集合知识点归纳总结
集合的全部知识点总结

集合的全部知识点总结集合是数学中的一个基本概念,广泛应用于各个领域。
本文将对集合的相关概念、运算、性质以及其在实际中的应用进行总结。
一、集合的基本概念1. 集合的定义:集合是由确定的元素组成的整体,没有重复元素,顺序不重要。
2. 元素和集合的关系:元素是集合的组成部分,用于描述集合的特征。
3. 表示方法:- 列举法:将集合的所有元素逐个列举出来。
- 描述法:通过一定的特征或条件来描述集合。
4. 空集和全集:- 空集:不含有任何元素的集合,用符号∅表示。
- 全集:包含所有元素的集合,用符号U表示。
二、集合的运算1. 交集:两个集合中具有相同元素的部分构成的新集合,用符号∩表示。
2. 并集:两个集合的所有元素组成的新集合,用符号∪表示。
3. 差集:一个集合中去掉与另一个集合共有元素后的新集合,用符号-表示。
4. 互补集:在全集中与某个集合没有交集的元素所构成的新集合,用符号A'表示。
5. 笛卡尔积:由两个集合的所有有序对构成的集合,用符号×表示。
三、集合的性质1. 包含关系:集合A包含于集合B,表示为A⊆B,当且仅当A的每个元素都是B的元素。
2. 相等关系:如果两个集合A和B互相包含,即A⊆B且B⊆A,则称A和B相等,表示为A=B。
3. 幂集:一个集合的所有子集所构成的集合,用符号P(A)表示。
4. 交换律、结合律和分配律:集合的交换律、结合律与数的运算性质类似,具有相似的性质。
四、集合的应用1. 概率论与统计学:集合论为概率论和统计学提供了重要的数学基础,通过对事件的集合进行分析与运算。
2. 数据库管理系统:集合运算在数据库查询和数据处理中起着重要的作用,用于筛选、合并和处理数据。
3. 逻辑学与集合论关系:集合论与逻辑学相辅相成,通过集合的运算和逻辑连接词(与、或、非)进行逻辑推理。
4. 集合在数学证明中的应用:集合的性质和运算方式在数学证明中经常被使用,可以简化证明过程。
总结:集合是数学中不可或缺的重要概念,它具有基本的定义、运算和性质。
高中数学集合知识点归纳

高中数学集合知识点归纳一、集合的基本概念1. 集合的定义:集合是由一些明确的、互不相同的元素所构成的整体,用大写字母如A, B, C等表示。
2. 元素:集合中的每一个成员被称为元素,用小写字母如a, b, c等表示。
3. 空集:不包含任何元素的集合称为空集,记作∅。
4. 集合的表示:集合通常可以通过列举法或描述法来表示。
例如,集合A = {1, 2, 3} 或 A = {x | x 是一个正整数}。
二、集合间的关系1. 子集:如果集合B的所有元素都是集合A的元素,则称B是A的子集,记作B ⊆ A。
2. 真子集:如果集合B是A的子集,并且B不等于A,则称B是A的真子集,记作B ⊂ A。
3. 补集:对于集合A,其在全集U中的补集是包含U中所有不属于A的元素的集合,记作A' 或 C_U(A)。
4. 交集:两个集合A和B的交集是包含同时属于A和B的所有元素的集合,记作A ∩ B。
5. 并集:两个集合A和B的并集是包含属于A或属于B的所有元素的集合,记作A ∪ B。
三、集合运算1. 德摩根定律:对于任意集合A和B,(A ∪ B)' = A' ∩ B' 和 (A ∩ B)' = A' ∪ B'。
2. 集合的幂集:一个集合的所有子集构成的集合称为该集合的幂集。
3. 笛卡尔积:两个集合A和B的笛卡尔积是所有可能的有序对(a, b)的集合,其中a属于A,b属于B,记作A × B。
四、特殊集合1. 有限集:包含有限个元素的集合称为有限集。
2. 无限集:包含无限个元素的集合称为无限集。
3. 有界集:如果集合中的所有元素都小于或等于某个实数,那么这个集合是有上界的;类似地,如果所有元素都大于或等于某个实数,则集合有下界。
4. 区间:实数线上的一段,包括开区间、闭区间和半开半闭区间。
五、集合的应用1. 函数的定义域和值域:函数的定义域是函数中所有允许输入的x值的集合;值域是函数输出的所有y值的集合。
数学集合考试知识点总结

数学集合考试知识点总结
一、集合的概念
1.集合的定义和表示方法
2.集合的元素和特点
3.集合的分类和运算
二、集合的表示法
1.集合的文字表示法
2.集合的符号表示法
3.集合的图示表示法
三、集合的运算
1.集合的并运算
2.集合的交运算
3.集合的差运算
4.集合的补运算
四、集合的性质
1.集合的包含关系
2.集合的等价关系
3.集合的互斥关系
4.集合的幂集和子集
五、集合的应用
1.集合在实际问题中的应用
2.集合在逻辑推理中的应用
3.集合在概率统计中的应用
六、集合的衍生概念
1.无限集合与有限集合
2.空集与全集
3.真子集与假子集
4.集合的基数和势
七、集合的证明方法
1.集合的等价证明
2.集合的包含证明
3.集合的互斥证明
4.集合的运算证明
八、集合的实际问题
1.集合的交叉问题
2.集合的包含问题
3.集合的运算问题
4.集合的应用问题
以上是数学集合考试知识点的总结,希望对大家的学习有所帮助。
集合主要知识点总结

集合主要知识点总结一、集合的基本概念1.1 集合的定义集合是由若干个元素组成的整体,这些元素可以是任意的事物或对象。
集合用大括号{}表示,其中的元素用逗号分隔。
例如,集合A = {1, 2, 3, 4, 5},表示集合A由1,2,3,4,5这五个元素组成。
1.2 集合的性质- 集合中的元素是无序的,即集合中的元素没有先后顺序。
- 集合中的元素是互不相同的,即集合中的元素不重复。
- 集合可以是有限集合,也可以是无限集合。
二、集合的运算2.1 并集定义:设A和B是两个集合,它们的并集记为A∪B,表示A和B中所有的元素组成的集合。
记法:A∪B = {x | x∈A或x∈B}例如,A = {1, 2, 3},B = {3, 4, 5},则A∪B = {1, 2, 3, 4, 5}。
2.2 交集定义:设A和B是两个集合,它们的交集记为A∩B,表示A和B中公共的元素组成的集合。
记法:A∩B = {x | x∈A且x∈B}例如,A = {1, 2, 3},B = {3, 4, 5},则A∩B = {3}。
2.3 补集定义:设A是一个集合,它的补集记为A',表示全集中除A之外的所有元素组成的集合。
记法:A' = {x | x∈全集且x∉A}例如,A = {1, 2, 3},全集为{1, 2, 3, 4, 5},则A' = {4, 5}。
2.4 差集定义:设A和B是两个集合,它们的差集记为A-B,表示A中去掉与B中相同的元素后的集合。
记法:A-B = {x | x∈A且x∉B}例如,A = {1, 2, 3},B = {3, 4, 5},则A-B = {1, 2}。
三、集合的关系3.1 子集定义:设A和B是两个集合,如果A中的所有元素都属于B,那么A是B的子集。
记法:A⊆B例如,A = {1, 2, 3},B = {1, 2, 3, 4, 5},则A是B的子集。
3.2 相等集合定义:设A和B是两个集合,如果A是B的子集,且B是A的子集,那么A等于B。
高中数学集合知识点总结8篇

高中数学集合知识点总结8篇篇1一、集合的基本概念集合是数学中的基本概念之一,它是由具有某种共同属性的事物组成的总体。
在数学中,我们常常用集合来表示一些数、点、线等的总体。
集合的基本特性包括确定性、互异性、无序性以及可表示性。
常见的集合表示方法有列举法、描述法以及图像法等。
对于集合的学习,首先要明确集合的概念及其表示方法,这是后续学习的基础。
二、集合的运算集合的运算包括并集、交集、差集和补集等。
并集表示两个或多个集合中所有元素的集合;交集表示两个集合中共有的元素组成的集合;差集表示在一个集合中但不在另一个集合中的元素组成的集合;补集则表示属于某个集合的所有元素之外的所有元素组成的集合。
在解题过程中,要根据题目的要求,选择合适的集合运算方法。
三、集合的基本关系集合之间的关系包括子集、真子集、相等集合等。
子集表示一个集合的所有元素都在另一个集合中;真子集表示一个集合是另一个集合的子集,且两者不相等;相等集合表示两个集合完全相同。
此外,还要了解空集的概念,即不含有任何元素的集合。
掌握集合的基本关系,有助于理解集合的运算及其性质。
四、数列与集合数列是一种特殊的集合,它按照一定规律排列的数序列。
等差数列和等比数列是数列中最常见的两种形式。
等差数列中的任意两项之差相等,等比数列中的任意两项之比相等。
在解决数列问题时,要充分利用数列的性质和公式,简化计算过程。
五、函数的定义域与值域与集合的关系函数的定义域与值域是函数概念的重要组成部分。
函数的定义域是指函数自变量的取值范围,值域则是函数因变量的取值范围。
这两个范围都可以用集合来表示。
在求解函数的定义域和值域时,要充分利用函数的性质,结合数轴或不等式等方法进行求解。
六、总结与应用掌握高中数学集合知识点,首先要明确集合的基本概念、表示方法以及运算性质。
在此基础上,要理解数列与集合的关系,掌握函数的定义域与值域与集合的联系。
在实际应用中,要灵活运用所学知识,解决数学问题。
集合知识点归纳总结

集合知识点归纳总结一、集合的定义与性质1. 集合的基本定义:集合是由一些确定的元素组成的整体。
2. 集合的表示方法:列举法、描述法、集合运算法等。
3. 集合的关系:包含关系、相等关系、互斥关系等。
4. 集合的运算:并集、交集、差集、补集等运算。
二、集合的分类1. 空集与全集:空集是不包含任何元素的集合,全集是指定范围内的所有元素的集合。
2. 子集与真子集:如果一个集合中的所有元素都是另一个集合的元素,则称前者为后者的子集;若两个集合既有子集关系又不相等,则称前者为后者的真子集。
3. 有限集与无限集:元素个数有限的集合称为有限集,元素个数无限的集合称为无限集。
三、集合的运算1. 并集:将两个或多个集合中的所有元素都放在一起,得到的新集合即为并集。
2. 交集:两个集合中共有的元素组成的集合称为交集。
3. 差集:从一个集合中减去另一个集合的元素,得到的新集合称为差集。
4. 补集:相对于某个全集,与该集合不相交的元素组成的集合称为补集。
四、集合的表示与应用1. 集合的表示方法:列举法、描述法、集合运算法等。
2. 集合的应用场景:数学、计算机科学、概率论等领域中都有集合的应用。
3. 集合的问题求解:通过集合的运算和性质,解决实际问题中的集合相关的计算和逻辑推理。
五、集合的常用性质与定理1. 幂集:一个集合的所有子集构成的集合称为幂集。
2. 对称差:两个集合的对称差是指两个集合的并集减去交集。
3. 德摩根定律:集合运算中的德摩根定律包括并集的德摩根定律和交集的德摩根定律。
4. 集合的基数:集合的基数是指集合中元素的个数。
5. 区间表示法:用数轴上的区间来表示集合。
六、集合的应用举例1. 数学中的集合:数学中的各种概念和定理都可以用集合的语言来表达和证明。
2. 数据库中的集合:数据库中的查询、连接和操作都可以用集合的概念来描述和实现。
3. 概率论中的集合:概率论中的事件和样本空间都可以用集合的概念来表示和计算。
(完整版)《集合》知识点总结

《集合》知识点总结一、集合有关概念1.集合的含义一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集) 2.集合中元素的三个特性:确定性 互异性 无序性3.集合的表示:{}⋅⋅⋅如:{}我校的篮球队员,{}太平洋,大西洋,印度洋,北冰洋用拉丁字母表示集合:A ={}我校的篮球队员,B ={}1,2,3,4,5 集合的表示方法:列举法与描述法。
列举法:{,}a b ⋅⋅⋅,c,d,描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{|32}x x ->语言描述法:例:{}不是直角三角形的三角形Venn 图:注:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 *N N +或 整数集Z 有理数集Q 实数集R4.集合的分类:有限集 含有有限个元素的集合 无限集 含有无限个元素的集合空集 不含任何元素的集合 例:2{|5}x x =-二、集合间的基本关系1.“包含”关系—子集 注意:A B ⊆有两种可能(1)A 是B 的一部分;(2)A 与B 是同一集合。
反之,集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆/B 或B ⊇/A 2. “相等”关系:A=B (5≥5,且5≤5,则5=5)例:设A={x|210x -=} B={-1,1} “元素相同则两集合相等”① 任何一个集合是它本身的子集. A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作B A ⊆ (或B ⊇/A) ③如果A ⊆B, B ⊆C ,那么 A ⊆C④如果A ⊆B 同时 B ⊆A 那么A=B3.不含任何元素的集合叫做空集,记为∅规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
结论:有n 个元素的集合,含有2n 个子集,12n -个真子集(2)交、并、补集的混合运算①集合交换律 A B B A ⋂=⋂ A B B A ⋃=⋃②集合结合律 ()()A B C A B C ⋂⋂=⋂⋂ ()()A B C A B C ⋃⋃=⋃⋃③集合分配律 ()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃ (3)容斥定理()()()()card A B card A card B card A B ⋃=+-⋂()()()()()card A B C card A card B card C card A B ⋃⋃=++-⋂()()()card A B card B C card A B C -⋂-⋂+⋂⋂card 表示有限集合A 中元素的个数。
集合的所有知识点总结

集合的所有知识点总结1. 集合的基本概念集合是由一些称为元素的对象所组成的。
在数学中,我们通常用大写字母来表示集合,用小写字母来表示集合中的元素。
例如,我们可以用A来表示集合,用a、b、c来表示集合A中的元素。
集合的表示方法有多种,最常见的是列举法和描述法。
列举法是直接列出集合中的元素,例如{1, 2, 3, 4, 5}表示由1、2、3、4、5这五个元素组成的集合。
描述法是用一个条件来描述集合中的元素,例如{x | x是正整数,且x<10}表示由小于10的正整数所组成的集合。
2. 集合的关系在集合论中,我们通常关注的是集合之间的关系。
最常见的集合关系有包含关系、相等关系、交集、并集、补集等。
包含关系是指一个集合包含另一个集合,如果集合A中的所有元素都是集合B中的元素,则称集合A包含集合B,用A⊇B表示。
相等关系是指两个集合具有相同的元素,如果集合A包含集合B并且集合B包含集合A,则称集合A和集合B相等,用A=B表示。
交集是指两个集合共有的元素组成的集合,用A∩B表示。
并集是指两个集合中所有的元素组成的集合,用A∪B表示。
补集是指一个集合中除去另一个集合中的元素后所得到的集合,用A-B表示。
3. 集合的运算在集合论中,我们通常研究的是集合之间的运算。
最常见的集合运算有并、交、差、幂集等。
并运算是指将多个集合的所有元素组成的集合,用A∪B表示。
交运算是指两个集合中共有的元素组成的集合,用A∩B表示。
差运算是指一个集合除去另一个集合中的元素后所得到的集合,用A-B表示。
幂集是指一个集合的所有子集组成的集合,用P(A)表示。
4. 集合的基本定理在集合论中,有一些重要的基本定理,它们对于理解和运用集合论具有重要的意义。
最常见的基本定理有对称差定理、德摩根定理、绝对差定理等。
对称差定理是指两个集合的对称差等于这两个集合的并集减去交集,用A△B=(A∪B)-(A∩B)表示。
德摩根定理是指两个集合的并集的补集等于两个集合的补集的交集,用(A∪B)’=A’∩B’表示。
(完整版)集合知识点归纳

集合的基础知识一、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,?1,?2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).二、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
集合部分的知识点总结

集合部分的知识点总结1. 集合的基本概念集合的基本概念包括元素、子集、空集、全集等。
元素:集合中的每一个对象都称为该集合的元素。
在数学中,我们通常用小写字母表示元素,如$a\in A$表示元素$a$属于集合$A$。
子集:若集合$A$中的每一个元素都属于集合$B$,则称$A$是$B$的子集。
表示为$A\subseteq B$。
空集:不包含任何元素的集合称为空集,用符号$\emptyset$表示。
全集:包含所有可能元素的集合称为全集。
在特定的问题中,全集的具体取值可能会有所不同。
2. 集合的运算集合的运算包括并集、交集、补集、差集等。
并集:集合$A$和集合$B$的并集,表示为$A\cup B$,是所有属于$A$或者属于$B$的元素的集合。
交集:集合$A$和集合$B$的交集,表示为$A\cap B$,是所有既属于$A$又属于$B$的元素的集合。
补集:集合$A$相对于全集的补集,表示为$A^c$或$\overline{A}$,是所有属于全集但不属于$A$的元素的集合。
差集:集合$A$和集合$B$的差集,表示为$A-B$或$A\backslash B$,是所有属于$A$但不属于$B$的元素的集合。
并集、交集、补集和差集是集合运算的基本操作,它们在集合论中有着重要的应用。
3. 集合的性质集合具有一些基本的性质,如交换律、结合律、分配律等。
交换律:对于任意两个集合$A$和$B$,$A\cup B=B\cup A$,$A\cap B=B\cap A$。
结合律:对于任意三个集合$A$、$B$、$C$,$(A\cup B)\cup C=A\cup (B\cup C)$,$(A\cap B)\cap C=A\cap (B\cap C)$。
分配律:对于任意三个集合$A$、$B$、$C$,$(A\cup B)\cap C=(A\cap C)\cup (B\cap C)$,$(A\cap B)\cup C=(A\cup C)\cap (B\cup C)$。
集合知识点总结带例题

集合知识点总结带例题一、基本概念1. 集合集合是由一些确定的对象构成的整体。
集合是一个无序的整体,它只关心集合中包含的元素,与元素的排列顺序无关。
2. 元素集合中的个体称为元素,元素可以是任何事物或对象,例如数字、字母、集合等。
3. 空集一个不包含任何元素的集合称为空集,通常用符号∅ 或 {} 表示。
4. 包含关系若集合 A 中的所有元素都是集合 B 中的元素,则称集合 A 包含在集合 B 中,通常用符号A⊆B 表示。
5. 相等关系若集合 A 包含在集合 B 中,并且集合 B 包含在集合 A 中,则称集合 A 和集合 B 相等,通常用符号 A=B 表示。
6. 子集若集合 A 包含在集合 B 中,且集合 A 不等于集合 B,则称集合 A 是集合 B 的子集,通常用符号A⊂B 表示。
7. 并集若集合 A 和集合 B 的元素都包含在一个新的集合中,则称该集合为 A 和 B 的并集,通常用符号A∪B 表示。
8. 交集若集合 A 和集合 B 的公共元素构成一个新的集合,则称该集合为 A 和 B 的交集,通常用符号A∩B 表示。
9. 完全集一个包含所有可能元素的集合称为完全集。
10. 互斥集若集合 A 和集合 B 没有共同的元素,则称集合 A 和集合 B 互斥。
二、运算1. 并集对于两个集合 A 和 B,它们的并集是一个包含 A 和 B 所有元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∪B={1,2,3,4,5}。
2. 交集对于两个集合 A 和 B,它们的交集是一个包含 A 和 B 共同元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∩B={3}。
3. 补集对于一个集合 A,它在另一个集合 U 中的补集是指 U 中不属于 A 的元素所组成的集合,通常用符号 A' 或 A^c 表示。
4. 差集对于两个集合 A 和 B,它们的差集是包含在 A 中但不包含在 B 中的元素所组成的集合,通常用符号 A-B 表示。
集合知识点考点总结

集合知识点考点总结1. 集合的基本概念(1) 集合的定义:集合是由一些确定的对象组成的整体。
这些对象可以是数字、字母、符号或者其他事物。
(2) 元素:组成集合的每个对象都称为集合的元素,通常用小写字母表示。
(3) 无序性:集合中的元素没有顺序之分,即两个相同的集合只有相同的元素组成,元素的排列次序不同,它们之间也是相等的。
(4) 互异性:集合中的元素各不相同,即每个元素在集合中只能出现一次。
(5) 集合的表示方法:集合可以用列举法、描述法和等价关系法表示。
2. 集合的分类(1) 空集:不包含任何元素的集合称为空集,通常用符号∅表示。
(2) 单集:只包含一个元素的集合称为单集。
(3) 有限集和无限集:集合中元素的个数有限的称为有限集,否则称为无限集。
(4) 相等集:具有相同元素的集合称为相等集。
3. 集合的运算(1) 并集:设A和B是两个集合,由所有属于集合A或属于集合B的元素组成的集合称为A和B的并集,通常用符号∪表示。
(2) 交集:设A和B是两个集合,由所有既属于集合A又属于集合B的元素组成的集合称为A和B的交集,通常用符号∩表示。
(3) 补集:设U是一个给定的集合,A是U的一个子集,由所有属于U而不属于A的元素组成的集合称为A的补集,通常用符号A'表示。
(4) 差集:设A和B是两个集合,由所有属于集合A而不属于集合B的元素组成的集合称为A和B的差集,通常用符号A-B表示。
4. 集合的运算法则和性质(1) 交换律:对于任意的集合A和B,A∪B = B∪A,A∩B = B∩A。
(2) 结合律:对于任意的集合A、B和C,(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
(3) 分配律:对于任意的集合A、B和C,A∩(B∪C) = (A∩B)∪(A∩C),A∪(B∩C) =(A∪B)∩(A∪C)。
(4) 吸收律:对于任意的集合A和B,A∪(A∩B) = A,A∩(A∪B) = A。
求集合知识点归纳总结

求集合知识点归纳总结1. 集合的基本概念(1)元素:集合中的对象称为元素,通常用小写字母表示。
例如,集合A={1, 2, 3},其中的1、2、3就是集合A的元素。
(2)空集:不含任何元素的集合称为空集,通常用符号∅表示。
(3)子集:若集合B的所有元素都属于集合A,则称集合B是集合A的子集,记作B⊆A。
(4)真子集:对于集合A和B,如果B是A的子集且B≠A,则称B是A的真子集,记作B⊂A。
(5)交集:集合A和集合B的交集是一个新的集合,其中包含A和B的共同元素,记作A∩B。
(6)并集:集合A和集合B的并集是一个新的集合,其中包含A和B的所有元素,记作A∪B。
(7)补集:集合A相对于全集的补集,记作A',表示全集中不属于A的元素组成的集合。
(8)笛卡尔积:对于两个集合A和B,它们的笛卡尔积是一个新的集合,其中的元素是由A和B的所有可能的有序对组成的,记作A×B。
2. 集合的运算(1)交集:对于集合A和集合B,它们的交集是一个新的集合,其中包含A和B的共同元素,记作A∩B。
(2)并集:对于集合A和集合B,它们的并集是一个新的集合,其中包含A和B的所有元素,记作A∪B。
(3)差集:对于集合A和集合B,它们的差集是一个新的集合,其中包含A中属于B补集的元素,记作A-B。
(4)补集:集合A相对于全集的补集,记作A',表示全集中不属于A的元素组成的集合。
(5)笛卡尔积:对于两个集合A和B,它们的笛卡尔积是一个新的集合,其中的元素是由A和B的所有可能的有序对组成的,记作A×B。
3. 集合的性质(1)互斥性:对于集合A和集合B,如果A∩B=∅,则称A和B互斥,即A和B没有共同的元素。
(2)幂集:对于集合A,它的幂集是由A的所有子集组成的集合,记作P(A)。
(3)集合的基数:集合A的基数是A中元素的个数,记作|A|。
(4)集合的运算律:交换律、结合律、分配律等。
4. 集合的应用集合论作为数学的一个基本概念,广泛应用于数学分析、代数学、拓扑学等领域。
(完整版)《集合》知识点总结

《集合》知识点总结一、集合有关概念1.集合的含义一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)2.集合中元素的三个特性:确定性互异性无序性3.集合的表示:{...} 如:{我校的篮球队员} ,{太平洋,大西洋,印度洋,北冰洋} 用拉丁字母表示集合: A = {我校的篮球队员} , B = {1,2,3,4,5}集合的表示方法:列举法与描述法。
列举法:{a,b,c,d,...}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x | x 一3 > 2}语言描述法:例:{不是直角三角形的三角形}Venn 图:注:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N +整数集 Z 有理数集 Q 实数集R4.集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x | x2 = 一5}二、集合间的基本关系1.“包含”关系—子集注意:A 坚 B 有两种可能(1)A 是 B 的一部分;(2)A 与 B 是同一集合。
反之,集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作 A坚/B 或 B二/A2. “相等”关系:A=B (5≥5,且5≤5,则5=5)例:设 A={x| x2 一1 = 0 } B={-1,1} “元素相同则两集合相等”①任何一个集合是它本身的子集. A坚A②真子集:如果 A坚B,且 A子 B 那就说集合 A 是集合 B 的真子集,记作A 坚 B (或 B二/A)③如果 A坚B, B坚C ,那么 A坚C④如果 A坚B 同时 B坚A 那么 A=B3.不含任何元素的集合叫做 空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
结论:有 n 个元素的集合,含有 2n 个子集, 2n 1 个真子集三、集合的运算运算交 集 并 集 补 集类型定 由所有属于 A 且属于 B的元素所组成的集合 叫做 A,B 的交集.记作由所有属于集合 A 或属于集合 B 的元素所组成 的集合,叫做 A,B 的并设 S 是一个集合, A 是 S 的一个子 集,由 S 中所有不属于 A 的元素 组成的集合,叫做 S 中子集 A 的 补集(或余集) 义A nB (读作‘A 交 B ’) 即 A n B={x|x A 且 集.记作 A U B (读作‘A并 B ’ ) , 即 A U B记作 C U A ,即x B }. ={x|x A ,或 x B}). C A {x | x U , 且x A}U韦恩 A B A B A 图示 图 1 图 2(C u A) (C u B) C u (A B)AA AA性AB B AAA (C u A) (C u B) C u (A B)AB B A质A B AAB A A (C u A) U AB BAB BA (C u A)(2)交、并、补集的混合运算 ①集合交换律 AB B A A B B A②集合结合律 (A B) C A (B C) (A B) C A (B C)③集合分配律 A (B C) (A B) (A C) A (B C) (A B) (A C)(3)容斥定理card(A B) card(A) card(B) card(A B)card (A B C) card (A) card (B) card (C) card (A B)card(A B) card(B C) card(A B C)card 表示有限集合 A 中元素的个数S。
总结集合的知识点

总结集合的知识点一、基本概念1. 集合的定义集合是由一些确定的、互不相同的对象组成的整体。
其中的每个对象称为元素,可以是任意的事物或抽象的概念。
集合通常用大写拉丁字母A、B、C等来表示,元素通常用小写字母a、b、c等来表示。
如果x是集合A的一个元素,我们会用x∈A来表示。
反之,如果x不是A的元素,则用x∉A来表示。
2. 集合的表示法集合的表示法主要有三种:枚举法、描述法和集合构造法。
(1)枚举法:直接用大括号将集合中的元素写出来。
例如,A={1,2,3,4}。
(2)描述法:用一个性质来描述集合中的元素。
例如,A={x|x是正整数,且x小于5}。
(3)集合构造法:由已知的一个或几个集合构造一个新的集合。
例如,如果A={a,b,c},B={c,d,e},那么A∩B={c}。
3. 空集和全集空集是不包含任何元素的集合,通常用∅或{}来表示。
全集是讨论的所有对象的集合,通常用U来表示。
二、集合的运算1. 并集若A和B是两个集合,则A和B的并集是一个集合,它包含了A和B中的所有元素。
符号为A∪B。
例如,若A={1,2,3},B={3,4,5},那么A∪B={1,2,3,4,5}。
2. 交集若A和B是两个集合,则A和B的交集是一个集合,它包含了既属于A又属于B的所有元素。
符号为A∩B。
例如,若A={1,2,3},B={3,4,5},那么A∩B={3}。
3. 差集若A和B是两个集合,则A和B的差集是一个集合,它包含了属于A但不属于B的所有元素。
符号为A-B。
例如,若A={1,2,3},B={3,4,5},那么A-B={1,2}。
4. 补集对于给定的集合A,在全集U中,A的补集是指所有不属于A的元素所构成的集合。
符号为A'或A^c。
5. 笛卡尔积若A和B是两个集合,则A和B的笛卡尔积是一个集合,它包含了所有形式为(a, b)的有序对,其中a∈A,b∈B。
符号为A×B。
三、集合的性质1. 交换律、结合律和分配律集合的并、交运算满足交换律、结合律和分配律。
集合知识点总结归纳

集合知识点总结归纳一、集合的定义集合是指具有某种共同性质的对象的汇聚。
这些对象可以是数字、字母、图形、物体等。
集合用大括号{}表示,其中的对象称为元素。
例如,集合A={1,2,3,4,5},表示A是由数字1、2、3、4、5组成的集合。
在集合中,元素是没有顺序的,且不重复。
集合中没有元素的情况称为空集,记作Φ。
二、集合的运算1. 并集:设A和B是两个集合,A∪B表示A和B的并集,即集合A和B中所有元素的集合。
例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
2. 交集:设A和B是两个集合,A∩B表示A和B的交集,即同时属于A和B的元素的集合。
例如,A={1,2,3},B={2,3,4},则A∩B={2,3}。
3. 差集:设A和B是两个集合,A-B表示A和B的差集,即属于A但不属于B的元素的集合。
例如,A={1,2,3},B={2,3,4},则A-B={1}。
4. 补集:设U为全集,A为U的子集,A的补集记作A'或者~A,表示U中所有属于但不属于A的元素的集合。
5. 笛卡尔积:设A和B是两个集合,A×B表示A和B的笛卡尔积,即由所有形如(a,b)的有序数对组成的集合,其中a∈A,b∈B。
三、特殊集合1. 自然数集合:N={1,2,3,4,5,...}。
2. 整数集合:Z={...,-3,-2,-1,0,1,2,3,...}。
3. 有理数集合:Q={m/n|m,n∈Z,n≠0}。
4. 实数集合:R表示所有实数的集合。
5. 复数集合:C表示所有复数的集合。
四、集合的关系与表示方法1. 包含关系:若集合A中的每个元素都属于集合B,则称A是B的子集,记作A⊆B,或者B的超集,记作B⊇A。
2. 相等关系:若A⊆B且B⊆A,则称A等于B,记作A=B。
3. 元素的属于关系:若某个元素属于某个集合A,记作a∈A,否则记作a∉A。
4. 集合的表示方法:- 列举法:直接列举出集合中的元素。
高一数学集合知识点归纳

一、集合的概念1. 集合的定义:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
2. 集合的表示方法:集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。
3. 集合的分类:有限集和无限集。
有限集中元素的个数是有限的,无限集中元素的个数是无限的。
二、集合的基本运算1. 并集:两个集合A和B的并集是指包含A和B中所有元素的集合,记作A∪B。
2. 交集:两个集合A和B的交集是指既属于A又属于B的元素组成的集合,记作A∩B。
3. 差集:两个集合A和B的差集是指属于A但不属于B的元素组成的集合,记作A-B。
4. 补集:一个集合A的补集是指不属于A的所有元素的集合,记作A'或A^c。
5. 幂集:一个集合的所有子集构成的集合称为该集合的幂集,记作P(A)。
三、集合的性质1. 互异性:一个集合中的元素都是不同的。
2. 无序性:一个集合中的元素没有固定的顺序。
3. 确定性:一个元素要么属于某个集合,要么不属于该集合。
4. 空集:不包含任何元素的集合称为空集,记作∅。
5. 全集:包含所有元素的集合称为全集,记作U。
6. 子集:如果一个集合的所有元素都属于另一个集合,那么这个集合称为另一个集合的子集。
7. 真子集:如果一个集合的所有元素都属于另一个集合,但这个集合本身不是另一个集合,那么这个集合称为另一个集合的真子集。
8. 相等集:如果两个集合的元素完全相同,那么这两个集合称为相等集。
9. 空集是任意集合的子集。
10. 空集是任意非空集合的真子集。
四、集合的关系1. 包含关系:一个集合A包含另一个集合B,记作A⊆B。
2. 相等关系:两个集合A和B的元素完全相同,记作A=B。
3. 不相等关系:两个集合A和B的元素不完全相同,记作A≠B。
4. 子集关系:一个集合A是另一个集合B的子集,记作A⊆B。
5. 真子集关系:一个集合A是另一个集合B的真子集,记作A⊆B且A≠B。
6. 相等关系与包含关系的关系:如果两个集合相等,那么它们一定相互包含;如果两个集合相互包含,那么它们不一定相等。
集合的所有知识点总结

集合的所有知识点总结集合是数学中的一个基础概念,它是一个由确定的对象组成的整体。
集合论是研究集合性质、集合关系以及集合运算的数学分支。
一、集合的基本概念:1.元素:集合中的每个对象都被称为元素,通常用小写字母a、b、c等表示。
2.空集:不含任何元素的集合称为空集,通常用符号∅表示。
3.子集:若集合A中的每个元素都是集合B的元素,则称A为B的子集,用符号A⊆B表示。
4.相等集合:若两个集合A和B具有相同的元素,则称A等于B,用符号A=B表示。
5.无限集合:元素个数无穷多的集合称为无限集合,如自然数集、整数集等。
二、集合的表示方法:1.描述法:通过描述集合元素的特征,将其写成一组确定的元素的方式,如“x是大于0且小于10的整数”的集合{x|0<x<10}。
2.列举法:直接将集合中的每个元素列出来,用大括号{}表示,元素之间用逗号隔开,如集合{1, 2, 3}。
3.集合的图示法:用图形的方式表示集合,如Venn图等。
三、集合间的关系:1.包含关系:若集合A中的每个元素都是集合B的元素,则称A包含于B,用符号A⊆B表示。
2.真子集关系:如果A包含于B,并且A不等于B,则称A 为B的真子集,用符号A⊂B表示。
3.相等集合:若集合A包含于集合B,并且集合B包含于集合A,则称A等于B,用符号A=B表示。
四、集合的运算:1.并集运算:将属于集合A或集合B的元素组成一个新的集合,用符号A∪B表示,即A∪B={x|x∈A或x∈B}。
2.交集运算:将同时属于集合A和集合B的元素组成一个新的集合,用符号A∩B表示,即A∩B={x|x∈A且x∈B}。
3.补集运算:对于给定的全集U,集合A中不属于集合B的元素组成一个新的集合,用符号A-B表示,即A-B={x|x∈A 且x∉B}。
4.差集运算:集合A中属于A而不属于B的元素组成一个新的集合,用符号A-B或A\B表示,即A-B={x|x∈A且x∉B}。
五、集合的性质:1.幂集:给定集合A,由A的所有子集构成的集合称为A的幂集,记作P(A)。
《集合》知识点总结

《集合》知识点总结一、集合的基本概念1、集合:一些指定的对象集在一起就成为一个集合,其中每一个对象称为元素。
2、集合的表示:用大括号{}或小括号()表示,元素与集合的关系为“属于”或“不属于”。
3、集合的特性:确定性、互异性、无序性。
二、常见集合的表示方法1、自然数集:N2、整数集:Z3、有理数集:Q4、实数集:R三、集合的运算1、交集:取两个集合的公共元素组成的集合,记作A∩B。
2、并集:把两个集合合并起来,记作A∪B。
3、补集:把属于一个集合但不在该集合的元素组成的集合,记作CuA。
四、集合间的关系1、子集:若一个集合A的每一个元素都是另一个集合B的元素,则称A是B的子集。
2、真子集:如果A是B的子集,且A≠B,则称A是B的真子集。
3、相等:当且仅当两个集合的元素完全相同,且不强调元素的顺序时,两个集合相等。
五、集合的基本运算性质1、若A、B为两个集合,有A∩B=B∩A。
2、若A、B为两个集合,有Cu(A∩B)=CuA∪CuB。
3、若A、B、C为三个集合,有(A∩B)∩C=A∩(B∩C)。
4、若A、B为两个集合,有(CuA)∪B=(A∪B)∩CuB。
5、若A、B、C为三个集合,有(A∪B)∩C=(A∩C)∪(B∩C)。
6、若A、B为两个集合,有(CuA)∩B=Cu(A∪B)。
7、若A、B为两个集合,有(CuA)∪(CuB)=Cu(A∩B)。
集合知识点总结一、集合、元素及其关系1、集合的基本概念:集合是一个不重复的元素的集合,常用大写字母表示集合,如A={1,2,3},B={apple,banana,cherry}。
2、集合的表示方法:常用的表示方法有列举法和描述法。
列举法是把集合中的元素一一列举出来,适用于元素数量较少的集合;描述法是用集合中元素的共同特征来描述集合,如自然数集N={n|n是自然数}。
3、集合的元素关系:如果集合A中的任意一个元素都是集合B中的元素,那么称A是B的子集,记作A⊆B。
(完整版)集合知识点归纳

集合的基础知识一、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,¡1,¡2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).二、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考纲说明】
1. 理解集合,子集,补集,交集,并集的概念;
2. 了解空集和全集的意义;
3. 了解属于,包含,相等关系的意义。
4. 掌握有关术语和符号,并会使用它们表示一些简单的集合。
【趣味链接】 集合论是德国着名数学家康托于19世纪末创立的。
十七世纪,数学中出现了一门新的分支:微积分。
在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。
其推进速度之快使人来不及检查和巩固它的理论基础。
十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。
正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。
到1874年康托尔开始一般地提出“集合”的概念。
他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。
人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日。
一、定义:
1、 表示方法:
(1)、列举法:{}1,2,3A = (2)、描述法:{}
13,A x x x Z =≤≤∈
(3)、V_N 图法 (4)、常见数集:*,,,,()R Q Z N N N +
2、 性质:确定性、互异性、无序性
3、 元素与集合的关系:属于(不属于)()∈∉
4、 集合与集合的关系:包含(真包含)⊆(??)
5、 子集:若B A ⊆,B 叫做A 的子集
(1) 子集:2n (2)真子集:21n - (3)非空子集:21n - (4)非空真子集:22n -
6、 空集:空集是任何集合的子集;空集是任何非空集合的真子集。
7、 相等集合:若C A ⊆,且A C ⊆,则A=C
二、集合运算
1、 交集:A B ⋂公共部分
2、 并集:A B ⋃全部
3、 补集:U C A 全集U 中除去A
例题1:已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()U A C B ⋂等于( )
例题2:设全集R U =,集合}31|{},22|{≤≤-=≤≤-=x x B x x A ,则图中阴影部分表示的集合为( )
A.}32|{≤≤-x x
B.}21|{≤≤-x x
C.}20|{≤≤x x
D.}21|{≤≤-x x
例题3:已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )
A. A ??B
B. B ??A
C. A=B
D. A∩B=?
例题4:已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( ) 10.8.6.3
.D C B A
★随堂训练:
1、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于 .
2、已知集合}2|||{)},1lg(|{<=-==x x B x y x A ,则B A I =( )
A.)0,2(-
B.)2,0(
C.)2,1(
D.)2,2(-
3、设全集U 是实数集R ,}31|{},2|||{<<=≥=x x N x x M ,则图中阴影表示的是( )
A.}12|{<<-x x
B.}22|{<<-x x
C.}21|{<<x x
D.}2|{<x x
4、 已知集合},log |{},4,2,1{2A x x y y B A ∈===,则B A Y =( )
A.}2,1{
B.]2,1[
C.}4,2,1,0{
D.]4,0[
★高考真题演练:
(2017年文1)已知集合}023|{},2|{>-=<=x x B x x A ,则( ) A.}23|{<=x x B A I B.φ=B A I C.}2
3|{<=x x B A Y D.R B A =Y
(2017年理1)已知集合}13|{},1|{<=<=x x B x x A ,则( )
A.}0|{<=x x B A I
B.R B A =Y
C.}1|{>=x x B A Y
D.φ=B A I
(2016年文1)设集合}52|{},7,5,3,1{≤≤==x x B A ,则A B =I ( )
(2016年理1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )
(2015年文1)已知集合}14,12,8,6{},,23|{=∈+==B N n n x x A ,则集合B A I 中元素的个数为( )
(2014年文1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =I ( ) (2014年理1)已知集合A={x |2230x x --≥},}22|{<≤-=x x B ,则A B =I ( ) (2013年文1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =I ( ) (2013年理1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则( )。