2017反比例函数4.doc

合集下载

中考数学备考专题复习 反比例函数(含解析)(2021年整理)

中考数学备考专题复习 反比例函数(含解析)(2021年整理)

2017年中考数学备考专题复习反比例函数(含解析)2017年中考数学备考专题复习反比例函数(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学备考专题复习反比例函数(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学备考专题复习反比例函数(含解析)的全部内容。

1反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是( )A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3,y3)是反比例函数y= 上的三点,若x1<x2<x3 , y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2—OB2=( )A、—2B、2C 、—D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k2的值为()A 、—B 、—C、—3D、—67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m>0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O13与此图象交于点P,则点P的纵坐标是( )A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB 在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为( )A 、B 、C 、D 、412、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2 , y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________。

八年级数学下册 17.4.2 反比例函数的图象和性质教案 (新版)华东师大版

八年级数学下册 17.4.2 反比例函数的图象和性质教案 (新版)华东师大版

反比例函数的图象和性质
(1)是非零常数;
学做思一:你能作出反比例函数的图像
例:画出函数
导学:画出函数图象一般分为列表,描点、连线三个步骤,
这个
的取值
范围是不等于零的一切
用表里各组对
在直角坐
.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一分支。

这两个分支合起来,就是反比例函数的图象,如图所示。

这种
画出函数的图象。


教师注意指导画函数图象有困难的学生,并评
这个函数的图象在哪两个象限
联系一次函数的性质,你能否总结出反比例函随着自变量
导做:在充分讨论、交流后达成共识:
时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象跟内
时,函数的图象在第二、四象限,在
3。

反比例函数的图像及性质

反比例函数的图像及性质

反比例函数的图像及性质人教版数学九年级下册《反比例函数的图象和性质》教学设计一.内容和内容解析1.内容反比例函数的图象和性质2.内容解析本节课是人教版数学九年级下册第二十六章第一节反比例函数的内容,本节分为三课时,这是第二课时的新授课.是在学生已经经历了一次函数、二次函数的研究过程的基础上,在得到反比例函数的概念之后,进一步研究反比例函数的图象,并通过图象的研究和分析,来确定反比例函数的性质.教学过程中首先引导学生用“描点法”画出反比例函数的图象,使反比例函数的解析式表示的函数关系直观化;然后分类观察图象,体现“分类”的思想,首先研究k>0的情况,从特殊k=4,k=6,k=8,k=12的图象观察,进而推广到一般,得出k>0时的反比例函数的图象的特征及反比例函数的特性,体现“从特殊到一般”的思想,然后教师再引导学生从解析式的角度分析图象特征,在整个教学过程中始终贯穿由“数”到“形”再由“形”到“数”的相互转化,让学生体会“数形结合”的数学思想和反比例函数的本质属性所在,对于k<0的研究,完全类比k>0的研究过程,体现“类比”的思想.反比例函数是初中阶段要求学习的三种函数中的最后一种,是继一次函数学习之后,知识的一次扩展,图象由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,是学习函数的一般方法和规律的再次强化,也是后续构建反比例函数模型的基础,起着承上启下的作用.本节课学生的学习重点是:用描点法画反比例函数的图象,并根据图象理解反比例函数的性质.学习难点是:对x≠0的理解及图象特征的分析.二.目标和目标解析1.目标(1)能画出反比例函数的图象,探索并理解图象的变化情况.(2)在画出反比例函数的图象,并探究其性质的过程中,体会“类比”、“分类讨论”、“从特殊到一般”以及“数形结合”的数学思想.(3)通过观察反比例函数的图象、探究反比例函数的性质,发展探究、归纳及概括的能力.2.目标解析(1)首先运用描点法画出反比例函数的图象,然后根据图象,通过观察、分析、归纳得出反比例函数的性质,因此正确画出反比例函数图象是前提条件,虽然学生之前用描点法经历过画一次函数、二次函数图象的经验,但是由于反比例函数图象结构复杂,具有自身的特殊性,因此,能用“描点法”画出反比例函数图象并根据图象探究其性质仍是本节课的目标.(2)类比正比例函数的研究方法,通过分类讨论的方式首先研究k>0的情况,在研究过程中从图象和解析式两个角度分析,体现了数形结合的思想,通过类比研究k<0的情况,同样体现从特殊到一般的数学思想.(3)在探究反比例函数的性质的过程中,教师利用几何画板给出一系列函数图象,通过对图象的观察、分析,利用数形结合的数学思想,归纳概括反比例函数的图像和性质,所以整个性质的探索过程发展了分析概括的能力.三.教学问题诊断分析学生已经学习了一次函数、二次函数的图象和性质,反比例函数的解析式,已具有描点法画函数图象的初步经验,但是由于反比例函数的图象结构复杂,具有自身的特殊性,因此在画反比函数的图象这个环节,可能遇到的问题有:1.在列表时没注意到自变量的取值范围是x≠0,或者对自变量x的取值只取正或只取负.2.由于列表时只取了有限的几个点,因此在连线时学生容易只把这几点连线,只画出图象的一部分,有明显端点,没有画出双曲线的延伸趋势.3.学生在画双曲线的延伸趋势时可能出现错误,这是因为学生仅仅是通过描点得出图象,并没有深入从解析式的角度分析问题,教师可以引导学生尝试分析理解.在学习一次函数、二次函数的时候,学生已经历过观察、分析图象的特征,概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解,因此,通过类比,结合反比例函数的图象和表达式探索性质,从使用的方法上不会存在障碍,但是双曲线的特殊性使学生在探究反比例函数增减性时可能会出现问题,教学中教师应该强调从“数”、“形”两方面统一分析.四.教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,利用几何画板,快速、准确的绘制反比例函数图象,另外通过动态的演示,观察相关数值的变化,研究图象的变化趋势,进而探索反比例函数的性质.五.教学过程分析(一)创设情境多媒体课件展示华罗庚先生的关于“数形结合”的一首词.设计意图:采用名人名言欣赏的方式进行情景引入,不仅调动了学生的积极性,同时又紧扣主题,为本节课的学习进行了方法上的准备.(二)知识链接1.已经学习了哪些函数?2.正比例函数y=kx(k≠0)的图象和性质是什么?3.反比例函数的定义是什么?4.描点法画图象的步骤是什么?师:了解了反比例函数的解析式,也就是从“数”的角度了解了反比例函数,那么对应的反比例函数的“形”的方面,也就是图象是什么呢?函数性质又是怎样的呢?设计意图:通过复习正比例函数的知识,为学习画反比例函数的图象奠定基础,同时提出问题,明确本节课的学习任务.(三)探究图象分以下5个环节完成.1.试一试:学生独立画出6y=的图象.x2.议一议:小组讨论所画作品,选出他们认为画的最好的作品.3.看一看:展示学生选出的作品,进行问题分析.然后教师示范正确画图过程.4.说一说:同桌互说一遍画图像时的注意事项,并修订已画图象.5.练一练:画出反比例函数6y=-的图象.x设计意图:首先让学生独立画图,充分暴露学生存在问题,关注画图的基本步骤及每个细节的处理,培养学生画图象的能力,通过再次画图,使学生及时巩固已获得的作图经验,并且为后面归纳性质增加感性认识.(四)探究性质探究1. 探究反比例函数6y x =和6y x=-的图象有什么共同特征以及不同点?学生活动:主要由学生观察发现,教师适时引导.共同特征:(1 )它们都由两条曲线组成.反比例函数的图象属于双曲线.(2)随着x 的不断增大(或减小),曲线越来越接近坐标轴.不同特点:(1)位置不同(2)增减性不同教师追问:这些不同特点是由什么因素决定的?生:k 的正负.设计意图:培养学生的观察能力,让学生体会分类的必要性.探究2.利用几何画板再准确作出k =4, k =8, k =12时的三个反比例函数图象.观察这一系列函数图象,思考下列问题:(1)图象形状是什么?(2)图象位于哪几个象限?(3)在每个象限内,y 随x 的变化如何变化?学生活动:先由学生独立思考,然后小组讨论交流,小组代表发言,其他同学补充或质疑.教师板书:形状:双曲线位置:一三象限增减性:在每个象限内,y随x的增大而减小教师追问(1):哪位同学能从解析式的角度解释第二个和第三个问题?教师设问(2):第三个问题,如果去掉在每个象限内这个条件,y 随x的变化情况还一致吗?为什么?学生活动:学生尝试解释,教师及时点拨,并利用几何画板直观演示.师:把刚才所研究的问题推广到一般,就得到了k >0时的函数图象和性质.设计意图:使学生经历由特殊到一般的过程,体验知识的产生形成过程;教师的追问引导学生从“数”、“形”两方面解决问题,让学生体会数形结合的思想.探究3.观察下列函数图象特征,归纳k=(k<0)性质.yx学生活动:学生发言,教师板书.形状:双曲线位置:二四象限增减性:在每个象限内,y随x的增大而增大设计意图:让学生自己去观察、类比、发现的方式获得知识,培养学生积极参与的意识和自主探索的能力.归纳: 反比例函数y =k x(k 为常数,k ≠0)的图象和性质.(1)反比例函数y=k x (k 为常数,k ≠0)的图象是双曲线.(2)当k >0时,双曲线的两支分别位于第一、三象限,在每个象限内,y ?值随x 值的增大而减小.(3)当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y ?值随x 值的增大而增大.设计意图:培养学生的分类讨论意识和归纳概括能力.探究4.在同一坐标系中反比例函数6y x =与6y x =-的图象之间在位置上有什么对称关系?学生活动:学生观察发现,教师动画演示.师:同学们能再从解析式上分析一下它的对称关系吗?结论:当k 互为相反数时,对应的反比例函数图象既关于x 轴对称,也关于y 轴对称.设计意图:培养学生的观察能力及让学生感知反比例函数图象的对称性和数学美.(五)目标检测1.下列图象中,可以是反比例函数的图象的().2.若反比例函数的图象经过(-3,4)则此函数的图象应在().A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限3.已知点A (-2,a )、B (-1,b ) 、C (3,c )都在反比例函数y =1x图象上,试比较a 、b 、c 的大小.解:把点A (-2,a )、B (-1,b )、C (3,c )分别带入1y x =中得:1a=-2,b =-1,13c = 所以b另解:因为k =1>0所以在每个象限内,y 随x 的增大而减小由图知,因为-2<-1<0,所以b 0所以b学生活动:前两题由学生讲解、第三题由学生板书展示.设计意图:通过三个题目巩固反比例函数图像和性质,渗透数形结合的思想方法.(六)课堂小结这节课你有什么收获?有什么疑惑?学生活动:学生发言交流自己的收获,其他同学补充.师:回顾反比例函数的学习过程,我们首先学习了反比例函数的解析式,以解析式为基础,运用数形结合的思想,画出了函数图象,进而研究函数的性质,体现了分类讨论的方法,这其实就是我们研究函数的一般方法.师:同学们,有关反比例函数的知识,经过我们的整理,形成了一颗知识树,像这样让知识体系化,是我们学习数学的一种很好的方法,如果对已每一个知识点,同学们都能进行这样的梳理,那么你就会收获一片知识的森林.设计意图:通过本环节,培养学生分类讨论的思想及归纳概括的能力,通过美丽的知识树,对学生进行了学习方法上的指导,给学生留下深刻印象. (七)分层作业A、习题26.1 第3题B、习题26.1 第8题课外延伸:探究反比例函数k=(k≠0)的图象关于直线y=x与y=-x的对yx称性.设计意图:根据分层教学和因材施教的原则,将作业分成A,B两类,让不同能力的学生在数学上都得到发展.课外延伸让学生带着问题走进课堂,再带着新的问题走出课堂.六、板书设计。

反比例函数专题二、求反比例函数解析式的六种方法

反比例函数专题二、求反比例函数解析式的六种方法
第二十六章 反比例函数 二、求反比例函数解析式的六种方法
方法点拨
求反比例函数的解析式,关键是确定比例系数 k的值.求比例系数k的值,可以根据反比例函数的 定义及性质列方程、不等式求解,可以根据图象中 点的坐标求解,可以直接根据数量关系列解析式, 也可以利用待定系数法求解,还可以利用比例系数 k的几何意义求解.其中待定系数法是常用方法.
解:由题意得 n2 2n 9 1, n 3>0,
解得n=2(n=-4舍去). ∴此函数的解析式是y=比例函数的图象求解析式
3. 【2017·广安】如图,一次函数y=kx+b的图象与反
比例函数y= m 的图象在第一象限交于点A(4,2),与 x
y轴的负半轴交于点B,且OB=6.
∵OB=6,∴B(0,-6).
把点A(4,2),B(0,-6)的坐标代入一次函数y=kx
2 4k b,
k
+b,可得
6 b,
解得 b
∴一次函数解析式为y=2x-6.
2, 6,
专题训练
(2)已知直线AB与x轴相交于点C,在第一象限内, 求
反比例函数y=
m x
的图象上一点P,使得S△POC=9.
解:在y=2x-6中,令y=0,则x=3,
∴y与x的函数解析式是y= 1 x 7 . 3 3x
专题训练
方法 5 利用图形的面积求解析式
5.
如图,点A在双曲线y=
1 x
上,点B在双曲线y=
k x
上,
且AB∥x轴,C,D两点在x轴上,若矩形ABCD的面积
为6,求点B所在双曲线对应的函数解析式.
专题训练
解:如图,延长BA交y轴于点E, 由题意可知S矩形ADOE=1,S矩形OCBE=k. ∵S矩形ABCD=6, ∴k-1=6.∴k=7. ∴点B所在双曲线对应的函数解析式是y= 7 . x

数学高中反比例函数教案

数学高中反比例函数教案

数学高中反比例函数教案
教学目标:
1. 了解反比例函数的定义和性质;
2. 掌握反比例函数的图像特征和基本解析式;
3. 能够解决实际问题中的反比例关系。

教学重点:
1. 反比例函数的性质和图像特征;
2. 反比例函数的解析式的确定。

教学难点:
1. 在实际问题中建立反比例函数模型;
2. 理解反比例函数的性质。

教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔、投影仪、计算器;
3. 学生:已掌握直线函数知识的高中学生。

教学过程:
一、导入
教师引导学生回顾直线函数的知识,了解直线函数的性质和特征。

二、概念讲解
1. 反比例函数的定义;
2. 反比例函数的图像特征。

三、例题讲解
教师通过几个典型例题,讲解如何确定反比例函数的解析式,并绘制函数图像。

四、实践应用
教师设计一些实际问题,让学生根据问题建立反比例函数模型,并求解。

五、课堂练习
学生在课堂上完成相关练习题,巩固所学知识。

六、总结
教师对本节课所学内容进行总结,强调重点和难点。

七、作业布置
布置相关作业,要求学生完成课后练习题,并写出感想。

教学反思:
通过本节课的教学,学生应该能够掌握反比例函数的基本概念和应用方法,能够熟练解决相关问题。

同时,教师应该根据学生的学习情况,及时调整教学方法,确保学生的学习效果。

反比例函数的知识梳理

反比例函数的知识梳理

第十七章、反比例函数第一节、知识梳理反比例函数一、学习目标:1. 掌握用描点法画反比例函数图象的方法和步骤,并结合函数图象正确理解和掌握反比例函数的概念和性质.2. 能根据已知条件确定反比例函数的解析式,重点掌握待定系数法求反比例函数的解析式.3. 能用反比例函数解决生活实际问题,在解决物理问题,日常生产、生活问题的时候构建反比例函数模型.二、知识概要:三、要点点拨:1. 反比例函数自变量x的取值范围为x≠0.2. 反比例函数的图象为两支,这两支不连续,且以原点为对称中心成中心对称.与坐标轴无限接近但不能相交.3. 反比例函数值的变化规律要在同一支曲线上去研究.四、中考视点:有关反比例函数的试题主要出现在客观题中,但在解答中也时有出现,考查的主要内容有:1. 反比例函数的图象及性质是中考命题的重点.2. 求反比例函数的解析式(重点考查待定系数法),并与现实生活中的问题相联系,有增加的趋势.精彩文档3. 借助于交点坐标,构建与正比例函数、一次函数的综合题,是中考命题的热点.实际问题与反比例函数一、学习目标:1.能够分析实际问题中变量之间的关系,建立反比例函数模型,进而解决实际问题.2. 能够画出描述实际问题的函数图象,并根据图象反应出的量的变化规律去解决实际问题.二、知识概要:1.根据实际情景构建反比例函数关系式(1)数学中常用的反比例函数关系式.(2)物理学中常用的反比例函数关系式.(3)利用实际问题情境中给出的数量关系,建立反比例函数关系式.2.利用反比例函数关系解决实际问题.3.有关实际问题中的反比例函数图象.(1)作出实际问题的函数图象.(2)利用实际问题的函数图象解决问题.三、知识链接:“反比例关系”和“反比例函数”的联系与区别:反比例关系是小学的概念:如果xy=k(k是常数,k≠0),那么x与y这两个量成反比例关系.这里x,y既可以代表单独的一个字母,也可以代表多项式或单项式.例如y+1与x +3成反比例,即反比例的关系式为,但x和y 不一定是反比例函数.但反比例函数中的两个变量必成反比例关系.四、中考视点:由实际问题中给出的数量关系写出反比例函数,再由反比例函数的性质去解决实际问题是本节考查的重点.第二节、教材解读精彩文档一、【例1】已知y关于x的反比例函数的图象过点P(3,6).(1)求y与x的函数解析式;(2)求当x=2时y的值.【思考与分析】由反比例函数的形式y=(k是常数,k≠0),可知求解析式的关键是确定系数k的值,所以我们可以根据条件用待定系数法求之.解:(1)设y=,将P(3,6)代入可得:6=,解得k=18,所以函数解析式为:y=.(2)把x=2代入y=,得y==9.【小结】待定系数法求函数解析式的一般步骤:(1)设出含有待定系数的解析式y=(k≠0,k为待定系数);(2)将已知条件代入(只需知道一个点的坐标);(3)解出待定系数;(4)将求得的值代回所设解析式.二、要点收藏夹反比例函数(k为常数,k≠0)的图象是双曲线.(1)当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y值随x值的增大而减小;(2)当k<0 时,双曲线的两支分别位于第二、四象限,在每个象限内y 值随x值的增大而增大;(3)双曲线的两支无限接近x轴和y轴,但永远达不到x轴和y轴(即双曲线的两支与x轴和y轴没有交点);(4)双曲线的两支关于直线y=±x对称.三、典型例题剖析【例2】①如果反比例函数的图象经过点(1,-2),那么k的值是()精彩文档②写出一个图象位于第二、四象限的反比例函数的表达式 .③当a ____时,反比例函数的图象在每一个象限内,y值随x值的增大而减小.【思考与分析】我们知道在反比例函数解析式中,如果常数k确定了,则这个反比例函数关系式就确定了.①由的图象经过点(1,-2),故将x=1,y=-2同时代入解析式便可求出k值;②由反比例函数的图象位于第二、四象限,可知k<0,因此所写的函数关系式只要满足k<0就行;③由反比例函数的图象在每一个象限内,y值随x值的增大而减小可知k>0,即1-a>0,从而求出a应满足的条件.解:① C;②如(答案不惟一,只要满足k<0 即可);③ a<1.【小结】求反比例函数解析式的关键是借助已有的条件,如过已知某点,或两个分支所在的象限或图象在每一个象限内y值随x值的变化情况等信息求出k的值或k满足的条件.四、在构建反比例函数模型解决实际问题的时候需注意分析实际问题中变量之间的关系,建立反比例函数模型.(在反比例函数关系中,两个变量的积是定值)【例3】已知某盐厂晒出了3000吨盐,厂方决定把盐全部运走.(1)运走所需的时间t(天)与运走速度v(吨/天)有什么样的函数关系?(2)若该盐厂有工人80名,每天最多共可运走500吨盐,则预计盐最快可在几日内运完?(3)若该盐厂的工人工作了3天后,天气预报预测在未来的几天内可能有暴雨,于是盐厂决定在2天内把剩下的盐全部运走,则需要从其它盐厂调过多少人?【思考与分析】我们知道这是一道工程问题,关键是要熟悉本类问题中各量之间的关系.(1)盐的总量=运走所有的盐所需的时间×运盐的速度,可得t与v的函数关系式;(2)每天运盐500吨,即v=500,把v=500代入(1)中函数关系式可求得对应的t;(3)设从其它盐厂调过n人,依据剩下的盐=80个工人运走的盐+n个工人运走的盐,列方程求出n即可.解:(1)由题意,得t =精彩文档(2)当v=500时,t ==6,即盐最快可在6日内运完.(3)设需从其它盐厂调过n个人,则根据题意,得:解得n=40,即需从其它盐厂调过40人.【小结】本题的关系式是:盐的总量=运走所有的盐所需的时间×运盐的速度,当然,这三者之间的关系还可以相互转化,通常只要知道其中的两个量就可求出或表示出第三个量;第(2)题实际上是求值问题,只要代入(1)即可;第(3)题借助了方程进行解答.第三节、错题剖析一.反比例函数中,切记k≠0【例1】若函数为反比例函数,则m= .错解:因为为反比例函数,所以|m|=1,所以m=±1.错解剖析:反比例函数的定义是:一般地,形如(k≠0,k为常数)的函数叫做反比例函数.定义中强调了系数k≠0,k为常数这一条件.错解忽视了k≠0这个条件.在本题中m-1相当于定义中的k,这里应有m-1≠0,所以m≠1.正解:由|m|=1,得m=±1.又因为m-1≠0,所以m≠1.所以m=-1.反思:解决反比例函数中的字母取值问题,一定要注意k≠0这一限制条件,否则容易出现错误.二.注意自变量的取值范围精彩文档【例2】一矩形的面积是10,则这个矩形的一组邻边长y与x的函数关系的图象大致是()错解:选C.错解剖析:本题是一道实际问题,已知矩形的面积是10,两邻边长分别是x,y,所以xy=10,所以(x>0),此函数是反比例函数,由于自变量x的取值范围是x>0,所以函数的图象只有一个分支,且在第一象限.而错解忽视了实际问题中自变量的范围.正解:选D.反思:在具体问题中确定反比例函数的图象,一定要注意自变量的取值具有实际意义.三、对反比例函数概念理解不透【例3】在下列函数关系式:,,,2xy=1中,y是x的反比例函数的个数是()A.2B.3C.4D.5错解:选D.错解剖析:选D是因为对反比例函数概念理解不透.反比例函数的概念是:一般地,形如(k为常数,k≠0)的函数称为反比例函数.精彩文档反比例函数通常有3种表达形式: 1:(上述三个式子中k都为常数,且k≠0).正解:选B四、对反比例函数图象及其性质理解不透【例4】若点(-1,y1),(-2,y2),(2,y3),在反比例函数的图象上,则()A.y1>y2>y3B.y2>y1>y3C. y3 >y1>y2D.y3>y2>y1错解:选C.错解剖析:对反比例函数图象及其性质理解不透,误认为y随x的增大而增大.反比例函数图象的增减性为:当k>0时,在同一象限内,y随x的增大而减小;当k<0时,在同一象限内,y随x的增大而增大.这里要特别注意“在同一象限内”这一点,本题中三个点并不在同一象限内.可以用函数的增减性来解决问题,也可以直接代入,求出这三个点的纵坐标的值,来比较函数值的大小.正解:选A.【小结】反比例函数的概念和图象及性质是我们学习这一章内容应该牢牢把握的,很多题目会考查到这些知识,我们要能正确应用.五、将反比例函数与正比例函数混为一谈【例5】近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为 .错解:因为度数y(度)与镜片焦距x(m)成反比例,所以设反比例函数解析式为:y=kx.又因为200度近视眼镜镜片的焦距为0.5m,所以200=0.5k,解得k=400.所以y与x的函数关系式为y=400x.错解剖析:本题是以物理中的物理现象与定律为背景,考查反比例函数的解析式的确定,其中反比例与正比例是两个不同的概念,错解正是混淆了这两个概念而导致的错误.正解:设反比例函数解析式为,根据题意,得200=,解得k=100.所以y与x 的函数关系式为六、错误地理解题意,得到不切实际的答案精彩文档【例6】某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少个售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能使全部学生就餐完毕.(1)共有多少学生就餐?(2)设开放x个窗口时,需要y小时才能使当天就餐的同学全部吃上饭,试求出y与x之间的函数关系式.(3)已知该学校最多可以同时开放20个窗口,那么最少多长时间可以使当天就餐的学生全部就餐?错解:(1)可先计算出每分钟10个窗口可售给的学生数再乘以就餐所需的时间就能求得全部学生数,即3×10×60=1800(名).(2)当天就餐的人数由(1)已经确定,每分钟可以售给的学生个数也是固定的,所以由题意,得y=3×60x+1800,即y与x之间的函数关系式为:y=180x+1800.(3)由(2)知,当x=20时,y=5400.即当同时开放20个窗口时,最少需5400小时可以使当天就餐的学生全部就餐.错解剖析:本题中的第(1)问是没有错的,问题是在(2)问上,由于当天就餐的人数由(1)已经确定,每分钟可以售给的学生个数也是固定的,则由题意列出的等式应该是3×60xy=1800,化简后应是反比例函数,若能正确地求出(2),问题(3)也就不会再出现错误了.正解:(1)可先计算出每分钟10个窗口可售给的学生数再乘以就餐所需的时间就能求得全部学生数,即3×10×60=1800(名).(2)当天就餐的人数由(1)已经确定,每分钟可以售给的学生个数也是固定的,所以由题意,得3×60xy=1800,即y与x 之间的函数关系式为(3)由(2)知,当x=20时,y=0.5.即当同时开放20个窗口时,最少需0.5小时可以使当天就餐的学生全部就餐.第四节、思维点拨【例1】如图,如果函数y=kx+k 和函数(其中k为不等于0的常数)的图象在同一坐标系中,其图象为().精彩文档【思考与分析】本例是一次函数与反比例函数的图象综合题,我们把函数解析式与函数图象有机结合起来解决这类问题.一般解法:1.我们可以分k>0和k<0两种情况,由k的符号确定图象的位置;2.可以由一个图象在坐标系中的位置,确定k的取值范围,再判断另一图象画得是否正确;3.由两图象的位置分别确定k的取值范围,最后看它们是否一致.解法1: 当k>0时,一次函数y=kx+k 的图象经过一、二、三象限,反比例函数的图象在第一、三象限,故选B.当k<0时,一次函数的图象经过二、三、四象限,反比例函数的图象在第二、四象限,故选C .解法2: 图A 中由的图象在第二、四象限可知k<0,所以一次函数y=kx+k的图象经过二、三、四象限,所以A不符合,得到答案C.同样的分析方法排除D,得到答案B.解法3:图A中由一次函数y=kx+k的图象经过一、二、四象限,得前面的k<0而后面截距k>0,自身出现矛盾,故排除A,同样的分析方法排除D,得到答案B,C.【例2】已知反比例函数和一次函数y=mx+n的图象的一个交点是A(-3,4),且一次函数的图象与x轴的交点到原点的距离为5,分别确定反比例函数和一次函数的解析式.【思考与分析】已知双曲线和直线都经过点A(-3,4),可将A点分别代入解析式用待定系数法确定k,而一次函数与x轴的交点到原点的距离为5,可知交点为(5,0)或(-5,0),然后联立组成方程组,求出m,n的值.精彩文档解:因为反比例函数的图象过点A(-3,4),所以所以这个反比例函数的解析式为又由题意知,一次函数y=mx+n的图象与x轴的交点为(5,0)或(-5,0).当直线y=mx+n的图象过点(-3,4)和(5,0)时,有当y=mx+n的图象过点(-3,4)和(-5,0)时,有所以 y=2x+10.所以这个一次函数的解析式为y=-x+或y=2x+10.【小结】方程思想是重要的数学思想之一,它是在所给定的数学问题中挖掘并找出已知量与未知量之间的等量关系,再通过对未知量设元,构成方程或方程组,解出未知量,从而达到解决问题的目的.在函数这一部分,许多需要我们确定函数解析式的考题都需要我们根据题中条件构建方程来解决.【例3】某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y亿度与(x-0.4)成反比例,又当x=0.65元时,y=0.8.(1)求y与x的函数关系式;(2)若每度电的成本价为0.3元,则电价调至0.6元时,本年度电力部门的收益是多少?[收益=用电量×(实际电价-成本价)]【思考与分析】本题y与x虽不是反比例函数,但根据题意y与(x-0.4)成反比例,根据反比例的特点列出关系式,用待定系数法就可确定函数关系式.用电量为,实际电价减去成本价为x-0.3,二者乘积即为收益.根据题意列出方程解之即可得到结果.解:(1)因为y与(x-0.4)成反比例,0.8代入可以求出k=0.2.精彩文档(2)根据题意,收益将x=0.6代入,收益为0.6亿元.所以当电价调至0.6元时,本年度电力部门的收益是0.6亿元.【小结】反比例函数是描述变量之间相互关系的重要数学模型之一.很多实际问题都可以归结为反比例函数的问题来解决.用反比例函数解决实际问题的具体步骤是:(1)认真分析实际问题中变量之间的关系;(2)若变量之间是反比例关系,则建立反比例函数模型(即确定反比例函数解析式);(3)利用反比例函数的性质去解决实际问题.反比例函数的应用中经常用到数形结合思想.数形结合思想就是在研究问题时把数与形结合起来考虑,不是把问题的数量关系转化为图形的性质,就是把图形的性质转化为数量关系来考虑,从而使复杂的问题简单化,抽象的问题具体化.【例4】某汽车的功率P为一定值,汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?(3)如果限定汽车的速度不超过30米/秒,则F在什么范围内?【思考与分析】(1)首先观察图象得到F是v的反比例函数,同时该函数图象通过点(3000,20),然后把F=3000,v=20代入函数关系式P=Fv中得到功率P的值;(2)把F=1200牛代入(1)中求得的函数关系式就能求出速度v的值;(3)由于车速v不超过30米/秒,所以v≤30,即≤30,然后根据函数图象及性质知:F随着精彩文档v的增大而减小即可得到F的范围.解:(1)由P= Fv=20 ×3000=60000,v=;(2)当F=1200时,v==50(米/秒)=180(千米/时),所以当它所受牵引力为1200牛时,汽车的速度为180千米/时;(3)当v=30米/秒时,代入v=则F=2000(牛)所以当v≤30米/秒时,即≤30,则F≥2000(牛).所以如果限定汽车的速度不超过30米/秒,则F应大于等于2000牛.【小结】解决这道题的关键是读懂题意,看懂图象,充分挖掘图象中隐含的已知条件,然后根据函数图象,确定函数解析式,并利用图象及性质解题.第五节、竞赛数学一、【例1】一次函数y=ax+b 的图象与反比例函数的图象交与M,N两点.如图所示:(1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【思考与分析】将(-1,-4)代入反比例函数解析式求出k值,再将x=2代入其中求出m的值,然后把M,N两点坐标代入y=ax+b解二元一次方程组,求出a、b的值.精彩文档解:(1)将N(-1,-4)代入,得k=4.从而反比例函数的解析式为:.将M(2,m )代入到中,解得:m=2.将M(2,2)、N(-1,-4)代入y=ax+b中,解得:a=2,b=-2.所以一次函数的解析式:y=2x-2.(2)由图象可知,当x<-1或0<x<2时,反比例函数的值大于一次函数的值.【小结】数形结合思想是重要的数学思想,函数图象和几何图形一样具有直观形象的特征,如果能发现函数解析式及式子中的相关系数的几何意义,将数量关系借助图象使之形象化、直观化,就可以简化求解过程.二、反比例函数图象的对称性反比例函数(k≠0)的图象是双曲线,它的图象既是轴对称图形又是中心对称图形,它有两条对称轴,分别是一、三象限和二、四象限的角平分线,都过原点且互相垂直;坐标原点是它的对称中心.三、反比例函数(k≠0)中的比例系数k的几何意义1.如图1,过双曲线上的任意一点P分别作x轴和y轴的垂线PM、PN,所得的矩形PMON的面积S=PM·PN,而PM=∣y∣,PN=∣x∣,所以矩形PMON的面积S=PM·PN=∣x ∣·∣y∣=∣xy∣.因为,所以xy = k,S=PM·PN=k.精彩文档即过双曲线上的任意一点作x轴和y轴的垂线,所得的矩形面积为∣k.∣2.如图1过双曲线上的任意一点E作其中一个坐标轴的垂线EF,连接OE,则△OEF 的面积为【例2】如图2,直线y=kx(k>0)与双曲线交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1=。

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

反比例函数与几何的重要结论与证明.doc

反比例函数与几何的重要结论与证明.doc

反比例函数与几何的重要结论与证明
反比例函数与几何综合的处理思路 1. 从关键点入手.通过关键点坐标和横平竖直线段长的互相转化,可将函数特征与几何特征综合在一起进行研究.2. 对函数特征和几何特征进行转化、组合,列方程求解.若借助反比例函数模型,能快速将函数特征转化为几何特征.与反比例函数相关的几个模型,在解题时可以考虑调用.
反比例与面积问题
线段等量关系
平行关系
证明1
由反比例函数的几何性质有SΔOAD=SΔOCB
SΔOCD=SOBCD-SΔOBC=SOBCD-SOAD=S梯形ABCD 证明2
辅助线是关键
分别过B、C两点,作x、y轴垂线,连接BE和CF因为BF平行于Y轴,所以SΔBEF=SΔBFO(同底等高)
同理CE平行于X轴,所以SΔEFC=SΔECO(同底等高)
故SΔEFB=SΔEFC得到EF平行于AD四边形ABFE和CDFE都为平行四边形(两组对边
平行)
所以AB=CD
一样的证明思路
过A、D分别作XY轴的垂线,连接AF、DE
SΔDFE=SΔDFO SΔAFE=SΔAEO (同底等高)
所以SΔEFA=SΔEFD所以得到EF平行于AD四边形EFBA和EFDC都是平行四边形
所以AB=CD
证明3
同理可得
同样运用同底等高可以证明,相信你也可以的!
以上重要结论在题目中如果能直接使用则可以大大提升做题速度,后面证明中作辅助线的方法在某些大题中可以提供思路和线索.对于一些反比例相关的压轴题还是比较有用的.。

(完整版)反比例函数教案

(完整版)反比例函数教案

第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0.讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。

(3)xky =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k(k ≠0)的形式三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念.补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xky =,再把x =2和y =6代入上式求出常数k,即利用了待定系数法确定函数解析式。

反比例函数的图像及性质精讲试题

反比例函数的图像及性质精讲试题

第四节 反比例函数的图像及性质河北五年中考真题及模拟反比例函数的图像及性质1.(2015河北中考)一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20,则y 与x 的函数图像大致是( C ),A ) ,B ),C ) ,D )2.(2014河北中考)定义新运算:a⊕b=⎩⎪⎨⎪⎧a b ,(b >0)-ab ,(b <0)例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图像大致是( D ),A ) ,B ) ,C ) ,D )3.(2013河北中考)反比例函数y =mx的图像如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x 的增大而增大;③若A(-1,h),B(2,k)在图像上,则h <k ;④若P(x ,y)在图像上,则P′(-x ,-y)也在图像上.其中正确的是( C )A .①②B .②③C .③④D .①④4.(2017沧州中考模拟)在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx(k≠0)的图像大致是( A ),A ) ,B ),C ) ,D )5.(2016石家庄二十八中模拟)反比例函数y =2x的图像在( B )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限6.(2016沧州八中模拟)下列说法中不正确的是( D ) A .函数y =2x 的图像经过原点B .函数y =1x的图像位于第一、三象限C .函数y =3x -1的图像不经过第二象限D .函数y =-3x的值随x 的值的增大而增大7.(2016保定中考模拟)在反比例函数y =m x中,当x >0时,y 随x 的增大而增大,则二次函数y =mx 2+mx 的图像大致是( A ),A ) ,B ) ,C ) ,D )8.(2016衡阳四中模拟)如图,函数y =-x 的图像是二、四象限的角平分线,将y =-x 的图像以点O 为中心旋转90°与函数y =1x的图像交于点A ,再将y =-x 的图像向右平移至点A ,与x 轴交于点B ,则点B 的坐标为__(2,0)__.(第8题图)(第9题图)9.(2016唐山九中模拟)如图,点A 是反比例函数y =kx图像上的一个动点,过点A 作AB⊥x 轴,AC ⊥y 轴,垂足分别为点B ,C ,矩形A BOC 的面积为4,则k =__-4__.10.(2017衡水中考模拟)如图,已知:点A(0,2),动点P 从点A 出发,沿y 轴以每秒1个单位长度的速度向上移动,且过点P 的直线l :y =-2x +b 也随之移动,并与x 轴交于点B ,设动点P 移动时间为t s .(1)当t =2 s 时,求直线l 的函数表达式;(2)如果点M(a ,3),当OM 是Rt △OPB 斜边PB 上的中线时,在备用图中画出图形,并分别求出t 和a 的值;(3)直接写出t 为何值时,直线l 与双曲线y =4x(x >0)有且仅有一个公共点.解:(1)当t =2,AP =2³1=2, ∵A(0,2), ∴OA =2,∴OP =OA +AP =2+2=4, ∴y =-2x +4; (2)由题意可知 AP =t ,∴OP =OA +AP =t +2,∴直线l 的表达式为y =-2x +t +2,∴P(0,t +2),B ⎝ ⎛⎭⎪⎫t +22,0,∵OM 是Rt △OPB 斜边PB 上的中线, ∴M(a ,3)是PB 的中点, ∴t +22=2a ,t +2=3³2,∴t =4,a =32;(3)t =-2+4 2.,中考考点清单反比例函数的概念1.一般地,如果变量y 与变量x 之间的函数关系可以表示成__y =kx__(k 是常数,且k≠0)的形式,则称y 是x 的反比例函数,k 称为比例函数.反比例函数的图像和性质2.函数图像3.4.k设P(x ,y)是反比例函数y =kx图像上任一点,过点P 作PM⊥x 轴于M ,PN ⊥y 轴于N ,则S 矩形PNOM =PM²PN=|y|²|x|=|xy|=|k|.【方法技巧】反比例函数与一次函数、几何图形结合: (1)反比例函数与一次函数图像的综合应用的四个方面: ①探求同一坐标系下两函数的图像常用排除法;②探求两函数表达式常利用两函数的图像的交点坐标;③探求两图像中点的坐标常利用解方程(组)来解决,这也是求两函数图像交点坐标的常用方法;④两个函数值比较大小的方法是以交点为界限,观察交点左、右两边区域的两个函数图像上、下位置关系,从而写出函数值的大小.(2)在平面直角坐标系中求三角形的面积时,通常以坐标轴上的边为底,相对顶点的横坐标(或纵坐标)的绝对值为高;如果没有坐标轴上的边,则用坐标轴将其分割后求解.反比例函数表达式的确定5.步骤:(1)设所求的反比例函数为y =kx(k≠0);(2)根据已知条件列出含k 的方程; (3)由代入法求待定系数k 的值;(4)把k 代入函数表达式y =kx中.6.求表达式的两种途径:(1)根据问题中两个变量间的数量关系直接写出;(2)在已知两个变量x ,y 具有反比例关系y =kx(x≠0)的前提下,根据一对x ,y 的值,列出一个关于k 的方程,求得k 的值,确定出函数的表达式.反比例函数的应用7.利用反比例函数解决实际问题,首先是建立函数模型.一般地,建立函数模型有两种思路:一是通过问题提供的信息,知道变量之间的函数关系,在这种情况下,可先设出函数的表达式y =kx(k≠0),再由已知条件确定表达式中k 的取值即可;二是问题本身的条件中不确定变量间是什么关系,此时要通过分析找出变量的关系并确定函数表达式.,中考重难点突破反比例函数的图像及性质【例1】(1)(黔东南中考)若ab<0,则正比例函数y =ax 与反比例函数y =bx在同一坐标系的大致图像可能是( B ),A ),B ),C ),D )(2)(安顺中考)如果点A(-2,y 1),B(-1,y 2),C(2,y 3)都在反比例函数y =kx(k>0)的图像上,那么y 1,y 2,y 3的大小关系是( B )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 1【解析】(1)据ab <0及正比例函数与反比例函数图像的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论,据反比例函数中k <0判断出函数所在的象限及增减性,再据各点横坐标特点即可得出结论;(2)本题主要考查反比例函数的图像与性质.【答案】(1)B ;(2)B1.(2017唐山中考模拟)若点A(a ,b)在反比例函数y =2x的图像上,则代数式ab -4的值为( B )A .0B .-2C .2D .-62.(2017石家庄中考模拟)如图,市煤气公司计划在地下修建一个容积为104 m 3的圆柱形煤气储存室,则储存室的底面积S(单位:m 2)与其深度d(单位:m )的函数图像大致是( A ),A ),B ),C ),D )3.在同一平面直角坐标系中,函数y =x -1与函数y =1x的图像可能是( C ),A ),B ) ,C ) ,D )反比例函数k 的几何意义【例2】(铁岭中考)如图,点A 在双曲线y =4x 上,点B 在双曲线y =kx(k≠0)上,AB ∥x 轴,分别过点A ,B 向x 轴作垂线,垂足分别为点D ,C.若矩形ABCD 的面积是8,则k 的值为( B )A .12B .10C .8D .6【解析】主要从矩形ABCD 的面积与双曲线中k 的关系考查.【答案】A4.(2017烟台中考)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =kx的图像经过点B ,则k 的值是( C ) A .1 B .2 C . 3 D .2 3(第4题图)(第5题图)5.(2017河南中考)如图,在平面直角坐标系中,点P 在函数y =6x(x >0)的图像上,过点P 分别作x 轴、y轴的垂线,垂足分别为A ,B ,取线段OB 的中点C ,连接PC 并延长交x 轴于点D ,则△APD 的面积为__6__.反比例函数与一次函数结合【例3】(河北中考)如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx(x>0)的图像经过点D ,点P 是一次函数y =kx +3-3k(k≠0)的图像与该反比例函数图像的一个公共点.(1)求反比例函数的表达式;(2)通过计算,说明一次函数y =kx +3-3k(k≠0)的图像一定过点C ;(3)对于一次函数y =kx +3-3k(k≠0),当y 随x 的增大而增大时,确定点P 的横坐标的取值范围.(不必写出过程)【解析】(1)点B(3,1),C(3,3)得BC⊥x 轴,BC =2,据平行四边形性质得AD =BC =2,而A 点坐标为(1,0),可得D(1,2).即易得解;(2)把x =3代入y =kx +3-3k ,得y =3即可说明;(3)设P 点横坐标为a ,由于一次函数过点C 且y 随x 的增大而增大时,P 点纵坐标要小于3,横坐标要小于3,故由y =2a <3得a >23.【答案】解:(1)y =2x;(2)当x =3时,y =3k +3-3k =3. ∴一次函数的图像一定过点C ;(3)设点P 的横坐标为a ,则23<a <3.6.(郴州中考)如图,已知点A(1,2)是正比例函数y 1=kx(k≠0)与反比例函数y 2=mx(m≠0)的一个交点.(1)求正比例函数及反比例函数的表达式;(2)根据图像直接回答:在第一象限内,当x 取何值时,y 1<y 2? 解:(1)将A(1,2)代入正比例函数y 1=kx 得,k =2,∴y 1=2x ;将A(1,2)代入反比例函数y 2=m x 得,m =2,∴y 2=2x;(2)0<x<1.7.(济宁中考)在矩形AOBC 中,OB =6,OA =4,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上一点,过点F 的反比例函数y =kx(k>0)的图像与AC 边交于点E.(1)请用k 表示点E ,F 的坐标;(2)若△OEF 的面积为9,求反比例函数的表达式.解:(1)∵E,F 是反比例函数y =kx(k>0)图像上的点,且OB =6,OA =4,∴点E 坐标为⎝ ⎛⎭⎪⎫k 4,4,点F 坐标为⎝ ⎛⎭⎪⎫6,k 6; (2)由题意知:S △ECF =12EC ³CF =12⎝ ⎛⎭⎪⎫6-14k ⎝⎛⎭⎪⎫4-16k ,∴S △EOF =S 矩形AOBC -S △AOE -S △BOF -S △ECF =24-12k -12k -12⎝ ⎛⎭⎪⎫6-14k ⎝ ⎛⎭⎪⎫4-16k =9.∴12-k248=9,解得k =±12(负值舍去).∴反比例函数的表达式为y =12x.。

反比例函数图像和性质 (4)

反比例函数图像和性质 (4)

《反比例函数的图象与性质》教学设计教学目标:﹙一﹚知识技能:1、会用描点法画反比例函数图象。

2、理解反比例函数的性质。

﹙二﹚过程与方法:让学生自己尝试去画y= 和y=- ,y= 和 y=- 的图象,在经历中逐步完善用描点法画y= (k 为常数,k ≠0)的步骤;在画图过程中引导学生去观察y= 和y=- 及y= 和y=- 的图象,发现其性质,并能自己归纳概括出y= 的性质,从而经历知识的归纳和探究过程,体会从特殊到一般,类比、分类讨论及数形结合的思想。

﹙三﹚情感态度价值观:通过画函数图象,并借助图象研究函数性质,体验数与形的内在联系,感受函数图象的简洁美,对称美;在探究反比例函数图象和性质的活动中,渗透与他人交流,合作的意识和探究精神,培养学生探索、观察、发现的良好学习品质,并学会归纳总结自己的结论,体会成功的喜悦。

教学重点:反比例函数的图象和性质。

教学难点:理解反比例函数性质,并能灵活应用。

教学过程:﹙一﹚创设情境、导入新课:问题一:挑战记忆同学们还记得正比例函数y=3x 的图象是什么形状?用什么方法画出来的?它又有哪些性质呢?问题二:猜一猜反比例函数的图象又会是什么样子呢?我们应用什么方法画出它的图象呢?(引出课题) 设计意图:通过问题一让学生知道描点法是画函数图象的常用方法,激活学生原有的知识,为学习反比例函数图象奠定基础,问题二的创设让学生展开想象,激发学生学习热情。

﹙二﹚类比联想、自主探究——函数图象的画法活动一:动手画一画x 6x 6x k x 6x 6x k x 3x 3x 3x 31、画出反比例函数y= 的图象。

(1)师引导学生回忆描点法画函数图象的一般步骤?﹙列表、描点、连线﹚(2)学生尝试在准备好的坐标纸上画出y= 的图象。

教师鼓励学生类比正比例函数图象的画法,自主探索画出反比例函数y= 的图象。

教师巡视、指导、点拨,从学生画好的图象中选择有代表性的作品进行投影展示。

(图象出现各种错误的作品)。

《反比例函数的图象和性质》说课稿.doc

《反比例函数的图象和性质》说课稿.doc

《反比例函数的图象和性质》说课稿以下是"反比例函数的图象和性质"(第一课时)说课稿,希望大家喜欢!一、教材分析:主要从地位与作用,教学目标,重点难点三方面进行阐述。

(一)地位与作用:本节教材是在学生理解反比例函数的意义和掌握了用描点法画函数图象的基础上进行教学的,是本章学习的重点,为后面学习实际问题与反比例函数及画二次函数图象奠定基础。

(二)教学目标:根据课改"以学生为主体,激活课堂气氛,充分调动起学生参与教学过程"的精神。

在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:知识目标:学会用描点法作反比例函数的图象,能结合函数图象进行探索 . 理解并掌握反比例函数的性质。

能力目标:培养学生的作图能力,观察 . 分析 . 归纳能力,渗透数形结合的数学思想方法,逐步形成解决问题的一些基本策略。

情感目标:在动手实践 . 合作交流中,培养学生的团结协作精神,通过利用函数图象探索反比例函数的性质,让学生体验到数学活动中充满了探索与创造,培养了学生的创新意识。

(三)教学重点,难点:因为通过本节学习使学生会画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质,所以确定本节的重点为:反比例函数图象的画法及探究反比例函数的性质;因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。

据此确定本节课的难点为:反比例函数图象是平滑双曲线的理解及对图象特征的分析.华罗庚教授曾深刻指出:"数无形,少直观;形无数,难入微 . "为了突出重点、突破难点。

我让学生动手操作,积极参与并主动探索函数性质,利用多媒体教学帮助学生直观地理解反比例函数的性质二、教法学法分析( 一 ) 教法分析鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平,为了充分调动学生学习的积极性,使学生主动愉快地学习,采用启发讲授、小组讨论、合作探究相结合的教学方式.在课堂教学过程中努力贯彻"教师为主导、学生为主体、探究为主线、思维为核心"的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程.( 二 ) 学法分析在教学过程中,学生掌握一种方法远比学会一个知识点重要的多。

第四节 反比例函数的图象及性质

第四节 反比例函数的图象及性质

第四节反比例函数的图象及性质贵阳五年中考命题规律)年份题型题号考查点考查内容分值总分2016解答22 反比例函数的图象与性质反比例函数、一次函数与几何的综合10 102015解答22 反比例函数图象反比例函数与一次函数结合:(1)确定表达式;(2)求点的坐标10 102014填空14 反比例函数性质根据性质确定k的值4解答22 反比例函数中“k”的几何意义根据图象求:(1)k的值;(2)两三角形面积之间的关系10 142013填空14 反比例函数的图象及性质根据图象上的点求值4 42012解答22 反比例函数的图象及性质根据图象求:(1)点的坐标;(2)表达式10 10命题规律纵观贵阳市5年中考,反比例函数的图象及性质每年必考,其中以解答题的形式考查了4次,以填空题的形式考查了2次,题号都比较固定,难度一般.命题预测预计2017年贵阳市中考,反比例函数的图象及性质仍是重点考查内容,务必加强学生的练习.贵阳五年中考真题及模拟)反比例函数的图象及性质(6次)1.(2014贵阳14题4分)若反比例函数y =x k的图象在其每个象限内,y 随x 的增大而增大,则k 的值可以是__-1__.(写出一个符合条件的值即可)2.(2013贵阳14题4分)直线y =ax +b(a >0)与双曲线y =x 3相交于A(x 1,y 1),B(x 2,y 2)两点,则x 1y 1+x 2y 2的值为__6__.3.(2016贵阳22题)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数y =x k(x >0)的图象经过菱形对角线的交点A ,且与边BC 交于点F ,点A 的坐标为(4,2).(1)求反比例函数的表达式; (2)求点F 的坐标.解:(1)∵反比例函数y =x k 的图象经过点A ,A 点的坐标为(4,2),∴2=4k,∴k =8.∴反比例函数的表达式为y =x 8;(2)过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,由题意可知,CN =2AM =4,ON =2OM =8,∴点C 的坐标为C(8,4),设OB =x ,则BC =x ,BN =8-x ,在Rt △CNB 中,x 2-(8-x)2=42,解得x =5,∴点B 的坐标为B(5,0),设直线BC 的函数表达式为y =k 1x +b ,直线BC 过点B(5,0),C(8,4),∴8k1+b =4,5k1+b =0,解得,20∴直线BC 的表达式为y =34x -320,根据题意得方程组,8解此方程组得:34或y2=-8,x2=-1,∵点F 在第一象限,∴点F 的坐标为F(6,34).4.(2015贵阳22题10分)如图,一次函数y =x +m 的图象与反比例函数y =x k的图象相交于A(2,1),B 两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B 点的坐标,并指出使反比例函数值大于一次函数值的x 的取值范围.解:(1)将A(2,1)代入y =x k 中,得k =2×1=2,∴反比例函数的表达式为y =x 2,将A(2,1)代入y =x +m 中,得2+m =1,∴m =-1,∴一次函数的表达式为y =x -1;(2)B(-1,-2);当x<-1或0<x<2时,反比例函数的值大于一次函数的值.5.(2014贵阳22题10分)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC分别在x 轴和y 轴上,其中OA =6,OC =3.已知反比例函数y =x k(x >0)的图象经过BC 边上的中点D ,交AB 于点E.(1)k 的值为__9__;(2)猜想△OCD 的面积与△OBE 的面积之间的关系,请说明理由.解:S △OCD =S △OBE ,∵点D ,E 在反比例函数y =x 9的图象上,∴S △OCD =S △OAE =29,∵OA =6,OC =3,∴S △OBA =21×6×3=9,∴S △OBE =S △OBA -S △OAE =9-29=29,∴S △OCD =S △OBE .6.(2012贵阳22题10分)已知一次函数y =32x +2的图象分别与坐标轴相交于A 、B 两点(如图所示),与反比例函数y =x k(x >0)的图象相交于C 点.(1)写出A 、B 两点的坐标;(2)作CD ⊥x 轴,垂足为D ,如果OB 是△ACD 的中位线,求反比例函数y =x k(x >0)的关系式.解:(1)A(-3,0),B(0,2);(2)y =x 12.中考考点清单)反比例函数的概念1.一般地,如果变量y 与变量x 之间的函数关系可以表示成①__y =x k__(k 是常数,且k ≠0)的形式,则称y 是x 的反比例函数,k 称为比例函数.反比例函数的图象及性质(高频点考)2.函数图象表达式 y =x k(k ≠0,k 为常数) k k >0k <0图象3.函数的图象性质函数 系数 所在象限增减性质对称性y =x k (k ≠0)k >0第一、三象限(x ,y在每个象限内y 随x关于③__y =-x __对同号)的②__增大而减小__ 称k <0第二、四象限(x ,y异号)在每个象限内y 随x的④__增大而增大__关于⑤__y =x __对称4.k 的几何意义k 的几何意义设P(x ,y)是反比例函数y =x k图象上任一点,过点P 作PM ⊥x 轴于M ,PN ⊥y轴于N ,则S 矩形PNOM =PM·PN =|y|·|x|=|xy|【方法点拨】反比例函数与一次函数、几何图形结合 (1)反比例函数与一次函数图象的综合应用的四个方面: A .探求同一坐标系下两函数的图象常用排除法. B .探求两函数表达式常利用两函数的图象的交点坐标.C .探求两图象中点的坐标常利用解方程(组)来解决,这也是求两函数图象交点坐标的常用方法.D .两个函数值比较大小的方法是以交点为界限,观察交点左、右两边区域的两个函数图象上、下位置关系,从而写出函数值的大小.(2)在平面直角坐标系中求三角形的面积时,通常以坐标轴上的边为底,相对顶点的横坐标(或纵坐标)的绝对值为高;如果没有坐标轴上的边,则用坐标轴将其分割后求解.反比例函数表达式的确定5.步骤(1)设所求的反比例函数为y =x k(k ≠0); (2)根据已知条件列出含k 的方程; (3)由代入法解待定系数k 的值;(4)把k 代入函数表达式y =x k中.6.求表达式的两种途径求反比例函数的表达式,主要有两条途径:(1)根据问题中两个变量间的数量关系直接写出;(2)在已知两个变量x ,y 具有反比例关系y =x k(x ≠0)的前提下,根据一对x ,y 的值,列出一个关于k 的方程,求得k 的值,确定出函数的表达式.反比例函数的应用利用反比例函数解决实际问题,首先是建立函数模型.一般地,建立函数模型有两种思路:一是通过问题提供的信息,知道变量之间的函数关系,在这种情况下,可先设出函数的表达式y =x k(k ≠0),再由已知条件确定表达式中k 的取值即可;二是问题本身的条件中不确定变量间是什么关系,此时要通过分析找出变量的关系并确定函数表达式.,中考重难点突破)反比例函数的图象及性质【例1】(2016孝感中考)“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m )成反比例.如果500度近视眼镜片的焦距为0.2 m ,则表示y 与x 函数关系的图象大致是( ),A ) ,B ) ,C ),D )【解析】根据反比例函数的图象特点结合实际问题(x 的取值范围)解答. 【学生解答】B1.(2016遵义中考)已知反比例函数y =x k(k>0)的图象经过点A(1,a),B(3,b),则a 与b 的关系正确的是( D )A .a =bB .a =-bC .a<bD .a>b2.(2016连云港中考)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是( B )A .y =3xB .y =x 3C .y =-x 1D .y =x 23.(2016宁夏中考)正比例函数y 1=k 1x 的图象与反比例函数y 2=x k2的图象相交于A ,B 两点.其中点B 的横坐标为-2,当y 1<y 2时,x 的取值范围是( B )A .x<-2或x>2B .x<-2或0<x<2C .-2<x <0或0<x<2D .-2<x<0或x>2反比例函数k 的几何意义【例2】(2016毕节中考)如图,点A 为反比例函数y =-x 4图象上一点,过A 作AB ⊥x 轴于点B ,链接OA ,则△ABO 的面积为( )A .-4B .4C .-2D .2【解析】根据反比例函数图象上点的横纵坐标的积为常数k 及实际问题易解. 【学生解答】D4.(2016河南中考)如图,过反比例函数y =x k(x>0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB=2,则k 的值为( C )A .2B .3C .4D .5,(第4题图)) ,(第5题图)) 5.(2013内江中考)如图点A 在双曲线y =x 5上,点B 在双曲线y =x 8上,且AB ∥x 轴,则△OAB 的面积等于__23__.反比例函数、一次函数与几何的综合【例3】(2015贵阳适应性考试)如图,一次函数y =kx +5(k 为常数,k ≠0)的图象与反比例函数y =x 8的图象相交于A(2,b),B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移m(m >0)个单位长度后与反比例函数的图象只有一个公共交点,求m 的值.【解析】(1)先将A(2,b)代入y =x 8求出b ,再将A(2,b)代入y =kx +5求出k ,从而求出一次函数的表达式;(2)向下平移m 个单位长度,将一次函数可表示为y =kx +5-m[(1)问中已求出k]与y =x 8结合构成一元二次方程Δ=0,从而求出m.【学生解答】解:(1)y =-21x +5;(2)将直线AB 向下平移m(m>0)个单位长度,∴y =-21x +5-m ,∵直线与反比例函数的图象只有一个公共交点,∴x 8=-21x +5-m ,x 2-2(5-m)x +16=0,Δ=[-2(5-m)]2-4×16=0,∴m 1=1,m 2=9.6.(2016南充中考)如图,直线y =21x +2与双曲线相交于点A(m ,3),与x 轴交于点C. (1)求双曲线表达式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.解:(1)∵A(m ,3)在直线y =21x +2上,∴21m +2=3.解得,m =2,∴A 的坐标为(2,3).设双曲线表达式为y =x k .点A(2,3)在双曲线上,∴3=2k ,解得k =6,故双曲线表达式为y =x 6;(2)直线y =21x +2与x 轴交于点C ,∴C(-4,0).点P 在x 轴上,设点P 到点C 的距离为n ,∴S △ACP =21n ·3=3,解得n =2,∴P(-2,0)或P(-6,0).7.(2016贵阳适应性考试)如图,在平面直角坐标系中,▱OABC 的边OA 在x 轴上,∠COA =30°,OC =8,AC ⊥OA ,对角线OB 与AC 相交于点M ,反比例函数y =x k(x>0)的图象经过点C.(1)求反比例函数的表达式;(2)将▱OABC 向右平移,使它的对角线交点M 在反比例函数的图象上,求平移的距离.解:(1)AC ⊥OA ,∴∠OAC =90°,在Rt △OAC 中,∠COA =30°,OC =8,∴AC =21OC =21×8=4.∵OA ===4,∴点C 的坐标为(4,4).∵反比例函数y =x k的图象上过点C(4,4),∴k =xy =4×4=16,∴反比例函数表达式为y =x 3;(2)∵四边形OABC 是平行四边形,∴AM =CM =21AC =21×4=2,设▱OABC 向右平移a 个单位长度,则平移后点M′的坐标为(4+a ,2).又∵M′(4+a ,2)在反比例函数y =x 3的图象上,∴2(4+a)=16,解得a =4,∴平移的距离为4.。

17.1.2反比例函数的图像和性质共4课时

17.1.2反比例函数的图像和性质共4课时

17.1.2 反比例函数的图象与性质(第1课时)【学习目标】1.了解反比例函数图象的意义 2.能用描点的方法画出反比例函数的图象 【教学过程】(一)自主学习,完成练习1.复习:画函数图象的一般步骤有哪些?应注意什么? 、 、2.反比例函数图象是 例2 画出反比例函数xy 6=和x y 6-=的图象.解:列表表示几组x 与y 的对应值(填表)3.归纳:反比例函数的图象都由组成,并且随着 的 不断增大(或减小), 越来越接近 (或 )。

反比例函数属于 。

※ 反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y=-x 。

对称中心是:原点 (二)小组交流答案(三)教师点拨注意:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y轴相交,只是无限靠近两坐标轴。

(四)巩固练习 1、画出反比例函数4y x=和4y x=-的图象总结反比例函数的图像与性质:总结:反比例函数的图像与性质:x的取值范围 (1)函数图象位于第一、三象限 (2)在第二象限内,y 随x 的增大而增大 4.函数y =-kx +k 与xk y -=(k ≠0)在同一坐标系中的图象可能是( ) 5.已知y 与x+2成反比例函数,当x=4时,y=1.(1)求这个函数的解析式;(2)当x=0时,求y 的值。

(五)课堂小结描点连线:17.1.2 反比例函数的图象与性质(第2课时)【学习目标】通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 【教学过程】(一)自主学习,完成练习1、复习:正比例函数y =kx (k ≠0)的图象是什么?其性质有哪些?一次函数呢?2、归纳(1)反比例函数xk y =(k 为常数,0≠k )的图像是 ;(2)当0>k时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 ;(3)当0<k 时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 。

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计作者:卢红来源:《新课程·中学》2017年第04期(辽宁省抚顺市清原一中)一、教材分析本节课是在学生初二学习了函数概念、一次函数的相关知识,初三学习了二次函数的相关知识及反比例函数概念的基础上,研究反比例函数的图象和性质。

它是初中阶段研究的最后一种函数类型。

由于学生对函数的研究已经有了一定经验,所以对其研究的过程应该很熟悉,但因反比例函数的自变量取值是间断的,且反比例函数是初中学生学习的第一种非线性函数,所以研究和应用起来还是有一定的难度。

二、学情分析我校是一所县级初中,学生对基础知识的掌握差异很大,部分学生的思维较为活跃。

前面函数知识的学习使学生已经初步掌握了研究函数的一般方法,所以教学中在教师的引导下,尝试让学生独立探究并充分利用几何画板,帮助学生突破本课的难点。

三、教学目标依据新课程标准的基本理念,课程内容要反映社会的需要、数学的特点;面向全体学生,适应学生个性发展的需要。

结合九年级学生的年龄、生理特点以及认知水平,确定以下教学目标。

知识与技能:会画反比例函数的图象,由画出的函数图象归纳概括出反比例函数的性质及k值的几何意义,进而提升对数形结合思想的认识。

过程与方法:通过画反比例函数图象,合作交流归纳反比例函数性质及k值的几何意义,从而提高学生从图形中提取有效信息的能力。

情感、态度与价值观:在画函数图象的过程中,感受数学的直观形象美,通过几何画板的动态演示,激发好奇心和求知欲,培养学生合作交流的团队精神。

四、教学重、难点教学重点:1.会画反比例函数的图象;2.通过几何画板的动态演示,探究反比例函数的主要性质及k值的几何意义。

教学难点:对反比例函数增减性的探究。

五、教法、学法本节课是一节新知识建构课,采用“认知建构”的教学模式。

在教学过程中,以情境创设为前提,以问题驱动为导向,让学生在解决问题的过程中从感性认识上升到理性认识,从而达成本节课的教学目标。

2017上海秋季数学八年级第8讲-反比例函数的图像与性质

2017上海秋季数学八年级第8讲-反比例函数的图像与性质

辅导讲义学员姓名:杨添学科教师:徐泽文年级:初二辅导科目:数学授课日期时间A / B / C / D / E / F段主题第8讲——反比例函数图像与性质学习目标1. 理解反比例函数的概念,会用待定系数法、数形结合法求反比例函数解析式;2. 熟练掌握正比例函数的图像和性质,会解相关题目;3. 能运用正比例函数和反比例函数综合知识,解相关综合题教学内容一、同学们思考以下两个问题,1、你来当设计师:开学典礼需要搭建一个面积为100平方米的长方形的舞台,假设你来担任此次舞台搭建设计师,舞台的长和宽各位多少呢?它们之间有什么关系呢?2、你来体验采购员:春节联欢晚会上为了营造氛围,公司有一笔1000元的活动资金来采购一种小饰品来营造氛围,小商品种类选择多种多样,价格各异,工作人员不知道采购何种小商品,你能设计一个合理的采购方案吗?这批小商品的单价和数量之间满足什么关系呢?(其中彩色气球1元/个,彩带2元/条,小灯笼5元/个,小公仔10元/个)二、通过对比正比例函数,分析反比例函数的定义、图像和性质:正比例函数反比例函数定义形如的函数形如的函数图像经过原点的一条直线双曲线经过象限>0 经过第、第象限<0 经过第、第象限增减性>0 随的增大而在每一象限内,随的增大而<0 随的增大而在每一象限内,随的增大而思考:审请题意,建立等量关系,找出变量之间满足的函数解析式,画出它们的大概图像。

特别注意在实际问题中,变量的取值范围。

三、通过对比正比例函数,分析反比例函数的定义、图像和性质:正比例函数反比例函数定义形如 的函数 形如 的函数 图像经过原点的一条直线双曲线经过象限 >0 经过第 、第 象限 <0 经过第 、第 象限增减性>0 随的增大而 在每一象限内,随的增大而 <0随的增大而在每一象限内,随的增大而思考:通过填写这张表格,你能找出正比例函数与反比例函数在定义上、图像和性质上的区别吗?知识一、反比例函数的定义例1:(1)下列函数中,是的反比例函数的为( ) A .-3y x = B .21y x =+ C .21y x = D .4y x=- (2)若255(2)m m y m x -+=-是反比例函数,则m 的值是( )A .3m =B .4m =C .1m =或4m =D .2m =或3m =试一试:已知函数2m y mx +=,则m = 时是反比例函数,m = 时是正比例函数.知识点二:求反比例函数解析式------待定系数法 例2:已知点(3,1)是双曲线=kx(k ≠0)上一点,则下列各点中在该图像上的点是( ). A .(13,-9) B .(-3,-1) C .(-1,3) D .(6,-12)试一试:反比例函数k y x =的图像经过(-32,5)点、(,3a -)及(10,b )点, 则k = ,a = ,b = ;例3:已知变量x 、y 、z ,z 与3y -成反比例,y 与2x -成正比例,且当1x =时,2y =-,6z =.求z 关于x 的函数解析式.试一试:已知 ,1y 与成正比例,2y 与x 成反比例,且当x=1时,y=-2;当x时,y =7.求y 与x 的函数解析式.例4:一个长方形的周长为20cm ,设长方形一边长为x cm ,面积用2ycm 表示,试求面积y 与长x 之间的函数关系式,写出它的定义域,并求出当3x =时y 的值及16y =时x 的值.试一试:如果△ABC 的高为4(厘米),底是x (厘米),面积为y (平方厘米),那么y 关于x 的函数关系式是__________________________.知识点三:函数图像的性质----经过象限问题 例5:已知反比例函数2k y x-=的图像位于第一、第三象限,则k 的取值范围是 .试一试:已知反比例函数xk y 2+=的图像经过第二、四象限,则k 的取值范围是 .知识点四:函数图像的性质-----增减性例6: 若三点(2-,1y ),(4-,2y ),(3,3y )都在反比例函数21a y x--=的图像上,则1y ,2y ,3y 的大小关系是 .试一试:在反比例函数xm y 21--=的图像上有三点(1x ,1y ),(2x ,2y ),(3x ,3y )若1x >2x >0>3x ,则下列各式正确的是( )A .3y >1y >2yB .3y >2y >1yC .1y >2y >3yD .1y >3y >2y知识点五:综合应用 例7: 请解决以下问题:(1)反比例函数4y x =经过点A (1,4),过点向x 轴、y 轴作垂线,垂足为C 、D ,则矩形ACOD 的面积为 . (2)反比例函数4y x-=经过点A (-1,4),过点向x 轴、y 轴作垂线,垂足为C 、D ,则矩形ACOD 的面积为 . (3)反比例函数ky x=经过点(x ,y ),过点向x 轴、y 轴作垂线,垂足为C 、D ,则矩形ACOD 的面积为 .请你根据问题总结规律.试一试:(1)如图所示,在反比例函数图像上有一点A ,AB ⊥轴,△AOB 的面积为10,求反比例函数的解析式.(2)如图,正比例函数与反比例函数6y x-=的图像分别交于A 、B 两点,过A 点向y 轴作垂线,过B 点向x 轴作垂线,两垂线交于点C .求ABC S V .1.函数22ky kx -=的图像是双曲线,且图像在第二、四象限,则k = .2.已知函数2(1)m y m x =-是正比例函数,则m = . 3.已知112yx y+=-,把它改写成()y f x =的形式是 . 4.在同一坐标系中函数kx y =和xk y 1-=的大致图像必是( ) 规律:反比例函数(0)k y k x=≠上任意一点(,)向坐标轴作垂线,垂线和坐标轴所围成的矩形面积为 .A B C D 5.如图,P 为反比例函数ky x=的图像上的点,过P 分别向x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面积为2,这个反比例函数的解析式为 .6.小明乘车从南充到成都,行车的平均速度y 和行车时间x 之间的函数图像是( )A. B . D . D .7.如图,直线y mx =与双曲线ky x=交于点A 、B .过A 点作AM ⊥x 轴,垂足为点M ,联结BM .若1ABM S =△,则的k 值是( ) A .1B .1m -C .2D .m8.如图,已知直线经过点P (,),点P 关于轴的对称点P '在反比例函数()的图像上.(1)求的值; (2)直接写出点P '的坐标;(3)求反比例函数的解析式.x y x y x y xyx y 2-=2-a y xky =0≠k a ABO M x yy xOy x OyxOy xO通过对比正比例函数,分析反比例函数的定义、图像和性质:正比例函数反比例函数定义形如的函数形如的函数图像经过原点的一条直线双曲线经过象限>0 经过第、第象限<0 经过第、第象限增减性>0 随的增大而在每一象限内,随的增大而<0 随的增大而在每一象限内,随的增大而xy2-=P P'xky=111. 已知函数()0ky k x=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数)0(≠=k kx y 在同一直角坐标平面内的大致图像是( )A .B .C .D .2. 已知反比例函数()0≠=k xky 的图像经过点(a ,a 2),则该函数的图像( ) A . 在第二、四象限,在每个象限内,y 随x 的增大而增大 B . 在第二、四象限,在每个象限内,y 随x 的增大而减小 C . 在第一、三象限,在每个象限内,y 随x 的增大而增大 D . 在第一、三象限,在每个象限内,y 随x 的增大而减小3. 如图在反比例函数)0(4>-=x xy 的图像上有三点1P 、2P 、3P ,它们的横坐标依次为1、2、3,分别过这3个点作x 轴、y 轴的垂线,设图中阴影部分面积依次为1S 、2S 、3S ,则123S S S ++=__________.一、趣味思考:小明和小王在学到龟兔赛跑故事的时候开始讨论,小明:“兔子真是太‘木中无龟’了,怎么能这么轻视对手呢?”小王:“可不是嘛,兔子输的活该”。

反比例函数的图像与性质

反比例函数的图像与性质

反比例函数的图象与性质各位评委老师你们。

现在开始我的试讲。

上课,同学们好,请坐。

今天我们学习反比例函数的图象与性质(板书课题),首先,让我们一起明确一下本节课的学习目标,请看大屏幕。

一、知识与能力目标1、会用描点法画反比例函数的图象2、结合图象分析掌握反比例函数的性质3、能用反比例函数来解决实际问题二、过程与方法目标:通过对反比例函数的图象与性质的探究,养成观察对比和数形结合的学习方法,提高我们的探究能力和归纳总结能力。

同学们,上节课我们学习了反比例函数,谁来说一下反比例函数的解析式?(请一位学生回答并板书y= )那么,你们还记得之前我们研究函数图象时是从什么入手的吗?嗯,对,是画图。

那么,画图的步骤是什么?同学们一起回答。

列表、描点、连线。

好,咱们今天还从画图入手,请同学们先尝试画下y= 这个函数图象,给大家两分钟的时间。

好,时间到。

我们来共同验证一下同学们的画图步骤:第一步,列表,x取1时,y值是6;x取2时,y 值是3;x取3时,y值是2;x取6时,y值是1(板书),第二步,在平面直角坐标系中描出这几个点,我们画平面直角坐标系的时候要注意原点、x轴、y轴、单位长度(板书画出平面直角坐标系)。

这些点分别过点(1,6)、(2,3)、(3,2)(6,1);第三步,用平滑的曲线把它们连起来。

一定要用平滑的曲线,我刚才看到有几位同学在作图的时候是用线段把它们连起来的,这就不符合我们之前所学习的作图的要求了。

然后我们用同样的方法,把x取负值时相应的图象也画出来,那么y= 的图象我们就画好了。

同学们,我们来看一看,这个图象有什么特点?它是一个什么图象?有同学说这是一个曲线,这个曲线有几支呀?对了,它有两支曲线。

我们把这样的曲线叫做双曲线。

y= 图象是这样的,那么y= - 是不是也是这样的呢?给你们两分钟的时间在自己的练习本上画出y= - 的图象。

时间到,我找一位同学展示一下自己画的图象(将画好的图展示在黑板上)。

第四节 反比例函数的图象及性质

第四节  反比例函数的图象及性质

中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
2017年中考数学命题研究(怀化专版)
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:反比例函数
教学目标:
1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中
的反比例函数.
2. 能根据实际问题中的条件确定反比例函数的关系式.
3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体 会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.
教学重点:反比例函数的概念
教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。

教学过程:
一、 创设情景 探究问题
(3)速度v 是时间t 的函数吗?为什么?
[说明](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s =vt ,指导学生用这个关系式的变式来完成问题(1).
(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.
3)结合函数的概念,特别强调唯一性,引导讨论问题(3).
情境3:
用函数关系式表示下列问题中两个变量之间的关系:
(1)一个面积为6400m 2的长方形的长a (m )随宽b (m )的变化而变化;
(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y (万元)随还款年限x (年)的变化而变化;
(3)游泳池的容积为5000m 3,向池内注水,注满水所需时间t (h )随注水速度v (m 3/h )的变化而变化;
随着速度的变化,全程所用时间发生怎样的变化?
情境1: 当路程一定时,速度与时间成什么关系?(s =vt )
当一个长方形面积一定时,长与宽成什么关系?
[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy =m (m 为一个定值),则x 与y 成反比例。

这一情境为后面学习反比例函数概念作铺垫。

情境2:
汽车从南京出发开往上海(全程约300km ),全程所用时间t (h )随速度v (km/h )的变化而变化.
问题:
(1)你能用含有v 的代数式表示t 吗?
(4)实数m 与n 的积为-200,m 随n 的变化而变化.
问题:
(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?
(2)它们有一些什么特征?
(3)你能归纳出反比例函数的概念吗?
一般地,形如y =k x
(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数.
[说明]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x 位于分母,且其次数是1.(2)常量k ≠0.(3)自变量x 的取值范围是x ≠0的一切实数.(4)函数值y 的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统
性、完整性,并在概念揭示后强调反比例函数也可表示为y =kx -1(k 为常数,k ≠0)的形式,
并结合旧知验证其正确性.
二、例题教学
例1:下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?
(1)y =x 15 ;(2)y =2x -1
;(3)y =- 3x ;(4)y =1x -3;(5)y = 2+1x ;(6)y =x 3 +2;(7)y =-12x
. [说明]这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成y =k x
或y =kx +b 的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)与(4)也是反比例函数,而(2)式等号右边的分母是x -1,不是x ,(2)式y 与x -1成反比例,
它不是y 与x 的反比例函数. 对于(4),等号右边不能化成 k x 的形式,它只能转化为1-3x x
的形式,此时分子已不是常数,所以(4)不是反比例函数. 而(7)中右边分母为2x ,看上
去和(2)类似,但它可以化成- 12x ,即k =-12
,所以(7)是反比例函数. 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力. 例2:在函数y =2x -1,y =2x+1 ,y =x -1,y =12x 中,y 是x 的反比例函数的有 个. [说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y =kx -1的形式. 还有y =2x -1通分为y =2-x x
,y 、x 都是变量,分子不是常量,故不是反比例函数,但变为y +1=2x
可说成(y +1)与x 成反比例. 例3:若y 与x 成反比例,且x =-3时,y =7,则y 与x 的函数关系式为 . [说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即
反比例函数的自变量x 的取值范围是不等于0的一切实数.
只需已知一组对应值即可求比例系数.
三、拓展练习
1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k 的值.
(1)底边为5cm 的三角形的面积y (cm 2)随底边上的高x (cm )的变化而变化;
(2)某村有耕地面积200ha ,人均占有耕地面积y (ha )随人口数量x (人)的变化而变化;
(3)一个物体重120N ,物体对地面的压强p (N/m 2)随该物体与地面的接触面积S (m 2)
的变化而变化.
2、下列哪些关系式中的y 是x 的反比例函数?如果是,比例系数是多少?
(1)y =23 x ; (2)y =23x
; (3)xy +2=0; (4)xy =0; (5)x =23y
. 3、已知函数y =(m +1)x 22 m 是反比例函数,则m 的值为 .
第3题要引导学生从反比例函数的变式y =kx -1入手,注意隐含条件k ≠0,求出m 值.
四、课堂小结
这节课你学到了什么?还有那些困惑?
[说明]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.。

相关文档
最新文档