2013-2014第二轮复习专题: 数列

合集下载

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

+2an+1=4S
n+1+3.
可得
a2 n 1
-
an2
+2(an+1- an)=4an+1,即
2(an+1+an)=
a2 n 1
-
an2
= (an+1+an)(an+1-an).
由于 an>0,可得 an+1-an=2.
又 a12 +2a1=4a1+3, 解得 a1=-1(舍去)或 a1=3.
所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1.
第二个使用累积的方法、第三个可以使用待定系数法化为等比数列(设 an+1+λ =p(an+λ),展开比较系数得出λ);(3)周期数列,通过验证或者推理得出数列的 周期性后得出其通项公式.
热点训练 1:(1)(2018·湖南长沙雅礼中学、河南省实验中学联考)在数列{an}
中,a1=2, an1 = an +ln(1+ 1 ),则 an 等于( )
n
所以
1 =2(1- 1 + 1 - 1 +…+ 1 -
1

S k 1 k
223
n n1
=2(1- 1 ) n 1
= 2n . n 1
答案: 2n n 1
3.(2015·全国Ⅱ卷,理16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
解析:因为 an+1=S n+1-Sn,所以 Sn+1-Sn=Sn+1Sn,

高考数学第二轮专题复习教案数列的综合

高考数学第二轮专题复习教案数列的综合

第26课时 数列的综合一、基础练习1、已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于______2、f(n)=1+2+3+…+n ,则f(n 2)=______3、等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,则{a n }前20项的和S 20=_____4、数列{a n }中,a 1=1,a n 、a n+1是方程x 2-(2n+1)x+1nb =0的两个根,数列{b n }的前n 项和S n =______5、某人从2003年起,每年1月1日到银行存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2009年1月1日将所有存款及利息全部取回,他可取回的钱数为________二、例题例1:1993年,某内河可供船只航行的河段长1000km ,但由于水资源的过度使用,促使河水断流,从1994年起,该内河每年船只可行驶的河段长度仅为上一年的三分之二,试求:(1)到2002年,该内河可行驶的河段长度为多少公里?(2)若有一条船每年在该内河上行驶一个来回,问从1993年到2002年这条船航行的总路程为多少公里?例2:已知函数y=f(x)的图象是自原点出发的一条折线,当n ≤y ≤n+1(n=0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f(x n )=n(n=1,2,…)定义。

(1)求x 1,x 2和x n 的表达式。

(2)求f(x)的表达式,并写出其定义域。

例3: 已知函数y=f(x)对任意的实数x 、y 都有f(x+y)=f(x)f(y),且f(1)≠0。

(1)设a n =f(n),(n ∈N*),S n =1n i n a =∑,设b n =21n nS a +,且{b n }为等比数列,求a 1的值。

(2)在(1)的条件下,设c n =2()72n n n a b n n++-,问:是否存在最大的整数m ,使得对于任意n ∈N*,均有c n >3m ?若存在,求出m 的值;若不存在,请说明理由。

荆门市2013届高三二轮专题复习-数列

荆门市2013届高三二轮专题复习-数列

an 与和 Sn 与项数 n 之间的关系(单调性)的考查 数列的前 n 项和 Sn 与通项 an 的关系 an
n 1 S1 , ,在数列求通项公式中占有 S S , n 2 n 1 n
重要地位位置, 很多数列试题就是以此为出发点设计的。 主要考查考生对数列的前 n 项和 Sn 与通项 an 的关系的理解和分类讨论思想的运用考查。 4.(2012 年高考(浙江理第 7 题容易题) )设 S n 是公差为 d(d≠0)的无穷等差数列{a n}的前 n 项和,则下列命题错误 的是 ( ) .. A.若 d<0,则数列{S n}有最大项 B.若数列{S n}有最大项,则 d<0 C.若数列{S n}是递增数列,则对任意的 n N*,均有 S n>0 D.若对任意的 n N*,均有 S n>0,则数列{S n}是递增数列 解析 答案为 C。选项 C 显然是错的,举出反例:—1,0,1,2,3,„.满足数列{S n} 是递增数列,但是 S n>0 不成立. 题后反思:在明确项 an 与和 Sn 与项数 n 之间的等量关系的前提下,还要能辨别它们之 间的变化(增,减)关系,即函数关系。同时要清楚作为数列判定增减性的特定方法: an 1 ﹥ an (n 1) 递增, an 1 ﹤ an (n 1) 递减。 考点四 等差等比数列的整体(局部)思想在解题中的应用
3a 3d 3, a 2, a 4, 由题意得 1 解得 1 或 1 a ( a d )( a 2 d ) 8. d 3, d 3. 1 1 1 所以由等差数列通项公式可得 an 2 3(n 1) 3n 5 ,或 an 4 3(n 1) 3n 7 .
证法二 对任意 k N , 2Sk

2014届高考二轮复习热点专题第二讲: 数列(文)(教学案)(教师版)

2014届高考二轮复习热点专题第二讲: 数列(文)(教学案)(教师版)

2014届高考二轮复习热点专题第二讲: 数列一、知识梳理1. a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2. 等差数列和等比数列考点一 与等差数列有关的问题例1 (2012·浙江)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列解析 (1)利用函数思想,通过讨论S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 的单调性判断. 设{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d2n 2+⎝⎛⎭⎫a 1-d 2n . 由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;因为{S n }为递增数列,则d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确.(2013·课标全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6答案 a m =2,a m +1=3,故d =1,因为S m =0,故ma 1+m (m -1)2d =0,故a 1=-m -12,因为a m +a m +1=5,故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5,即m =5. 考点二 与等比数列有关的问题例2 (1)(2012·课标全国)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( )A .7B .5C .-5D .-7(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________. 答案 (1)D (2)32解析 (1)利用等比数列的性质求解.由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7.(2)利用等比数列的通项公式及前n 项和公式求解.S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得, 3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0,解得q =32(q =-1不合题意,舍去).(1)(2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =_____. 答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1. (2)(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. ①求数列{a n }的通项公式;②是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 ①设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧ -a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1.②由①有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012. 当n 为偶数时,(-2)n>0.上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 考点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围. 解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4,∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4[1-(12)m ]1-12=8[1-(12)m ],∵(12)m 随m 增加而递减,∴{T m }为递增数列,得4≤T m <8.又S n =n (9-n )2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6. 考点四 错位相减求和法例4 (2013·山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧S 4=4S 2,a 2n =2a n +1得a 1=1,d =2,所以a n =2n -1(n ∈N *). (2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,①当n ≥2时,b 1a 1+b 2a 2+…+b n -1a n -1=1-12n -1,②①-②得:b n a n =12n ,又当n =1时,b 1a 1=12也符合上式,所以b n a n =12n (n ∈N *),所以b n =2n -12n (n ∈N *).所以T n =b 1+b 2+b 3+…+b n =12+322+523+…+2n -12n .12T n =122+323+…+2n -32n +2n -12n +1. 两式相减得:12T n =12+⎝⎛⎭⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1.所以T n =3-2n +32n . 考点五 裂项相消求和法例5 (2013·广东)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *, 且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.(1)证明 当n =1时,4a 1=a 22-5,a 22=4a 1+5,又a n >0,∴a 2=4a 1+5.(2)解 当n ≥2时,4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)知a 1=1. 又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1.(3)证明 1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1<12. 课后练习一、选择题1. (2013·江西)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .24答案 A解析 由x,3x +3,6x +6成等比数列得,(3x +3)2=x (6x +6). 解得x =-3或x =-1(不合题意,舍去).故数列的第四项为-24.2. (2013·课标全国Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13B .-13C.19D .-19答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.3. (2013·课标全国Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案 D解析 S n =a 1(1-q n)1-q =a 1-q ·a n1-q=1-23a n13=3-2a n .故选D.4. 在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 C解析 由题意可知a 6+a 5>0,故S 10=(a 1+a 10)×102=(a 5+a 6)×102>0,而S 9=(a 1+a 9)×92=2a 5×92=9a 5<0,故选C.5. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2011),则OP →·OQ →等于 ( )A .2 011B .-2 011C .0D .1答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011.6. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11答案 B解析 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8, 所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…= =a 1+(-6)+(-4)+(-2)+0+2+4+6=3. 二、填空题7. (2013·广东)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10,∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20.8. 各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6a 2a 6+a 4a 5=________.答案5-12解析 依题意,有a 3=a 1+a 2,设公比为q ,则有q 2-q -1=0,所以q =1+52(舍去负值).a 3a 4+a 2a 6a 2a 6+a 4a 5=a 2a 4(q +q 2)a 2a 4(q 2+q 3)=1q =21+5=5-12.9. 在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于________.答案 9解析 由a 1+a 2+…+a 10=30得a 5+a 6=305=6,又a n >0,∴a 5·a 6≤⎝⎛⎭⎫a 5+a 622=⎝⎛⎭⎫622=9.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________. 答案 2×⎝⎛⎭⎫32n -1 ⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2).解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝⎛⎭⎫32n -1,由此得a n =⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2).。

高考数学二轮复习:专题检测3 数列、推理与证明

高考数学二轮复习:专题检测3 数列、推理与证明

专题检测(三) 数列、推理与证明(本卷满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是A .15B .30C .31D .64解析 由等差数列的性质得a 7+a 9=a 4+a 12, 因为a 7+a 9=16,a 4=1, 所以a 12=15.故选A. 答案 A2.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 010等于A .-2B .-13C .-12D .3解析 由条件可得:a 1=-2,a 2=-13,a 3=-12,a 4=3,a 5=-2,a 6=-13,…,所以数列{a n }是以4为周期的周期数列,所以a 2 010=a 2=-13.故选B.答案 B3.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是A .5B .6C .7D .8解析 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质 ,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.故选C.答案 C4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于A.310 B.13 C.18D.19解析 由等差数列的求和公式,可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d 且d ≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310,故选A.答案 A5.已知等比数列{a n }的前n 项和S n =t ·5n -2-15,则实数t 的值为A .4B .5 C. 45D. 15解析 ∵a 1=S 1=15t -15,a 2=S 2-S 1=45t ,a 3=S 3-S 2=4t ,由{a n }是等比数列,知⎝⎛⎭⎫45t 2=⎝⎛⎭⎫15t -15×4t , 显然t ≠0,解得t =5. 答案 B 6.观察下图:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 …………则第( )行的各数之和等于2 0092. A. 2 010B .2 009C .1 006D .1 005解析 由题设图知,第一行各数和为1; 第二行各数和为9=32; 第三行各数和为25=52; 第四行各数和为49=72;…, ∴第n 行各数和为(2n -1)2, 令2n -1=2 009,解得n =1 005. 答案 D7.已知正项等比数列{a n },a 1=2,又b n =log 2a n ,且数列{b n }的前7项和T 7最大,T 7≠T 6,且T 7≠T 8,则数列{a n }的公比q 的取值范围是A .172<q <162B .162-<q <172-C .q <162-或q >172-D .q >162或q <172解析 ∵b n =log 2a n ,而{a n }是以a 1=2为首项,q 为公比的等比数列, ∴b n =log 2a n =log 2a 1q n -1=1+(n -1)log 2q .∴b n +1-b n =log 2q .∴{b n }是等差数列, 由于前7项之和T 7最大,且T 7≠T 6,所以有⎩⎪⎨⎪⎧1+6log 2q >0,1+7log 2q <0,解得-16<log 2q <-17,即162-<q <172-.故选B.答案 B8.已知数列A :a 1,a 2,…,a n (0≤a 1<a 2<…<a n ,n ≥3)具有性质P :对任意i ,j (1≤i ≤j ≤n ),a j +a i 与a j -a i 两数中至少有一个是该数列中的一项.现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则a 1=0;④若数列a 1,a 2,a 3(0≤a 1<a 2<a 3)具有性质P ,则a 1+a 3=2a 2. 其中真命题有 A .4个 B .3个 C .2个D .1个解析 3-1,3+1都不在数列0,1,3中,所以①错; 因为数列1,4,5具有性质P , 但1+5≠2×4,即a 1+a 3≠2a 2, 且a 1=1≠0,所以③④错;数列0,2,4,6中a j -a i (1≤i ≤j ≤4)在此数列, 所以②正确,所以选D. 答案 D9.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +2.则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和是A.n +12(n +2)B.n +1n +2C.n (3n +5)4(n +1)(n +2)D.3n +44(n +1)解析 依题意得f ′(x )=mx m -1+a =2x +2, 则m =a =2,f (x )=x 2+2x , 1f (n )=1n 2+2n =12⎝⎛⎭⎫1n -1n +2,数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和等于12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12+…+1n -⎝⎛⎭⎫13+14+…+1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=n (3n +5)4(n +1)(n +2),选C. 答案 C10.等差数列{a n }的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d ,a 9a 8的值分别是A .8,109B .9,109C .9,119D .8,119解析 设S 奇=a 1+a 3+…+a 15, S 偶=a 2+a 4+…+a 16,则有S 偶-S 奇=(a 2-a 1)+(a 4-a 3)+…+(a 16-a 15)=8d , S 偶S 奇=8(a 2+a 16)28(a 1+a 15)2=a 9a 8. 由⎩⎪⎨⎪⎧S 奇+S 偶=640,S 奇∶S 偶=18∶22,解得S 奇=288,S 偶=352. 因此d =S 偶-S 奇8=648=8,a 9a 8=S 偶S 奇=119.故选D. 答案 D11.数列{a n }满足a 1=32,a n +1=a 2n -a n +1(n ∈N +),则m =1a 1+1a 2+1a 3+…+1a 2 009的整数部分是A .3B .2C .1D .0解析 依题意,得a 1=32,a 2=74,a 3=3716>2,a n +1-a n =(a n -1)2>0,数列{a n }是递增数列,∴a 2 010>a 3>2,∴a 2 010-1>1,∴1<2-1a 2 010-1<2.由a n +1=a 2n -a n +1得1a n =1a n -1-1a n +1-1, 故1a 1+1a 2+…+1a 2 009=⎝⎛⎭⎫1a 1-1-1a 2-1+⎝⎛⎭⎫1a 2-1-1a 3-1+…+⎝⎛⎭⎫1a 2 009-1-1a 2 010-1 =1a 1-1-1a 2 010-1=2-1a 2 010-1∈(1,2),因此选C. 答案 C12.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是A .(-∞,-1]B .(-∞,-1)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析 ∵等比数列{a n }中,a 2=1, ∴S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q ≥1+2q ·1q=3, 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2(-q )·⎝⎛⎭⎫-1q =-1, ∴S 3∈(-∞,-1]∪[3,+∞). 答案 D二、填空题(本大题共4小题,每小题4分,共计16分.把答案填在题中的横线上) 13.观察下列等式:可以推测:13+23+33+…+n 3=________(n ∈N +,用含有n 的代数式表示). 解析 第二列等式右端分别是1×1,3×3,6×6,10×10,15×15,与第一列等式右端比较即可得,13+23+33+…+n 3=(1+2+3+…+n )2=14n 2(n +1)2.故填14n 2(n +1)2.答案 14n 2(n +1)214.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________.解析 由a 2=2,a 4-a 3=4得方程组⎩⎪⎨⎪⎧a 2=2,a 2q 2-a 2q =4⇒q 2-q -2=0,解得q =2或q =-1.又{a n }是递增等比数列,故q =2. 答案 215.在公差为d (d ≠0)的等差数列{a n }中,若S n 是数列{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d .类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有________.答案T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 100 16.经计算发现下列正确不等式:2+18<210,4.5+15.5<210,3+2+17-2<210,…,根据以上不等式的规律,试写出一个对正实数a ,b 成立的条件不等式:________.解析 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 给出的三个式子的右边都是210,左边都是两个根式相加,两个被开方数都是正数且和为20, 又10+10=210,所以根据上述规律可以写出一个对正实数a ,b 成立的条件不等式: 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 答案 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)设等差数列{a n }的前n 项和为S n ,公比是正数的等比数列{b n }的前n 项和为T n .已知a 1=1,b 1=3,a 3+b 3=17,T 3-S 3=12,求{a n },{b n }的通项公式.解析 设{a n }的公差为d ,{b n }的公比为q . 由a 3+b 3=17得1+2d +3q 2=17,① 由T 3-S 3=12得q 2+q -d =4.②由①、②及q >0解得q =2,d =2.故所求的通项公式为a n =2n -1,b n =3×2n -1.18.(12分)已知等比数列{a n }的公比q >1,42是a 1和a 4的等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N +).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .解析 (1)因为42是a 1和a 4的等比中项, 所以a 1·a 4=(42)2=32. 从而可知a 2·a 3=32.①因为6是a 2和a 3的等差中项,所以a 2+a 3=12.② 因为q >1,所以a 3>a 2.联立①②,解得⎩⎪⎨⎪⎧a 2=4,a 3=8.所以q =a 3a 2=2,a 1=2.故数列{a n }的通项公式为a n =2n .(2)因为b n =log 2a n (n ∈N +),所以a n b n =n ·2n . 所以S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n .③2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.④③-④得,-S n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1.所以S n =2-2n +1+n ·2n +1.19.(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2,所以a n =2n +1,S n =n (n +2). (2)因为a n =2n +1,所以a 2n -1=4n (n +1), 因此b n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1.故T n =b 1+b 2+…+b n=14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n 4(n +1), 所以数列{b n }的前n 项和T n =n4(n +1).20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)具有性质:若M ,N 是椭圆上关于原点O 对称的两点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x 2a 2-y 2b 2=1(a >0,b >0)具有类似特性的性质并加以证明.解析 可以通过类比得:若M ,N 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上关于原点O 对称的两点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明 设点M (m ,n ),则N (-m ,-n ), 又设点P 的坐标为P (x ,y ), 则k PM =y -n x -m ,k PN =y +nx +m, 注意到m 2a 2-n 2b2=1,点P (x ,y )在双曲线x 2a 2-y 2b 2=1上,故y 2=b 2⎝⎛⎭⎫x 2a 2-1,n 2=b 2⎝⎛⎭⎫m 2a 2-1, 代入k PM ·k PN =y 2-n 2x 2-m 2可得:k PM ·k PN =b 2a 2(x 2-m 2)x 2-m 2=b 2a 2(常数),即k PM ·k PN 是与点P 的位置无关的定值.21.(12分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M更新.证明:须在第9年初对M 更新.解析 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n , n ≤6,70×⎝⎛⎭⎫34n -6, n ≥7. (2)证明 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6, A n =780-210×⎝⎛⎭⎫34n -6n .易知{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫3428=824764>80,A 9=780-210×⎝⎛⎭⎫3439=767996<80,所以须在第9年初对M 更新.22.(14分)已知数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围. 解析 (1)a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4⎝⎛⎭⎫b n +23, 又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. (i)当n =1时,a 2=c -1a 1>a 1,命题成立;(ii)假设当n =k (k ≥1,k ∈N +)时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k =a k +1.故由(i)(ii)知当c >2时,a n <a n +1. 当c >2时,令α=c +c 2-42,由a n +1a n <a n +1+1a n =c 得a n <α.当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )≤13(α-a n ), α-a n +1≤13n (α-1).当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3.因此c >103不符合要求.所以c 的取值范围是⎝⎛⎦⎤2,103.。

蒋王中学2014高三数学二轮复习专题 数列(2)

蒋王中学2014高三数学二轮复习专题 数列(2)

数列(2)1、{}n a 是递增等比数列,4,2342=-=a a a ,则此数列的公比=q .2、在等比数列{}n a 中,若112a =,44a =-,则12||||||n a a a +++=________.3、已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a4、设函数()(0)2xf x x x =>+,观察: 1()(),2x f x f x x ==+ 21()(()),34xf x f f x x ==+32()(()),78x f x f f x x ==+ 43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 5、观察下列等式1=12+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为 . 例题1等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(1)求数列{}n a 的通项公式;(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.练习:设数列{}n a 满足10a =且111111n na a +-=--.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n b =,记1nn kk S b==∑,证明:1n S <.例题2在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a +=求数列{}n b 的前n 项和n S .例题3(本小题满分12分)如图,从点P 1(0,0)作x 轴的垂线交曲线x y e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P .再从2P 做x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:11,P Q ;22,P Q ;…;,n n P Q ,记k P 点的坐标为(,0)k x (0,1,2,,k n =). (1)试求k x 与1k x -的关系; (2)求112233||||||||n n PQ PQ PQ PQ ++++.练习:设12,,,,n C C C 是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y =相切,对每一个正整数n ,圆n C 都与圆1n C +相互外切,以n r 表示n C 的半径,已知{}n r 为递增数列.(Ⅰ)证明:{}n r 为等比数列;(Ⅱ)设11r =,求数列{}nnr 的前n 项和.例题4湖南文20.(本题满分13分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (I )求第n 年初M 的价值n a 的表达式; (II )设12,nn a a a A n+++=若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.练习:为了迎接2012年上海世博会,决定治理垃圾,经调查近10年来我国城市垃圾每年平均增长率为3%,到2001年底堆存垃圾已达60亿吨,侵占了约5亿平方米的土地,目前我国还以每年产1亿吨的速度产生新的垃圾,垃圾治理已刻不容缓! (1)问10年前我国城市垃圾约有多少吨? (2)如果从2002年起,每年处理堆存垃圾的101,到2007年底我国城市垃圾约有多少吨,可节约土地多少亿平方米?1.如图,一条螺旋线是用以下方法画成:△ABC 是边长为1的正三角形,曲线32211,,A A A A CA 分别是以C B A ,,为圆心,21,,CA BA AC 为半径画的弧,曲线321A A CA 称为螺旋线,然后又以A 为圆心,3AA 为半径画弧……这样画到第n 圈,则所得螺旋线,32211,,A A A A CA …,n n n n A A A A 3131323,---的总长度为________________2.陈老师购买安居工程集资房72m 2,单价为1000/ m 2,一次性国家财政补贴28800元,学校补贴14400元,余款由个人负担,房地产开发公司对教师实行分期付款,即各期所付的款以及各期所付的款到最后一次付款时所生的利息合计,应等于个人负担的购房余款的现价以及这个余款现价到最后一次付款时所生利息之和,每期为一年,等额付款,签订购房合同后一年付款一次,再过一年又付款一次等等,若付10次,10年后付清。

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列

数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列

专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。

年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。

错误!B。

错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。

答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。

2014年高考数学二轮复习精品资料-高效整合篇专题05 数列(文)(教学案)

2014年高考数学二轮复习精品资料-高效整合篇专题05 数列(文)(教学案)

一.考场传真1.【2013年安徽文】设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( ) A.6- B.4- C.2- D.22.【2013年新课标I 文】设首项为1,公比为错误!未找到引用源。

的等比数列{}n a 的前n 项和为n S ,则( )A.21n n S a =-B.32n n S a =-C.43n n S a =-D.32n n S a =-3.【2013年辽宁文】下面是关于公差0d >的等差数列()n a 的四个命题:1:p 数列{}n a 是递增数列; 2:p 数列{}n na 是递增数列;3:p 数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; 4:p 数列{}3n a nd +是递增数列.其中的真命题为( )A.12,p pB.34,p pC.23,p pD.14,p p4.【2012年新课标全国文12】数列{}n a 满足12)1(1-=-++n a a n nn ,则{}n a 的前60项和为( )A.3690B.3660C.1845D.18305.【2012年四川文12】设函数3()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则=++721a a a ( )A.0B.7C.14D.216.【2013年福建文】已知等差数列}{n a 的公差d =1,前n 项和为n S .(I)若131,,a a 成等比数列,求1a ;(II)若519S a a >,求1a 的取值范围.7.【2013年广东文】设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列. (1)证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++< .8.【2012年江苏卷20】已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+∈N .(1)设11n n n b b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.若1a11,于是123b<b<b,二.高考研究1.考纲要求:(5)数列与函数、不等式的综合问题也是高考考查的重点,主要考查利用函数的观点解决一.基础知识整合1.等差数列知识要点:(1)通项公式要点:1(1)()n n m n ma a n d a a n m d a a d n m ⎧⎪=+-⎪=+-⎨⎪-⎪=-⎩*(,,)m n N m n ∈≤.(2)前n 项和公式要点:S n =n a 1+a n 2=na 1+n n -12d .(3)通项公式的函数特征:n a 是关于n 的一次函数形式n a An B =+(A 、B 为常数),其中1d Aa A B =⎧⎨=+⎩; 前n 项和公式的函数特征:n S 是关于n 的常数项为0的二次函数形式S n =An 2+Bn (A 、B 为常数),其中12d Aa A B =⎧⎨=+⎩.(5)常用性质:①如果数列{}n a 是等差数列m n p q m n p q a a a a +=+⇒+=+(,,,m n p q *∈N ),特别地,当n 为奇数时,121=2n n a a a a a -+=+=中…….②等差数列{a n }的前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. ③等差数列{a n },{b n }的前n 项和为A n ,B n ,则2121n n n n a A b B --=. ④等差数列{a n }的前n 项和为S n ,则数列{}nS n仍是等差数列. (6)等差数列的单调性设等差数列{}n a 的公差为d ,当0d >时,数列{}n a 为递增数列;当0d <时,数列{}n a 为递减数列;若0d =,则数列{}n a 为常数数列.2.等比数列知识要点:(1)通项公式要点:11n n n mn m n m nm a a q a a qa q a ---⎧⎪=⋅⎪⎪=⋅⎨⎪⎪=⎪⎩*(,,)m n N m n ∈<. (2)前n 项和公式要点:111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨≠⎪--⎩或. (3)通项公式的函数特征:n a 是关于n 的函数nn a c q =⋅(c ,q 都是不为0的常数n *∈N ,);前n 项和公式的函数特征:前n 项和n S 是关于n 的函数nn S kq k =-(k 为常数且0k ≠,0,1q ≠).(4)判断方法:①定义法:1n na q a +=(n *∈N );(证明方法) ②等比中项法:21111(1,0)n n n n n n a a a n n a a a *-+-+⋅=>∈⋅⋅≠N 且;(证明方法) ③通项公式法:(0,0)nn a A B A B =⋅≠≠;④前n 项和公式法:(0,0,1)nn S A B A A B =⋅-≠≠或(0)n S An A =≠. (5)常用性质:①如果数列{}n a 是等比数列m n p q m n p q a a a a +=+⇒⋅=⋅(,,,m n p q *∈N ),特别地,当n 为奇数时,2121=n n a a a a a -⋅=⋅=中…….②等比数列{}n a 的前n 项和为n S ,满足23243,,,,n n n n n n n S S S S S S S --- 成等比数列(其中232,,,n n n n n S S S S S -- 均不为0).(7)等差与等比数列的转化①若{}n a 为正项等比数列,则{log }(0,1)c n a c c >≠为等差数列; ②若{}n a 为等差数列,则{}(0,0)n ac c c >≠为等比数列; ③若{}n a 为等差数列又等比数列{}n a ⇔是非零常数列. 3.数列常见通项公式的求法: (1)累加法:1()n n a a f n +-= (2)累乘法:1()n na f n a += (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq )解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解.(4)待定系数法: nn n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1n n n a pa rq +=+,其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q++=⋅+,令n n nq a b =,得:qb q p b n n 11+=+,再按第(3)种情况求解. (6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列.(7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数). 解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q +=⎧⎨=-⎩,再按第(4)种情况求解. (8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解.进行求解.4.数列求和的主要方法:(1)公式法:如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分1q =或1q ≠.(2)倒序相加法:如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (3)分组转化求和法:若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.(4)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (5)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 常见的拆项公式如下: ①分式型1111111()(1)1(21)(21)2212111111111()(2)22(1)(2)2(1)(1)(2)n n n n n n n n n n n n n n n n n n n =-=-++-+-+⎡⎤=-=-⎢⎥+++++++⎣⎦,,,②三角函数型()111tan tan tan tan 1tan n n n n n n a a a a a a +++-=-- ,③根式型=(6)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和.二.高频考点突破考点1 等差数列、等比数列的通项及基本量的求解【例1】已知等差数列的首项为31,若从第16项开始小于1,则此数列的公差d 的取值范围是( ) 1515A.(,2)B.[,2)C.(2,)D.(,2)77-∞----+∞--【规律方法】等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式、求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现. 【举一反三】【2013年大纲全国文】已知数列{}n a 满足130,n n a a ++=24,3a =-则{}n a 的前10项和等于( )A.()-10-61-3 B.()1011-39C.()-1031-3D.()-1031+3考点2 等差数列、等比数列的性质【例1】 【浙江省温州市十校联合体2014届高三10月测试数学试题(文科)】等差数列{}n a 的前n 项和为5128,11,186,n S a S a ==则= ( ) A .18 B .20C .21D .22【举一反三】【浙江温州市十校联合体2014届高三上学期期初联考数学(文科)】等差数列{}n a 的前n 项之和为n S ,若1062a a a ++为一个确定的常数,则下列各数中也可以确定的是( )A .6SB .11SC .12SD .13S 答案:B解析:610623a a a a =++为定值,611111611211()1122a a a S a ⨯+===为定值.【例2】【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考文】设n S 是等差数列{}n a 的前n 项和,若65911a a =,则119SS =( )A.1B.-1C. 2D.12【规律方法】(1)条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.(2)等差中项在等差数列求和公式中的应用.在等差数列{a n }中,如n =2k +1(k ∈N *),则a 1+a n =2a k +1,所以11()2n n k n a a S na -+==. 【举一反三】【山东省临沂市某重点中学2014届高三9月月考文】n S 为等差数列{}n a 的前n 项和,若24121n n a n a n -=-,则2n nS S = .考点3 判断和证明等差数列、等比数列【例1】【2013年陕西文】设S n 表示数列{}n a 的前n 项和. (Ⅰ) 若{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 若11,0a q =≠, 且对所有正整数n, 有11nn q S q-=-. 判断{}n a 是否为等比数列. 并证明你的结论.【规律方法】(1)定义法:a n+1-a n=d(常数)(n∈N*)⇒{a n}是等差数列;a n+1a n=q(q是非零常数)⇒{a n}是等比数列;(2)等差(比)中项法:2a n+1=a n+a n+2(n∈N*)⇒{a n}是等差数列;a2n+1=a n·a n+2(n∈N*,a n≠0)⇒{a n}是等比数列;(3)通项公式法:a n=pn+q(p,q为常数)⇒{a n}是等差数列;a n=a1·q n-1(其中a1,q为非零常数,n∈N*)⇒{a n}是等比数列.(4)前n项和公式法:S n=An2+Bn(A,B为常数)⇒{a n}是等差数列;S n=Aq n-A(A为非零常数,q≠0,1)⇒{a n}是等比数列.【举一反三】【浙江温州市十校联合体2014届高三上学期期初联考数学(文科)】已知数列{}n a 及其前n 项和n S 满足:n n nS S a 22311+==-,(2≥n ,*n N ∈).(1)证明:设nnn S b 2=,{}n b 是等差数列;(2)求n S 及n a .考点4 等差数列与等比数列的综合应用【例1】【内蒙古赤峰市全市优质高中2014届高三摸底考试(文)】已知数列{n a }是公差为3的等差数列,且124,,a a a 成等比数列,则10a 等于( ) A. 30 B. 27 C.24 D.33【举一反三】【山东省临沂市某重点中学2014届高三9月月考文】公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S =( ).A. 18B. 24C. 60D. 90考点5 一般数列的性质【例1】【江苏省苏州市2014届高三九月测试试卷】已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值为______.【规律方法】(1)在处理数列大单调性问题时应利用数列的单调性定义,即“若数列{}n a 是递增数列⇔11,n n n a a +∀≥≥恒成立”;(2)数列()n a f n =的单调性与(),[1,)y f x x =∈+∞的单调性不完全一致;(3)当数列对应的连续函数是单调函数,则可以借助其单调性来求解数列的单调性问题.【举一反三】已知数列{}n a 是递增数列,且对*n N ∈,都有2=+n a n n λ,则实数λ的取值范围是( )7A.(,)B.[0,)C.[2,)D.(3,)2-+∞+∞-+∞-+∞考点6 一般数列的通项及求和【例1】【2013年普通高等学校招生全国统一考试(安徽卷文科)】 设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数 1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅ ,满足'()02f π=(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若122nn n a b a =+(),求数列{}n b 的前n 项和n S .【规律方法】(1)通常情况下数列的第(1)题是需要求数列的通项公式,而且其中也设出一个新的数列,我们在做的过程中,要把这个条件作为一种提示,配凑成这种新的数列,即可解决;若题中没有设出这样的新数列,可以看知识整合中10种求通项的方法;(2)对于数列求和,需要先判断用那种求和的方法,然后进行求解.【举一反三】【2013年普通高等学校统一考试试题大纲全国文科】等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设1n nb na =,求数列{}n b 的前n 项和n S .【例2】【2012高考安徽文21】设函数)(x f =2x+x sin 的所有正的极小值点从小到大排成的数列为}{n x .(Ⅰ)求数列}{n x 的通项公式;(Ⅱ)设}{n x 的前n 项和为n S ,求n S sin .论.【规律方法】数列求和中若是出现了三角函数,要对三角函数中的n 进行讨论,如若2sinn n a mπ=,则n 按(1),(2),n mk m n mk m n mk =--=--= 进行讨论. 【举一反三】【安徽省望江四中2014届高三上学期第一次月考数学(文)】数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2013S = .【例3】【江苏省苏州市2014届高三九月测试试卷】设数列{}n a 的前n 项和为n S ,对任意n N *∈满足2(1)n n n S a a =+,且0n a ≠.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设11, 32 1 n n n a a n c n -+⎧⎪=⎨⨯+⎪⎩为奇数,为偶数,求数列{}n c 的前2n 项和2n T .【规律方法】若数列求和中分奇偶项,常用的方法是算出奇数项的和或者将奇、偶用数学符号代替2,21n k n k ==-.【举一反三】【湖北省武汉市2014届高三10月调研测试数学(文)】已知数列{a n }的各项均为正整数,S n 为其前n 项和,对于n =1,2,3,…,有a n +1=⎩⎪⎨⎪⎧3a n+5,a n 为奇数,a n 2k ,其中k 是使a n +1为奇数的正整数,a n 为偶数.(Ⅰ)当a 3=5时,a 1的最小值为 ; (Ⅱ)当a 1=1时,S 1+S 2+…+S 10= ..考点7 存在探索与证明性问题【例1】设数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线3x +2y -3=0上.(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{}3n nS n λλ++为等差数列?若存在,求出λ的值;若不存在,说明理由.【规律方法】本题的特点是先从特殊的情况得出λ值,在这个λ值下,一般结论也成立,这是解决含有参数的等差数列、等比数列证明的一个重要方法,其实质是一般与特殊的数学思想方法的运用,也是合情推理与演绎推理的有机结合.【举一反三】已知数列{a n }满足a 1=-12,1+a 1+a 2+…+a n -λa n +1=0(λ≠0且λ≠-1,n ∈N *).(1)若a 22=a 1·a 3,求数列{a n }的通项公式a n ; (2)在(1)的条件下,数列{a n }中是否存在三项构成等差数列?若存在,请求出此三项;若不存在,请说明理由.考点8 数列与不等式的综合应用【例1】 【2013年全国高考统一考试天津数学(文)卷】已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 证明13*)61(n n S n S +≤∈N .【规律方法】数列与不等式交汇命题,不等式常作为证明或求解的一问呈现,解答时先将数列的基本问题解决,再集中解决不等式问题,注意放缩法、基本不等式、裂项、累加法的运用.【举一反三】【成都外国语学校2014级高三开学检测试卷文】已知数列{}n a 的前n 项和n S ,满足:*22()n n S a n n N =-∈. (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)若数列{}n b 的满足2log (2)n n b a =+,n T 为数列{}2n n b a +的前n 项和,求证:12n T ≥.考点9 数列的实际应用【例1】某校高一学生1000人,每周一次同时在两个可容纳600人的会议室开设“音乐欣赏”与“美术鉴赏”的本校课程.要求每个学生都参加,且第一次听“音乐欣赏”课的人数为m(400<m<600,其余的人听“美术鉴赏”课;从第二次起,学生可从两个课中自由选择.据往届经验,凡是这一次选择“音乐欣赏”的学生,下一次会有20%改选“美术鉴赏”,而选“美术鉴赏”的学生,下次会有30%改选“音乐欣赏”,用a n,b n分别表示在第n次选“音乐欣赏”课的人数和选“美术鉴赏”课的人数.(1)若m =500,分别求出第二次、第三次选“音乐欣赏”课的人数a 2,a 3; (2)①证明数列{a n -600}是等比数列,并用n 表示a n ;②若要求前十次参加“音乐欣赏”课的学生的总人次不超过5 800,求m 的取值范围.由已知S 10≤5800,即6000+(m -600)×1023512≤5800,【规律方法】解决数列实际应用问题的关键是把实际问题随着正整数变化的量用数列表达出来,然后利用数列知识对表达的数列进行求解(求和、研究单调性、最值等),根据求解结果对实际问题作出答案.【举一反三】为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干年时间更换车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.所以a ≥3 08221. 三.错混辨析1.忽视n 的取值范围致误【例1】已知数列{a n }中,a 1=1,前n 项的和为S n ,对任意的自然数n ≥2,a n 是3S n -4与2-32S n -1的等差中项.求通项a n .2.求等比数列的公比时忽视隐含条件致误【例2】已知一个等比数列的前四项之积为116,第2,3项的和为2,求这个等比数列的公比.3.解数列问题时由思维定势导致错误【例3】已知等比数列{}n a 中21a ,则其前3项的和3S 的取值范围是( ) A .(-∞,-1]B .(-∞,0)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)1.【山东省临沂市某重点中学2014届高三9月月考文】若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件2.【吉林省白山市第一中学2014届高三8月摸底考试文】若数列{}n a 的前n 项和为n S ,则下列命题:(1)若数列{}n a 是递增数列,则数列{}n S 也是递增数列; (2)数列{}n S 是递增数列的充要条件是数列{}n a 的各项均为正数;(3)若{}n a 是等差数列(公差0d ≠),则120k S S S ⋅= 的充要条件是120.k a a a ⋅=(4)若{}n a 是等比数列,则120(2,)k S S S k k N ⋅=≥∈ 的充要条件是10.n n a a ++=其中,正确命题的个数是( )A .0个B .1个C .2个D .3个3.【广东省广州市“十校”2013-2014学年度高三第一次联考文】已知数列{}na 是各项均不为0的等差数列,公差为d ,n S 为其前n 项和,且满足221n n a S -=,n *N ∈.数列{}nb 满足11n n n b a a +=⋅,n *N ∈, n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式n a ;(2)若对任意的*n N ∈,不等式8(1)nn T n λ<+⨯-恒成立,求实数λ的取值范围;(3)是否存在正整数,(1)m n m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n的值;若不存在,请说明理由.。

2014届高三数学二轮复习导学案:专题18 数列求通项

2014届高三数学二轮复习导学案:专题18  数列求通项
例1、(1)已知各项均为正数的数列{ }的前n项和满足 ,且 ,求{ }的通项公式;
(2)设数列 前n项和为 求 。
例2、(1)已知数列 中,
(Ⅰ)求证 为等比数列;(Ⅱ)求 。
(2)已知数列 的前n项和为
例3、(1)已知数列 满足 ,求an;
(2)已知 ,数列 满足 ,求 通项公式
备注
课堂检测——数列的an=
2、数列 中,al=1,an+1= ,(n N*),则a5的值为______.
3、数列 是公差不为零的等差数列,并且 是等比数列 的相邻三项,若 ,则 .
4、设数列 的前n项和为
(1)求 ;(2)求 ;(3)若
课外作业——数列的通项姓名:
1、己知数列 中,al=1,anan-1=an-1十(-l)n(n为大于l的正整数),则 的值是
课题:数列的通项班级姓名:
一:学习目标
掌握数列通项的常用求法。
二:课前预习
l、等差数列通项an=,等比数列通项an=
2、己知an=an-l+2,al=1,则an=,
3、已知 ,an= an-l,al=1,则an=
4、己知Sn,则an=;若sn=kn2+n,则an=;又am, a2m,
a4m对 都成等比数列,则k=.
5、(1)设 则数列 的通项公式
(2)若数列 满足 则an=
6、己知an=2an-l+1,al=1,则an=
7、已知数列 共有m项,记 的所有项和为 ,第2项及以后所有项和为 ,第3项及以后所有项和为 ,第n项及以后所有项和为 ,若 是首项为2,公比为 的等比数列的前n项和,则当n<m时,an=。
三:课堂研讨
2、将全体正整数排成一个三角形数阵:

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。

〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。

等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理

高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。

2014届高三二轮复习数列专题一(3年高考2年模拟)

2014届高三二轮复习数列专题一(3年高考2年模拟)

返回目录
第10讲
等差数列、等比数列教
小结:等差数列、等比数列问题的基本解法是“基本 量”方法,即通过已知条件求出等差数列的首项和公差、 等比数列的首项和公比,其他的问题都可以使用基本量表 达从而加以解决.
命 题 考 向 探 究
返回目录
第10讲
等差数列、等比数列教
变式题 A.23
命 题 考 向 探 究
例2
命 题 考 向 探 究
(1)已知等比数列{an}的前 n 项和为 Sn, 则下列选 )
项中一定成立的是(
A.若 a1>0,则 a2013<0 B.若 a2>0,则 a2014<0 C.若 a1>0,则 S2013>0 D.若 a2>0,则 S2014>0 (2)[2013· 新课标全国卷Ⅱ] 等差数列{an}的前 n 项和为 Sn,已知 S10=0,S15=25,则 nSn 的最小值为________.
返回目录
第10讲
等差数列、等比数列教
10 2 (2)由已知,a1+a10=0,a1+a15= 3 ⇒d=3,a1=-3, n3-10n2 所以 nSn= ,易得 n=6 或 n=7 时,nSn 出现最小 3
命 题 考 向 探 究
值.当 n=6 时,nSn=-48;n=7 时,nSn=-49.故 nSn 的 最小值为-49.
主干知识 ⇒ 等比数列概念 与通项 关键词:等比数 列、通项公式,如 ④⑤.
[答案]
(-2)n
-1
返回目录
第10讲
核 心 知 识 聚 焦
等差数列、等比数列教
2 1 [解析] 因为 Sn=3an+3①, 2 1 所以 Sn-1=3an-1+3(n≥2)②, 2 2 ①-②得 an= an- an-1(n≥2),即 an=-2an-1(n≥2), 3 3 2 1 又因为 S1=a1= a1+ ⇒a1=1, 所以数列{an}是以 1 为首项, 3 3 -2 为公比的等比数列,所以 an=(-2)n-1.

广东省珠海四中2014届高三数学理二轮专题复习:数列

广东省珠海四中2014届高三数学理二轮专题复习:数列

珠海四中2014高三数学(理)专题复习--数列 一、选择题:1.(湛江2014高考一模)若等差数列{}n a 和等比数列{}n b 满足11221,2,a b a b ====则55a b =A .5B .16C .80D .160 2.(2014茂名一模)设}{n a 是等差数列,若,13,372==a a 则数列}{n a 前8项和为( )A .128 B.80 C.64 D.56 3.(中山一中等七校2014高三第二次联考)已知等差数列{}n a 的前n 项和为n S ,且24S =,420S =,则该数列的公差d =( )A .2B .3C .6D .74.(珠海一中等六校2014高三第三次联考)若一个等差数列前3项和为3,最后3项和为30,且所有项的和为99,则这个数列有( ) A.9项 B.12项 C.15项 D.18项 5.(惠州市2014届高三第三次调研考).设等比数列{}n a 的公比2q =,前n 项和为n S ,则=24a S ( )A .2B .4C .152D . 1726.如图2所示的三角形数阵叫“莱布尼兹调和三角形”, 它们是由整数的倒数组成的,第n行有n 个数且两端的数均为1n()2n ≥,每个数是它下一行左右相邻两数的和,如111122=+,111236=+,1113412=+,…,则第10行第4个数(从左往右数)为( )A .11260B .1840C .1504D .1360二、填空题:7. (2013广东高考)在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.8. (2012广东高考)已知递增的等差数列{}n a满足11a =,2324a a =-,则n a =______________.9.(2011广东高考)等差数列{}n a 前9项的和等于前4项的和.若11a =,40k a a +=,则k = .10.(肇庆2014高三上期末)若等比数列{}n a 满足243520,40a a a a +=+=,则3a =三、解答题 11、(2013广东高考)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< .12、(2012广东高考)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a 、25a +、3a 成等差数列.(Ⅰ)求1a 的值; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)证明:对一切正整数n ,有1211132n a a a +++< .13、(2014江门一模)已知数列{}n a 的首项11=a ,*∈∀N n ,n nn a a a +=+221.⑴求数列{}n a 的通项公式;⑵求证:*∈∀N n ,312<∑=ni ia.14、(广州市2014届高三1月调研测试)已知数列{an}满足135a =,1321nn n a a a +=+,*n ∈N .(1)求证:数列1 1 na ⎧⎫-⎨⎬⎩⎭为等比数列; (2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且1m a -,1s a -,1t a -成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.15. (2014湛江一模)已知正数数列{}n a 中,11a =,前n 项和为n S ,对任意*n N ∈,lg n S、lg n 、1lgn a 成等差数列。

2014年高考数学二轮复习精品资料-高效整合篇专题05 数列(文)(测试)

2014年高考数学二轮复习精品资料-高效整合篇专题05 数列(文)(测试)

(一) 选择题(12*5=60分)1.【2014届广东高三六校第一次联考文】已知数列{}n a 的前n 项和22n S n n =-,则218a a +=( )A .36B .35C .34D .332.【广东省广州市执信、广雅、六中2014届高三10月三校联考(文)】等差数列{a n }中,“a 1<a 3”是“a n <a n +1”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.【广东省广州市“十校”2013-2014学年度高三第一次联考文】在等比数列{}n a 中, 若362459,27a a a a a ==, 则2a 的值为( )A . 2 B. 3 C. 4 D. 94.【河北省唐山市2013-2014学年度高三年级摸底考试文科】设等差数列{}n a 的前n 项和为n S ,且513S =,1563S =,则20S =( ) A .90 B .100 C .110 D .1205.【江西师大附中高三年级2013-2014开学考试】设{}n a 是公比为q 的等比数列,令1(1,2,)n n b a n =+= ,若数列{}n b 的连续四项在集合}{53,23,19,37,82--中,则q 等于( ) A .43-B .32-C .32-或23-D .34-或43-6.【安徽省示范高中2014届高三上学期第一次联考数学(文)】已知数列{}n a 的前n 项和2n S n n =-,正项等比数列{}n b 中,23b a =,2314(2,)n n n b b b n n N +-+=≥∈,则2log n b =( )A .1n -B .21n -C .2n -D .n22log log 2n n b n ==.故选D .7.【安徽省望江四中2014届高三上学期第一次月考数学(文)】已知{}n a 为等差数列,若π8951=++a a a ,则)cos(73a a +的值为( )A B .C .12D .12-8.【广东省广州市执信、广雅、六中2014届高三10月三校联考(文)】数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A =( )A.1B.-1C.2D.-29.【河北省唐山市2013-2014学年度高三年级摸底考试文科改编】已知数列{}n a 满足10a =,21a =,2132n n n a a a ++=-,则{}n a 的前n 项和n S =( )A.21n n --B.21n n -+C.221nn -- D.21n-10.【内蒙古赤峰市全市优质高中2014届高三摸底考试(文)】已知数列{n a }的前n 项和为n S ,且12n n S a +=,则使不等式22211252n n a a a ++++<⨯ 成立的n 的最大值为( )A.2B.3C.4D.511.【湖北孝感高中2014届高三年级九月调研考试】已知函数()f x 是R 上的单调增函数且为奇函数,数列{}n a 是等差数列,30a >,则()()()135f a f a f a ++的值( )A .恒为正数B .恒为负数C .恒为0D .可以为正数也可以为负数12.【四川省德阳中学2014届高三“零诊”试题改编】定义在(0,)+∞错误!未找到引用源。

二轮复习【数列专题】专题2数列的最大项与最小项微点3判断数列的最大(小)项之导数法

二轮复习【数列专题】专题2数列的最大项与最小项微点3判断数列的最大(小)项之导数法

2. 21 2
【分析】先利用累加法求出 an=33+n2﹣n,所以 an = 33 + n −1,设 f(n)= 33 + n −1,由此
nn
n
能导出 n=5 或 6 时 f(n)有最小值.借此能得到 an 的最小值. n
【详解】解:∵an+1﹣an=2n,∴当 n≥2 时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2
【典例刨析】
例 1.
1.等差数列an 的前 n 项和为 Sn ,已知 S10 = 0 , S15 = 25,则 nSn 的最小值为

例 2.
2.已知数列an满足 a1
= 33, an+1
− an
=
2n, 则
an n
的最小值为__________.
例 3.(2022 浙江 6 月高考数学仿真模拟)
( ) 3.已知各项均为正数的数列an满足

(2)若 a1 = b1 0,m N*,q (1, m 2] ,证明:存在 d R ,使得| an − bn |≤ b1 对 n = 2,3, , m +1
均成立,并求d 的取值范围(用 b1, m, q 表示).
【总结与反思】
运用导数法解答数列最值问题,较为简便、直接.我们只需先将问题转化为函数最值问
(x
1)
,则
f
(x)
=
x
x

20 3


x
1 ,
20 3
时,有
f
(
x)
0
;当
x
20 3
,
+
时,

高三数学二轮复习:专题二 数列

高三数学二轮复习:专题二 数列
解答
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为

数列二轮复习专题一、二参考答案

数列二轮复习专题一、二参考答案

课前预习案:1、B 2、D 3、A 4、B 课内探究学案:例1:74 变式1:D 例2:A 变式2:B 例3:33 变式3:A当堂检测:1--5:C D A C B 6--10:B D A A B 11—15:C C D C C 16—18:A A A 课后训练案:1—5:A A B A D6—10:D B B D A 11—12:A B 13、7 14、3115、答案 (Ⅰ) 解:012,2,221121213=--∴+=∴+=d d d a a d a a a a 21,1-=∴≠d d (Ⅱ) 解:,25221)1(2+-=⎪⎭⎫⎝⎛-⋅-+=n n b n,492)(21nn b b n S n n +-=+=4)10)(1()252(492---=+--+-=-∴n n n n n b S n n ;101n n b S n n ===∴时,或;,92n n b S n >≤≤时n n b S ,n <≥时11.16、课前预习案:1、21n+ 2、18 3、1342n -⎛⎫⋅ ⎪⎝⎭4、25、(1)(4)课内探究学案: 例4:略 变式4:例5:解:(I )解:设等差数列{}n a 的公差为d ,由2214111(),a a a =⋅得2111()(3)a d a a d +=+ 因为0d ≠,所以d a =所以1(1),.2n n an n a na S +==(II )解:因为1211()1n S a n n =-+,所以 123111121(1)1n n A S S S S a n =++++=-+因为1122n n a a--=,所以21122211()11111212(1).212n nn nB a a a a a a --=++++=⋅=--当0122,21n nn n n n n C C C C n ≥=++++>+ 时, 即1111,12n n -<-+所以,当0,;n n a A B ><时当0,.n n a A B <>时变式5:(Ⅰ)解:由1*3(1),2n n b n N -+-=∈,可得2,,1,n n b n ⎧=⎨⎩为奇数为偶数,又()1121nn n n n b a b a +++=-+,当121231,21,2,;2n a a a a =+=-==-时由可得当2332,25,8.n a a a =+==时可得(Ⅱ)证明:对任意*n N ∈ 21212221n n n a a --+=-+ ①2221221n n n a a ++=+ ②②-①,得21211212132,32,4n n n n n n nc a a c c --++--=⨯=⨯=即于是所以{}n c 是等比数列。

高考数学二轮专题复习——处理奇偶项数列的四大类型

高考数学二轮专题复习——处理奇偶项数列的四大类型

处理奇偶项数列的四大类型类型1.相邻项和(积)为等差(等比)数列 类型2.奇偶分段数列 类型3.摆动数列 类型4.含三角式的数列★类型1.相邻项和(积)为等差(等比)数列1.在等差数列中,有一类比较特殊的递推类型,即B An a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.若1,0n n a a An B A ++=+≠,则当2n 时,1(1)n n a a A n B −+=−+,两式相减得11n n a a +−−=A ,即数列{}21n a −与数列{}2n a 均是公差为A 的等差数列.2.在等比数列中,有一类比较特殊的递推类型,即nn n q p a a ⋅=⋅+1,它可以得到两个子数列分别是公差为q 的等比数列.若1,0,0n n n a a pq p q +=≠≠,则112n n n a a pq+++=,两式相除得2n na q a +=,即数列{}21n a −与数列{}2n a 均是公比为q 的等比数列. 3.通项公式:(1)若1,0n n a a An B A ++=+≠,则+∈⎪⎪⎩⎪⎪⎨⎧=−+−=−+⋅=N k kn A a n A k n A a n Aa n ,2,212,2221 (2)1,0,0nn n a a pq p q +=≠≠,则+−−∈⎪⎩⎪⎨⎧=⋅−=⋅=N k k n q a k n q a a nn n ,2,12,1222114.前n 项和方法1.由3解得通项后并项求和(具体见案例)方法2.对于隔项等差的前n 项和,可直接由相邻两项的关系解得,即由1,n n a a An B ++=+ 若n 为偶数:)()()(14321n n n a a a a a a S ++⋅⋅⋅++++=− 若n 为奇数:)()()(154321n n n a a a a a a a S ++⋅⋅⋅+++++=−例 1 已知数列{}n a 满足112,n n a a a +=+=43n +, 求数列{}n a 的通项公式. 解析: 由题意可得143n n a a n ++=+,1247n n a a n +++=+,两式相减可得 24n n a a +−=.所以,数列{}n a 的奇数项和偶数项分别构成公差为4的等差数列, 且25a =.当n 为奇数时,121422n n a n +⎛⎫=+−⨯= ⎪⎝⎭;当n 为偶数时,514212n n a n ⎛⎫=+−⨯=+ ⎪⎝⎭.因此,121(1)2nn a n ⎡⎤=++−⎣⎦. )()(24142n n a a a a −++++++=)()(124422n n n a a a a −+++++++=2023,解得45n ≥,当n 为偶数时,令n 的最小值为45.故选:D项和为n S ,且满足11a =,132n n a a ++=⨯()()()(1272772121212112a ⨯−+=+−++−+++−=−注:当递推关系111n n n a a a q −++=时, 求其通项公式可以利用分解变量构造等比数列, 将已知的递推关系 111n n n a a a q−++=分离变量, 得到11n n n n a k aq a k aq −+⎡⎤−⋅=−−⋅⎣⎦ (k 为常数), 再利用等比数列{}1n n a k aq −−⋅的通项公式求解.★类型2.奇偶分段数列类型 1.++∈⎩⎨⎧−===N k k n n g kn n f a n ,12),(2),(1,由于数列通项均已知,求和时只需分奇偶求和即可.类型2.++∈⎩⎨⎧−===N k k n a g kn n f a n n ,12),(2),(1,由于数列通项在奇数时为递推关系,所以需要先利用递推关系求得奇数时每项的特征,在求和时往往需将奇数项的计算转化为已知通项的偶数项进行.类型3.++∈⎩⎨⎧−===N k k n a g kn a f a n n n ,12),(2),(1 这一类问题需要先求出各段的通项,再分段求和,由于涉及奇偶讨论,所以去构造隔项之间的递推关系从而求得具体通项形式.212,,2,n a −+是等比数列,192011331919(1)(1)(1)a a a a a a a a +++=+++++++++19(2)]30a +++−103(12)230610812⨯−=⨯−=−.{}n a 中,1239a a a ++=,45627a a a ++=,数列{}n b 的前n 项和为.}n b 的通项公式.)()()()321212421321222n n n b b b b n −−++++++=+++−++++124)()n n b b b b −++++++022(222)(24)n n −=+++++++213n −=+为奇数时,13241()()n n n T b b b b b b −=+++++++021(222)(241)n n −=+++++++−214−;()221,234,21n n n n k n k ⎧+−+=⎪⎪=−,*N k ∈. ★类型3.含有n)1(−型摆动数列,1n n a S +=②得1n n a a +−=,12n na ;14)n −+++例10.(2014年湖南文科)已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式; (2)设()n na n ab n12−+=,求数列{}n b 的前n 2项和.解析:(1)当1n =时,111a S ==;当2n ≥时,221(1)(1)22n n n n n n n a S S n −+−+−=−=−=,故数列{}n a 的通向公式为: n a n =.(2)由(1)知,()21nnn b n =+−,记数列{}n b 的前2n 项和为2n T ,则1222(22...2)(1234...2)n n T n =++++−+−+−+,进一步,若记12222...2n A =+++, 1234...2B n =−+−+−+,分别求和可得:2212(12)2212n n A +−==−−,(12)(34)...[(21)2]B n n n =−++−+++−−+=,故数列{}n b 的前2n 项和为21222n n T A B n +=+=+−.注:此处n b 是一个分段形式:+∈⎪⎩⎪⎨⎧=+−=−=N k kn n k n n b nn n ,2,212,2,分组求和是处理分段形式的数列求和的一把利器!★类型4.含三角的通项例11.设数列{}n a 满足121,2a a ==, ()22*21cos sin 22n n n n a a n ππ+⎛⎫=++∈ ⎪⎝⎭N , 则数列{}n a 的前20项的和20S =_________.解析:由递推关系可知, 若n 是正奇数, 则{}2211,n n k a a a +−=+ 是以1a 为首项, 2为公差 的等差数列; 若n 是正偶数, 则22n n a a +=, {}2k a 是以2a 为首项, 2为公比的等比数列.所以,211(1)221k a a k k −=+−⨯=−, 12222k k k a a −==, 可得 (2013S a a =+++ )()192420(110)102a a a a +⨯++++=+ ()10212210112−=−.三.习题演练1.已知数列{}n a 满足()111,2N ,nn n n a a a n S ++=⋅=∈是数列{}n a 的前n 项和,则2023S =( )A .202321−B .101323−C .1013321⨯−D .2023322⨯−解析:由题设2122a a a ==,且1212n n n a a +++⋅=,所以1211222n n n n n n a a a a ++++⋅==⋅,即22n n a a +=, 当21n k =−且*N k ∈时,{}n a 是首项为1,公比为2的等比数列,则1212k k a −−=;当2n k =且*N k ∈时,{}n a 是首项为2,公比为2的等比数列,则22kk a =;2023132023242022(...)(...)S a a a a a a =+++++++101210111013122(12)231212−−=+=−−−.故选:B2.已知n S 是数列{}n a 的前n 项和,11a =,()1πcos πsin π2n n a a n n +⎛⎫⋅+=− ⎪⎝⎭,则2022S =( )A .2−B .2C .3−D .3解析:由()1πcos πsin π2n n a a n n +⎛⎫⋅+=− ⎪⎝⎭可得()1πsin πcos π2n n a a n n +⎛⎫⋅=−− ⎪⎝⎭,当n 为奇数时,1112n n a a +=+=;当n 为偶数时,1112n n a a +=−−=−. 故当n 为奇数时,1112n n a a +=+=,122n n a a ++=−,则21n na a +=−, 当n 为偶数时,12n n a a +=−,122n n a a ++=,则21n n a a +=−.故对任意的n *∈N ,21n naa +=−. 所以,数列{}n a 中的奇数项成以1−为公比的等比数列,偶数项也成以1−公比的等比数列, 因为11a =,则2122a a ==,所以,()()()()()()10111011101112122022111111311112a a a a S ⎡⎤⎡⎤⎡⎤−−−−+−−⎣⎦⎣⎦⎣⎦=+==−−−−.故选:D.3.在数列{}n a 中,已知11a =且12n n a a n ++=,则其前29项和29S 的值为( ) A .56 B .365 C .421 D .666 解析:291234272829S a a a a a a a =++++⋅⋅⋅+++()()()()1234526272829a a a a a a a a a =+++++⋅⋅⋅++++12224226228=+⨯+⨯+⋅⋅⋅+⨯+⨯ ()122462628421=+++⋅⋅⋅++=.故选:C4. (2021年新高考1卷)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +−= 所以{}n b 为等差数列,故()21331n b n n =+−⨯=−. (2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++,因为123419201,1,,1a a a a a a =−=−=−,所以()20241820210S a a a a =++++−()1291091021021023103002b b b b ⨯⎛⎫=++++−=⨯⨯+⨯−= ⎪⎝⎭.5.(2023年新高考2卷)2 {}n a 为等差数列,6,2,n n na nb a n −⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =. (1)求{}n a 的通项公式; (2)证明:当5n >时,n n T S >.解析:(1)设等差数列{}n a 的公差为d ,而6,21,N 2,2n n n a n k b k a n k*−=−⎧=∈⎨=⎩, 则112213316,222,626b a b a a d b a a d =−==+=−=+−,于是41314632441216S a d T a d =+=⎧⎨=+−=⎩,解得15,2a d ==,1(1)23n a a n d n =+−=+,所以数列{}n a 的通项公式是23n a n =+.(2)方法1:由(1)知,2(523)42n n n S n n ++==+,23,21,N 46,2n n n k b k n n k*−=−⎧=∈⎨+=⎩, 当n 为偶数时,12(1)34661n n b b n n n −+=−−++=+,213(61)372222n n n T n n ++=⋅=+,当5n >时,22371()(4)(1)0222n n T S n n n n n n −=+−+=−>,因此n n T S >, 当n 为奇数时,22113735(1)(1)[4(1)6]52222n n n T T b n n n n n ++=−=+++−++=+−,当5n >时,22351(5)(4)(2)(5)0222n n T S n n n n n n −=+−−+=+−>,因此n n T S >,所以当5n >时,n n T S >.方法2:由(1)知,2(523)42n n n S n n ++==+,23,21,N 46,2n n n k b k n n k*−=−⎧=∈⎨+=⎩, 当n 为偶数时,21312412(1)3144637()()222222n n n n n n n T b b b b b b n n−−+−−++=+++++++=⋅+⋅=+当5n >时,22371()(4)(1)0222n n T S n n n n n n −=+−+=−>,因此n n T S >, 当n 为奇数时,若3n ≥,则132411231144(1)61()()2222n n n n n n n T b b b b b b −−+−++−+−=+++++++=⋅+⋅ 235522n n =+−,显然111T b ==−满足上式,因此当n 为奇数时,235522n T n n =+−,当5n >时,22351(5)(4)(2)(5)0222n n T S n n n n n n −=+−−+=+−>,因此n n T S >,所以当5n >时,n n T S >.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
am≥0, 时,满足 的项数 am+1≤0
m 使得 Sm
(2)当 a1<0,d>0
am≤0, 时,满足 的项数 am+1≥0
m 使得 Sm
取最小值. 在解含绝对值的数列最值问题时, 注意转化思想的应用. 6.数列求和的常用方法:公式法、裂项相消法、错位 相减法、倒序相加法、分组求和法、累加累积法、归纳猜想 证明法等.
【考情报告】
【考向预测】 数列是高中数学的重要内容, 又是学习高等数学的基础, 在高考数学中有着十分重要的地位.由于四川卷 2013 年之 前都是大纲版(大家可以分析表中的 2011、 2012 大纲版卷与 2013 新课标卷的区别), 2013 卷明显对数列考查的难度有所 降低,就知识点上对等差数列、等比数列以及求和仍然是重 点,但是在考查学生能力方面没有降低.我们相信 2014 年 的高考题会沿袭 2013 新课标卷的思想,在平时复习与训练 中强调基本方法与基本题型. 同时就考查方向上我们要注意 以下方面:
1 7 - < . n 4 【诊断参考】 1.等差数列与其求和公式是考试的重点,一方面我们 应该熟悉公式,同时又要熟练运用公式的变形,很多学生解 答本题时机械地套用公式,这样计算量大,如果我们能够发 现 S6+(Sn-Sn-6)=S6+(an-5+an-4+„+an)=6(a1+an),可 简化运算, 我们要注意高考数列题的 “小、 巧、 活” 的特点. 2.本题是等差数列与等比数列的基本题,我们按基本 知识求解就可以.
们只要熟悉“错位相减法”即可,但在实践中许多学生 由于计算能力不强而导致错误百出, 所以我们一定要把这个 重点突破. 6.一方面:数列中 Sn 与 an 的关系一直是高考的热点, 求数列的通项公式是最为常见的题目,要切实掌握 Sn 与 an 的关系.另一方面:本题第三问的裂项求和也是我们考查的 重点与难点,同学们往往在适度放缩这里卡住,我们平时的 训练与理解要到位.
n
n
在( 33,+∞)上单调递增,在(0, 33)上单调递减,
因为 n∈N +,且 = , = = , 5 5 6 6 2 an a6 21 所以 的最小值为 = . n 6 2 21 【答案】 2 1 an+1 1 5. 在数列{an}中, 已知 a1= , = , bn+2=3log1an(n 4 an 4 4 ∈N*). (1)求数列{an}的通项公式; (2)求证:数列{bn}是等差数列;
1 1 2 1 3 1 4 于是 Sn=1×( ) +4×( ) +7×( ) +„+(3n-5)× 4 4 4 4 1 n 1 n+1 ( ) +(3n-2)×( ) ,② 4 4 3 1 1 2 1 3 1 n 由①-②得 Sn= +3[( ) +( ) +„+( ) ]-(3n-2) 4 4 4 4 4 1 n+1 1 1 n +1 ×( ) = -(3n+2)×( ) . 4 2 4 2 3n+2 1 n ∴Sn= - ×( ) (n∈N*). 3 3 4
【考点聚焦】 热点一:等差数列的通项、求和及其性质 在等差数列问题中,最基本的量是其首项和公差,在解 题时根据已知条件求出这两个量, 其他的问题也就随之解决 了,这就是解决等差数列问题的基本方法,其中蕴含着方程 思想的运用. 设数列{an}是公差不为 0 的等差数列, a1=2 且 a1, a5,a13 成等比数列,则数列{an}的前 n 项和 S n 等于( ). n2 7n n2 5n A. + B. + 4 4 3 3
n
(2)对正整数 m,n,p,q,有 aman=apaq⇔m+n=p+q, aman=a2 p ⇔m +n =2p . 4.等差、等比数列前 n 项和 Sn 的性质 若等差数列的前 n 项和为 Sn, 则 Sm, S2m-Sm, S3m-S2m, „ 为等差数列;若等比数列的前 n 项和为 Sn,则在 Sm 不等于 0 时,Sm,S2m-Sm,S3m-S2m,„成等比数列. 5.在等差数列{an}中,有关 Sn 的最值问题——常用邻 项变号法求解: (1)当 a1>0,d<0 取最大值.
C. + D.n2+n 2 4 【分析】根据等差数列与等比数列的概念列出等式,从 而求解. 【解析】根据 a1,a5,a13 成等比数列得(2+4d)2=2(2 1 +12d),解得 d= ,故其前 n 项和只能是选项 A.注意等差 2 数列的前 n 项和 Sn=An +Bn,其中 A= . 2 【答案】A
【知识整合】 1.Sn 与 an 的关系 在 数 列 {an} 中 , Sn = a1 + a2 + „ + an , 从 而 an =
S1,n=1, Sn-Sn-1,n≥2.
2.等差数列的公式与性质 如果数列{an}是公差为 d 的等差数列,则
(1)an = a1 + (n - 1)d , Sn = na1 +
an 4.已知数列{an}满足 a1=33,an+1-an=2n,则 的最 n
小值为________. 【解析】an=(an-an-1)+(an-1-an-2)+„+(a2-a1)+ a1=2[1+2+„+(n-1)]+33=33+n2-n, an 33 所以 = +n-1.
n
n
33 -33 设 f(n)= +n-1,由 f′(n)= 2 +1>0,得 f(n)
一是等差数列、等比数列的基本量计算; 二是能熟练掌握 Sn 与 an 的关系; 三是对等差数列与等比数列乘积式求和, 我们要熟练使 用“错位相减法” ; 四是裂项求和问题. 另外我们也要注意在知识交汇点— —如不等式、 函数、 导数、 三角等方面考查数列知识的应用. 【问题引领】 1.设 Sn 为等差数列{an}的前 n 项和.已知 S6=36,Sn =324,Sn-6=144(n>6),则 n 等于( ). A.16 B.17 C.18 D.19
15 3.已知等比数列{an}满足:a1+a2+a3+a4= ,a2a3= 8 9 1 1 1 1 - ,则 + + + =________. 8 a1 a2 a3 a4 9 1 1 【解析】等比数列{an}中,a1a4=a2a3=- ,那么 + 8 a1 a2 1 1 a1+a4 a2+a3 a1+a2+a3+a4 5 + + = + = =- . a3 a4 a1a4 a2a3 a2a3 3 5 【答案】- 3
a5 53 a6 63 21
(3)设数列{cn}满足 cn=an·bn,求{cn}的前 n 项和 Sn. an+1 1 【解析】(1)∵ = , an 4 1 1 ∴数列{an}是首项为 ,公比为 的等比数列, 4 4 1 n ∴an=( ) (n∈N*). 4 (2)∵bn=3log1an-2, 4 1 n 1 ∴bn=3log ( ) -2=3n-2,∴bn+1-bn=(3n+1)- 4 4
6.(2013 广东卷)设数列{an}的前 n 项和为 Sn,已知 a1 2Sn 1 2 2 =1, =an+1- n -n- ,n∈N*. n 3 3 (1)求 a2 的值; (2)求数列{an}的通项公式; 1 1 1 7 (3)证明:对一切正整数 n,有 + +„+ < . a1 a2 an 4 1 2 【解析】(1)当 n=1 时,2S1=a2- -1- ,a1=1,∴ 3 3
2 (2)对正整数 m,n,p,q,有 am+an=ap+aq⇔m+n=p +q,am+an=2ap⇔m+n=2p. 3.等比数列的公式与性质 如果数列{an}是公比为 q 的等比数列,则
.
a1(1-q ) a1-anq = ,q≠1, n -1 1-q (1)an=a1q ,Sn= 1-q na1,q=1.
an an+1 an+1 an +1)得 = -1,∴ - =1(n≥2), n n+1 n+1 n a2 a1 又 n=1 时, - =1.
2 1
an ∴数列{ }是首项为 1,公差为 1 的等差数列. n an ∴ =1+(n-1)=n,∴an=n2. n
1 1 1 (3)由(2)知 = 2< = - (n≥2,n∈N*), an n (n-1)n n-1 n 1 1 1 1 1 1 1 1 ∴ + +„+ = 1 + + +„+ 2 < 1 + + +„+ a1 a2 an 4 9 n 4 2×3 1 1 1 1 1 1 1 1 7 =1+ +( - )+( - )+„+( - )= (n-1)n 4 2 3 3 4 n-1 n 4 1 1
(3n-2)=3, ∴数列{bn}是公差 d=3 的等差数列. 1 n (3)由(1)(2)知,an=( ) ,bn=3n-2,n∈N*, 4 1 n ∴cn=(3n-2)×( ) (n∈N*), 4 1 1 2 1 3 1 n-1 ∴Sn=1× +4×( ) +7×( ) +„+(3n-5)×( ) 4 4 4 4 1 n +(3n-2)×( ) ,① 4
5 对于任意的 n∈N ,都有 Tn< . 64 【分析】合理因式分解是解题的突破口,裂项相消是解 题的关键. 2 2 【解析】(1)由 S2 n - (n +n -1)Sn - (n + n) =0 ,得[ Sn -(n2+n)](Sn+1)=0. 由于{an}是正项数列,所以 Sn>0,Sn=n2+n. 于是 a1=S1=2,n≥2 时,an=Sn-Sn-1=n2+n-(n-1)2 -(n-1)=2n. 综上,数列{an}的通项 an=2n.
【解析】 ∵S6+(Sn-Sn-6)=6(a1+an)=36+(324-144) n(a1+an) =216,∴a1+an=36.又∵Sn= =324,∴n=18. 2 【答案】C 2.已知{an}是等差数列,a1=1,公差 d≠0,Sn 为其前 n 项和,若 a1,a2,a5 成等比数列,则 S8=________. 【解析】设数列{an}的公差为 d,那么(1+d)2=1·(1 +4d),解得 d=2 或 d=0(舍去), 8×(8-1) 所以 S8=8×1+ ×2=64. 2 【答案】64
3.等比数列的基本量的计算是重点,我们常常通过公 式挖掘 Sn、an、n、q 之间的关系求解,本题我们发现 a1a4= a2a3,后面通分后整体处理使问题迎刃而解,如果本题死套 公式去求解,会由于变量难以处理而不好解决. 4.本题考查了递推数列的通项公式的求解以及构造函 数,利用导数判断函数单调性,考查了综合运用知识解决问 题的能力. 同学们往往对数列的函数性理解不深刻或对利用 导数解决这类题不熟练. 5.本题的第一问比较基础,是求等比数列的通项,第二问 的关键是有些同学对对数知识不熟练从而产生错误, 第三问 是我们熟悉的一个等差数列与等比数列乘积式求和,我
相关文档
最新文档