弹性波动力学复习
弹性波动力学
学习意义:理解不同边界条件下的地震波波动方程的含义,理解各种弹性力学参数的物理意义并将参数和地下介质的岩性问题联系起来,最终为地震剖面的岩性解释服务。
刚体:变形忽略不计的物体弹性波:扰动在弹性介质中的传播波前面:波在介质中传播的某个时刻,介质内已扰动的区域和未扰动区域间的界面称为波前面地震波分类:纵波横波,平面波球面波柱面波,体波界面波表面波哑指标:在同一项中重复两次从而对其应用求和约定的指标自由指标:在同一项中出现一次因而不约定求和的指标各项同性张量:如果一个张量的每个分量都是坐标变换下的不变量,则称此张量为各项同性张量张量性质:二阶实对称张量的特征值都是实数:二阶实对称张量对应于不同特征值的两个特征向量垂直:二阶实对称张量总存在三个相互垂直的主方向:在主轴坐标系内二阶实对称张量的矩阵形式是对角形:三个相互垂直主方向的右手坐标系为主轴坐标系弹性:物体受外力时发生形变,外力消除时物体回到变形前的水平弹性变形:在弹性范围内发生的可恢复原状的变形弹性体:处于弹性变形阶段的物体弹性波动力学基本假设:物体是连续的:物体是线性弹性的:物体是均匀分布的:物体是各项同性的:小变形假设:无体物初应力假设位形:弹性体在任意时刻所占据的空间区域参考位形:弹性体未受外力作用处在自然情况下的位形运动:刚性平移,刚性转动,变形应变主方向:如果过p点的某个方向的线源,在变形后只沿着他原来的方向产生相对伸缩主应变:沿着应变主方向的相对伸缩体力:连续分布作用于弹性体每个体元上的外力称为体力面力:连续分布作用于弹性体表面上的力运动微分方程的物理意义:表示应力张量在弹性体内部随点位置变化时应满足的关系式内能:弹性体在某个变形状态下,其内部分子的动能以及分子之间相互作用具有的势能总和应变能密度:单位体积内的弹性体所具有的应变能广义胡克定律:线性弹性体内一点处的应力张量分量可以表示为该点处应变量张量的线性齐次方程动弹性模量:由介质的速度参数表达的弹性模量极端各向异性弹性体:过p点任意方向都不同的弹性体粘滞力:实际流体中两层流体相互滑动流体间相互作用的阻力理想流体介质:可以将粘滞力忽略的流体无旋波:无旋位移场的散度对应弹性体的涨缩应变场以波的形式传播(涨缩应变场)无散波:无散位移场的旋度对应弹性体的转动情况以波的形式运动平面波:波前面离开波源足够远时脉冲型和简谐型均匀和非均匀平面波非频散波:波的传播速度仅仅依赖媒介密度拉美系数等而与波的频率无关频散波:波的传播速度与频率有关频散:初始扰动的没一个简谐成分都以不同速度前进,从而初始波形在行进中发生了变化相速度:简谐波的传播速度群速度:由简谐波叠加而成的波其合成振幅的传播速度非均匀平面波:如果波的等位相面各点振幅不同,既等位相面和等振幅面不平行球面波:弹性媒质的位移矢量场具有球对称性,且只是空间变量和时间变量的函数1、证明:;2、3、4、5、如果,,,证明:;分析:由于标量对坐标的选择无关,因此,如果证明了物理量在坐标变换前后相等,即可以认为此物理量是标量。
长江大学弹性波动力学复习纲要
知识点杨氏模量:正应力与正应变的比例系数(xx xxe E σ=)泊松比:表示物体横向应变与纵向应变的比例系数,也称横向形变系数 (纵向应变横向应变=∆∆∆-=00l b bν) 应力张量(正应力、切应力、主应力)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡zz yz xz zy yy xy zx yx xx σσσσσσσσσ——应力张量 正应力:n n p n n n nσσσ==,切应力:n n p σστ -=主应力:如果通过一点某截面上只有正应力而没有切应力,则该面为主应力面,该正应力为主应力柯西公式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x zz yz xz zy yy xyzx yx xx nz ny nx n n n σσσσσσσσσσσσ —— Caudy (柯西公式)应变张量(正应变、切应变、主应变)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡zz yz xz zy yy xy zx yx xx e e e e e e e e e ——应变张量 正应变:l l xxe ∆=——沿x 方向的小线元伸长量 切应变:θθθθθe e xx ==∆=∆cos sin )sin(主应变:物体在变形过程中,线段只沿它原来的方向发生伸长与缩短,该方向上的应变称为主应变(变形过程中方向保持不变,该方向称为应变主方向)体应变:体积相对改变量θ=-'v v v旋转张量:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000x y x zy z w w w w w w ——旋转张量 广义胡克定律:在弹性体中,任意一点,6个应力张量中的每个分量均是六个应变张量的线性函数,反之亦然。
(本构方程)能流密度: 能流密度矢量:单位时间内通过与它垂直的单位截面积的机械能n vK zz yz xz zy yy xy zx yx xx I I I t w t v t u z y x ∙=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂∂∂σσσσσσσσσ 能量的流动方向与波的传播方向一致,其大小于速度v 和机械能密度K 成正比。
弹性波动力学复习提纲课件
对处理后的数据进行统计分析,得出试样材料的弹性波传播特性及 变化规律。
结果展示
通过图表、图像等方式将分析结果进行可视化展示,便于理解和记 忆。
弹性波的应用实例
地球物理学中的弹性波研究
地震波传播与地球内部结 构研究
地球内部结构复杂,地震波的传播规律对于 揭示地球内部构造、地震预测等具有重要意 义。弹性波在地球物理学中广泛应用于地震 波分析、震源机制解等研究。
弹性波动力学复 习提纲课 件
目录
绪论
弹性波动力学的研究对象
01 弹性波:在弹性介质中传播的波动现象。 02 弹性波的传播特性:波动速度、波长、频率等。 03 弹性波的激发与观测:物理实验与观测方法。
弹性波动力学的研究方法
理论分析
基于物理定律建立弹性波传播的控制方程。
数值模拟
利用计算机求解控制方程,模拟弹性波传播过程。
利用Green定理建立表示连 续体动力学的边界积分方程。
离散化方程
将边界积分方程离散化为线 性方程组。
边界条件处理
需要在边界上使用适当的边 界条件。
弹性波的实验研究
实验设备与材料
发射器
用于产生弹性波的设备,如声源、震动器等。
接收器
用于探测和记录弹性波的设备,如麦克风、加速度计等。
试样材料
研究不同材料对弹性波传播特性的影响,如金属、非金属、复合 材料等。
性,取得了一系列重要成果。
03
数值模拟与实验
发展了多种数值模拟方法和实验技术,有效地模拟和观测了弹性波传播
过程中的各种现象和规律。
存在的主要问题与挑战
复杂结构中弹性波的传播
在复杂结构(如多层、夹杂、周期性等)中, 弹性波的传播特性更加复杂,需要进一步深 入研究。
弹性波动力学
得分概念题(本大题25分)1. 试分别说明应变张量中e 11、e 12及ii e θ=的几何意义。
542. 已知一般平面位移波的表达式为()(),t f ct =⋅-u x x n d ,试讨论n 和d 的物理意义;纵波和横波中n 与d 之间有什么关系?3. 如图所示的具有自由界面的弹性半空间体,已知势函数分别为φ、ψ,试以势函数φ和ψ表达二维平面运动问题的应力边界条件。
提示:()2,3,3,2e e αβαβαβαγγββγγατλφδμφμψψ=∇+++4. 已知非均匀平面简谐波的位移表达式为()(),e e i t t A ω'⋅-''-⋅=k x k x u x d ,试指出其等振幅面和等位相面。
5. Rayleigh 面波有哪些特点? 199二、证明题(本大题20分)1. 若应力张量场为ij ij p τδ=-,其中()123,,p p x x x =。
试证此时运动微分方程x 1得分为:p ρρ-∇+= f u4-182. 设一弹性体处于平面应力情形,其内的应力张量场为:()()()()()1112121212122212,,0,,0000ij x x x x x x x x τττττ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)试推导出此种情形的平衡方程(2)如果21122x φτ∂=∂,22221x φτ∂=∂,21212x x φτ∂=-∂∂;其中()12,x x φ是个标量函数。
试证明此应力分量恒满足体力为零的平衡方程4-19 三、计算题(本大题55分)1.(10分)设弹性体只在坐标面ox 1x 2平面内发生变形,即e 33=e 13=e 23=0。
在该平面内,现在测量得过点P 与ox 1成30°、90°、150°方向的正应变分别为a 、b 和c 。
试求该点处的e 11、e 22和e 12。
3-12.(10分)如图所示一完全淹没于水中的梯形截面坝体,设水的密度为ρ。
弹性波动力学2014
3 I2 II III 0
其中,
I Tii T 11 T 22 T 33
II 1 2 (Tii Tjj TijTij )
III det(Tij )
I,II,III 分别叫做二阶张量的第一、第二和第三不变量。 其特征向量满足的方程为:
(Tij ij )n j 0 n i n i 1
6.标量的梯度、向量的旋度、散度等的混合计算等。 第二章 1. 内力、附加内力、体应变、泊松比
2. 弹性波、波阵面、波速、纵波、横波、平面波、球面波、 柱面波、体波、面波 3. 弹性波动力学的基本假设: (连续性、线性弹性、均匀性、 各向同性、微小变形) 第三章 1.位形、参考位形、变形、运动; 2.位移、速度、加速度,空间点和质点的统一; 3.小变形应变张量( eij )及其各个分量的意义;
1. 弹性波(SV 波、SH 波、P 波)传播到介质和空气分界面, 入射波、反射波的类型及传播方向,垂直入射时各个波的(位 移)振幅系数。 2,弹性波(SV 波、SH 波、P 波)传播到弹性介质分界面, 入射波、反射波、透射波的类型及传播方向,垂直入射时各个 波的(位移)振幅系数等 3. 面波的基本概念。 第九章(本次考试不要求) 求解弹性波动力学问题的方法(理论推导,即解析解;数值方 法,如有限单元法、有限差分法、伪谱法等) ,一维有限差分 法合成地震记录的编程实现。 本次考试题型及分数分布: 一、名词解释 (每小题 5 分,共 30 分) 二、简答(每小题 8 分,共 32 分) 三、计算 (1 小题,共 15 分) 四、 (15 分)推导(一小题,共 15 分) 五、 (8 分)波场分析。
第一章 1.指标记号,求和约定,自由指标,哑指标 2.三个符号,克罗尼克尔符号( ij )排列符号( eijk ), 以及微分符号 ( ).
弹性波与结构动力学
弹性波与结构动力学引言:弹性波是物质中传播的一类波动现象,它在结构动力学中起着重要的作用。
通过研究弹性波的传播特性,我们可以深入了解结构的振动行为,进而为工程结构的设计和安全性评估提供理论支持。
一、弹性波的基本概念弹性波是一种沿着介质中传递的机械波,其传播过程中介质的形状和体积保持不变。
弹性波包括两种类型:纵波和横波。
纵波是沿传播方向的波动,介质中的粒子在波传播过程中沿波的传播方向振动。
而横波是垂直于传播方向的波动,介质中的粒子在波传播过程中垂直于传播方向振动。
二、弹性波的传播特性弹性波在传播过程中受到介质本身刚度和密度的影响。
根据介质的性质不同,弹性波的传播速度也不同。
例如,在固体中,纵波的传播速度大于横波的传播速度;而在液体中,纵波和横波的传播速度相等。
此外,弹性波的传播还受到外部条件的限制,如介质的边界条件和存在的障碍物。
这些因素会使波动的传播方向改变,产生反射、折射和散射现象。
三、结构动力学中的应用结构动力学旨在研究结构体在受到外界力作用下的响应行为。
通过研究弹性波的传播和结构的振动特性,我们可以了解结构在承受外力时的变形和应力分布情况,从而评估结构的安全性和稳定性。
1. 弹性波的成像技术利用弹性波的传播特性,我们可以将其应用于结构的成像技术中。
通过在结构表面上布置传感器,并采集传感器上的信号信息,可以获得结构内部的振动分布情况。
这对于检测结构的缺陷和损伤以及评估结构的健康状况具有重要意义。
2. 弹性波在地震工学中的应用地震是一种具有较高频率和较大能量的弹性波。
研究地震波的传播行为可以帮助我们了解地震的发生机理和地震波对结构的影响。
通过地震波的预测和分析,可以为建筑物的抗震设计和城市的抗震规划提供科学依据。
3. 结构动力响应的数值模拟结构动力学中的数值模拟是利用计算机模拟方法来分析结构体在受到外力激励下的响应行为。
其中,弹性波的传播特性被广泛应用于模拟结构的振动响应。
通过建立结构的有限元模型和适当的边界条件,可以计算结构在不同外力作用下的动态行为,为工程师提供设计和评估结构安全性的参考。
弹性力学复习资料
弹性力学复习资料
弹性力学是研究物体在受到外力作用后发生形变和产生应力的力学学科。
以下是一些重要的知识点,供参考复习:
一、应力和应变
1.应力
应力是指物体在受到外力作用时所产生的内部反抗力。
根据力的方向和受力面积的大小,应力可以分为拉应力、压应力、剪应力等。
2.应变
应变是物体在受到外力作用后所发生的形变程度。
同样根据形变的不同方向,应变也可以分为拉应变、压应变、剪应变等。
3.杨氏模量
杨氏模量是衡量固体材料抵抗拉伸变形能力的物理量,是指单位面积受力时所产生的相对应变。
二、胡克定律
胡克定律是描述弹性形变的经验定律,它表明固体的形变量与受到的外力成正比,形变方向与受力方向一致。
其公式为F=kx,其中F是外力,x是形变量,k是所谓的弹性系数,也称为“胡克系数”。
三、弹性势能
弹性势能是指物体在受到外力形变后所具有的弹性能量。
当物体恢复到原来的形态时,这个弹性能量就被释放出来,称为弹性势能。
四、弹性波
弹性波是指弹性体中的某一点在受到外力时所产生的振动。
根据振动方向和速度的不同,可以分为纵波和横波等。
以上是弹性力学中的一些重要知识点,需要在复习中细心理解和掌握。
弹性波动力学复习纲要
§1.1 指标记号及两个符号单位基向量:今后会遇到的应变张量ij e 、应力张量ij τ 等。
112233i i x x x x =++=x e e e e (2)有某个指标重复出现一次且仅一次 就表示对该指标在其取值范围内取一切值,并对所得到的对应项求和。
该求和指标也称为哑标。
另一指标i 不参与求和约定,称其为自由指标。
自由指标的个数决定了简写方程代表实际方程的个数,哑标的个数决定了该项所代表的实际求和项的项数。
二、两个符号1、Kronecker 符号ij δ1,0,ij i j i j δ=⎧=⎨≠⎩ 为:()100010001ij δ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ Kronecker 符号的特点:(1) ij ji δδ= (2) i j ij δ=e e (3) 1122333ii δδδδ=++= (4) j ij i a a δ=(5) kj ik ij A A δ=6) ik kj ij δδδ= 例4:向量i i a =a e 和i i b =b e ,有:()i i i a b ±=±a b e 注意:±可作为求和约定中“同一项”的分隔符 i i j j i j i j i j ij i i a b a b a b a b δ====a b e e e e 注意:点乘(包括叉乘符号)符号不能作为“同一项”的分隔符,所以此例中将向量b 的下标换成了j 。
2i j ij i i a a a a a δ===a a 2、排列符号(置换符号):112311230ijk ijk e ijk ijk ⎧⎪=-⎨⎪⎩为的顺时针排列为的逆时针排列取值有重复时§1.2 坐标变换旧系:123ox x x ,单位基向量:i e 新系:123ox x x ,单位基向量:i e 坐标变换系数:()cos ,ij i j i j β==e e e e新旧坐标系下的单位基向量坐标变换规律:,i ij j i ji j ββ==e e e e 新旧坐标系下的空间点坐标变换规律:,i ij j i ji j x x x x ββ==1 23向量f ,在旧系下的分量i f ,新系下的分量为i f ,其坐标变换规律为: ,i ij j i ji j f x f f ββ==向量的解析定义:若有3个量,它们在123ox x x 和123ox x x 的分量分别为i f 和i f ,当两个坐标系之间的变换系数为ij β时,i f 与i f 之间按式,i ij j i ji j f x f f ββ==变换,则这3个量有序整体形成一个向量f ,此3个量为向量f 的分量。
《连续介质力学》期末复习提纲--弹性波理论部分
《连续介质⼒学》期末复习提纲--弹性波理论部分<连续介质⼒学> 期末复习提纲—弹性波理论部分1、⽆界线弹性体中的波传播(1)Helmholtz 定理 a. 定理内容b. 位移场的分解---⽆旋部分与⽆散部分(1)(2u u u =+ ,其中(1)0u ??= ,(2)0u ??=c. 转动向量与体积膨胀率的位移场表⽰(2)21122u ωψ=??=-?, (1)2u θφ=??=?(2)⽆界线弹性体中的P 波与S 波a. 体积膨胀率与转动向量满⾜的波动⽅程(★)2212211112,f c c c λµθθρ+?+??==222222211,2f c c c µωωρ+==b. Helmholtz 势满⾜的波动⽅程222222221211,b B c t c tφφφψ+=?+=??c. 位移场⽆旋部分与⽆散部分满⾜的波动⽅程2(1)(1)2(2)(2)221211,u b u u B u c c ?+?=?+??= d. 纵波与横波的相速度及其⽐值(★)21121221222)21c c c c c c c c ν??=- ===??=-??2、⽆界线弹性体中的平⾯波(1)波阵⾯、平⾯波与球⾯波(2)⼀般平⾯波及其描述(★)a. ⼀般平⾯波位移场的形式(★)(,)()u x t f x n ct d =?-b. 纵横波满⾜的条件及相速度公式(★)20()()()0d n n d c c P wave S wavec d n d n µρλµ?=±?=---++?=c. ⼀般平⾯波的能量密度与能通量密度向量(★)①平⾯纵波的情况(★)能量密度:[][][]222211112211112211()()22()p ij ij i i e uu c f x n c t c f x n c t c f x n c t ετρρρρ=+''=?-+?-'=?- 能通量密度向量:[]2311()p ij i j ue n cf x n c t ?τρ'=-=?- ⼆者关系: 1p p c n ?ε=②平⾯横波的情况(★)能量密度:[][][]222221212221112211()()22()s ij ij i i e uu c f x n c t c f x n c t c f x n c t ετρρρρ=+''=-+-'=- 能通量密度向量:[]2321()s ij i j u e n c f x n c t ?τρ'=-=?- ⼆者关系: 2s s c n ?ε=(2)平⾯简谐波及其描述(★) a. 描述平⾯简谐波的物理量(★) kc ω=,2T πω=,12T ωαπ==,22c cT kππωΛ===2k n n c ωπ==Λ, 222i i k k k k k c ω?===A c T k k x n -ct k ωα--Λ-?振幅 -相速度周期-波数-圆频率波长()-相位-频率-波数向量b. 平⾯简谐波的位移场形式(★)[]()()c o s ()R e R e i k x n c ti k x tu A d k x n c t A d e A d e ω?-?-=?-??c. 平⾯简谐波的能量密度与能通量密度向量及波的强度(★)①平⾯简谐纵波的情形(★)能量密度:1122p ij ij i i e uu ετρ=+ 能通量密度向量:p ij i j u e ?τ=-⼆者的关系: 1p p c n ?ε=平⾯简谐纵波的强度:1T pp dt T ??=?②平⾯简谐横波的情形(★)能量密度:1122s ij ij i i e uu ετρ=+ 能通量密度向量:s ij i j ue ?τ=-⼆者的关系: 2s s c n ?ε=平⾯简谐横波的强度:01T s s dt T=d. ⾮均匀平⾯简谐波位移场满⾜的条件(★)''()k x i k x t u Ade e ω'-??-=?2220k k kk k c k k ω?''''''?-?=='''?=?e. ⾮均匀平⾯简谐波的传播特征。
成都理工大学弹性波动力学复习题纲
复习要点:第一章1、指标记号及两个符号、求和约定2、坐标变换 坐标变换系数的物理意义,如()ij i j cos ,e e β=,会计算ij β3、会进行张量的梯度、散度、旋度、拉普拉斯运算4、牢记散度定理第二章弹性波动力学的任务;弹性动力学的基本假设第三章1、小变形情形下应变张量的公式推导(几何方程)2、小变形情形下位移的分解,各部分代表的意义3、小变形情形下的应变张量及转动张量计算4、小变形情形下,过一点的线元长度的变化及两线元间夹角的变化(会作相应公式的推导和计算)5、小变形应变张量ij e 的几何解释、ii e 的几何解释及相应公式推导第四章1、应力向量、应力状态、应力场2、应力张量、会利用Cauchy 应力公式求过一点的任意面元的应力向量3、运动微分方程的推导4、边界条件(给出任意弹性体,要求会写出其对应的应力边界条件)第五章1、各向同性线弹性体的广义HOOKE 定律(物理方程)——两种表示方法的相互切换2、各弹性系数之间的关系3、为什么说应力球张量只引起体积的改变,而应力偏张量只引起形状的改变?4、为什么在各向同性线性弹性体中应力张量的主方向与应变张量的主方向总是重合的?第六章1、线弹性动力学问题的基本方程(运动微分方程,几何方程,本构方程);边界条件及初始条件2、线弹性动力学问题的提法(用位移表示的方程:Navier 方程、边界条件等)3、二维运动问题4、能量密度及能通量密度向量(相关方程的物理意义)第七章1、位移的无旋部分及等体积部分的划分3、无界弹性体中的平面波:一般平面波位移表达式中各参量代表的物理意义,简单公式的推导什么是非均匀平面简谐波、等振幅面、等位相面?4、二维运动问题中各位移分量与lamé势之间的关系第八章§8.1具有自由界面的弹性半空间中的平面简谐波1、会利用lamé势表示应力边界条件2、会根据lamé势或位移的表达式来判定波的类型、传播方向、入射还是反射波?入射角及反射角3、根据振幅有界的条件能够准确判断波的表达式中哪些不可能发生3、什么是视速度、波型转换、临界角?4、会灵活利用边界条件求反射系数5、Rayleigh面波有哪些特点?(为什么Rayleigh面波在地震中会造成很大的破坏)PS:老师重点讲解的例题及课后习题要实实在在弄懂!。
弹性波动力学重点复习题汇总
1.什么是弹性体?当一个物体受到外力作用,在它的内部质点间发生位置的相对变化,从而使其形状改变,当外力作用取消后,物体的应力、应变状态立刻消失,并恢复原有的形状。
这类物体称为弹性体。
2.物体在什么条件下表现为弹性性质,在什么条件下表现为塑性性质在外力作用较小,作用时间较短情况下,大多数物体包括岩石在内,表现为弹性体性质。
外力作用大,作用时间长的情况下,物体会表现为塑性体性质。
3.弹性动力学的基本假设有哪些?(1)介质是连续的(2)物体是线性弹性的(3)介质是均匀的(4)物体是各向同性的(5)物体的位移和应变都是微小的(6)物体无初应力4.什么是弹性动力学中的理想介质? 理想介质:连续的、均匀的、各向同性的线性完全弹性介质。
3•什么是正应变、切应变、相对体变 ?写出它们的位移表达式。
答:正应变是弹性体沿坐标方向的相对伸缩量。
切应变表示弹性体扭转 或体积元侧面角错动。
相对体变表示弹性体体积的相对变化。
:u:u :V :w :u:xexy =十 -:y e zx.x:x +--- :z:u?veyyeyz::V:w +;-X:z■ y::w .泊e yz =■:v.:we zz::w:x;z:z:ze =.:u .:vexxeyy-ezz= + +.x ;y;z4•什么是旋转角位移?写出它与(线)位移的关系式 旋转角位移为体积元侧面积对角线的转动角度。
5 •试解释应变张量和旋转张量中各分量的物理含义 e xx ,e yy ,e zz 分别表示弹性体沿x 、y 、z 方向的相对伸长量;e xy ,e yz ,e zx 分别表示平行于坐标面xoy 、yoz 和xoz 的侧面积的角错动量。
• 'X、• 'y 、• 'z 分别表示与坐标面yoz 、xoz 和xoy 平行的侧面积对角线围绕x 、y 和z 轴的旋转角。
11.设弹性体内的位移场为s =(rx 」y )i (2x *2y )j ,其中都是与1相比很小的数,试求应变张量、转动角位移矢量及体积膨胀率(相对体变)。
弹性波动力学 总复习 考点
综合部分-掌握若干“思路”
流体中声波波动方程的建立;
声波在两种流体界面上的反射和折射;
(能够写出给定坐标系的波函数)
声波遇到中间层的反射和折射;
声波在波导管中的传播;
声源的辐射。
固体中声场部分
基本概念
正应变、切应变、体应变;
正应力、切应力、主应力;
泊松比、杨氏模量、体积弹性模量; SH波、SV波; 第一临界角、第二临界角。
基本概念
声压、声场、声波传播速度与质点的振动速度、
声阻抗率; 声压级(会计算)与声强级; 临界角; 制导波、频散波; 声波导管的截止频率和简正频率。
流体中声场部分
基本原理和技能
两种流体界面的声学边界条件; 声波在两种流体界面上反射和透射的影响因素; 声波透过中间层的各种影响因素; 在波导管中只传播主波的条件,在波导管中传播某阶
综合部分-掌握若干“思路”
固体中弹性波波动方程的建立;
弹性波在流体/固体界面上的反射和折射;
(能够写出给定坐标系的波函数)
弹性波在两种固体界面上的反射和折射;
弹性波在多层固体介质中的反射和透射;
瑞利波、板波和洛夫波的传播。
复习提示
仔细看书(一般复习、全面掌握);
按本节课指出的复习提纲进行重点复习;
弹性波动力学
集中参量系统的振动 流体中声场 声辐射 固体中声场
总复习
质点振动部分
基ቤተ መጻሕፍቲ ባይዱ概念
集中参量系统、单自由度集中参量系统的简
谐振动、阻尼振动和受迫振动,3dB带宽。 基本原理和技能 简谐振动、阻尼振动和受迫振动的表达式; 振动系统频率特性曲线的分析和测量方法。
弹性波动力学复习提纲课件
04 弹性波的散射和干涉
弹性波的散射
弹性波散射的定义
弹性波在传播过程中遇到障碍物时,其传播方向和能量分布发生变化的现象。
弹性波散射的分类
瑞利散射、米氏散射、共振散射等。
弹性波散射的物理机制
波动与障碍物相互作用,产生反射、折射、吸收等现象。
弹性波散射的数学模型
散射波函数、散射系数等。
弹性波的干涉
三维波动方程
总结词
三维弹性波的波动方程是描述弹性波在三维空间介质中传播的基本方程。
详细描述
三维波动方程适用于描述任意方向传播的波,适用于各种复杂的三维介质结构。该方程全面考虑了波 在三维空间中的传播特性,包括波的传播方向、速度以及介质中质点的位移、速度和加速度。
边界条件和初始条件
总结词
边界条件和初始条件是确定弹性波波动方程解的重要约束条件。
随着入射角的增大,反射系数会发生变化。
弹性波的折射
1 2
折射系数
描述入射波与折射波之间振幅关系的系数。
斯涅尔定律
入射角等于折射角。
3
折射系数与入射角的关系
随着入射角的增大,折射系数也会发生变化。
全反射和透射
要点一
全反射
当入射角达到某一临界值时,折射波消失,只剩下反射波 。
要点二
透射
当入射角小于某一临界值时,折射波存在,且其振幅与入 射波相似。
详细描述
通过向物体内部发射弹性波并检测反射回来的波,可 以判断物体内部的缺陷、损伤等,如飞机、高铁等大 型机械的检测,确保其安全运行。
声呐探测
总结词
利用弹性波在水中传播的特性进行水下探测和通信。
详细描述
声呐系统通过向水下发送声波并接收回波,可以探测水 下目标的位置、大小、形状等信息,广泛应用于海洋科 学研究、水下考古等领域。同时,声呐技术还可用于水 下通信,实现水下设备之间的信息传递。
中国海洋大学《弹性波动力学》期末复习资料
一,名词解释1、 弹性:物体的变形随外力的撤除而完全消失的属性。
2、 塑性:物体的变形随外力的撤除后仍部分残留的属性。
3、 外力:是指其它物体作用在所研究物体上的力。
4、 面力:分布在物体表面上各点的外力,称为面力。
5、 应力:截面上任意点内力的集度称为应力。
6、 正应力:物体在某截面上一点的应力是矢量,这个矢量,一般来说不与截面垂直,也不与截面相切,通常把它分解为垂直于截面方向的分量σ和切于截面的分量τ,σ即为正应力。
7、 剪应力:物体在某截面上一点的应力是矢量,这个矢量,一般来说不与截面垂直,也不与截面相切,通常把它分解为垂直于截面方向的分量σ和切于截面的分量τ,τ即为剪应力。
8、 应力分量:垂直于三个坐标轴的平面上正应力和剪应力的投影。
9、 线应变:物体内一点沿某一方向线元受力后,该线元长度的改变量与原长度比值的极限称为该方向的线应变。
10、剪应变:过物体内任一点引两条相互垂直线段,变形后,这两个线段之间的夹角改变量(用弧度表示)定义为该点在这两个方向的剪应变,也称为角应变。
11、平面波:等相位面是平面,且波阵面与波的传播方向垂直的弹性波。
12、频散:不同谐波成分组成的波,虽然受同一起始扰动下,但各自以不同的速度传播,并且起始扰动的形状在传播中将产生变化。
扰动经传播以后将扩展成为一更长的波列,这种现象我们称之为频散。
13、群速度:产生频散时,波的传播速度与组成这个波的各个谐波成分的相速度是不同的,我们称这个波整体的传播速度为群速度。
14、相速度:指一定的相位移动的速度。
15、自由界面:地表应力为零的界面。
二,证明题1、 如果某一连续体内位移场是某一标量φ的梯度,即:φφ∇==grad U,证明:0=⨯∇=U U rot。
证明:)()()(),,(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂∂∂∂∂⨯∇=∇⨯∇=⨯∇=k y x x y j x z z x i z y y z z y x U U rotφφφφφφφφφφ2、 如果连续体内位移场是某一矢量位移ψ的旋度,即ψψ⨯∇==rot U ,证明:0=∙∇=U U div证明:)()()(])()()[()(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂-∂∂∂∂+∂∂-∂∂∂∂+∂∂-∂∂∂∂=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂∙∇=⨯∇∙∇=∙∇=y z x z x y z y z x y x yx z x z y z y x k yx j x z i z y U U div x y z x y z xy z x y z x y z x y z ψψψψψψψψψψψψψψψψψψψ 3、 已知标量φ为空间坐标的函数,即),,(z y x φφ=,且二阶可导,证明: φφ2)(∇=∇∙∇; 证明:φφφφφφφφφφφ2222222)()()(),,()(∇=∂∂+∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂∂∂∂∂∙∇=∇∙∇z y x z z y y x x zy x4、在二维问题中,假设位移位ϕ及ψ都只与x ,y 和t 有关,即(,,)x y t ϕϕ=,(,,)x y t ψψ=,根据位移矢量公式证明二维问题的位移分量为:yx w x y v y x u x y zz ∂∂-∂∂=∂∂-∂∂=∂∂+∂∂=ψψψφψφ,,。
【冲击动力学】第4讲 弹性动力学和弹性波
无体力作用下的弹性动力学方程
E 1
2(1 ) 1 2e x2u2u t 2
E 1
2(1
)
1
2
e y
2
v
2v t 2
E 1
2(1 ) 1 2
e z
2
w
2w t 2
2021/4/3
纵波和横波
静力平衡下的弹性体受到载荷作用时,并不是弹性体的所有部分立刻产生位移、 应力等,而是随着时间的流逝,位移、应力等以波动的形式以一定的速度逐渐 传播的。下面我们介绍两种主要的弹性波:无旋波(纵波)和等容波(横波)
u 0,t
1 2
f
ct
f
ct
+
1 2c
ct
ct
g
s ds
1 2
f
ct
f
ct
+
1 2c
ct
ct
g
s ds
0
Example 2
• For an infinite rod, if the initial displacement and the initial velocity are even functions, then:
ux
x,t
1 2
f
x
ct
f
x
ct
+
1 2c
g
x
ct
g
x
ct
f x f x f x f x
f x f x f x f x
ux
x,t
1 2
f
x
ct
f
x
ct +
1 2c
g
x
《弹性波动力学》质点振动、流体声场、声辐射习题讲稿 081018
质点振动部分作业:1-1,1-5,1-6,1-7 1-5:什么是3dB 带宽?答:在单自由度振动系统的速度振幅的频率特性曲线上(或在质点振动系统的速度振幅的频率特性曲线上),速度振幅比共振峰值处下降0.707倍所对应的两个频率f 1和f 2,则3dB 带宽定义为12f f f -=∆。
可以用3dB 带宽的大小表示频率特性曲线的平坦程度。
0.00.51.01.52.012345678910Bzz1z2评析:大部分同学的答案不完整,没有注明“在单自由度振动系统的振速振幅的频率特性曲线上”这个前提条件,仅简单的用21f f f ∆=-来定义3dB 带宽。
也出现了完全错误答案。
a 、误认为当f ∆是固有频率0f 的3倍时,称为3dB 带宽。
b 、将21z z -误认为3 dB 带宽(注意z 定义,21z z -为相对频率差,带宽是指一段频率范围)。
c 、将21f f f ∆=-定义3dB 带宽的原因混淆,错误的认为21f f f ∆=-=3dB 带宽。
1-7:如何测量一个振动系统的频率响应曲线?答:通过对振动系统施加包含不同频率成份的激励信号,测量其响应,分析其频率响应能力。
有两种测量方法:(1)、扫频法;(2)δ脉冲法。
(1)扫频法 将幅度相等但不同频率的简谐力加在振动系统上,测量每个频率的速度振幅,用描点法作出频率特性曲线。
frequencyForce振振振振(2)δ脉冲法 将含有等幅值的各种频率成份的时域信号(强迫力)加在振动系统上,测量系统的响应,即可得系统得频率特性曲线。
timeForce振动系统评析:个别同学将两种测量方法混淆。
流体中的声场作业:2-2、2-3、2-4、2-52-2如果流体媒质中有体力分布,设作用在单位体积媒质上的体力为(,,,)F x y z t,试导出流体媒质中有体力分布时的声波波动方程。
解:假定媒质为理想流体,是连续和均匀的;声波传播时,媒质中稠密和稀疏的过程是绝热的;媒质中传播的是小振幅声波。
弹性力学(10)讲义版
r r r u = u1 + u 2
没有转动的位移 (无旋 没有体积变化的位移 (等体 r r r r r 的)∇ × u 1 = 0 , u 1 = ∇ Φ 的)θ = ∇ g u 2 = 0 , u 2 = ∇ × Ψ
r r u = ∇Φ + ∇ × Ψ
位移矢量的Stokes分解式
一、无限弹性介质中的无旋波
•当两波通过之后, 又恢复初始的形状 (拉)σ 和大小继续传播。 质点速度v
σ (拉
n
质点速度v
讨论 Ø入射的应力波 经固定端反射得 到同号的应
力波, 固定端处的应力将加 倍。
波速c (拉)σ 质点速度v 波速c (拉)σ 质点速度v n n m m •在两波相遇的整 个期间,中间 截 面mn处的位移及 速度始终为零。 •这种波的 传播及 叠加过程相当于 应力波在固定端 反射的情况。 •入射的应力波 经 固定端反射得 到 同号的应力波, 固定端处的应力 将加倍。 波速c σ (拉) 质点速度v 波速c σ (拉) 质点速度v
质点速度v缩波在自由端反射成 拉伸波,拉伸波反射
•在两波相遇的整 个期间,中间 截 质点速度v 面mn处的应力始 终为零。 (压)σ •这种波的 传播及 波速c 叠加过程相当于 应力波在自由端 波速c 反射的情况。 (拉)σ •压缩波在自由端 反射成拉伸波, 质点速度v 拉伸波反射成压 缩波,自由端截 面处的质点速度 加倍。 m 波速c σ (拉) 质点速度v
&
波动方程的 达朗伯解
函数f与g由边界条件 和初始条件确定 。
解的物理意义:考虑f (x-ct) 这一部分。 Ø取以速度 c沿x正方向移动的 坐标轴 η,η=x- ct ; Ø f (x-ct) = f (η) ,在动坐标系中, 函数值只取决于 坐标η,而与时间 t无关,即函数的图形相对于动坐标 系保持不变; Øf (x-ct)表示一个以速度 c沿x正方向移动 且保持其形 状及大 小不变的行波。
《弹性波动力学》习题
第二层 介质
h
界面3
图 4.21 (a)
图 4.21(b)
3
6) 7)
2
忽略体力作用,试推导弹性细杆中的一维波动方程。 设均匀弹性固体中声标势为φ,声矢势只存在 y 方向分量ψ y ,所有的量与 y 无关, 试用φ和 ψ y 表示虎克 定律(即把各应力用φ和 ψ y 的导数表示出来).
8) 试叙述固体中弹性波波动方程建立的思路。 9) 试分析声波在多层介质中反射和透射时影响反射系数和透射系数的各种可能因素。 10) 试分析声波传播过程中引起声波幅度变化的各种可能原因。
P θi θ r I ΙΙຫໍສະໝຸດ P z θ tT θ tL S
P
x
图 4.12
x
θ tl P 流体 固体 P θ i θ rt θ rl
图 4.18
z
S
P
o
1.0 0.8 0.6 Amplitude 0.4 0.2
界面1
VP = 2500m / s 第一层介质
1000m
界面2
0.0 -0.2 0.00
VP = 3000m / s
按关系式设均匀弹性固体中声标势为声矢势只存在y方向分量所有的量与y无关试用和表示虎克定律即把各应力用和试分析声波在多层介质中反射和透射时影响反射系数和透射系数的各种可能因素
《弹性波动力学》习题
―――标记*者为选作,其它为必作――― 第一章机械振动
1) *试证明,当单质点系统发生速度共振时,简谐力在一个周期内对系统所做的功最大. 2) *有一质点振动系统,被外力所策动,试证明当系统发生速度共振时, 系统每周期的损耗能量与总的振动能 量之比等于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.纳维方程的推导 2.由纳维方程两边去散度和旋度推导纵横波波动 方程 3.由势函数带入纳维方程,得到势函数表示的波 动方程 4.由势函数计算位移场
.
弹性波的传播
1.三维波动方程均匀平面波解及各物理量的含义 2.三维波动方程均匀平面简谐波解及各物理量的含义 3.非均匀平面波的传播条件 4.球面波和柱面波的衰减规律 5.P、SV、SH波的定义 6. P、SV、SH波入射自由界面和分层界面形成的反射和透射示意图 7.面波的特点 8.P波垂直入射分层界面时反射系数和透射系数的计算 9.多层snell定律的完整写法,并根据snell定律说明全反射发生的原因,任举一例说明 全反射现象。 10.根据射线路径示意图,写出三维波动方程均匀平面简谐波解,并解