2011年中考总复习数学教材过关训练:教材过关十二 数据的描述(附答案)

合集下载

2011年中考数学试题含答案

2011年中考数学试题含答案

2011年中考数学试题(含答案)班级:姓名:全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是()A.4 B.2 C.-2 D.2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6 C.(a2)3=a5 D.(a-b)2=a2-b24.如图2,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补5.下列说法正确的是()A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为()A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 23 24得分二、填空题:(每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.13.若A(1x,1y)、B(2x,2y)在函数12yx=的图象上,则当1x、2x满足_______________时,1y>2y.14.如图5,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图4图2图5图1图7图3图6惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区? (2)要使救灾物资一次性地运往灾区,共有哪几种运货方案? 20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理. 21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标. 22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上. (1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少米?(结果可保留根号) 23.(本小题满分10分) 阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a2-b2=(3b)2-b2=2b2=b·c .即a2-b2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a2-b2=bc 都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线. (1)求抛物线所对应的函数关系式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图8图9-1 图9-2 图9-3 图10图72011年中考数学试题参考答案及评分意见 说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同. 一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可; 12.3434+(或34+3);13.x1<x2<0或 0<x1<x2; 14.4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)x x - 4分 =22(2)x x --–2(2)x x -=12x - 5分 当x=1时,原式=121- 6分 = 1 7分说明:以上步骤可合理省略 . 18.(1) 内. 2分(2) 证法一:连接CD , 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, 4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , 6分 ∴ □DECF 为菱形. 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI=DG , DG=DH .∴DH=DI . 4分∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, 5分 ∴S□DECF=CE·DH =CF·DI , ∴CE=CF . 6分∴□DECF 为菱形. 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, 1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. 2分(2) 设安排甲种货车x 辆,则安排乙种货车(9–x)辆, 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ 5分解得:1.5≤x ≤5 6分注意到x 为正整数,∴x=2,3,4,5 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车2345乙种货车 7 6 5 48分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程也给全分. 20.(1) 大双的设计游戏方案不公平. 1分可能出现的所有结果列表如下:1 23 4 4 8 12 551015或列树状图如下:4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, 6分 ∵23≠13,∴大双的设计方案不公平. 7分 (2) 小双的设计方案不公平. 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y=2kx 的图象经过点(1,1), ∴1=2k1分 解得k=2, 2分∴反比例函数的解析式为y=1x .3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A(12-,–2). 6分(3) P1(32,–2),P2(52-,–2),P3(52,2).(每个点各1分) 9分 22. (1) 在Rt △BPQ 中,PQ=10米,∠B=30°, 则BQ=cot30°×PQ =103,2分 又在Rt △APQ 中,∠PAB=45°, 则AQ=tan45°×PQ=10,即:AB=(103+10)(米); 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B=30°,AB=103+10,∴ AE=sin30°×AB=12(103+10)=53+5, 7分∵∠CAD=75°,∠B=30°, ∴ ∠C=45°, 8分在Rt △CAE 中,sin45°=AEAC ,∴AC=2(53+5)=(56+52)(米) 10分 23. (1) 由题意,得∠A=90°,c=b ,a=2b , ∴a2–b2=(2b)2–b2=b2=bc . 3分(2) 小明的猜想是正确的. 4分理由如下:如图3,延长BA 至点D ,使AD=AC=b ,连结CD , 5分则ΔACD 为等腰三角形.∴∠BAC=2∠ACD ,又∠BAC=2∠B ,∴∠B=∠ACD=∠D ,∴ΔCBD 为等腰三角形,即CD=CB=a , 6分大双积 小双 图9-3图8图10答案图2图10答案图1又∠D =∠D ,∴ΔACD ∽ΔCBD , 7分 ∴AD CD CD BD =.即b aa b c =+.∴a2=b2+bc .∴a2–b2= bc 8分(3) a=12,b=8,c=10.10分24.(1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C , ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC ,又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , 1分 ∴OA OCOC OB =. 又∵A(–1,0),B(9,0), ∴19OC OC=,解得OC=3(负值舍去). ∴C(0,–3),3分设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x –9),即y=13x2–83x –3. 4分 (2) ∵AB 为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0), 5分∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,∴∠BCD=12∠BCE=12×90°=45°,连结O′D 交BC 于点M ,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5. ∴D(4,–5). 6分∴设直线BD 的解析式为y=kx+b (k≠0) ∴90,4 5.k b k b +=⎧⎨+=-⎩ 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. 8分(3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3). ∴把点C 、D 绕点O′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q1重合, 因此,点Q1(7,–4)符合BQ CD =, ∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x –193.9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②∵Q1(7,–4),∴点Q1关于x 轴对称的点的坐标为Q2(7,4)也符合BQ CD =. ∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法二:分两种情况(如答案图2所示): ①当DP1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).图10答案∴用待定系数法可求出直线BC 解析式为y=13x –3. 又∵DP1∥CB ,∴设直线DP1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP1解析式为y=13x –193. 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②在线段O′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3.取x=4,得y= –53,∴M(4,–53),∴O′N=O′M=53,∴N(173,0), 又∵D(4,–5),∴直线DN 解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法三:分两种情况(如答案图3所示): ①求点P1坐标同解法二. 10分②过C 点作BD 的平行线,交圆O′于G, 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9,又∵ C (0,–3)∴可求得CG 的解析式为y=x –3, 设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O′G,在Rt △O′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-,11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. 12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).说明:本题解法较多,如有不同的正确解法,请按此步骤给分.。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。

2011年中考总复习语文教材过关训练:七年级上册(1-3单元)(附答案)

2011年中考总复习语文教材过关训练:七年级上册(1-3单元)(附答案)

第一编教材过关(紧扣教材,夯实基础)教材过关一七年级上册(1—3单元)一、基础巩固1.给下列加点的字注音或根据拼音写汉字。

痴.想( ) 小憩.( ) 糟蹋.( ) 庸.碌( )绽.放( ) 酝酿.( ) 迸.溅( ) 挑.逗( )黄晕.( ) xuān( )腾一shùn( )间 yùn( )含zhuó( )壮 zhù( )立笼zhào( ) 遗hàn( )盘qiú( ) 卧龙贪lán( ) gū( )负 diàn( )污sǒng( )立答案:chī qì tàyōnɡ zhàn niàng bèng tiǎo yùn 喧瞬蕴茁伫罩憾虬婪辜玷耸2.解释下列词语的含义。

(1)忍俊不禁:(2)津津乐道:(3)德高望重:(4)津津有味:(5)小心翼翼:(6)肃然起敬:(7)唱和:答案:(1)忍不住笑。

(2)很感兴趣地谈论。

(3)品德高尚,名望很大。

(4)形容有滋味,有趣味。

(5)谨慎小心,丝毫不敢疏忽的样子。

(6)由于受感动而产生恭敬和钦佩之情。

(7)指歌唱时此唱彼和,互相呼应。

3.(2010四川乐山中考)对下面这个文段修改不当的一项是( )从未见过开得这样盛的藤萝,只见一片辉煌的淡紫,像一条瀑布,不见其发端,也不见其终极,从空中垂下。

只是深深浅浅的紫,仿佛在运动,在欢笑,在不停地生长。

紫色的大条幅上,泛着点点银光,就像迸溅的水花。

仔细看时,才知道那是紫花中的每一条最浅淡的部分,在和阳光互相挑逗。

A.“像一条瀑布,不见其发端,也不见其终极,从空中垂下”改为“像一条瀑布,从空中垂下,不见其发端,也不见其终极”。

B.“仿佛在运动,在欢笑”改为“仿佛在流动,在欢笑”。

C.“泛着点点银光,就像迸溅的水花”改为“泛着点点银光,就像一幅灰白的长布”。

D.“紫花中的每一条最浅淡的部分”改为“每一朵紫花中的最浅淡的部分”。

2011年中招数学过关测试(一)

2011年中招数学过关测试(一)

2011年中招数学过关测试(一)注意事项:⒈本试卷共6页,满分120分,时间100分钟,请用蓝、黑色钢笔或圆珠笔直接答在试卷上。

一.选择题(每题3分,共18分)1. 31的相反数是 【 】A. 3B. -3C. 31 D. 31-2. 某班一次数学测验,其成绩统计如下表:则这个班此次测验成绩的众数为 【 】A .90分B .15C .100分D .50分3.如图所示图形是某物体的三视图,那么该图形的形状是【 】A .长方体B .圆锥体C .正方体D .圆柱体 4. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,则直线b ax y +=与双曲线xac y =在同一坐标系中的图象大致是 【 】5.如图,已知正方形ABCD 的边长是2,如果将线段BD 绕点B 旋转后,点D•落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于【 】A .1B .2C ..6. 已知,∠ACB =60○,半径为2的⊙0切BC 于点C ,若将⊙O 在CB 上向右 滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为【 】 A. 2π B. 4π C. 32 D. 4x yx Bx x 第3题图 BCDD ′ 第5题图x 第4题图 A二.填空题(每题3分,共27分)7.2009年1月份的某天,郑州市的最高温度为8°C,这天的最低气温为-3°C,则这天的温差是 . 8.已知,如图,在△ABC 中,∠ACB=90°, ∠DCB=30°,则∠ACE= .9. 一元二次方程02=-x x 的根是 .10. 2008年是中国改革开放30年,在这30年中,中国社会各个方面都取得了巨大的成就.贫困人口由2.5亿人下降到1479万人.则1479万人用科学计数法表示为 人. 11. 若分式23-x 有意义,则x 的取值范围是 .12.小明用一个半径为36cm,面积为3242cm π的扇形纸板,制作一个圆锥形的玩具帽,则帽子的底面半径是 _______cm.。

2011年中考数学试题及答案(Word版)

2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。

(33页2012年1月最新最细)2011全国中考真题解析120考点汇编☆科学记数法

(33页2012年1月最新最细)2011全国中考真题解析120考点汇编☆科学记数法

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆科学记数法一、选择题1.(2011江苏淮安,3,3分)据第六次全国人口普查数据公报,淮安市常住人口约为480万人. 480万(即4800000)用科学记数法可表示为()A. 4.8×104B. 4.8×105C. 4.8×106D. 4.8×107考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将480万用科学记数法表示为480万=4.8×106.故选C.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2011•江苏徐州,2,2)2010年我国总人口约为1 370 000 000人,该人口数用科学记数法表示为()A、0.137×1011B、1.37×109C、13.7×108D、137×107考点:科学记数法—表示较大的数。

专题:计算题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示数1370000000为1.37×109.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2011江苏南京,3,2分)在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为2%,则该市65岁及以上人口用科学记数法表示约为()A、0.736×106人B、7.36×104人C、7.36×105人D、7.36×106人考点:科学记数法—表示较大的数。

中考复习数学 第十二章 数据的描述(含答案)

中考复习数学 第十二章 数据的描述(含答案)

第十二章数据的描述【课标要求】【知识梳理】1.扇形统计图通过扇形统计图可清楚地表示出各部分数量占总量的百分比.•扇形统计图中所有扇形表示的百分比之和为1。

2.频数分布当一组数据有n个数时,频数之和=n,频率=频数n,频率之和=1,•小长方形的高代表频数。

【能力训练】一、选择题:1.某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是()A.720,360 B.1000,500C.1200,600D.800,4002.扇形统计图中,所有扇形表示的百分比之和()A.大于1 B.等于1C.小于1 D .不一定3.已知在一个样本中,50个数据分别落在5个小组内,第一、二、三、五组数据分别为2,8,15,5,则第四小组的频数和频率分别为()A.25,50 % B.20,50% C.20,40% D.25,40%4.要清楚地表明一病人的体温变化情况,应选择的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.以上都不是5.下列说法不正确的是()A.条形统计图能清楚地反映出各项目的具体数量B.折线统计图能清楚地反映事物的变化情况C .扇形统计图能清楚地表示出各个部分在总体中所占的百分比D .统计图只有以上三种6.某音乐行出售三种音乐CD ,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用()A .扇形统计图B .折线统计图C .条形统计图D .以上都可以7.现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为( ) A .9B .12C .15D .188.已知一个样本: 27,23,25,27,29,31,27,30,32,28,31,28,26,27,29,28,24,26,27,30.那么频数为 8 的范围是( ) A .24.5 ~26.5B .26.5~28.5C .28.5~30.5D .30.5~32.59.在样本频数分布直方图中,有11个小长方形,若中间的小长方形的面积等于其他10个小长方形面积和的41,且样本数据160个,则中间一组的频数为( )A .0.2B .32C .0.25D .4010.在1000个数据中,用适当的方法抽取50个作为样本进行统计,频率分布表中54.5~57.5这一组的频率是0. 12,那么估计总体数据落在54.5~57.5 之间的约有( )A .120个B .60个C .12个D .6个二、填空题:1.学校有师生共1200人,绘制如图所示的扇形统计图则表示教师的扇形的圆心角为_______°,学生有__________人.2.在对25个数据进行整理的频数分布表中,各组的频数之和等于______,各组的频率之和等于__________.3.在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:⑴已知最后一组(89.5~99.5)出现的频率为15 %,则这一次抽样调查的容量是________ . ⑵第三小组(69.5~79.5)的频数是_______,频率是________.4.为了了解某中学初三年级250名学生升学考试的数学成绩,从中抽取50名学生的数学成绩进行了分析,求得5.94x 样本,下面是 50 名学生数学成绩的统计表.根据题中给出的条件回答下列问题:⑴数据统计图中的数据a=________ ,b=_______ .⑵估计该校初三年级这次升学考试数学平均成绩为_________分三、按要求解答下列各题:1.如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列问题:⑴病人的最高体温是达多少?⑵什么时间体温升得最快?⑶如果你是护士,你想对病人说____________________.2.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高做调查,有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关并地150名男生身高的统计资料;C.在本市的市区和郊县任选一所高级中学,两所初级中学,在这六所学校有关年级的一个班中,用抽签的方法分别选出10名男生,然后测量他们的身高.(l)为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?(2)下表中的数据是使用某种调查方法获得的:初中男生身高情况调查表(注:每组数中可含最低值、不含最高值)①根据表中的数据填写表中的空格;②根据表中的数据绘制频数分布直方图.3.如图所示的是连云港市1997年至2001年税收情况统计图,根据图中提供的信息回答下列问题.⑴请你精略地估计2000年的税收情况,并把条形统计图补充完整;⑵你能获得哪些信息?⑶你能用折线统计图来反映连云港市1997年至2001年的税收情况吗?⑷如果利用面积分别表示五年的税收情况,那么这五年税收所占的面积之比大约是多?4.选择合适的统计图表示下列数据:⑴上海市国内生产总值:1952年,人均CDP为125 美元;1977年,人均GDP为l000美元;l993年,人均GDP为2000美元;1997年,人均GDP为3000美元;2000年,人均GDP为4180美元;2001年,人均GDP为4500美元.⑵学校图书馆中的书籍中,教学参考书约占5%,教学辅导书约10%,文学类约占30%,理化类约32%,典籍类约8%,其他约15%。

2011年初中毕业升学考试(中考)数学试卷及答案

2011年初中毕业升学考试(中考)数学试卷及答案

数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。

考试时间120分钟,满分150分。

考试结束后,第Ⅱ卷和答题卡按规定装袋上交。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束后,本试卷由考场统一收回,集中管理。

一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。

中考总复习数学教材过关训练教材过关十六分式附答案

中考总复习数学教材过关训练教材过关十六分式附答案

八年级下册教材过关十六 分式一、填空题1.分式26+-x x ,当x=_____________时,值为零;当x=_____________时,无意义. 答案:6 -2提示:分式的值为0,则分子为0,分母不是0,所以x-6=0,x=6;分母为0,则分式无意义,则x+2=0,得x=-2.2.填空: (1)a b a +=)(2b ab +; (2))(2xy x y x ---=-)(1. 答案:ab x提示:根据分式的基本性质,分式的分母和分子都乘以同一个不为0的整式,分式的值不变,(1)从a+b 到ab+b 2,乘以b ,所以分母也乘以b ,为ab ;(2)从x-y 到1,除以x-y ,所以分母也除以x-y ,为x.3.把分式yx x +2中的x 、y 都扩大两倍,则分式的值_________________. 答案:不变提示:分式的基本性质,y x x +2中的x 、y 都扩大两倍,得到y x x 224+=)(222y x x +⨯=yx x +2. 4.若方程3-x x -2=3-x k 会产生增根,则k=_______________. 答案:3提示:增根就是使分母为0的解,所以增根为3,增根是去分母后整式方程的解,不是原分式方程的解,应代入去分母后的方程,x-2(x-3)=k ,得k=3.5.已知x=-2时,分式a xb x +-无意义,x=4时此分式值为0,则a+b=_______________. 答案:6提示:依据分式的意义,当x=-2时,分式ax b x +-无意义,即-2+a=0,得a=2;x=4时此分式值为0,即4-b=0,则b=4,所以a+b=6. 6.化简4422+--a a a =__________________. 答案:a -21 提示:先将分母分解因式,然后约分.4422+--a a a =2)2(2a a --=a-21.二、选择题7.下列等式正确的有 A.y x =22y x B.y x =yx xy + C.y x =a y a x ++(a ≠0) D.y x =ayy ax x ++(a ≠-1) 答案:D提示:依据分式的基本性质进行判断.y x =y a x a )1()1(++=ayy ax x ++(a ≠-1),所以选D. 8.下列分式中,不论x 取何值,都有意义的是 A.152--x x B.112+-x x C.xx 312+ D.12+x x 答案:B提示:不论x 取何值,都有意义,就是说不论x 取何值,分式的分母都不等于0,而x 2+1永远不等于0,选B.9.沿河的上游和下游各有一个港口A 、B,货船在静水中的速度为a 千米/时,水流的速度为b 千米/时,那么一艘货船从A 港口出发,在两港之间不停顿地往返一次所需的时间是 A.b a s +2小时 B.ba s -2小时 C.(a s +b s )小时 D.(b a s ++b a s -)小时 答案:D提示:依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,则顺水速度为a+b ,时间为b a s +,逆水速度为a-b ,时间为b a s -,所以往返时间为b a s ++ba s -. 10.全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为 A.x 10+2=x 5.210+21 B.x 5.210-x10=2-0.5 C.x 10-x 5.210=2-0.5 D.x 10-x 5.210=2+0.5 答案:C提示:自行车队的速度是长跑队的速度的2.5倍,可得自行车队的速度为2.5x ,整个过程长跑队一共比自行车队多用了2-0.5小时,据此可列方程x 10-x5.210=2-0.5. 11.小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时沿原路返回,通常平均速度为n 千米/时,则小明上学和放学路上的平均速度为______________千米/时.A.2n m +B.n m mn +C.n m mn +2D.mnn m + 答案:C 提示:由平均速度=总路程/总时间,可设路程为s ,上坡时间为m s ,返回时间为n s ,总时间为m s +n s =mn n m s )(+,平均速度为2s ÷mn n m s )(+=nm mn +2. 三、解答题12.计算与化简:(1)(xy-x 2)÷xyy x -; (2)12-a a -a-1. (3)先化简,后求值:(b a a -2+ab b -2)÷ab b a +,其中a=25,b=1251. (1)答案:-x 2y.提示:根据分式的除法法则,把分式的分子和分母颠倒位置后与被除式相乘,-x(x-y)y x xy - =-x 2y.(2)答案:11-a . 提示:把-a-1看成一个整体,分母是1,然后再通分化成同分母分式相加减.12-a a -11+a = 1122-+-a a a =11-a . (3)答案:51. 提示:变成乘法后可利用乘法分配律,运用运算律可以使计算简便,也可以先算括号内的,再进行分式的除法.ba b a --22×b a ab +=ab. 13.解下列分式方程: (1)11+a +a-23=0; (2)22+-x x -4162-x =22-+x x . (1)答案:a=-2.5.提示:解分式方程的一般步骤是:去分母,化成整式方程,解整式方程;检验是否是增根;得到原方程的解.去分母乘以(a+1)(2-a),得到2-a+3(a+1)=0,解得a=-2.5,检验,将a=-2.5代入(a+1)(2-a)≠0,所以原方程的解是a=-2.5.(2)答案:x=-2.提示:先求各分母的最小公倍数,去分母乘以x 2-4,得(x-2)2-16=(x+2)2,所以x 2-4x+4-16=x 2+4x+4,解得x=-2,检验,将x=-2代入x 2-4=0,所以x=-2是增根,原方程无解.14.当A 、B 、C 取何值时,1-x A +1+x B +2-x C =)2)(1(932---x x x . 答案:A=3,B=-2,C=-1.提示:由恒等式的性质知,通分加减后,左右两边分母相同,则分子也相同,所以分子的各项系数也相同.1-x A +1+x B +2-x C =)2)(1()1)(1()2)(1()2)(1(2--+-+--+-+x x x x C x x B x x A =)2)(1()22()3)((2---+-+--++x x C B A B A C B A =)2)(1(932---x x x , 则A+B+C=0,-A-3B=3,-2A+2B-C=-9,解得A=3,B=-2,C=-1.15.设轮船在静水中的速度为v,该船在流水(水流速度为u)中从A 顺流到B,再从B 逆流返回到A 所用的时间为T;假设当河流为静水时,该船从A 到B 再返回A,所用时间为t,A 、B 两地之间的距离为s.(1)用代数式表示时间T.(2)用代数式表示时间t.(3)你能确定T 与t 之间的大小关系吗?说明理由.(1)答案:T=μ-v s +μ+v s . 提示:由航行时间=速度航行路程,顺水速度是v+μ,顺水时间为μ+v s ,逆水速度是v-μ,逆水时间为μ-v s ,总时间为T=μ-v s +μ+v s . (2)答案:t=v s 2. 提示:由航行时间=速度航行路程,路程为2s ,速度为v ,时间为t=v s 2. (3)答案:T >t.提示:T=μ-v s +μ+v s =22μμμ--++v s sv s sv =222μ-v sv ,t=v s 2=22v sv ,分子相同,只要比较分母即可,分母越小,分式的值越大,v2-μ2<v 2,所以T >t.16.(1)甲、乙两人同时从A 地出发去B 地,甲的速度是乙的1.5倍.已知A 、B 两地相距27千米,甲到达乙地3小时后,乙才到达,求甲、乙两人的速度.(2)甲、乙两人同时从相距9千米的A 、B 两地同时出发,若相向而行,则1小时相遇,若同向而行,乙在甲前面,则甲走了18千米后追上乙,求甲、乙两人的速度.(1)答案:甲为4.5千米/时,乙为3千米/时.提示:根据甲比乙少用3小时为等量关系列出方程.设乙的速度为x 千米/时,列方程得x 27-x5.127=3,甲为4.5千米/时,乙为3千米/时. (2)答案:甲为6千米/时,乙为3千米/时.提示:设甲的速度为x 千米/时,相向而行,1小时相遇,则(甲速+乙速)×1=9,所以乙速=9-x.又若同向而行,乙在甲前面,则甲走了18千米后追上乙,即甲走18千米所用时间=乙走9千米所用的时间相等,由此可列出方程,得x 18=x--9918,甲为6千米/时,乙为3千米/时. . .。

2021年中考数学总复习教材过关训练 教材过关十二 数据的描述2

2021年中考数学总复习教材过关训练 教材过关十二 数据的描述2

教材过关十二 数据的描述一、填空题1.50名学生参加数学竞赛,及格的频率为0.72,那么不及格的人数为______________. 答案:14提示:及格的频率为0.72,不及格的频率为0.28,由频数=总数×频率,不及格的人数=0.28×50=14.2.王波学习小组调查了某城市局部居民的家庭人口数,并绘制了如图8-2的统计图:3%:6人;9%:5人;15%:2人;28%:4人;45%:3人(注:“3%:6人〞表示家中有6人的占3%),那么这局部居民的家庭人口数的众数为______________,平均数为______________人.图8-2答案:3 3.4提示:众数是指一组数据中出现次数最多的数据,3人的为45%,出现次数最多;平均数=3%×6+9%×5+15%×2+28%×4+45%×3.3.在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据个数分别为2、8、15、5,第四组的频数和频率分别是___________________.答案:20 0.4提示:由各小组频数之和为数据总数,所以第四组的频数是50-2-8-15-5=20,由频数=总数×频率,频率=5020=0.4. 二、选择题4.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是A.50B.0.02C.0.1D.1答案:D提示:所有小组频数之和等于数据总数,所有频率相加等于1.5.某中学初三年级共有14名任课教师,将他们按年龄分组,在30—40岁组中有6名教师,那么这个组的频率是 A.73 B.21 C.37 D.74 答案:A 提示:频率=总数频数. 6.图8-3是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数).该班只有5位同学的心跳每分钟75次,请观察左以下图,指出以下说法中错误的选项是图8-3A.数据75落在第2小组B.第4小组的频率为0.1C.心跳为每分钟75次的人数占该班体检人数的121 D.数据75一定是中位数答案:D提示:数据75在69.5—79.5,因此落在第2小组;初三(2)班同学的总人数=6+9+20+25=60,所以第4小组的频率为6÷60=0.1;心跳为每分钟75次的人数为5人,占该班体检人数的5÷60=121,其他的数据不知道,所以无法求其中位数. 三、解答题7.一组数据:7.0 6.6 6.8 7.0 7.2 7.4 7.0 7.3 7.5 7.4 7.3 7.1 7.0 6.9 6.7 7.17.2 7.0 6.9 7.1答案:频数分别为2,3,8,4,3,20.提示:数出相应小组的数据个数.8.图8-4是某公司员工工资频数分布直方图,根据图中所提供信息,答复以下问题:每组只含最低分值,不含最高分值图8-4(1)该公司员工有多少人?(2)工资收入不低于1 200元且低于2 000元的员工人数占公司总人数的百分比是多少?(3)如果收入1 800元的员工有6人,那么收入在1 800元以上的员工有多少人?(1)答案:50人.提示:所有频数相加.(2)答案:72%.提示:工资收入不低于1 200元且低于2 000元的员工人数落在第3、4、5、6小组,共36人,由频率=总数频数,即36÷50=0.72. (3)答案:3人.提示:1 800—2 200元共9人,去掉1 800元的6人还有3人.9.在某中学举行的电脑知识竞赛中,将参赛学生的成绩(得分均为整数)进行整理后分成五组,绘制出频数分布直方图8-5,图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.图8-5(1)求第二小组的频率,并补全这个频数分布直方图;(2)求参赛的学生的优秀率(成绩≥80为优秀)和及格率(成绩≥60为及格);(3)参赛学生成绩的中位数应落在第几小组内?(不必说明理由)(4)请你评价一下这次竞赛的成绩.(1)答案:0.40.提示:所有频率相加等于1.(2)答案:15%;70%.提示:由第四小组的频数和频率易求总人数是100人,成绩≥80为优秀的人数是15人,15÷100=0.15,成绩≥60为及格的人数是70人,70÷100=0.7.(3)答案:二.提示:中位数应是第50和51个数据的平均数,第一小组30人,第二小组40人,所以第50和51个数据落在第二小组.(4)答案:这次竞赛成绩的及格率和优秀率不是太高,不及格的人数太多,可能与题的难度较大有关系,答案不唯一,合理即可.提示:可根据频数分布直方图中每小组相应的频数作出分析和判断.。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年高中阶段教育学校招生考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -4的相反数是( )A. 4B. -4C. 14D.14-2. 某运动品牌经销商到一所学校对某年级学生的鞋码大小进行抽样调查,经销商最感兴趣的是所得数据的( )A. 中位数B. 众数C. 平均数D. 方差3. 下列计算中,正确的是( )A. 234265+= B. 333236⨯= C. 2733÷= D. 2(3)3-=-4. 如图1,已知射线OP的端点O在直线MN上,∠2比∠1的2倍少30°,设∠2的度数为x,∠1的度数为y,则x、y满足的关系为( )A.180,230x yx y+=⎧⎨=+⎩B.180,230x yx y+=⎧⎨=-⎩C.90,230x yy x+=⎧⎨=-⎩D.180,230x yy x+=⎧⎨=-⎩图1资阳市数学试卷第1页(共13页)资阳市数学试卷第2页(共13页)5. 图2所示的几何体的左视图是( )6. 将一张正方形纸片如图3所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )7. 如图4,在数轴上表示实数14的点可能是( ) A. 点M B. 点N C. 点PD. 点Q8. 如图5,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是( )A. M 或O 或NB. E 或O 或CC. E 或O 或ND. M 或O 或C9. 在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图6,若它们的直径在同一直线上,较大半圆O 1的弦AB ∥O 1O 2,且与较小半圆O 2相切, AB =4,则班徽图案的面积为( )A. 25πB. 16πC. 8πD. 4π10. 给出下列命题:①若m =n +1,则22120m mn n -+-=;② 对于函数(0)y kx b k =+≠,若y 随x 的增大而增大,则其图象不能同时经过第二、四象限;③ 若a 、b (a ≠b )为2、3、4、5这四个数中的任意两个,则满足2a b ->4的有序数组(a ,b )共有5组.其中所有正确....命题的序号是( )A . ①②B . ①③C . ②③D. ①②③图4图2图3图5图6资阳市数学试卷第3页(共13页)2011年高中阶段教育学校招生考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 一元二次方程x 2+x =0的两根为________________. 12. 若正n 边形的一个外角等于40°,则n =____________ .13. 在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图7所示,则该班同学平均每人捐款________元.14. 如图8,在△ABC 中,若AD ⊥BC 于D ,BE ⊥AC 于E ,且AD 与BE 相交于点F ,BF =AC ,则∠ABC =_________°.15. 将抛物线221y x =-沿x 轴向右平移3个单位后,与原抛物线交点的坐标为________.16. 甲、乙、丙三位同学组成乒乓球兴趣小组参加课外活动,约定活动规则如下:两人先打,输了的被另一人换下,赢了的继续打,下一次活动接着上一次进行.假设某段时间内甲打的场次为a ,乙打的场次为b ,丙打的场次为c .若a =b ,显然有c 最大值=a +b ;若a ≠b ,通过探究部分情况,得到c 的最大值如上表所示. 进一步探究可得,当a =27,b =20时,c 的最大值是____________.a1 2 23 3 34 4 4 45 5 5 5 56 6 6 6 6 6 …b 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 …c 的 最大 值1 不存在 3 不存在2 5 不存在 不存在 4 7 不存在 不存在3 6 9 不存在 不存在 不存在 5 8 11 …图8 图7资阳市数学试卷第4页(共13页)三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分6分)化简:219(1)44x x x --÷++.18. (本小题满分7分)如图9,已知四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F . (1) 求证:BE = DF ;(5分)(2) 若 M 、N 分别为边AD 、BC 上的点,且DM =BN ,试判断四边形MENF 的形状(不必说明理由).(2分)19. (本小题满分7分)某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1) 需租用48座客车多少辆? (5分)解 设需租用48座客车x 辆.则需租用64座客车_________辆.当租用64座客车时,未坐满的那辆车还有___________________个空位(用含x 的代数式表示).由题意,可得不等式组:解这个不等式组,得:图9因此,需租用48座客车辆.(2) 若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?(2分)资阳市数学试卷第5页(共13页)资阳市数学试卷第6页(共13页)20. (本小题满分8分)小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A 、B 、C 三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.(1) 若到A 处就购买,写出买到最低价格礼物的概率;(2分)(2) 小国同学的父亲认为,如果到A 处不买,到B 处发现比A 处便宜就马上购买,否则到C 处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.(6分)21. (本小题满分8分)如图10,A 、B 、C 、D 、E 、F 是⊙O 的六等分点.(1) 连结AB 、AD 、AF ,求证:AB +AF = AD ;(5分)(2) 若P 是圆周上异于已知六等分点的动点,连结PB 、PD 、PF ,写出这三条线段长度的数量关系(不必说明理由).(3分)图10资阳市数学试卷第7页(共13页)22. (本小题满分8分)如图11,已知反比例函数y =mx(x >0)的图象与一次函数y =-x +b 的图象分别交于A (1,3)、B 两点.(1) 求m 、b 的值;(2分)(2) 若点M 是反比例函数图象上的一动点,直线MC ⊥x 轴于C ,交直线AB 于点N ,MD ⊥y 轴于D ,NE ⊥y 轴于E ,设四边形MDOC 、NEOC 的面积分别为S 1、S 2,S =S 2 –S 1,求S 的最大值.(6分)23. (本小题满分9分)如图12-1,在梯形ABCD 中,已知AD ∥BC ,∠B =90°,AB =7,AD =9,BC =12,在线段BC 上任取一点E ,连结DE ,作EF DE ,交直线AB 于点F .(1) 若点F 与B 重合,求CE 的长;(3分)(2) 若点F 在线段AB 上,且AF =CE ,求CE 的长; (4分)(3) 设CE =x ,BF =y ,写出y 关于x 的函数关系式 (直接写出结果即可).(2分)图11资阳市数学试卷第8页(共13页)24. (本小题满分9分)在一次机器人测试中,要求机器人从A 出发到达B 处.如图13-1,已知点A在O 的正西方600cm 处,B 在O 的正北方300cm 处,且机器人在射线AO 及其右侧(AO 下方)区域的速度为20cm/秒,在射线AO 的左侧(AO 上方)区域的速度为10cm/秒.(1) 分别求机器人沿A →O →B 路线和沿A →B 路线到达B 处所用的时间(精确到秒);(3分)(2) 若∠OCB =45°,求机器人沿A →C →B 路线到达B 处所用的时间(精确到秒);(3分)(3) 如图13-2,作∠OAD =30°,再作BE ⊥AD 于E ,交OA 于P .试说明:从A 出发到达B 处,机器人沿A →P →B 路线行进所用时间最短.(3分) (参考数据:2≈1.414,3≈1.732,5≈2.236,6≈2.449)资阳市数学试卷第9页(共13页)25. (本小题满分10分)已知抛物线C :y =ax 2+bx +c (a <0)过原点,与x 轴的另一个交点为B (4,0),A为抛物线C 的顶点.(1) 如图14-1,若∠AOB =60°,求抛物线C 的解析式;(3分) (2) 如图14-2,若直线OA 的解析式为y =x ,将抛物线C 绕原点O 旋转180°得到抛物线C ′,求抛物线C 、C ′的解析式;(3分)(3) 在(2)的条件下,设A ′为抛物线C ′的顶点,求抛物线C 或C ′上使得PB PA '=的点P 的坐标.(4分)图14-1图14-22011年高中阶段教育学校招生考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABCBD;6-10. CCADD.二、填空题(每小题3分,共6个小题,满分18分):11.x1=0,x2=-1;12. 9;13. 14;14. 45;15. (32,72);16. 35.三、解答题(共9个小题,满分72分):17.219(1)44xx x--÷++=(4)14xx+-+÷294xx-+·························································································2分=(4)14xx+-+÷(3)(3)4x xx+-+················································································4分=34xx++×4(3)(3)xx x++-······················································································5分=13x-. ······································································································6分18. (1) ∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,·····················································································1分∴∠ABD=∠CDB. ························································································2分∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD =90°.·······································3分∴△ABE≌△CDF(A.A.S.), ·············································································4分∴BE=DF.···································································································5分资阳市数学试卷第10页(共13页)资阳市数学试卷第11页(共13页)(2) 四边形MENF 是平行四边形. ···································································· 7分19. (1) (x -1) ··································································································· 1分(16x -64)(此空没有化简同样给分). ······························································ 2分 16640,166432.x x ->⎧⎨-<⎩······························································································· 4分 (注:若只列出一个正确的不等式,得1分)解得 4<x <6.∵ x 为整数,∴x =5. ··································································· 5分 因此需租用48座客车5辆.(2) 租用48座客车所需费用为5×250=1250(元),租用64座客车所需费用为(5-1)×300=1200(元), ················································· 6分 ∵ 1200<1250,∴ 租用64座客车较合算. ························································· 7分 因此租用64座客车较合算.20. (1) P A 处买到最低价格礼物=13. ··················································································· 2分 (2) 作出树状图如下:·························································· 6分由树状图可知:P 购到最低价格礼物=36=12, ································································· 7分 ∵12>13,∴他的想法是正确的. ······································································ 8分 (注:若判断了想法正确,但没有说理,得1分)21. (1) 连结OB 、OF . ······················································································· 1分∵A 、B 、C 、D 、E 、F 是⊙O 的六等分点,∴ AD 是⊙O 的直径,····················································································· 2分 且∠AOB =∠AOF =60°, ··················································································· 3分 ∴ △AOB 、△AOF 是等边三角形. ···································································· 4分 ∴AB =AF =AO ,∴AB +AF = AD . ······································································· 5分(2) 当P 在BF 上时,PB +PF = PD ;当P 在BD 上时,PB +PD = PF ;当P 在DF 上时,PD +PF =PB . ························································································································ 8分(注:若只写出一个关系式且未注明点P 的位置,不得分;若写出两个关系式且未注明点P 的位置,得1分;若写出三个关系式且未注明点P 的位置,得2分.)22. (1) 把A (1,3)的坐标分别代入y =m x、y =-x +b ,可求得m =3,b =4. ······················· 2分 (2) 由(1)知,反比例函数的解析式为y =3x,一次函数的解析式为y =-x +4. ∵ 直线MC ⊥x 轴于C ,交直线AB 于点N ,资阳市数学试卷第12页(共13页) ∴ 可设点M 的坐标为(x ,3x),点N 的坐标为(x ,-x +4),其中,x >0. ···················· 3分 又∵ MD ⊥y 轴于D ,NE ⊥y 轴于E ,∴ 四边形MDOC 、NEOC 都是矩形, ··············· 4分∴ S 1=x ·3x=3,S 2=x ·(-x +4)=-x 2+4x , ································································ 5分 ∴ S =S 2 –S 1=(-x 2+4x )-3=-(x -2)2+1.其中,x >0. ············································· 6分 ∴ 当x =2时,S 取得最大值,其最大值为1. ······················································ 8分23. (1) ∵F 与B 重合,且EF ⊥DE ,∴DE ⊥BC , ····················································· 1分∵AD ∥BC ,∠B =90°,∴∠A =∠B =90°,∴四边形ABED 为矩形, ················································································· 2分 ∴BE =AD =9,∴CE =12-9=3. ···························································································· 3分(2) 作DH ⊥BC 于H ,则DH = AB =7,CH =3.设AF =CE =x ,∵F 在线段AB 上,∴点E 在线段BH 上,∴HE =x -3,BF =7 –x , ·········································································· 4分∵∠BEF +90°+∠HED =180°,∠HDE +90°+∠HED =180°,∴∠BEF =∠HDE ,又∵∠B =∠DHE =90°,∴△BEF ∽△HDE , ······················································································· 6分 ∴73127x x x --=-,整理得x 2-22x +85=0,(x -5)(x -17)=0,∴x =5或17,经检验,它们都是原方程的解,但x =17不合题意,舍去.∴x =CE =5. ······················································ 7分(3) y =2211536(03),77711536(312).777x x x x x x ⎧-+≤<⎪⎪⎨⎪-+-≤≤⎪⎩ ··································································· 9分 (注:未写x 取值范围不扣分,写出一个关系式得1分)24. (1) 沿A →O →B 路线行进所用时间为:600÷20+300÷10=60(秒), ····························· 1分在Rt △OBA 中,由勾股定理,得AB =22600300+=3005(cm). ··························· 2分 ∴沿A →B 路线行进所用时间为:3005÷10≈300×2.236÷10≈67(秒).························ 3分(2) 在Rt △OBC 中,OB =300,∠OCB =45°,∴OC = OB =300cm,BC =300sin 45º=3002(cm) ····· 4分 ∴AC =600-300=300(cm).∴沿A →C →B 路线行进所用时间为:AC ÷20+BC ÷10=300÷20+3002÷10≈15+42.42≈57(秒). ·················································································································· 6分(3) 在AO 上任取异于点P 的一点P ′,作P ′E ′⊥AD 于E ′,连结P ′B ,在Rt △APE 和Rt △AP ′E ′中,sin30°=EP AP =E P AP ''',∴EP =2AP ,E ′P ′=2AP '.················· 7分 ∴沿A →P →B 路线行进所用时间为:AP ÷20+PB ÷10= EP ÷10+PB ÷10=(EP +PB )÷10=110BE (秒), 沿A →P ′→B 路线行进所用时间为:AP ′÷20+P ′B ÷10= E ′P ′÷10+P ′B ÷10=(E ′P ′+P ′B )÷10= 110(E ′P ′+P ′B )(秒). ······················· 8分 连结BE ′,则E ′P ′+P ′B > BE ′>BE ,∴110BE <110(E ′P ′+P ′B ).。

2011年中考总复习化学教材过关训练:碳和碳的氧化物(附教师版解析)

2011年中考总复习化学教材过关训练:碳和碳的氧化物(附教师版解析)

教材过关六碳和碳的氧化物可能用到的相对原子质量:H 1 C 12 O 16 Cl 35.5 S 32 Ca 40一、请你做出最佳选择,每题只有一个正确答案1.下列物质是由原子直接构成的是A.金刚石B.氧气C.二氧化碳D.氯化钠答案:A 解析:金刚石是由原子直接构成的,氧气和二氧化碳是由分子直接构成的,氯化钠是由离子构成的。

2.(2010北京海淀毕业考试)据报道一些国家正在试用碳酸水浇灌某些植物,其主要作用是A.调节土壤的pH,改良酸性土壤B.促进植物的光合作用C.促进植物的早熟D.在大气层中形成温室答案:B 解析:碳酸水中溶解的二氧化碳易挥发出来,而碳酸在常温下也易分解放出二氧化碳,有利于光合作用。

3.人造金刚石在很多领域都有很多的用途,人们最早是用石墨在高温高压下制造金刚石,该过程属于A.物理变化B.化学变化C.化合反应D.分解反应答案:B 解析:金刚石与石墨是不同的物质,故为化学变化。

4.(2010山东菏泽中考)“三氯生”是一种高效广谱抗菌剂,广泛用于牙膏、药皂、洗面奶、空气清新剂等。

下列关于三氯生(C12H7Cl3O2)的说法中错误的是A.三氯生中含有氧气分子B.三氯生由碳、氢、氧、氯四种元素组成C.三氯生是一种有机物D.一个三氯生分子共含有24个原子答案:A 解析:分子中含2个氧原子,不能说是含有氧分子,A错。

其他选项正确。

5.常温下某气体易溶于水,密度比空气大,则实验室收集该气体最好用A.排水法B.向上排空气法C.向下排空气法D.无法确定答案:B 解析:气体易溶于水,不能用排水法;密度比空气大,可用向上排空气法。

6.根据你的生活经验,判断下列做法不正确的是A.家庭局部失火应先开门窗B.炒菜时油锅着火,立即盖上锅盖C.用白猫洗洁精的水溶液或肥皂水检验煤气管是否漏气D.天然气管道泄漏时,立即关闭阀门并开窗通风答案:A 解析:家庭失火先开门窗,使氧气更充足,会导致火势迅速蔓延,不利于灭火。

正确判断本题要求学生熟练掌握燃烧条件和灭火根本方法。

2011年中考数学试题(含答案)

2011年中考数学试题(含答案)

第4题图灯三角尺 投影湖北省荆门市二○一一年初中毕业生学业考试数 学 试 题注意事项:1.本卷满分为120分,考试时间为120分钟.2.本卷是试题卷,不能答题,答题必须写在答题卡上.解题中的辅助线和标注角的字母、符号等务必添在答题卡的图形上.3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答.★ 祝 考 试 顺 利 ★一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分) 1.有理数21-的倒数是( ▲ ) A .2- B .2 C .21 D .21-2.下列四个图案中,轴对称图形的个数是( ▲ )A .1B .2C .3D .43.将代数式142-+x x 化成q p x ++2)(的形式为( ▲ )A .3)2(2+-x B .4)2(2-+x C .5)2(2-+x D .4)4(2++x4.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2∶5,且三角尺的一边长为8cm ,则投影三角形的对应边长为( ▲ )A .8cmB .20cmC .3.2cmD .10cm5.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是( ▲ )A .众数B .方差C .中位数D .平均数 6.对于非零的两个实数a 、b ,规定11a b b a⊗=-.若1(1)1x ?=,则x 的值为( ▲ ) 第2题图A .23 B .31 C .21 D .21- 7. 如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中 相似三角形有( ▲ )A .1对B .2对C .3对D .4对 8.若等式1)23(0=-x成立,则x 的取值范围是( ▲ ) A .12x ≠ B .0x ≥且12x ≠ C .0x ≥ D .>0x 且12x ≠ 9.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( ▲ )A .13cmB .12cmC .10cmD .8cm 10.在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( ▲ )A .51714B .35C .217D .211411.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( ▲ )A .1B .1-C . 1或1-D .212.图①是一瓷砖的图案,用这种瓷砖铺设地面, 图②铺成了一个2×2的近似正方形,其中完整 菱形共有5个;若铺成3×3的近似正方形图案 ③,其中完整的菱形有13个;铺成4×4的近 似正方形图案④,其中完整的菱形有25个; 如此下去,可铺成一个n n ⨯的近似正方形图 案.当得到完整的菱形共181个时,n 的值为 ( ▲ )A .7B .8C .9D .10二、填空题(本大题共5小题,每小题3分,共15分)13.计算1112()2232----= ▲ .14.已知A =2x ,B 是多项式,在计算B +A 时,小马虎同学把B +A 看成了B ÷A ,结果得212x x +,则B +A = ▲ .15.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是 ▲ .16.请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分PC ADBEFG第7题图2cm5cmQ第9题图第12题图OCD第15题图第16题图第17题图B'yxOCBA割后的图形. 17.如图,双曲线xy 2=(x >0)经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得△AB C ¢,B '点落在OA上,则四边形OABC 的面积是 ▲ .三、解答题(本大题共7个小题,共69分)18.(本题满分8分)解不等式组,并把解集在数轴上表示出来.331 213(1)8. x x x x ì-+?ïíï---î; ①<②19.(本题满分9分)如图,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好D 点与A 点重合,得到△PEA ,连接EB ,问△ABE 是什么特殊三角形?请说明理由.DCB APE第19题图20.(本题满分10分)2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调查了▲ 名司机; (2)求图甲中④所在扇形的圆心角,并补全图乙;(3)在本次调查中,记者随机采访其中的一名司机,求他属第②种情况的概率; (4)请估计开车的10万名司机中,不违反“酒驾”禁令的人数.21.(本题满分10分)某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝,其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME 、NF 与半圆相切,上、下桥斜面的坡度i =1∶3.7,桥下水深OP =5米,水面宽度CD =24米.设半圆的圆心为O ,直径AB 在坡角顶点M 、N 的连线上,求从M 点上坡、过桥、下坡到N 点的最短路径长.(参考数据:π≈3,3≈1.7,tan15°=321 )第21题图图乙27021201008060402029%③④③①4②①1%人数第20题图图甲22.(本题满分10分)如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数1y kx =-的图象平分它的面积,关于x 的函数()232y mx m k x m k =-+++的图象与坐标轴只有两个交点,求m 的值.23.(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额 型号 金额Ⅰ型设备Ⅱ型设备投资金额x (万元) x5x2 4 补贴金额y (万元))0(1≠=k kx y2)0(22≠+=a bxax y2.43.2(1)分别求1和2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.第22题图y =kx 1yxODC BA24.(本题满分12分)如图甲,分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x 轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上),抛物线214y x bx c =++经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,正方形CDEF 的面积为1. (1)求B 点坐标;(2)求证:ME 是⊙P 的切线;(3)设直线AC 与抛物线对称轴交于N ,Q 点是此对称轴上不与N 点重合的一动点,①求△ACQ 周长的最小值;②若FQ =t ,S △ACQ =s ,直接写出....s 与t 之间的函数关系式.图甲yxP OM GF E DCBA图乙(备用图)ABCDE FGO xy湖北省荆门市二○一一年初中毕业生学业考试数学试题参考答案及评分标准一、选择题 (每选对一题得3分,共36分)1.A2.C3.C4.B5.C6.D7.C8.B9.A 10.D 11.B 12.D二、填空题(每填对一题得3分,共15分)13.0 14.x x x 2223++ 15.50° 16.方法很多,参照给分 17.2三、解答题(按步骤给分,其它解法参照此评分标准给分)18.解:由①得:x ≤1 ………………………………………………………………………2分 由②得:x >2- …………………………………………………………………………4分 综合得:-2<x ≤1 …………………………………………………………………………6分 在数轴上表示这个解集…………………………8分 【考点】解一元一次不等式组;在数轴上表示不等式的解集. 【专题】计算题;数形结合.【分析】先解每一个不等式,再求解集的公共部分即可.【点评】本题考查了解一元一次不等式组,解集的数轴表示法.关键是先解每一个不等式,再求解集的公共部分.19.解:△ABE 是等边三角形.理由如下:………………………………………………… 2分 由旋转得△P AE ≌△PDC∴CD =AE ,PD =P A ,∠1=∠2……………………4分 ∵∠DP A =60°,∴△PDA 是等边三角形…………5分 ∴∠3=∠P AD =60°.由矩形ABCD 知,CD =AB ,∠CDA =∠DAB =90°. ∴∠1=∠4=∠2=30° ………………………7分 ∴AE =CD =AB ,∠EAB =∠2+∠4=60°,∴△ABE 为等边三角形.…………………………9分【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定;矩形的性质. 【专题】几何图形问题.第16题图【分析】根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,根据图形求出旋转的角度,即可得出三角形的形状. 【点评】本题主要考查了图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,难度适中.20.解:(1)2÷1%=200 …………………………………………………………………… 2分(2)360°×70200=126°,∴④所在扇形的圆心角为126° ………………………… 4分 200×9%=18(人)200-18-2-70=110(人)第②种情况110人,第③种情况18人.注:补图②110人,③18人………………………………………………………………6分(3)P (第②种情况)=1101120020=∴他是第②种情况的概率为1120…………………………………………………………8分(4)10×(1-1%)=9.9(万人)即:10万名开车的司机中,不违反“酒驾”禁令的人数为9.9万人 ………………10分 【考点】扇形统计图;用样本估计总体;条形统计图;概率公式. 【专题】图表型. 【分析】(1)从扇形图可看出①种情况占1%,从条形图知道有2人,所以可求出总人数. (2)求出④所占的百分比然后乘以360°就可得到圆心角度数,然后求出其他情况的人,补全条形图.(3)②种情况的概率为②中调查的人数除以调查的总人数.(4)2万人数减去第①种情况的人数就是不违反“酒驾”禁令的人数. 【点评】本题考查对扇形图和条形图的认知能力,知道扇形图表现的是部分占整体的百分比,条形图告诉我们每组里面的具体数据,从而可求答案.21.解:连接OD 、OE 、OF ,由垂径定理知:PD =12CD =12(m ) ………… 1分在Rt △OPD 中,OD =2222125+=+OP PD =13(m )∴OE =OD =13m …………………………………………………………………………2分 ∵tan ∠EMO =i = 1∶3.7 ,tan15°=321+=32-≈1:3.7∴∠EMO =15°……………………………………………………………………………4分 由切线性质知∠OEM =90°∴∠EOM =75°同理得∠NOF =75°∴∠EOF =180°-75°×2=30° ………………………………6分在Rt △OEM 中,tan15°=321+=32-≈1∶3.7∴EM =3.7×13=48.1(m ) …………………………………………………………7分 又∵EF⌒ 的弧长=1801330⋅π=6.5(m ) ………………………………………9分 ∴48.1×2+6.5=102.7(m ),即从M 点上坡、过桥、再下坡到N 点的最短路径长为102.7米. ……………… 10分(注:答案在102.5m —103m 间只要过程正确,不扣分)【考点】解直角三角形的应用-坡度坡角问题. 【专题】几何图形问题.【分析】首先明确从M 点上坡、过桥、下坡到N 点的最短路径长应为如图ME +EF ⌒ +FN ,连接如图,把实际问题转化为直角三角形问题,由已知求出OD 即半径,再由坡度i =1∶3.7和tan15°=321+=32-≈1∶3.7,得出∠M =∠N =15°,因此能求出ME 和FN ,所以求出∠EOM =∠FON =90°-15°=75°,则得出EF ⌒ 所对的圆心角∠EOF ,相继求出EF ⌒ 的长,从而求出从M 点上坡、过桥、下坡到N 点的最短路径长.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是由已知先求出半圆的半径和∠M 和∠N ,再由直角三角形求出MF 和FN ,求出EF⌒ 的长.22.解:过B 作BE ⊥AD 于E ,连接OB 、CE 交于点P , ∵P 为矩形OCBE 的对称中心,则过P 点的直线平分矩形OCBE 的面积. ∵P 为OB 的中点,而B (4,2) ∴P 点坐标为(2,1)………………2分 在Rt △ODC 与Rt △EAB 中, OC =BE ,AB =CD∴Rt △ODC ≌Rt △EAB (HL ), ∴S △ODC =S △EBA∴过点(0,-1)与P (2,1)的直线平分等腰梯形面积,这条直线为1y kx =-∴211k -=, ∴1k = ………………………………………………………………4分 ∵()232y mx m k x m k =-+++的图象与坐标轴只有两个交点,①当m =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0) ………6分 ②当m ≠0时,函数()232y mx m k x m k =-+++的图象为抛物线,且与y 轴总有一个交点(0,2m +1)若抛物线过原点时,2m +1=0,即m =12-, EPy =kx 1yxODCBA此时2(31)4(21)m m m D=+-+=2(1)m +>0∴抛物线与x 轴有两个交点且过原点,符合题意. ……………………………8分 若抛物线不过原点,且与x 轴只有一个交点,也合题意,此时2(31)4(21)m m m ¢D=+-+=0,∴121m m ==-综上所述,m 的值为m =0或21-或-1 …………………………………………10分 【考点】梯形的性质,函数与图象与坐标轴的交点. 【专题】图形与坐标.【分析】过B 作BE ⊥AD 于E ,连接OB 、CE 交于点P ,根据矩形OCBE 的性质求出B 、P 坐标,然后再根据相似三角形的性质求出k 的值,将解析式()232y mx m k x m k =-+++中的k 化为具体数字,再分m =0和m ≠0两种情况讨论,得出m 的值.【点评】此题考查了抛物线与坐标轴的交点,同时结合了梯形的性质和一次函数的性质,要注意数形结合,同时要进行分类讨论,得到不同的m 值.23.解:(1)由题意得:①5k =2,k =52, ∴ x y 521=……………………………………2分②42 2.4,164 3.2,a b a b +=⎧⎨+=⎩∴15a =-, 85b =. ∴x x y 585122+-=………………………4分(2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元.∴t t y 524)10(521-=-=,t t y 585122+-= ∴529)3(5145651585152422221+--=++-=+--=+=t t t t t t y y Q …………7分∵51-<0,∴Q 有最大值,即当3t =时,Q 最大=529∴107t -= (万元) ………………………………………………………………………9分 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元………10分【考点】二次函数的应用. 【分析】(1)根据图表得出函数上点的坐标,利用待定系数法求出函数解析式即可; (2)根据12y y y =+得出关于x 的二次函数,求出二次函数最值即可.【点评】此题主要考查了待定系数法求一次函数和二次函数解析式以及二次函数的最值问题,利用函数解决实际问题是中考的热点问题.24.解:(1)如图甲,连接PE 、PB ,设PC =n ,∵正方形CDEF 面积为1,∴CD =CF =1. 根据圆和正方形的对称性知OP =PC =n , ∴BC =2PC =2n . ………1分 而PB =PE ,22222254n n n PC BC PB =+=+=,1)1(2222++=+=n EF PF PE ,x yxPOM GFE DC BA∴2251)1(n n =++, 解得1n = (21-=n 舍去) . …………… 2分 ∴BC =OC =2,∴B 点坐标为(2,2). ………3分 (2)如图甲,由(1)知A (0,2),C (2,0),∵A ,C 在抛物线上,∴2412++=bx x y ,∴23-=b ∴抛物线的解析式为223412+-=x x y即41)3(412--=x y …………………………………………………………… 4分∴抛物线的对称轴为3x =即EF 所在直线∵C 与G 关于直线3x =对称, ∴CF =FG =1,∴FM =12FG =12在Rt △PEF 与Rt △EMF 中,EF PF =2,221:1==FM EF , ∴EF PF =FMEF,∴△PEF ∽△EMF …………5分 ∴∠EPF =∠FEM ,∴∠PEM =∠PEF +∠FEM =∠PEF +∠EPF =90°∴ME 与⊙P 相切. ……………………………………………………………………6分 (注:其他方法,参照给分)(3)①如图乙,延长AB 交抛物线于A ',连接A C '交对称轴x =3于Q ,连接AQ , 则有AQ =A 'Q ,△ACQ 周长的最小值为(AC +A 'C )的长.……7分 ∵A 与A '关于直线3x =对称, ∴A (0,2),A '(6,2),∴A 'C =522)26(22=+-,而AC =222222=+ …………………8分∴△ACQ 周长的最小值为2225+……9分 ②当Q 点在F 点上方时,1S t =+ ……10分 当Q 点在线段FN 上时,1S t =- ……11分当Q 点在N 点下方时,1S t =- ……12分【考点】二次函数综合题. 【分析】(1)如图甲,连接PE 、PB ,设PC =n ,由正方形CDEF 的面积为1,可得CD =CF =1,根据圆和正方形的对称性知:OP =PC =n ,由PB =PE ,根据勾股定理即可求得n 的值,继而求得B 的坐标;(2)由(1)知A (0,2),C (2,0),即可求得抛物线的解析式,然后求得FM 的长,则可得△PEF ∽△EMF ,则可证得∠PEM =90°,即ME 是⊙P 的切线; (3)①如图乙,延长AB 交抛物线于A ′,连CA ′交对称轴3x =于Q ,连接AQ ,则有AQ =A ′Q ,△ACQ 周长的最小值为AC +A ′C 的长,利用勾股定理即可求得△ACQ 周长的最小值; ②分别当Q 点在F 点上方时,当Q 点在线段FN 上时,当Q 点在N 点下方时去分析即可求得答案.【点评】此题考查了待定系数法求二次函数的解析式,圆的性质,相似三角形的判定与性质QN A'x =3ABCDE F GOxy图乙以及勾股定理等知识.此题综合性很强,题目难度较大,解题的关键是方程思想、分类讨论与数形结合思想的应用.。

(140页2012年1月最新最细)2011全国中考真题解析120考点汇编☆统计图表

(140页2012年1月最新最细)2011全国中考真题解析120考点汇编☆统计图表

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆统计图表一、选择题1.(2011•台湾6,4分)如图为某校782名学生小考成绩的次数分配直方图,若下列有一选项为图(一)成绩的累积次数分配直方图,则此图为何()A、B、C、D、考点:频数(率)分布直方图。

分析:将一个变量的不同等级的相对频数用矩形块标绘的图表(每一矩形的面积对应于频数).因为本题求那个是成绩的累积次数分配直方图,故累计次数做为纵坐标.解答:解:关键知道,分数是横坐标,累计次数是纵坐标,符合题意的是A.故选A.点评:本题考查频数直方图的画法以及对横纵坐标要求的理解.才能够正确选出答案.2.(2011湖北潜江,10,3分)如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1—19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个考点:折线统计图。

专题:图象信息题。

分析:折线统计图表示的是增长率,每个数据是后一年相对于上一年的增长结果,且都是正增长,所以财政收入越来越高,从而可得结果.解答:解:①2007年的财政收入应该是错误!未找到引用源。

%5.19161330 ,所以①错. ②因为是正增长所以2009年比2007年和2008年都高,所以②错.③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.所以③正确. 故选C .点评:本题考查折线统计图,折线统计图表现的是变化情况,根据图知都是正增长,所以越来越多的财政收入以及增长率都是相对上一年来说的.3. (2011,台湾省,30,5分)阿成全班32人参加学校的英文听力测验,如图是全校与全班成绩的盒状图.若阿成的成绩恰为全校的第65百分位数,则下列关于阿成在班上排名的叙述,何者正确?( )A 、在第2~7名之间B 、在第8~15名之间C 、在第16~21名之间D 、在第21~25名之间考点:象形统计图。

2011年中考总复习化学教材过关训练:自然界的水(附教师版解析)

2011年中考总复习化学教材过关训练:自然界的水(附教师版解析)

教材过关三自然界的水一、请你做出最佳选择,每题只有一个正确答案1.(2010江苏泰州中考)2010年5月27日印尼爪洼岛发生6.3级地震,社会事务部29日表示,目前这场地震导致的遇难者人数已经至少上升到4 983人。

造成近20万人无家可归。

这是印尼自2010年底印度洋大海啸以来最严重的自然灾害。

灾民饮用水被严重污染,急需进行净化处理。

下列净化水的单一操作中,净化程度最高的是A.蒸馏B.吸附沉淀C.过滤D.静置沉淀答案:A 解析:蒸馏能除去水中的可溶性杂质,是净化程度最高的水,其余选项仅能除去不溶性杂质。

2.2010年我国科技年的主题是“珍惜资源,建设节约型社会”。

随着经济的发展、人口的增长和人民生活水平的提高,水资源短缺的问题日益突出。

自来水厂净化水的过程可表示为:取水→沉降→过滤→吸附→消毒→配水。

下列过程属于化学变化的是A.取水B.过滤C.吸附D.消毒答案:D3.在过滤操作中,不必使用的仪器是A.漏斗B.烧杯C.量筒D.玻璃棒答案:C 解析:过滤操作的主要用具:铁架台、烧杯、漏斗、玻璃棒、滤纸。

4.(2010北京中考)北京市严重缺水,我们要保护好水资源。

下列做法中,可能会造成水污染的是A.生活污水经处理后排放B.禁止含磷洗涤剂的使用C.合理使用农药和化肥D.在水库周边兴建造纸厂答案:D5.能保持氢气化学性质的粒子是A.HB.2HC.H2D.H+答案:C 解析:分子是保持物质化学性质的最小粒子,因此保持氢气的化学性质的粒子是氢气分子H2。

合之后体积变小的原因是水分子跑到酒精分子间的间隔里去了,因此体现的性质是分子之间有间隔。

D选项,汽油挥发,闻到气味,原因是汽油分子跑到人的鼻腔里去了,因此体现的是分子是运动的。

7.分子和原子的区别是A.分子能直接构成物质,原子不能B.在化学反应中分子可分,原子不可分C.分子的质量大,原子的质量小D.分子能保持物质的化学性质,原子不能答案:B8.下列说法错误的是A.电解水生成H2和O2,证明该反应是分解反应B.水通电后生成氢气和氧气,因此得出水是由氢气和氧气组成的C.水是常见的溶剂D.水既可作为反应物,也可以是生成物答案:B 解析:水通电后生成氢气和氧气,说明水是由氢元素和氧元素组成的。

2011年中考数学考试试题答案

2011年中考数学考试试题答案

1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。

2011年中招数学过关测试(二)

2011年中招数学过关测试(二)

2011年中招数学过关测试(二)注意事项:1. 本试卷共6页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上.2. 答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列各式正确的是【 】A .33--=B .326-=- C .(3)3--= D .0(π2)0-=2.不等式组2131x x -<⎧⎨-⎩≥,的解集是【 】A .2x <B .1x -≥C .12x -<≤D .无解 3.下列图形中,是轴对称图形但不是中心对称图形的是【 】A B C D4.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表:鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是【 】A .平均数B .众数C .中位数D .方差5.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有【 】 A .4个 B .5个 C .6个 D .7个 6.如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm 点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是【 】第6题图俯视图 主视图得分评卷人二、填空题(每小题3分,共27分) 7.-2的倒数是 .8.计算:203(3)---= .9.某校初一年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于 ________度.10.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、 压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC = 度.11.P (3,-4)到x 轴的距离是 .12.如图, ⊙O 的半径OA=6, 以A 为圆心,OA 为半径的弧交⊙O 于B 、C 两点, 则BC= .第12题图 13.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是 .14.将正整数按如图所示的规律排列下去。

2011年中考总复习化学教材过关训练:盐和化肥(附教师版解析)

2011年中考总复习化学教材过关训练:盐和化肥(附教师版解析)

教材过关十一盐和化肥可能用到的相对原子质量:H 1 C 12 O 16 Ca 40 Na 23 S 32 Cl 35.5一、请你做出最佳选择,每题只有一个正确答案1.下列物质可通过相应的金属与稀酸发生反应而得到的是A.ZnCl2B.AgClC.CuCl2D.Fe2(SO4)3答案:A 解析:金属活动顺序表中只有位于氢前的金属能置换出酸中的氢,Fe只能生成FeSO4而不会生成Fe2(SO4)3。

2.下列化学肥料属于复合肥料的是A.尿素〔CO(NH2)2〕B.重过磷酸钙〔Ca(H2PO4)2〕C.氯化钾〔KCl〕D.磷酸二氢铵〔NH4H2PO4〕答案:D 解析:复合肥料中应至少含有N、P、K元素中的两种。

3.下列物质的溶液中能与氢氧化钠溶液反应生成蓝色沉淀的是A.HClB.MgCl2C.KNO3D.CuSO4答案:D 解析:只有氢氧化铜为蓝色沉淀。

4.在发酵面团中加入某种物质糅合,既能使蒸出的面包疏松多孔,又能除去面团中的酸,该种物质可能是A.白糖B.NaHCO3C.NaOHD.CH3COOH答案:B 解析:B、C都能与酸反应,但氢氧化钠有腐蚀性,故不能选;NaHCO3+HCl====NaCl+H2O+CO2↑,使馒头疏松多孔。

5.用水作试剂,不可能区分开来的一组物质是A.氯化镁、食盐、烧碱B.汽油、酒精、浓硫酸C.无水硫酸铜、碳酸钠、碳酸钙D.氯化钾、硝酸钠、硫酸钾答案:D 解析:A选项:溶于水放出大量热的是NaOH,将NaOH分别放到其余两种物质中,产生白色沉淀的是MgCl2,无明显现象的是NaCl;B选项:不溶于水的是汽油,溶于水并放出大量热的是浓硫酸,溶于水但能量变化不明显的是酒精;C选项:溶于水溶液呈蓝色的是无水硫酸铜,溶于水溶液呈无色的是碳酸钠,不溶于水的是碳酸钙。

6.(2010北京海淀中考)下列各组物质中的杂质(括号内为杂质)只需加入适量稀硫酸就能除去的是A.NaCl(Na2CO3)B.Fe(Cu)C.Na2CO3(CaCO3)D.HCl(BaCl2)答案:D 解析:除杂质的原则是在除去杂质的同时,不得引入新的杂质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教材过关十二 数据的描述
一、填空题
1.50名学生参加数学竞赛,及格的频率为0.72,则不及格的人数为______________. 答案:14
提示:及格的频率为0.72,不及格的频率为0.28,由频数=总数×频率,不及格的人数=0.28×50=14.
2.王波学习小组调查了某城市部分居民的家庭人口数,并绘制了如图8-2的统计图:3%:6人;9%:5人;15%:2人;28%:4人;45%:3人(注:“3%:6人”表示家中有6人的占3%),则这部分居民的家庭人口数的众数为______________,平均数为______________人.
图8-2
答案:3 3.4
提示:众数是指一组数据中出现次数最多的数据,3人的为45%,出现次数最多;平均数=3%×6+9%×5+15%×2+28%×4+45%×3.
3.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据个数分别为2、8、15、5,第四组的频数和频率分别是___________________. 答案:20 0.4
提示:由各小组频数之和为数据总数,所以第四组的频数是50-2-8-15-5=20,由频数=总数×频率,频率=
50
20
=0.4. 二、选择题
4.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是
A.50
B.0.02
C.0.1
D.1 答案:D
提示:所有小组频数之和等于数据总数,所有频率相加等于1.
5.某中学初三年级共有14名任课教师,将他们按年龄分组,在30—40岁组中有6名教师,那么这个组的频率是 A.
73 B.21 C.37 D.7
4 答案:A 提示:频率=
总数
频数
. 6.图8-3是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察左下图,指出下列说法中错误的是
图8-3
A.数据75落在第2小组
B.第4小组的频率为0.1
C.心跳为每分钟75次的人数占该班体检人数的
12
1 D.数据75一定是中位数 答案:D
提示:数据75在69.5—79.5,因此落在第2小组;初三(2)班同学的总人数=6+9+20+25=60,所以第4小组的频率为6÷60=0.1;心跳为每分钟75次的人数为5人,占该班体检人数的5÷60=
12
1
,其他的数据不知道,所以无法求其中位数. 三、解答题
7.已知一组数据:
7.0 6.6 6.8 7.0 7.2 7.4 7.0 7.3 7.5 7.4 7.3 7.1 7.0 6.9 6.7 7.1 7.2 7.0 6.9 7.1
答案:频数分别为2,3,8,4,3,20. 提示:数出相应小组的数据个数.
8.图8-4是某公司员工工资频数分布直方图,根据图中所提供信息,回答下列问题:
每组只含最低分值,不含最高分值
图8-4
(1)该公司员工有多少人?
(2)工资收入不低于1 200元且低于2 000元的员工人数占公司总人数的百分比是多少? (3)如果收入1 800元的员工有6人,那么收入在1 800元以上的员工有多少人? (1)答案:50人.
提示:所有频数相加. (2)答案:72%.
提示:工资收入不低于1 200元且低于2 000元的员工人数落在第3、4、5、6小组,共36人,由频率=
总数
频数
,即36÷50=0.72. (3)答案:3人.
提示:1 800—2 200元共9人,去掉1 800元的6人还有3人.
9.在某中学举行的电脑知识竞赛中,将参赛学生的成绩(得分均为整数)进行整理后分成五组,绘制出频数分布直方图8-5,已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
图8-5
(1)求第二小组的频率,并补全这个频数分布直方图;
(2)求参赛的学生的优秀率(成绩≥80为优秀)和及格率(成绩≥60为及格); (3)参赛学生成绩的中位数应落在第几小组内?(不必说明理由) (4)请你评价一下这次竞赛的成绩. (1)答案:0.40.
提示:所有频率相加等于1.
(2)答案:15%;70%.
提示:由第四小组的频数和频率易求总人数是100人,成绩≥80为优秀的人数是15人,15÷100=0.15,成绩≥60为及格的人数是70人,70÷100=0.7.
(3)答案:二.
提示:中位数应是第50和51个数据的平均数,第一小组30人,第二小组40人,所以第50和51个数据落在第二小组.
(4)答案:这次竞赛成绩的及格率和优秀率不是太高,不及格的人数太多,可能与题的难度较大有关系,答案不唯一,合理即可.
提示:可根据频数分布直方图中每小组相应的频数作出分析和判断.。

相关文档
最新文档