七年级数学下册 8.3《完全平方差公式和平方公式》完全平方公式教案 (新版)沪科版

合集下载

七年级数学下册 8.3《完全平方公式与平方差公式》教案1 (新版)沪科版

七年级数学下册 8.3《完全平方公式与平方差公式》教案1 (新版)沪科版

七年级数学下册 8.3《完全平方公式与平方差公式》教案1 (新版)沪科版教学目标:1、学会推导完全平方公式和平方差公式.2、了解公式的几何背景,会用公式进行简单计算.教学重点:对公式的理解.教学难点:1、对完全平方公式和平方差公式的运用;2、对公式中字母所表示的广泛含义的理解和正确运用.教学过程:完全平方公式(一)导入新课:请同学们回忆多项式乘法法则并用多项式的乘法法则计算:(a+b)2=(a-b)2=说明:乘法公式实际是几个特殊形式的多项式乘法结果,让学生知道公式的来历.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(二)新课讲解:总结:上述两个公式可以直接用于计算.我们把①和②称为完全平方公式.思考:你能用语言表述这两个公式吗?语言叙述:完全平方公式的语言叙述:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.平方差公式语言叙述:两个数的和与这两个数差的积,等于这两个数的平方差.几何意义:应用举例:例:利用乘法公式计算:(1)(2x+y)2(2)(3a-2b) 2※字母a、b可以是数字,也可以是整式.(三)课堂练习:计算:(1)(3x+1)2 (2)(a-3b)2(3)(2x+y/2)2(4)(-2x+3y)2平方差公式(一)探究平方差公式计算下列多项式的积.(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=(4)(x+5y)(x-5y)=观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?分别用文字语言和符号语言叙述这个公式.用字母表示:(二)平方差公式的应用例:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)(1)中可以把3x看作a,2看作b.即:(3x+2)(3x-2)=(3x)2 -22(a+b)(a–b)=a2 -b2同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.例:计算:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)应注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,•但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.(4)运算的最后结果应该是最简.巩固练习下列计算对不对?如不对,应当怎样改正?(1)(x+2)(x-2)=x2 -2(2)(-3a-2)(3a-2)=9a2 -4。

沪科版数学七年级下册《8.3 完全平方公式与平方差公式》教学设计1

沪科版数学七年级下册《8.3 完全平方公式与平方差公式》教学设计1

沪科版数学七年级下册《8.3 完全平方公式与平方差公式》教学设计1一. 教材分析《8.3 完全平方公式与平方差公式》是沪科版数学七年级下册的一章,本章主要介绍完全平方公式和平方差公式的概念及其应用。

这两个公式是初等数学中的重要工具,对于学生来说,掌握这两个公式不仅有助于解决初中数学问题,而且对于今后的学习也具有重要意义。

二. 学情分析初七年级的学生已经具备了一定的代数基础,对于因式分解、整式乘法等概念有一定的了解。

但是,对于完全平方公式和平方差公式的推导和应用可能还比较陌生。

因此,在教学过程中,需要引导学生通过已有的知识体系来理解和掌握这两个公式。

三. 教学目标1.知识与技能:使学生理解和掌握完全平方公式和平方差公式的概念和应用。

2.过程与方法:通过学生的自主探究和合作交流,培养学生的解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.完全平方公式和平方差公式的推导过程。

2.如何运用完全平方公式和平方差公式解决实际问题。

五. 教学方法采用“问题驱动”的教学方法,引导学生通过问题来探究和发现完全平方公式和平方差公式,再通过例题来巩固和应用这两个公式。

同时,鼓励学生进行合作交流,共同解决问题。

六. 教学准备1.准备相关的PPT课件,用于辅助教学。

2.准备一些相关的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一个实际问题来引导学生思考:已知一个正方形的边长为a,求这个正方形的面积。

学生可以很容易地得出答案为a²。

然后,教师提出问题:如果我们知道一个正方形的边长,我们能不能求出它的面积呢?这就是我们今天要学习的完全平方公式和平方差公式。

2.呈现(15分钟)教师通过PPT课件,呈现完全平方公式和平方差公式的推导过程,引导学生理解和掌握这两个公式。

完全平方公式: (a±b)² = a²±2ab+b²平方差公式:(a+b)(a-b) = a²-b²3.操练(15分钟)教师给出一些练习题,让学生运用完全平方公式和平方差公式进行解答。

沪科版数学七年级下册 8.3 完全平方公式与平方差公式 教案设计

沪科版数学七年级下册 8.3 完全平方公式与平方差公式   教案设计
2.提出问题:
观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?
2.特点:
等号的一边:两个数的和与差的积,等号的另一边:是这两个数的平方差
3.再试一试:
【学生自己出相似的题目加以验证】
4.得到结论
(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
即(a+b)(a-b)=a2-b2【1】
课题
平方差公式
时间
教学目标
经历探索平方差公式的过程.会推导平方差公式,并能运用公式进行简单的运算,培养学生观察、归纳、概括的能力.
教学重点
平方差公式的推导和应用.理解平方差公式的结构特征,灵活应用平方差公式.
课时分配
Hale Waihona Puke 1课时班级教学过程
设计意图
(一)学生动手,得到公式
1. 计算下列多项式的积.
(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)
教学反思
预习要点
3.练习:P70练习1,2
【4】
100.5×99.5 99×101×10001
【1】其中a、b表示任意数,也可以表示任意的单项式、多项式.
设计意图
(四)公式的几何关系【1】
请从这个正方形纸板上,剪下一个边长为b的小正方形,如图1,拼成如图2的长方形,你能根据图中的面积说明平方差公式吗?
(a+b)(a-b)=a2-b2
附加题:
1.证明:两个连续奇数的积加上1一定是一个偶数的平方
2.求证: 一定是24的倍数
(五)小结
【1】体现数形结合的思想
作业

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案第一章:完全平方公式介绍1.1 理解完全平方公式的概念解释完全平方公式的定义和意义强调完全平方公式的构成和特点1.2 探索完全平方公式的推导过程通过具体例子,引导学生探索完全平方公式的推导过程强调完全平方公式的推导方法和思路1.3 完全平方公式的应用提供一些应用题,让学生运用完全平方公式进行解答第二章:平方差公式的介绍2.1 理解平方差公式的概念解释平方差公式的定义和意义强调平方差公式的构成和特点2.2 探索平方差公式的推导过程通过具体例子,引导学生探索平方差公式的推导过程强调平方差公式的推导方法和思路2.3 平方差公式的应用提供一些应用题,让学生运用平方差公式进行解答第三章:完全平方公式与平方差公式的异同3.1 比较完全平方公式和平方差公式的形式引导学生观察和比较两个公式的形式和结构强调两个公式的相似之处和不同之处3.2 探索完全平方公式和平方差公式的转化关系通过具体例子,引导学生探索两个公式的转化关系强调两个公式的转化方法和思路3.3 完全平方公式和平方差公式的综合应用提供一些综合应用题,让学生运用完全平方公式和平方差公式进行解答第四章:完全平方公式和平方差公式的巩固练习4.1 提供一些练习题,让学生巩固完全平方公式和平方差公式的理解和应用设计一些填空题、选择题和解答题,考察学生对两个公式的理解和掌握程度提供一些综合练习题,让学生运用两个公式解决实际问题4.2 学生自主练习和合作交流鼓励学生自主练习,巩固对两个公式的理解和应用能力组织学生进行合作交流,分享解题思路和方法第五章:完全平方公式和平方差公式的拓展应用5.1 探索完全平方公式和平方差公式的拓展性质引导学生探索两个公式的拓展性质和规律强调两个公式的拓展方法和思路5.2 提供一些拓展应用题,让学生运用完全平方公式和平方差公式进行解答设计一些具有挑战性的题目,让学生运用两个公式解决实际问题鼓励学生自主探索,发现两个公式的更多应用和拓展性质第六章:完全平方公式与平方差公式的实际应用6.1 引入实际应用场景通过生活实例引入完全平方公式和平方差公式的实际应用场景强调数学与实际生活的联系6.2 运用公式解决实际问题提供一些实际问题,让学生运用完全平方公式和平方差公式进行解决第七章:完全平方公式与平方差公式的几何意义7.1 引入几何概念解释完全平方公式和平方差公式的几何意义强调几何概念与代数公式的联系7.2 运用几何图形解释公式通过几何图形,引导学生理解完全平方公式和平方差公式的几何意义强调几何图形在理解公式中的应用方法和技巧7.3 运用公式解决几何问题提供一些几何问题,让学生运用完全平方公式和平方差公式进行解决第八章:完全平方公式与平方差公式的变形应用8.1 介绍公式的变形方法解释完全平方公式和平方差公式的变形方法强调变形方法在解决不同问题时的应用8.2 运用变形公式解决问题提供一些问题,让学生运用变形后的完全平方公式和平方差公式进行解决鼓励学生自主练习,巩固对公式变形方法和应用的理解第九章:完全平方公式与平方差公式的综合练习9.1 提供综合练习题设计一些综合练习题,涵盖完全平方公式和平方差公式的各种应用场景强调综合练习题在巩固知识和提高解题能力的重要性9.2 学生自主练习和合作交流鼓励学生自主练习,提高解题能力组织学生进行合作交流,分享解题经验和解决问题的方法第十章:完全平方公式与平方差公式的拓展研究10.1 探索公式的拓展性质引导学生探索完全平方公式和平方差公式的拓展性质和规律强调拓展研究在提高数学素养和解决问题能力的重要性10.2 开展拓展研究项目组织学生开展完全平方公式和平方差公式的拓展研究项目强调团队合作和研究成果的分享强调拓展研究对于培养学生的创新能力和发展数学思维的重要性重点和难点解析一、完全平方公式介绍难点解析:理解完全平方公式中各项的来源和含义,以及如何识别完全平方公式的特征。

初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计

初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计
例题:计算以下各式的值:
(1)(x+3)^2
(2)(y-4)^2
(3)(2a+b)(2a-b)
(4)(3m-n)(3m+n)
2.变式练习题:通过一些变式题目,让学生学会将公式应用于不同场景,提高解决问题的能力。
例题:已知x+y=5,xy=6,求(x-y)^2的值。
3.综合应用题:设计一些综合应用题目,让学生将所学知识应用于解决实际问题,提高学生的综合运用能力。
5.生活实践题:让学生将所学知识联系到生活实际,感受数学在生活中的应用。
例题:某班组织一次郊游活动,共有45人参加。如果每组多安排1人,可以多分5组。请问原来每组有多少人?
在作业布置过程中,教师要关注以下几点:
1.作业难度要适中,既要保证学生对基础知识的掌握,又要适当提高学生的思维能力。
2.作业量要适当,避免给学生造成过重的负担,确保学生有足够的时间进行自主学习和休息。
讨论过程中,教师要关注以下几点:
1.激发学生的讨论热情,鼓励学生积极发表自己的观点。
2.引导学生互相交流解题方法,分享学习心得。
3.注意观察学生的讨论情况,适时给予指导和帮助。
(四)课堂练习,500字
在课堂练习阶段,教师设计不同难度的练习题,让学生进行巩固练习。练习题要涵盖完全平方公式和平方差公式的各种应用场景,包括基本题、变式题和综合应用题。
接着,教师可以引导学生回顾已学的平方运算知识,如(a+b)^2 = a^2 + 2ab + b^2,让学生尝试推导出完全平方公式:(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab。在此基础上,引出本节课将要学习的完全平方公式和平方差公式。

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计一. 教材分析《完全平方公式与平方差公式》是沪科版数学七年级下册第八章第三节的内容。

本节内容主要介绍完全平方公式和平方差公式的概念及其应用。

这两个公式是初中学段数学的重要知识点,也是解决代数问题的重要工具。

本节内容承上启下,为后续学习二次函数、一元二次方程等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,具备一定的逻辑思维能力和解决问题的能力。

但学生对完全平方公式和平方差公式的理解和应用还不够深入,需要通过本节课的学习,让学生熟练掌握这两个公式,并能够运用到实际问题中。

三. 教学目标1.知识与技能:让学生掌握完全平方公式和平方差公式的概念及其应用。

2.过程与方法:通过探究、合作、交流的方式,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.完全平方公式和平方差公式的记忆和理解。

2.如何将公式运用到实际问题中,解决相关问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究、发现规律。

2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。

3.运用实例讲解法,让学生通过具体例子,理解并掌握公式的应用。

六. 教学准备1.准备相关的教学PPT,展示完全平方公式和平方差公式的推导过程及应用实例。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾已学的有理数的运算、整式的乘法等知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT展示完全平方公式和平方差公式的推导过程,让学生直观地感受公式的来源和意义。

同时,给出一些应用实例,让学生初步了解公式的应用。

3.操练(10分钟)学生在小组内讨论,如何运用完全平方公式和平方差公式解决实际问题。

教师巡回指导,解答学生遇到的疑问。

4.巩固(10分钟)教师出示一些练习题,让学生独立完成。

沪科版数学七年级下册《8.3 完全平方公式与平方差公式》教学设计1

沪科版数学七年级下册《8.3 完全平方公式与平方差公式》教学设计1

沪科版数学七年级下册《8.3 完全平方公式与平方差公式》教学设计1一. 教材分析《8.3 完全平方公式与平方差公式》是沪科版数学七年级下册的教学内容。

本节内容是在学生已经掌握了有理数的混合运算、完全平方公式的基础上进行的。

本节课的主要内容是完全平方公式与平方差公式的推导、理解和应用。

这两个公式在数学中有着广泛的应用,是解决二次方程、二次不等式等方面的重要工具。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的混合运算、完全平方公式有一定的了解。

但是,对于完全平方公式与平方差公式的推导过程和应用可能还不太熟悉。

因此,在教学过程中,需要引导学生通过观察、思考、探究来理解公式的推导过程,并通过大量的练习来巩固公式的应用。

三. 教学目标1.理解完全平方公式与平方差公式的推导过程。

2.掌握完全平方公式与平方差公式的应用。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.完全平方公式与平方差公式的推导过程。

2.完全平方公式与平方差公式的应用。

五. 教学方法1.引导发现法:引导学生通过观察、思考、探究来发现完全平方公式与平方差公式的推导过程。

2.实例分析法:通过具体的例子来引导学生理解完全平方公式与平方差公式的应用。

3.练习法:通过大量的练习来巩固学生的理解和应用能力。

六. 教学准备1.PPT课件:制作相关的PPT课件,用于辅助教学。

2.练习题:准备一些相关的练习题,用于巩固学生的理解和应用能力。

七. 教学过程1.导入(5分钟)通过复习完全平方公式,引导学生思考如何推导出平方差公式。

2.呈现(15分钟)利用PPT课件,呈现完全平方公式与平方差公式的推导过程,引导学生观察和思考。

3.操练(20分钟)让学生通过计算一些具体的例子,来理解和掌握完全平方公式与平方差公式的应用。

4.巩固(15分钟)让学生通过解决一些实际问题,来巩固对完全平方公式与平方差公式的理解和应用。

5.拓展(10分钟)引导学生思考:完全平方公式与平方差公式在实际问题中的应用。

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计一. 教材分析《完全平方公式与平方差公式》是沪科版数学七年级下册第八章第三节的内容。

本节内容主要介绍完全平方公式和平方差公式的概念及其应用。

这两个公式是初等代数中的重要公式,对于学生后续学习代数运算和解决实际问题具有重要意义。

教材通过具体的例子引导学生探究和发现这两个公式,并加以巩固和应用。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的运算、整式的乘法等基础知识。

但部分学生对于抽象的公式的理解和应用仍有困难,需要通过具体的例子和实际操作来加深理解。

同时,学生对于探究式学习方法已经有了一定的了解和经验,可以通过自主学习、合作学习等方式来掌握本节内容。

三. 教学目标1.知识与技能:使学生理解和掌握完全平方公式和平方差公式的概念及其应用。

2.过程与方法:培养学生通过探究、发现、总结数学规律的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:完全平方公式和平方差公式的理解和应用。

2.难点:完全平方公式和平方差公式的推导过程及应用。

五. 教学方法1.采用探究式学习方法,引导学生通过自主学习、合作学习发现和总结完全平方公式和平方差公式。

2.通过具体例子和实际应用,帮助学生理解和掌握公式的运用。

3.采用讲解、示范、练习等多种教学手段,为学生提供丰富的学习资源和支持。

六. 教学准备1.准备相关例题和练习题,以便进行课堂练习和巩固。

2.准备多媒体教学设备,以便进行讲解和展示。

七. 教学过程1.导入(5分钟)通过回顾之前学过的有理数运算、整式乘法等知识,引导学生进入本节课的学习。

2.呈现(15分钟)展示完全平方公式和平方差公式的定义和表达式,引导学生理解公式的含义。

3.操练(20分钟)让学生通过自主学习、合作学习等方式,探究完全平方公式和平方差公式的推导过程。

在探究过程中,引导学生发现公式的特点和规律。

七年级数学下册 8.3 完全平方公式与平方差公式教案1 沪科版(2021年整理)

七年级数学下册 8.3 完全平方公式与平方差公式教案1 沪科版(2021年整理)

安徽省固镇县七年级数学下册8.3 完全平方公式与平方差公式教案1 (新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省固镇县七年级数学下册8.3 完全平方公式与平方差公式教案1 (新版)沪科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省固镇县七年级数学下册8.3 完全平方公式与平方差公式教案1 (新版)沪科版的全部内容。

平方差公式教学目标知识与能力:掌握平方差公式。

过程与方法:通过对平方差公式学习和理解.培养学生对公式的结构特征及对公式中字母所表示广泛含义。

情感态度价值观:培养学生观察。

交流。

归纳每一个公式的公式结构特征。

重难点重点:平方差公式的应用难点:公式的结构特征及对公式中字母所表示广泛含义教学一、导入新课、揭示目标(1-2分钟)1、掌握平方差公式2、通过对平方差公式学习和理解.培养学生对公式的结构特征及对公式中字母所表示广泛含义。

二、学生自学,质疑问难(10分钟左右)自学提纲:1.阅读课本第65---662.平方差公式的展开式是几次几项式?交流(1)怎样运用几何图形的面积推导出平方差公式?(2)如何运用语言文字来叙述平方差公式3。

掌握平方差公式结构特征4.完成下列计算( 1)(2a+5b)·(•2a-5b)=讨论补充记录过程教学( 2)(0.5x—3)·(0.5x+3)5.自学例题2三、合作探究,解决疑难(15分钟左右)(1)用整式乘法的方法来得到平方差公式(2)用面积来推动平方差公式?拼成的长方形的面积可表示为(a+b)(a—b)____这张纸片的面积还可表示为a2—b2你发现了什么( a+b)(a—b)=a2-b2这个公式称为平方差公式用语言叙述为两个数的和与这两个数的差的积等于这两个数的平方差公式特征(1)公式左边两个二项式必须是相同两数的和与差相乘、且左边两括号内的第一项相等第二项符号相反(2) 公式右边是这两个数的平方差; 即右边是左边括号内的第一项的平方减去第二项的讨论补充记录过程平方。

初中完全平方试讲教案

初中完全平方试讲教案

教案:初中完全平方公式教学目标:1. 让学生经历探索完全平方公式的过程,理解并掌握完全平方公式的结构特征。

2. 培养学生观察、发现、归纳、概括的能力,提高学生的逻辑思维能力。

3. 培养学生运用完全平方公式进行计算的能力,感受数学公式的魅力。

教学重点:1. 掌握完全平方公式的结构特征。

2. 利用完全平方公式进行计算。

教学难点:1. 理解完全平方公式中的字母含义。

2. 运用图形面积理解完全平方公式,体会数形结合思想。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 复习平方差公式:a² - b² = (a + b)(a - b)。

2. 提问:能否类比平方差公式,推导出一个新的公式呢?二、探索完全平方公式(15分钟)1. 引导学生分组讨论,尝试推导完全平方公式。

2. 每组派代表分享推导过程和结果。

3. 教师总结完全平方公式:a² + 2ab + b² = (a + b)²。

三、理解完全平方公式(10分钟)1. 讲解完全平方公式的结构特征:字母a和b的系数分别为1和2。

2. 引导学生理解完全平方公式中的字母含义:a表示第一个数,b表示第二个数。

3. 举例说明完全平方公式的应用。

四、运用完全平方公式进行计算(10分钟)1. 让学生独立完成练习题,运用完全平方公式进行计算。

2. 教师选取部分学生的作业进行讲解和点评。

五、巩固练习(10分钟)1. 让学生完成一些有关完全平方公式的练习题。

2. 教师解答学生的疑问,给予指导。

六、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结完全平方公式的推导过程和应用。

2. 教师引导学生体会数形结合思想,感受数学公式的魅力。

教学反思:本节课通过引导学生探索、理解和应用完全平方公式,培养了学生的观察、发现、归纳、概括的能力。

在教学过程中,注意让学生充分思考,发挥他们的主观能动性,使他们在探索中体验到数学的乐趣。

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案一、教学目标:1. 让学生掌握完全平方公式和平方差公式的概念及运用。

2. 培养学生运用公式解决实际问题的能力。

3. 引导学生发现数学规律,提高学生的数学思维能力。

二、教学内容:1. 完全平方公式:(a±b)²= a²±2ab+b²2. 平方差公式:(a±b)(a∓b) = a²±b²三、教学重点与难点:1. 教学重点:完全平方公式和平方差公式的记忆与运用。

2. 教学难点:完全平方公式和平方差公式的推导过程。

四、教学方法:1. 采用讲解法,引导学生理解完全平方公式和平方差公式的含义。

2. 运用例题,让学生通过实践掌握公式的运用。

3. 组织小组讨论,培养学生合作学习的能力。

五、教学步骤:1. 导入新课:通过复习平方根的概念,引导学生进入平方公式的学习。

2. 讲解完全平方公式:讲解完全平方公式的推导过程,让学生理解公式的含义。

3. 讲解平方差公式:讲解平方差公式的推导过程,让学生理解公式的含义。

4. 例题讲解:运用例题,让学生掌握公式的运用。

5. 课堂练习:布置练习题,让学生巩固所学知识。

6. 总结与拓展:总结完全平方公式和平方差公式的运用,引导学生发现数学规律,提高学生的数学思维能力。

7. 课后作业:布置课后作业,巩固所学知识。

六、教学评估:1. 课堂练习环节,观察学生对完全平方公式和平方差公式的掌握情况。

2. 通过课后作业的完成情况,评估学生对课堂所学知识的巩固程度。

3. 组织小型测验,检验学生对完全平方公式和平方差公式的运用能力。

七、教学反馈:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出学生的优点和不足。

2. 对学生在学习中遇到的问题,进行个别辅导,帮助他们解决问题。

3. 鼓励学生在课堂上积极提问,解答他们的疑问。

八、教学调整:1. 根据学生的学习情况,调整教学进度和教学方法。

初中数学七年级下册第8章整式乘法和因式分解8.3完全平方公式与平方差公式教案

初中数学七年级下册第8章整式乘法和因式分解8.3完全平方公式与平方差公式教案

8.3 完全平方公式与平方差公式教学目标1、经历探究两数和乘以这两数的差的过程来推导平方差公式,理解平方差公式的结构特征,并能有意识地用平方差公式进行简单的运算;了解平方差公式的几何背景;2、在探究平方差公式的过程中,发展学生的符号感和推理、概括能力;通过平方差公式的几何背景的了解,体会代数与几何的内在统一;3、学生通过推导两数和的平方公式,了解公式的几何背景,理解并掌握公式的结构特征,并能进行简单的计算,能用文字、字母表达两数和的平方公式;4、学生通过推导两数差的平方公式,了解公式的几何背景,理解并掌握公式的结构特征,并能进行简单的计算,能用文字、字母表达两数差的平方公式.重点难点重点平方差公式的应用;两数和、两数差的平方的公式.难点(1)平方差公式的结构特征及其有效地应用;(2)平方差公式的几何意义;(3)对公式中字母a、b的广泛含义的理解与正确应用.教学设计活动一竞赛激智,建立模型,揭示公式问题1看谁能又快又准地回答下面4个小题的计算结果.(5+3)(5-3)﹦________;(0.5+0.3)(0.5-0.3)﹦_______;(5+0.3)(5-0.3)﹦________;(0.5+3)(0.5-3)﹦_______.(全部结果出来后)追问:你是如何计算的?设计意图:以通过竞赛为载体,以自主参与为教学形式,使学生从计算的快慢中产生疑惑:总是那几个算得快,我怎么也能象他们那样?进而激发学生的求知的热情.问题2:请计算下列多项式的积:(1)(x+1)(x-1)﹦____________;(2)(m+2)(m-2)﹦___________;(3)(2x+1)(2x-1)﹦__________.(全部结果正确后)追问1:你们的计算结果有什么规律吗?追问2:你发现这些多项式的乘积的表达形式有什么规律吗?学生总结:(1)计算的结果都是两项的平方差,与以往两项乘以两项的结果大多是三项或四项不同;(2)这些两项乘以两项中,有一项是完全相同,另一项又是互为相反的;(3)结果是两项的平方差,并且是完全相同项的平方减区互为相反项的平方.师生互动:(a+b)(a-b)﹦a2-b2两个数的和与这两个数的差的记,等于这两个数的平方差.教师:(1)这个公式叫做(乘法的)平方差公式.(2)公式中的字母可以表示具体的数,也可以表示单项式或多项式;(3)只要是符合公式的结构特征,都可以用公式进行计算.学生练习:1、下列多项式乘法中,能用平方差公式计算的有___________.A(x+1)(1-x) B(a+b)(b-a) C(-a+b)(a-b)D(x2-y)( x+y2) E(-a-b)(a-b) F(c2-d2)(d2+c2)2、下面各式的计算对不对?如果不对,应当怎样改正?(1)(x+2)(x-2)﹦x2-2; (2)(-3a-2)(3a-2)﹦9a2-4.设计意图:以学生熟悉的多项式的积为载体,以全部参与讨论、归纳总结为教学形式,由于计算的结果与以往的结果在表现的形式上有大的差异,以及平方差公式的发生过程的探究,体会到从一般到特殊的数学思想方法;通过选择、填空等的练习让学生了理解、掌握平方差公式的结构特征,从心里感受这种一般到特殊的数学思想方法的魅力.活动二师生互动、感知代数、几何的统一师:请同学们将准备的正方形纸板拿出:(1)设它的边长为a(图1),大家都知道它的面积为a2;(2)请同学们按图2剪去一个边长为b的小正方形,大家都知道剩下部分的面积为(a2-b2);(3)请同学们将剩下的图形剪成(沿图2的虚线)两个长方形,并将一边长为b的小长方形拼到一边长为a的长方形后得图3;同学们都知道图3的一边长为(a+b),另一边长为(a -b),面积为(a+b)(a-b);(4)同学们比较图2和图3不难发现它们面积的关系.生:它们的面积相等,即(a+b)(a-b)﹦a2-b2.图(1) 图(2) 图(3)师:我们通过拼图游戏给出了平方差公式的一种几何解释.这说明平方差公式具有直观的几何意义,也说明代数不只是计算,还有美妙的几何意义,这实际就是数学魅力.设计意图:通过学生拼图游戏,学生直观体验了平方差公式的几何意义,感受代数不只是计算,还有美妙的几何意义,亲身经历了数学魅力所在.活动三例题分析、指导应用、巩固理解例1运用平方差公式计算:(1)(a+3)(a-3)(2)(2a+3b)(2a-3b)(3)(1+2c)(1-2c)(4)(-2x-y)(2x-y)分析:(1)在(1)中,可以把3看成b,即:(a+3)(a-3)﹦a2-32(a+b)(a-b)﹦a2-b2(2)将(2)调整成平方差公式形式计算.(3)(4)自主计算.例2:运用平方差公式计算:1998×2002设计意图:通过一则平方差公式简单的例题分析及应用,巩固理解了公式结构特征,让学生进一步感受到这种一般到特殊的数学思想方法的魅力.学生练习:运用平方差公式计算:(1)51×49;(2)(3x+4)(3x-4)-(2x+3)(3x-2)设计意图:这是平方差公式的拓展例题分析及应用,使学生进一步体会平方差公式的结构特征,能进一步灵活运用乘法公式、法则进行计算.学生活动:计算:(1)(a+b)(a+b) (2)(a-b)(a-b)(3)(x+3) (x+3) (4)(x-3) (x-3)教学活动说明:通过复习反馈旧知,为新知作铺垫,体现知识的连续性.创设情景提出问题,引入课题小组活动素材:有一位老爷爷非常喜欢孩子,每当有孩子到他家作客时,老爷爷都要拿出糖果招待他们.来一个孩子就给这个孩子一块糖,来两个孩子就给每个孩子两块糖,来三个孩子就给每个孩子三块糖……(1)地一天有a个小男孩一起去了老爷爷家,老爷爷一共给了他们_______块糖;(2)第二天有b个小女孩一起去了老爷爷家,老爷爷一共给了她们_______块糖;(3)第三天这(a+b)个小孩子一起去了老爷爷家,老爷爷一共给了他们_______块糖;(4)这些孩子第三天得到的糖果总数与前两天他们得到的糖果总数哪个多?多多少?为什么?教学活动说明:学生分组讨论,从有趣的分糖情景中理解(a+b)2与a2+b2的关系.可激发学生学习的欲望,体现循序渐进的原则,利于运用所学知识解决实际问题从而引出课题.探究(a+b)2的几何意义1、(两人合作探究):请同学们用自制长方形、正方形卡片拼出一个大正方形.按以下要点思考:(1)大正方形的边长是多少?(2)写出每一块卡片的面积.(3)用不同的形式表示正方形的总面积,并进行比较,你发现了什么?(a+b)2=a2+2ab+b2教学活动说明:由于正方形的总面积有多种表示方式,学生通过自己动手操作,观察、对比、猜想,了解(a+b) 2=a2+2ab+b2的几何背景,对此公式有了一个直观的认识.2、(学生猜想):(a-b) 2=?教学活动说明:学生在直观认识的基础上,从代数角度推导公式,可以进一步理解算理.鼓励学生自己探索,鼓励算法多样化.知识归纳交流活动(学生活动):用自己所理解的语言叙述公式.理解并掌握公式的结构特征.教学活动说明:有意识培养学生有条理的思考和语言表达能力,在交流的氛围中分享同学的想法.公式的运用(师生合作学习):两数和(差)的平方公式计算第一题组(1)(a+1)2;(2)(a+3)2;(3)(2a+3b)2;(4)(2a+b)2;第二题组(1)(x-1)2;(2)(x-3)2;(3)(2x-3y)2;(4)(2x-y)2;第三题组(1)(-2m+n)2;(2)(-2m-n)2;(3)10012;(4)9992.(教学活动说明):帮助学生理解公式中字母的广泛性,在练习的过程中掌握书写的格式.体会公式的应用价值.六、学生反馈练习(学生四大组竞赛活动):(1)(2x+y)2;(2)(5a +4b)2;(3)972;(1)(2x-y)2;(2)(5a -4b)2;(3)2022;(1)(x+2y)2;(2)(4a +5b)2;(3)1012;(1)(x-2y)2;(2)(4a-5b)2;(3)992.(教学活动说明):由每个组的组长抽题交给本组成员,限定每人只能做一题然后传给下一个同学,比速度、比合作、比准确,通过学生的共同努力完成任务.在巩固知识的同时培养团队精神和荣誉感.。

沪科版数学七年级下册(教学设计)《8.3 完全平方公式与平方差公式》

沪科版数学七年级下册(教学设计)《8.3 完全平方公式与平方差公式》

《8.3 完全平方公式与平方差公式》平方差公式是多项式乘法的后续学习及再创造活动的结果,体现教材从特殊——一般的意图,它在整式乘法,因式分解,分式运算及其它代数式的变形中起着十分重要的作用,因此它是构建学生有价值的数学知识体系并形成相应数学技能的重要内容,它是让学生感悟换元思想,感受数学的再创造性的好素材。

教材为学生在数学活动中“获得数学”的思想方法、能力素质提供了良好的契机,是学生感受数学再创造的好素材,同时对平方差公式在整式乘法、因式分解及其代数运算中起着举足轻重的作用,是今后学习的坚实基础。

【知识与能力目标】经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算;知道平方差公式的几何意义。

【过程与方法目标】在探索平方差公式的过程中,发展学生的符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美。

【情感态度价值观目标】激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力。

【教学重点】平方差公式的推导和应用。

【教学难点】理解掌握平方差公式的结构特点及灵活运用平方差公式解决实际问题。

课件、多媒体、练习本。

一.创设情境,导入新课1.复习多项式与多项式相乘法则2.计算下列式子:(1)(a+2)(a-2)(2)(3-x)(3+x)(3)(2m+n)(2m-n)学生分组讨论计算,集体纠正。

观察等式,并大胆猜想(a+b)(a-b)= 22a b-师生用多项式与多项式相乘法则验证成立,学生观察等式特征,总结平方差公式的文字语言:两数和与这两数差的乘积等于这两数的平方差。

二.共同探究,获取新知1.教师多媒体出示:下图是一个边长为a的大正方形,割去一个边长为b 的小正方形.小明想将剩余部分拼成一个长方形。

问:小明能拼成功吗?学生思考发现,可以拼成,如图2。

(1)请表示两图中阴影部分面积:图2:s=(a+b)(a-b);图1:s=22-a b(2)比较图1、2的结果,你能得到什么结论?(a+b)(a-b)=22-a b通过以上操作、观察、总结,使学生了解平方差公式的几何解释,从另一角度说明平方差公式的合理性。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案一、教学目标1. 知识与技能:(1)让学生掌握完全平方公式的推导过程;(2)能够运用完全平方公式解决相关问题。

2. 过程与方法:(1)通过小组合作、讨论的方式,培养学生探究问题的能力;(2)利用完全平方公式,培养学生解决实际问题的能力。

3. 情感态度与价值观:(1)激发学生对数学知识的兴趣;(2)培养学生勇于挑战、克服困难的精神。

二、教学重点与难点1. 教学重点:(1)完全平方公式的记忆与运用;(2)完全平方公式的推导过程。

2. 教学难点:(1)完全平方公式的灵活运用;(2)完全平方公式的推导过程。

三、教学准备1. 教具准备:(1)黑板、粉笔;(2)投影仪、PPT。

2. 学具准备:(1)练习本;(2)计算器。

四、教学过程1. 导入新课(1)复习相关知识:平方差公式、完全平方公式;(2)提问:完全平方公式是什么?能解决哪些问题?2. 自主学习(1)让学生自主探究完全平方公式的推导过程;3. 课堂讲解(1)讲解完全平方公式的推导过程;(2)举例说明完全平方公式的应用。

4. 课堂练习(1)布置练习题,让学生运用完全平方公式解决问题;(2)学生互相讨论,教师巡回指导。

(2)提出拓展问题,激发学生思考。

五、课后作业(1)已知一个数的平方根是6,求这个数;(2)一个长方形的长是8厘米,宽是5厘米,求长方形的周长和面积。

六、教学评估1. 课堂观察:观察学生在课堂上的参与程度、提问回答情况以及练习时的表现,了解学生的掌握情况。

2. 练习批改:对课后作业进行批改,评估学生对完全平方公式的理解和应用能力。

3. 学生反馈:收集学生对课堂内容和教学方法的反馈,以便调整教学策略。

七、教学反思1. 反思教学内容:检查本节课的教学内容是否全面、深入,是否符合学生的认知水平。

2. 反思教学方法:思考教学过程中使用的教学方法是否有效,是否有助于学生的理解和记忆。

3. 反思教学效果:根据学生的课堂表现和作业完成情况,评估教学效果,确定下一步的教学计划。

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案第一章:完全平方公式简介1.1 学习目标了解完全平方公式的概念和意义。

学会使用完全平方公式进行计算。

1.2 教学内容完全平方公式的定义:对于任意实数a和b,有(a+b)^2 = a^2 + 2ab + b^2。

完全平方公式的推导过程。

完全平方公式的应用示例。

1.3 教学活动通过实例引入完全平方公式的概念。

引导学生通过观察和思考推导完全平方公式。

让学生通过练习题应用完全平方公式进行计算。

第二章:完全平方公式的应用2.1 学习目标学会使用完全平方公式解决实际问题。

能够运用完全平方公式进行二次方程的求解。

2.2 教学内容完全平方公式在实际问题中的应用示例。

利用完全平方公式求解二次方程的方法。

2.3 教学活动通过实际问题引入完全平方公式的应用。

引导学生运用完全平方公式解决实际问题。

让学生通过练习题求解二次方程。

第三章:平方差公式的介绍3.1 学习目标了解平方差公式的概念和意义。

学会使用平方差公式进行计算。

3.2 教学内容平方差公式的定义:对于任意实数a和b,有(a-b)(a+b) = a^2 b^2。

平方差公式的推导过程。

平方差公式的应用示例。

3.3 教学活动通过实例引入平方差公式的概念。

引导学生通过观察和思考推导平方差公式。

让学生通过练习题应用平方差公式进行计算。

第四章:平方差公式的应用4.1 学习目标学会使用平方差公式解决实际问题。

能够运用平方差公式进行二次方程的求解。

4.2 教学内容平方差公式在实际问题中的应用示例。

利用平方差公式求解二次方程的方法。

4.3 教学活动通过实际问题引入平方差公式的应用。

引导学生运用平方差公式解决实际问题。

让学生通过练习题求解二次方程。

第五章:完全平方公式与平方差公式的综合应用5.1 学习目标学会综合运用完全平方公式和平方差公式解决实际问题。

能够灵活运用两个公式进行计算和求解问题。

5.2 教学内容完全平方公式和平方差公式的综合应用示例。

实际问题中综合运用两个公式的方法。

2019年(春)七年级数学下册 8.3《完全平方公式与平方差公式》教案3 (新版)沪科版.doc

2019年(春)七年级数学下册 8.3《完全平方公式与平方差公式》教案3 (新版)沪科版.doc

2019年(春)七年级数学下册 8.3《完全平方公式与平方差公式》教案3 (新版)沪科版教学目标:掌握完全平方公式和平方差公式以及图形表示.教学重难点:会利用完全平方公式和平方差公式进行计算.教学过程:完全平方公式[复习回顾]1、多项式与多项式的乘法法则: .2、计算:(1)(a+b)(a+b)(2)(a-b)(a-b)[探索新知](一)完全平方式1、(a+b)2等于什么?你能用多项式与多项式相乘法则说明理由吗?(a-b)2呢?由此导出两个公式:(a+b)2=①(a-b)2=②公式①②称为完全平方公式注:①乘法公式实际是几个特殊形式的多项式乘法结果,掌握这些公式,在遇到形式相同的多项式相乘时,就可以直接写出结果,从而省略了乘法运算的过程,达到简化运算的目的.②乘法公式的应用非常广泛,除了要掌握公式的特征,防止用错公式外,还要理解公式中字母的广泛意义.2、完全平方公式的几何背景.你能用课本P68图(1)(2)中图形面积割补的方法,分别说明两个完全平方公式吗?与同伴交流.图(1)中大正方形的面积等于两个小正方形的面积的和再加上两个矩形的面积之和.图(2)中阴影(深色的正方形)面积等于大正方形的面积减去两个矩形面积,再加上重复减去的小正方形面积.3、范例讲解例1:利用乘法公式计算.(1)(3a+2b)2(2)(-4x2-1)2解:(1)(3a+2b)2=(3a)2+2·3a·2b+(2b)2(a+b)2=a2+2·a·b+b2(2)(-4x 2-1)2=(-4x 2)2-2·(-4x 2)·1+12(a -b )2=a 2-2·a ·b +b 2=16x 4+8x 2+1 本题也可以把原式变形为[-(4x 2+1)]2=(4x 2+1)2解法二:(-4x 2-1)2=(4x 2+1)2=(4x 2)2-2·4x 2·1+12 =16x 4+8x 2+1点拔:运用完全平方公式的关键在于准确地确定公式中的a 和b ,首先把原式写成符合公式的结构,然后再运用公式,例如(-a +b )2=(b -a )2,(-a -b )2=(a +b )2,(a +b -c )2=[(a +b )-c ]2或[a +(b -c )例2:利用乘法公式计算.(1)992 (2)(5041)2 分析:要利用完全平方公式,需具备完全平方公式的结构,(1)992转化为(100-1)2,(2)题转化为(50+41)2. (二)平方差公式1、做一做(1)(x +1)(x -1)= =(2)(a +2)(a -2)= =(3)(3x +2)(3x -2)= =(4)(a +b )(a -b )= =观察以上算式及运算结果,你发现了什么?再举两例验证你的发现.点拔:以上每个算式都是两个数的和与这两个数的差相乘,等于这两个数的平方差,我们把这样特殊形式的多项式相乘,作为乘法公式,今后可以直接使用.(a +b )(a -b )= 叫做平方差公式.用语文叙述为:两个数的 与这两个数的 相乘,等于这两个数的 . 注:(1)认识公式的结构特征,要符合公式的结构特征才能运用平方差公式.(2)公式中的a 、b 不仅可以代表数,字母、单项式,还可以是多项式.(3)有些式子表面上不能应用公式,但通过适当变形后能应用公式.2、范例点睛例1:利用平方差公式计算:(1)(2x +y )(2x -y )(2)(-1-3m 2)(-3m 2+1)解:(1)(2x +y )(2x -y )=(2x )2-y 2=4x 2-y 2(a +b )(a - b )=a 2-b 2 例2:利用乘法公式计算:(1)1999×2001 (2)4931×5041 [课堂小结] 本节课你学到了什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式
教学目标:完全平方公式的推导及其应用;完全平方公式的几何背景;体会公式中字母的广泛含义,它可以是数,也可以是整式.
教学重点:(1)完全平方公式的推导过程、结构特点、语言表述、几何解释;
(2)完全平方公式的应用.
教学难点:完全平方公式的推导及其几何解释和公式结构特点及其应用.
教学过程:
一、 激发学生兴趣,引出本节内容
活动1 探究,计算下列各式,你能发现什么规律?
(1)(p +1)2 =(p +1)(p +1)=_________;
(2)(m +2)2=(m +2)(m +2)=_________;
(3)(p -1)2 =(p -1)(p -1)=_________;
(4)(m -2)2=(m -2)(m -2)=_________.
答案:(1)p 2+2p +1; (2)m 2+4m +4; (3)p 2-2p +1; (4)m 2-4m +4. 活动2 在上述活动中我们发现(a +b )2=2
22b ab a ++,是否对任意的a 、b ,上述式子都成立呢?
学生利用多项式与多项式相乘的法则进行计算,观察计算结果,寻找一般性的结论,并进行归纳,用多项式乘法法则可得
(a +b )2=(a +b )(a +b )= a (a +b )+b (a +b )=a 2+ab +ab +b
2
=a 2+2ab +b 2.
(a -b )2=(a -b )(a -b )=a (a -b )-b (a -b )=a 2-ab -ab +b
2 =a 2-2ab +b 2

二、问题引申,总结归纳完全平方公式 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即
(a + b )2=a 2+2ab +b 2,
(a -b )2=a 2-2ab +b 2.
在交流中让学生归纳完全平方公式的特征:
(1)左边为两个数的和或差的平方;
(2)右边为两个数的平方和再加或减这两个数的积的2倍.
活动4 你能根据教材中的图8-8中的面积说明完全平方公式吗?
三.例题讲解,巩固新知
例3:运用完全平方公式计算
(1)(4m+ n)2 ; (2) (y-1/2)2
补充例题:运用完全平方公式计算
(1)(-x+2y)2;(2)(-x-y)2; (3) ( x + y )2-(x-y)2.
说明:(1)题可转化为(2y-x)2或(x-2y)2,再运用完全平方公式;
(2)题可以转化为(x+y)2,利用和的完全平方公式;
(3)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.例 4:运用完全平方公式计算
(1)1022;(2)992.
思考:(a+b)2与(-a-b)2相等吗?为什么?
(a-b)2与(b-a)2相等吗?为什么?
(a-b)2与a2-b2相等吗?为什么?
练习:课本69页 1 ;2
补充例题:
(1) 如果x 2 + kxy + 9y2是一个完全平方式,求k的值
(2) 已知x+y=8,xy=12,求x2 + y2 ;(x - y )2的值
(3) 已知a + 1/a = 3 ,求 a2 + 1/a2
四、归纳小结、布置作业
小结:完全平方公式.
作业:课本71 页习题 2 ;。

相关文档
最新文档