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】确定位似中心
解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,
并延长的交点就是位似中心;(3)连接AA ′,BB ′,它们的交点就是位似中心.
解:(1)连接对应点AE 、BF ,分别延长AE 、BF ,使AE 、BF 交于点O ,点O 就是位似中心;
(2)连接对应点AN 、BM ,延长AN 、BM ,使AN 、BM 的延长线交于点O ,点O 就是位似中心;
(3)连接AA ′、BB ′,AA ′、BB ′的交点就是位似中心O .
方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.
变式训练:见《学练优》本课时练习“课后巩固提升” 第2题
【类型三】 画位似图形
(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍;
(2)图②中,以O 为位似中心,把△ABC 缩小为原来的13
. 解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.
解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;
(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.
方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似
中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
【类型四】 位似图形的实际应用
在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,
点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?
解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.
解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P 为x m 时,放映的图象
正好布满整个银幕,则位似比为x 0.2=22.5×10-2
,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.
方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.
【类型五】 利用位似的性质进行证明或计算
,且AB ∥CD ∥EF ,
(1)图中有哪几对位似三角形,选其中一对加以证明;
(2)若AB =2,CD =3,求EF 的长.
解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25
,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;
(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴
AB DC =BE EC =23,∴BE BC =EF DC
=25,解得EF =65
. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
三、板书设计
位似图形的概念及画法
1.位似图形的概念;
2.位似图形的性质及画法.
在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。