人教备战中考数学知识点过关培优训练∶相似及答案

合集下载

人教中考数学知识点过关培优易错试卷训练∶相似含详细答案

人教中考数学知识点过关培优易错试卷训练∶相似含详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,求,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则 =________;(3)如图3,若 =k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)【答案】(1)解:如图1中,作PG⊥AC于G,PH⊥BC于H,∵AC=BC,∠ACB=90°,且D为AB的中点,∴CD平分∠ACB,∵PG⊥AC于G,PH⊥BC于H,∴PG=PH,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴ =1(2)(3)解:如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K,易证△PMH∽△PGN,∴,∵,∴,∵DT∥PG,DK∥PH,∴,∴,∴【解析】【解答】解:(2)如图2中,作PG⊥AC于G,PH⊥BC于H,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴,∵△PHC∽△ACB,PG=HC,∴,故答案为:;【分析】(1)作PG⊥AC于G,PH⊥BC于H,根据已知条件可证△PHM和△PGN的两角对应相等,进而可得△PHM∽△PGN,由相似三角形的对应边成比例即可求出。

(2)作PG⊥AC于G,PH⊥BC于H,由两角对应相等,可得△PHM∽△PGN,由相似三角形的对应边成比例可得 = ,由两角对应相等,可得△PHC∽△ACB,又PG=HC,相似三角形的对应边成比例及等量代换即可求出。

人教备战中考数学培优专题复习相似练习题及详细答案

人教备战中考数学培优专题复习相似练习题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【答案】(1)8-2t;(2)解:不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD= ,∴BD=AB-AD=10- ,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8-2t= ,解得:t= .当t= 时,PD= ,BD=10- ,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD= ,BD=10- ,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即 =10- ,解得:t=当PD=BQ,t= 时,即,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)解:如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2× +6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【解析】【解答】(1)根据题意得:CQ=2t,PA=t,∴QB=8-2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA= ,∴PD= .【分析】CQ=2t,PA=t,可得QB=8﹣2t,根据tanA=,可以表示PD;易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形;求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q 的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD PD=BQ,列方程即可求得答案.以C为原点,以AC所在的直线为x轴,建立平面直角坐标系,求出直线M1M2解析式,证明M3在直线M1M2上,利用勾股定理求出M1M2.2.在平面直角坐标系中,O为坐标原点,抛物线y=ax2+(a+3)x+3(a<0)从左到右依次交x轴于A、B两点,交y轴于点C.(1)求点A、C的坐标;(2)如图1,点D在第一象限抛物线上,AD交y轴于点E,当DE=3AE,OB=4CE时,求a 的值;(3)如图2,在(2)的条件下,点P在C、D之间的抛物线上,连接PC、PD,点Q在点B、D之间的抛物线上,QF∥PC,交x轴于点F,连接CF、CB,当PC=PD,∠CFQ=2∠ABC,求BQ的长.【答案】(1)解:当x=0时,y=3,∴C(0,3).当y=0时,ax2+(a+3)x+3=0,(ax+3)(x+1)=0,解得x1=- ,x2=-1.∵a<0,∴- >0,∴A(-1,0)(2)解:如图1,过点D作DM⊥AB于M.∵OE∥DM,∴,∴OM=3,∴D点纵坐标为12a+12.∵tan∠EAO= =3a+3,∴OE=3a+3,∴CE=OC-OE=3-(3a+3)=-3a.∵OB=4CE,∴- =-12a,∵a<0,∴a=-(3)解:如图2,过点D作DT⊥y轴于点T,过点P作PG⊥y轴于点G,连接TP.∵a=- ,∴抛物线的解析式为y=- x2+ x+3,D(3,6),DT=3,OT=6,CT=3=DT,又∵PC=PD,PT=PT,∴△TCP≌△TDP,∴∠CTP=∠DTP=45°,TG=PG.设P(t,- t2+ t+3),∴OG=- t2+ t+3,PG=t,∴TG=OT-OG=6-(- t2+ t+3)= t2- t+3,∴ t2- t+3=t,解得t=1或6,∵点P在C、D之间,∴t=1.过点F作FK∥y轴交BC于点K,过点Q作QN⊥x轴于点N,则∠KFC=∠OCF,∠KFB=∠CON=90°.∵FQ∥PC,∴∠PCF+∠CFQ=180°,∠PCF+∠PCG+∠OCF=180°,∴∠CFQ=∠PCG+∠OCF,∴∠CFK+∠KFQ=∠PCG+∠OCF,∴∠KFQ=∠PCG.∵P(1,5),∴PG=1,CG=OG-OC=5-3=2,∴tan∠PCG= ,∵tan∠ABC= ,∴∠PCG=∠ABC,∴∠KFQ=∠ABC.∵∠CFQ=2∠ABC,∴∠CFQ=2∠KFQ,∴∠KFQ=∠KFC=∠OCF=∠ABC,∴tan∠OCF= ,∴OF= .设FN=m,则QN=2m,Q(m+ ,2m),∵Q在抛物线上,∴- (m+ )2+ ×(m+ )+3=2m,解得m= 或m=- (舍去),∴Q(4,5),∵B(6,0),∴BQ= .【解析】【分析】(1)令x=0,求出y的值,得到C点坐标;令y=0,求出x的值,根据a<0得出A点坐标;(2)如图1,过点D作DM⊥AB于M.根据平行线分线段成比例定理求出OM=3,得到D点纵坐标为12a+12.再求出OE=3a+3,那么CE=OC-OE=-3a.根据OB=4CE,得出- =-12a,解方程求出a=- ;(3)如图2,过点D作DT⊥y轴于点T,过点P作PG⊥y轴于点G,连接TP.利用SSS证明△TCP≌△TDP,得出∠CTP=∠DTP=45°,那么TG=PG.设P(t,- t2+ t+3),列出方程 t2- t+3=t,解方程求得t=1或6,根据点P在C、D之间,得到t=1.过点F作FK∥y轴交BC于点K,过点Q作QN⊥x轴于点N,根据平行线的性质以及已知条件得出∠KFQ=∠PCG,进而证明∠KFQ=∠KFC=∠OCF=∠ABC,由tan∠OCF= =tan∠ABC= ,求出OF= .设FN=m,则QN=2m,Q(m+ ,2m),根据Q在抛物线上列出方程- (m+ )2+ ×(m+ )+3=2m,解方程求出满足条件的m的值,得到Q点坐标,然后根据两点间的距离公式求出BQ.3.如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)请直接写出PM与PN的数量关系及位置关系________;(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.【答案】(1)PM⊥PN,PM=PN(2)PM=PN,PM⊥PN(3)解:PM=kPN,∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE,∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PN= AE.∴PM=kPN.【解析】【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠BCD=90°,∴∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM= BD,PN= AE,∴PM=PN,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM∥BC,PN∥AE,∴∠NPD=∠EAC,∠MPN=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案为:PM⊥PN,PM=PN;( 2 )PM=PN,PM⊥PN,理由:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS).∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.故答案为:PM⊥PN,PM=PN【分析】(1)利用等腰直角三角形的性质得出结论判断出△ACE≌△BCD,得出AE=BD,再用三角形的中位线即可得出结论;(2)同(1)的方法即可得出结论;(3)利用两边对应成比例夹角相等,判断出△BCD∽△ACE,得出BD=kAE,最后用三角形的中位线即可得出结论.4.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.【答案】(1))证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,∴△APQ∽△ABC.(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ.(I)当点P在线段AB上时,如题图1所示,由(1)可知,△APQ∽△ABC,∴,即,解得: .∴ .(II)当点P在线段AB的延长线上时,如题图2所示,∵BP=BQ,∴∠BQP=∠P.∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A。

人教备战中考数学培优(含解析)之相似及答案

人教备战中考数学培优(含解析)之相似及答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。

(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。

人教备战中考数学 相似 培优练习(含答案)

人教备战中考数学 相似 培优练习(含答案)

一、相似真题与模拟题分类汇编(难题易错题)1.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。

(1)求证:DC2=CE·AC;(2)若AE=2EC,求之值;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,∴,∴DC2=CE·AC;(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,DC= k,连接OC,OD,∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,∵AB是⊙O的直径,∴在Rt△ACB中,,∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,过C作CG⊥AB于G,设EC=k,∵∠CAB=30°,∴,又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。

2.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的影子是什么形状?(2)当把白炽灯向上平移时,影子的大小会怎样变化?(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?【答案】(1)解:球在地面上的影子的形状是圆.(2)解:当把白炽灯向上平移时,影子会变小.(3)解:由已知可作轴截面,如图所示:依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,在Rt△OAE中,∴OA= = = (m),∵∠AOH=∠EOA,∠AHO=∠EAO=90°,∴△OAH∽△OEA,∴,∴OH= == (m),又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,∴△OAE∽△AHE,∴ = ,∴AH= ==2625 (m).依题可得:△AHO∽△CFO,∴ AHCF=OHOF ,∴CF= AH⋅OFOH = 2625×32425=64 (m),∴S影子=π·CF2=π· (64)2= 38 π=0.375π(m2).答:球在地面上影子的面积是0.375π m2.【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.3.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。

人教备战中考数学 相似 培优练习(含答案)附详细答案

人教备战中考数学 相似 培优练习(含答案)附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。

(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。

2.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.(1)此时两人相距多少米(DE的长)?(2)张华追赶王刚的速度是多少?【答案】(1)解:在Rt△ABC中:∵AB=40,BC=30,∴AC=50 m.由题意可得DE∥AC,∴Rt△BDE∽Rt△BAC,∴ = ,即 = .解得DE= m.答:此时两人相距 m.(2)解:在Rt△BDE中:∵DB=2,DE=,∴BE=2 m.∴王刚走的总路程为AB+BE=42 m.∴王刚走这段路程用的时间为 =14(s).∴张华用的时间为14-4=10(s),∵张华走的总路程为AD=AB-BD=40-2=37(m),∴张华追赶王刚的速度是37÷10≈3.7(m/s).答:张华追赶王刚的速度约是3.7m/s.【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长.(2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间,再根据速度=路程÷时间解之即可得出答案.3.如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB 重合部分的面积为S.根据上述条件,回答下列问题:(1)当矩形OEDC的顶点D在直线AB上时,求t的值;(2)当t=4时,求S的值;(3)直接写出S与t的函数关系式(不必写出解题过程);(4)若S=12,则t=________.【答案】(1)解:由题意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,∴△BCD∽△BOA,∴而CD=OE=t,BC=8−CO=8− ,OA=4,则8− ,解得t=,∴当点D在直线AB上时,t=(2)解:当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得,即,解得CF=3,∴S= OC(OE+CF)= ×2×(3+4)=7(3)解:①当0<t≤时,S= t2②当<t≤4时,S=-t2+10t−16③当4<t≤16时,S=t2+2t(4)8【解析】【解答】解:(3)①当0﹤t≤时,如图(1),②当<t≤4时,如图(2),∵A(4,0),B(0,8)∴直线AB的解析式为y=-2x+8,∴G(t,-2t+8),F(4-,),∴DF=t-4,DG=t-8,∴S=S矩形COED-S△DFG=t·③当4<t≤16时,如图(3)∵CD∥OA,∴△BCF∽△BOA,∴∴,∴CF=4-,∴S=S△BOA-S△BCF=(4)由题意可知把S=12代入S= t2+2t中, . t2+2t=12,整理,得t2-32t+192=0.解得 t1=8,t2=24>16(舍去)当S=12时,t=8【分析】(1)首先判断出△BCD∽△BOA,根据相似三角形对应边成比例得出BC ∶BO=CD ∶OA ,根据矩形的性质及线段的和差得出CD=OE=t,BC=8−CO=8- ,OA=4,利用比例式即可得出方程,求解得出t的值;(2)当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得CF :CB=OA ∶OB ,根据比例式得出方程,求解得出CF的长,根据梯形的面积公式即可算出答案;(3)①当0﹤t≤ 时,如图(1),其重叠部分的面积就是矩形的面积,根据矩形的面积公式即可得出函数关系式;②当<t≤4时,如图(2),利用待定系数法,求出直线AB 的解析式,根据和坐标轴平行的直线上的点的坐标特点及直线上的点的坐标特点分别表示出G,F的坐标,进而表示出DF的长,DG的长,根据S=S矩形COED-S△DFG即可得出函数关系式;③当4<t≤16时,如图(3)根据矩形的性质得出CD∥OA,根据平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似得出△BCF∽△BOA,由相似三角形的对应边成比例得出BC:BO=CF:OA,根据比例式表示出CF的长,再根据S=S△BOA-S△BCF即可得出函数关系式。

人教备战中考数学培优(含解析)之相似附详细答案

人教备战中考数学培优(含解析)之相似附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q、P.(1)求抛物线的解析式;(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?【答案】(1)解:把B(﹣1,0),D(﹣2,5)代入,得:,解得:,∴抛物线的解析式为:(2)解:存在点P,使∠APB=90°.当y=0时,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴OB=1,OA=3.设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,∵∠APB=90°,PH⊥AB,∴∠PAH=∠BPH=90°﹣∠APH,∠AHP=∠PHB,∴△AHP∽△PHB,∴,∴PH2=BH•AH,∴[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),解得m1= ,m2= ,∴点P的横坐标为:或(3)解:如图,过点D作DN⊥x轴于点N,则DN=5,ON=2,AN=3+2=5,∴tan∠DAB= =1,∴∠DAB=45°.过点D作DK∥x 轴,则∠KDQ=∠DAB=45°,DQ= QG.由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+ DQ,∴t=BQ+QG,即运动的时间值等于折线BQ+QG的长度值.由垂线段最短可知,折线BQ+QG的长度的最小值为DK与x轴之间的垂线段.过点B作BH⊥DK于点H,则t最小=BH,BH与直线AD的交点,即为所求之Q点.∵A(3,0),D(﹣2,5),∴直线AD的解析式为:y=﹣x+3,∵B点横坐标为﹣1,∴y=1+3=4,∴Q(﹣1,4).【解析】【分析】(1)把点B,D的坐标代入二次函数中组成二元一次方程组,解方程组即可得到抛物线的解析式;(2)先按照存在点P使∠APB=90°,先根据抛物线的解析式求得点A,B的坐标,设出点P的坐标,根据点P的位置确定m的取值范围,再证△AHP∽△PHB,从而得到PH2=BH•AH,即可列出关于m的方程,解方程即可得到m即点P的横坐标,且横坐标在所求范围内,从而说明满足条件的点P存在;(3)先证明∠DAB=45°,从而证得DQ= 2 QG,那么运动时间t值等于折线BQ+QG的长度值,再结合垂线段最短确定点Q的位置,再求得点Q的坐标即可.2.(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则 ________;②求证: .________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接 .设,则与的周长之比为________(用含的表达式表示).【答案】(1)解:4;证明:∵∠EDF=60°,∠B=160°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF,又∵∠B=∠C,∴(2)解:解:存在。

备战中考数学 相似 培优练习(含答案)附答案

备战中考数学 相似 培优练习(含答案)附答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。

人教备战中考数学知识点过关培优训练∶相似附详细答案

人教备战中考数学知识点过关培优训练∶相似附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。

人教中考数学知识点过关培优易错试卷训练∶相似及详细答案

人教中考数学知识点过关培优易错试卷训练∶相似及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.【答案】(1)解:由直线:知:、;∵,∴,即.设抛物线的解析式为:,代入,得:,解得∴抛物线的解析式:(2)解:在中,,,则;∵,∴;而;∴,∴当时,s有最小值,且最小值为1(3)解:在中,,,则;在中,,,则;∴;以P、B、D为顶点的三角形与相似,已知,则有两种情况:,解得;,解得;综上,当或时,以P、B、D为顶点的三角形与相似【解析】【分析】(1)由直线与坐标轴相交易求得点A、C的坐标,用待定系数法即可求得抛物线的解析式;(2)由题意可将ED、OP用含t的代数式表示出来,并代入题目中的s与OP、DE的关系式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1时,s有最小值,且最小值为1;(3)解直角三角形可得BC和CD、BD的值,根据题意以P、B、D为顶点的三角形与△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。

2.如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.(1)当AP=CP时,求QP;(2)若四边形PMQN为菱形,求CQ;(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?【答案】(1)解:∵AB=10,sinA= ,∴BC=8,则AC= =6,∵PA=PC.∴∠PAC=∠PCA,∵PQ平分∠CPB,∴∠BPC=2∠BPQ=2∠A,∴∠BPQ=∠A,∴PQ∥AC,∴PQ⊥BC,又PQ平分∠CPB,∴∠PCQ=∠PBQ,∴PB=PC,∴P是AB的中点,∴PQ= AC=3(2)解:∵四边形PMQN为菱形,∴MQ∥PC,∴∠APC=90°,∴ ×AB×CP= ×AC×BC,则PC=4.8,由勾股定理得,PB=6.4,∵MQ∥PC,∴ = = = ,即 = ,解得,CQ=(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,∴QM=QN,PM=PN,∴S△PMQ=S△PNQ,∵四边形PMQN与△BPQ的面积相等,∴PB=2PM,∴QM是线段PB的垂直平分线,∴∠B=∠BPQ,∴∠B=∠CPQ,∴△CPQ∽△CBP,∴ = = ,∴ = ,∴CP=4× =4× =5,∴CQ= ,∴BQ=8﹣ = ,∴BM= × = ,∴AP=AB﹣PB=AB﹣2BM=【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ =3;(2)当四边形PMQN为菱形时,因为∠APC=,所以四边形PMQN为正方形,可得PC=4.8,PB=3.6,因为MQ//PC,所以,可得;(3)当QM垂直平分PB 时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得,所以,因为AP=AB-2BM,所以AP=.3.在平面直角坐标系中,抛物线与轴的两个交点分别为A (-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.【答案】(1)解:设抛物线的解析式为,∵抛物线过点A(-3,0),B(1,0),D(0,3),∴,解得,a=-1,b=-2,c=3,∴抛物线解析式为,顶点C(-1,4);(2)解:如图1,∵A(-3,0),D(0,3),∴直线AD的解析式为y=x+3,设直线AD与CH交点为F,则点F的坐标为(-1,2)∴CF=FH,分别过点C、H作AD的平行线,与抛物线交于点E,由平行间距离处处相等,平行线分线段成比例可知,△ADE与△ACD面积相等,∴直线EC的解析式为y=x+5,直线EH的解析式为y=x+1,分别与抛物线解析式联立,得,,解得点E坐标为(-2,3),,;(3)解:①若点P在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH,∴,分别过点C、P作x轴的平行线,过点Q作y轴的平行线,交点为M和N,由△CQM∽△QPN,得 =2,∵∠MCQ=45°,设CM=m,则MQ=m,PN=QN=2m,MN=3m,∴P点坐标为(-m-1,4-3m),将点P坐标代入抛物线解析式,得,解得m=3,或m=0(与点C重合,舍去)∴P点坐标为(-4,-5);②若点P在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH,∴,延长CD交x轴于M,∴M(3,0)过点M作CM垂线,交CP延长线于点F,作FN x轴于点N,∴,∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F点坐标为(5,2),∴直线CF的解析式为y= ,联立抛物线解析式,得,解得点P坐标为( , ),综上所得,符合条件的P点坐标为(-4,-5),( , ).【解析】【分析】(1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax2+bx+3求出即可;(2)求出直线AD的解析式,分别过点C、H作AD的平行线,与抛物线交于点E,利用△ADE与△ACD面积相等,得出直线EC和直线EH的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P在对称轴左侧;②点P在对称轴右侧.4.(1)【探索发现】如图1,△ABC中,点D,E,F分别在边BC,AC,AB上,且AD,BE,CF相交于同一点O.用”S”表示三角形的面积,有S△ABD:S△ACD=BD:CD,这一结论可通过以下推理得到:过点B作BM⊥AD,交AD延长线于点M,过点C作CN⊥AD于点N,可得S△ABD:S△ACD=,又可证△BDM~△CDN,∴BM:CN=BD:CD,∴S△ABD:S△ACD=BD:CD.由此可得S△BAO:S△BCO=________;S△CAO:S△CBO=________;若D,E,F分别是BC,AC,AB的中点,则S△BFO:S△ABC=________.(2)【灵活运用】如图2,正方形ABCD中,点E,F分别在边AD,CD上,连接AF,BE 和CE,AF分别交BE,CE于点G,M.若AE=DF.判断AF与BE的位置关系与数量关系,并说明理由;(3)若点E,F分别是边AD,CD的中点,且AB=4.则四边形EMFD的面积是多少?(4)【拓展应用】如图3,正方形ABCD中,AB=4,对角线AC,BD相交于点O.点F是边CD的中点.AF与BD相交于点P,BG⊥AF于点G,连接OG,请直接写出S△OGP的值.【答案】(1)AE:EC;AF:BF;1:6(2)解:结论:AF=BE,AF⊥BE.理由:如图2中,∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,∵AE=DF,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴AF⊥BE.(3)解:如图2﹣1中,连接DM.根据对称性可知△DME,△DMF,关于直线DM对称,∴S△DME=S△DMF,∵AE=DE,∴S△AEM=S△DME=S△DMF,∵S△ADF= ×4×2=4,∴S△AEM=S△DME=S△DMF=,∴S四边形EMFD= .故答案为 .(4)拓展应用:如图3中,∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,AC=BD=4 ,OA=OB=OD=OC=2 ,∵DF=FC,∴DF=FC=2,∵DF∥AB,∴,∴OP:OB=OP:OA=1:3,∵BG⊥PA,AO⊥OB,∴∠AGB=∠AOB=90°,∵∠OAP+∠APO=90°,∠PBG+∠BPG=90°,∴∠PAO=∠PBG,∵∠APO=∠BPG,∴△AOP∽△BGP,∴∴,∵∠GPO=∠BPA,∴△GPO∽△BPA,∴,∴S△ABP= S△ABD=,∴S△GOP= .【解析】【解答】(1)探索发现:由题意:S△BAO:S△BCO=AE:EC;S△CAO:S△CBO=AF:BF;若D,E,F分别是BC,AC,AB的中点,则S△BFO:S△ABC=1:6,故答案为:AE:EC,AF:BF,1:6.【分析】【探索发现】利用等高模型,解决问题即可.【灵活运用】(1)结论:AF=BE,AF⊥BE.证明△BAE≌△ADF(SAS)即可解决问题.(2)根据对称性可知△DME,△DMF,关于直线DM对称,推出S△DME=S△DMF,由AE=DE,推出S△AEM=S△DME=S△DMF,求出△ADF的面积即可解决问题.【拓展应用】由△GPO∽△BPA,推出即可解决问题.5.(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则 ________;②求证: .________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接 .设,则与的周长之比为________(用含的表达式表示).【答案】(1)解:4;证明:∵∠EDF=60°,∠B=160°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF,又∵∠B=∠C,∴(2)解:解:存在。

人教备战中考数学 相似 培优练习(含答案)含答案

人教备战中考数学 相似 培优练习(含答案)含答案

一、相似真题与模拟题分类汇编(难题易错题)1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。

人教备战中考数学知识点过关培优训练∶相似附答案

人教备战中考数学知识点过关培优训练∶相似附答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

人教备战中考数学培优(含解析)之相似附答案

人教备战中考数学培优(含解析)之相似附答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t (0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【答案】(1)解:在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y= x2+ x+4;(2)解:由题意可设P(t,4),则E(t, t2+ t+4),∴PB=10﹣t,PE= t2+ t+4﹣4= t2+ t,∵∠BPE=∠COD=90°,当∠PBE=∠OCD时,则△PBE∽△OCD,∴,即BP•OD=CO•PE,∴2(10﹣t)=4( t2+ t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;当∠PBE=∠CDO时,则△PBE∽△ODC,∴,即BP•OC=DO•PE,∴4(10﹣t)=2( t2+ t),解得t=12或t=10(均不合题意,舍去)综上所述∴当t=3时,∠PBE=∠OCD(3)解:当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ= t,PN=PB•sin∠CBQ=(10﹣t),∴ t =(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或【解析】【分析】(1)先求出抛物线与y轴的交点C的坐标,再根据矩形ABCO及点A的坐标为(10,0),求出点B的坐标,然后利用待定系数法,将点B、D的坐标分别代入函数解析式求出二次函数解析式。

人教备战中考数学 相似 培优练习(含答案)及答案

人教备战中考数学 相似 培优练习(含答案)及答案

一、相似真题与模拟题分类汇编(难题易错题)1.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).【答案】(1)(2)(3);;或;或【解析】【解答】(解:(1)∵点H是AD的中点,∴AH= AD,∵正方形AEOH∽正方形ABCD,∴相似比为: == ;故答案为:;( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,故答案为:;( 3 )A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即 a:b=b:a,∴a= b;故答案为:②每个小矩形都是全等的,则其边长为b和 a,则b: a=a:b,∴a= b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a= a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣ = ,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为: b或 b.【分析】由题意可知,用相似多边形的性质即可求解。

人教中考数学知识点过关培优易错试卷训练∶相似附答案

人教中考数学知识点过关培优易错试卷训练∶相似附答案

一、相似真题与模拟题分类汇编(难题易错题)1.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN= EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.【答案】(1)证明::∵ °, ° ,∴ °∵ ,∴∵∥ ,∴∴ °,∴过点作于点 ,则 .在中,∴∴(2)解:在中,,∴∵a.当点在线段上时,过点作于点 ,在中,由(1)可知:,∴∴∴b.当点在线段延长线上时,过点作于点在中, ,在中, ,∴ ,∴(3)解:连接 ,交于点 .∵为的中点∴ ,∴ .∵ ,∴ ,∴ ,∴ ,∴ .∵∥∴ ,∴ ,,∵ ,∴ ,又∵ ,∴∽ ,∴,即 ,∴【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G根据所得的比例式即可求解.,2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)(2)解:如图1,过F作FG⊥x轴于点G,设F(x, x2+2x+6),则FG= ,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,∴当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),综上可知F点的坐标为(-1,)或(-3,)(3)解:如图2,不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6解得k1= 或k2=∴满足条件的点Q有两个,Q1(2,)或Q2(2,).【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。

人教中考数学知识点过关培优训练∶相似及答案

人教中考数学知识点过关培优训练∶相似及答案

一、相似真题与模拟题分类汇编(难题易错题)1.(1)问题发现:如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为________;(2)深入探究:如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.【答案】(1)NC∥AB(2)解:∠ABC=∠ACN,理由如下:∵ =1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC= (180°﹣∠ABC),∵AM=MN∴∠MAN= (180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN(3)解:如图3,连接AB,AN,∵四边形ADBC,AMEF为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴ =cos45°= ,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM= ,∴EF=AM=2 .【解析】【解答】解:(1)NC∥AB,理由如下:∵△ABC与△MN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM与△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;【分析】(1)由题意用边角边易得△ABM≌△ACN,则可得∠B=∠ACN=60°,所以∠BCN+∠B=∠BCA+∠ACN+∠B=180°,根据平行线的判定即可求解;(2)由题意易得△ABC~△AMN,可得比例式,由三角形内角和定理易得∠BAM=∠CAN,根据相似三角形的判定可得△ABM~△ACN,由相似三角形的性质即可求解;(3)要求EF的值,只须求得CM的值,然后解直角三角形AMC即可求解。

人教中考数学知识点过关培优训练∶相似附答案

人教中考数学知识点过关培优训练∶相似附答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答2.如图,在中,,点M是AC的中点,以AB为直径作分别交于点.(1)求证:;(2)填空:若,当时, ________;连接,当的度数为________时,四边形ODME是菱形.【答案】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM.∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME(2)2;【解析】【解答】解:(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴ =.∵AD=2DM,∴DM:MA=1:3,∴DE= AB= ×6=2.故答案为:2.②当∠A=60°时,四边形ODME是菱形.理由如下:连接OD、OE.∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°.∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为:60°.【分析】(1)要证MD=ME,只须证∠MDE=∠MED即可。

人教备战中考数学相似(大题培优)含详细答案

人教备战中考数学相似(大题培优)含详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°).(1)当α=0°时,连接DE,则∠CDE=________°,CD=________;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当旋转的角度α恰为∠ACB的大小时,求线段BD的长;(4)若m=6,n= ,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.【答案】(1)90;(2)解:如图3中,∵∠ACB=∠DCE,∴∠ACE=∠BCD.∵,∴△ACE∽△BCD,∴.(3)解:如图4中,当α=∠ACB时.在Rt△ABC中,∵AC=10,BC=8,∴AB= =6.在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,∴AE= = =3 ,由(2)可知△ACE∽△BCD,∴,∴ = ,∴BD= .故答案为:(4)解:∵m=6,n= ,∴CE=3,CD=2 ,AB= =2,①如图5中,当α=90°时,半圆与AC相切.在Rt△DBC中,BD= ==2 .②如图6中,当α=90°+∠ACB时,半圆与BC相切,作EM⊥AB于M.∵∠M=∠CBM=∠BCE=90°,∴四边形BCEM是矩形,∴,∴AM=5,AE= = ,由(2)可知 = ,∴BD= .故答案为:2 或.【解析】【解答】(1)①如图1中,当α=0时,连接DE,则∠CDE=90°.∵∠CDE=∠B=90°,∴DE∥AB,∴ =.∵BC=n,∴CD= .故答案为:90°, n.【分析】(1)连接DE,当α=0时,由直径所对的圆周角时直角可得∠CDE=90°,判断DE∥AB,从而可得比例式进而求解。

人教中考数学知识点过关培优训练∶相似含答案

人教中考数学知识点过关培优训练∶相似含答案

一、相似真题与模拟题分类汇编(难题易错题)1.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)解:①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴ = ,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F= D'D,∠ADF=∠AD'F,∵cos∠ADF== = ,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+ =,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.2.(1)问题发现:如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.①写出线段CF与DG的数量关系;②写出直线CF与DG所夹锐角的度数.(2)拓展探究:如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)问题解决如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE的长的最小值.(直接写出结果)【答案】(1)①CF= DG,②45(2)解:如图:①连接AC、AF,在正方形ABCD中,延长CF交DG与H点,∠CAD= ∠BCD=45 ,设AD=CD=a,易得AC= a= AD,同理在正方形AEFG中,∠FAG=45 ,AF= AG,∠CAD=∠FAG, ∠CAD-∠2=∠FAG-∠2,∠1=∠3又△CAF∽DAG,= , CF= DG;②由△CAF∽DAG,∠4=∠5,∠ACD=∠4+∠6=45 , ∠5+∠6=45 ,∠5+∠6+∠7=135 ,在△CHD中,∠CHD=180 -135 =45 ,(1)中的结论仍然成立(3)OE的最小值为 .【解析】【解答】(3)如图:由∠BAC=∠DAE=90 ,可得∠BAD=∠CAE,又AB=AC,AD=AE,可得△BAD≌△CAE,∠ACE=∠ABC=45 ,又∠ACB=45 , ∠BCE=90 ,即CE⊥BC,根据点到直线的距离垂线段最短,OE⊥CE时,OE最短,此时OE=CE,△OEC为等腰直角三角形,OC= AC=2,由等腰直角三角形性质易得,OE= ,OE的最小值为 .【分析】(1)①易得CF= DG;②45 ;(2)连接AC、AF,在正方形ABCD中,可得△CAF∽DAG, = , CF= DG,在△CHD中,∠CHD=180 -135 =45 ,(1)中的结论是否仍然成立;(3)OE⊥CE时,OE最短,此时OE=CE,△OEC为等腰直角三角形,OC= AC=2,可得OE的值.3.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∠BAC=30º时,求△ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,AB=10,∠BAC=30°,∴BC= AB=5,∴AC= ,∴S△ABC= AC⋅BC=(2)解:连接AD,∵∠ACB=90°,CD=BC,∴AD=AB=10,∵DE⊥AB,∴AE= =6,∴BE=AB−AE=4,∴DE=2BE,∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,∴∠AFE=∠DBE,∵∠AEF=∠DEB=90°,∴△AEF∽△DEB,∴ =2,∴EF= AE= ×6=3(3)解:连接EC,设E(x,0),当的度数为60°时,点E恰好与原点O重合;①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,∴,∵EC是Rt△BDE斜边的中线,∴CE=CB,∴∠CEB=∠CBE,∴∠EOF=∠CEB,∴OF∥CE,∴△AOF∽△AEC∴,∴,即,解得x= ,因为x>0,∴x= ;②60°< 的度数<90°时,点E在O点的左侧,若∠EOF=∠B,则OF∥BD,∴OF= BC= BD,∴即解得x= ,若∠EOF=∠BAC,则x=− ,综上点E的坐标为( ,0) ;(,0);(−,0).【解析】【分析】(1)根据圆周角定理求得∠ACB=90°,根据30°的直角三角形的性质求得BC,进而根据勾股定理求得AC,然后根据三角形面积公式即可求得;(2)连接AD,由垂直平分线的性质得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依题意证明△AEF∽△DEB,利用相似比求EF;(3)当以点E、O、F为顶点的三角形与△ABC相似时,分为两种情况:①当交点E在O,B之间时;②当点E在O点的左侧时;分别求E点坐标.4.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若,AK= ,求BF的长.【答案】(1)证明:如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)解:①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠CKE,∴△KGD∽△KGE.②连接OG,如图所示.∵,AK= ,设,∴,,则KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK-CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,,,,则,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R-3k,CH=4k,由勾股定理得:OH2+CH2=OC2,,∴在Rt△OGF中,,∴,∴【解析】【分析】(1)连接OG.根据切线的判定,证出∠KGE+∠OGA=90°,故EF是⊙O的切线.(2)①证∠E=∠AGD,又∠DKG=∠CKE,故△KGD∽△KGE.②连接OG. ,设,,,则,在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即;由勾股定理得:OH2+CH2=OC2,;在Rt△OGF中,,,5.问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=________时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?【答案】(1)(2)解:点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2 ,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)解:如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH=120°,且AG=AH,∴∠AGH=∠AHG=30°,过点A作AO⊥GH,∴AO=50米,HO=GO=50 米,∴GH=100 米,∴S△AGH= GH×AO=2500 平方米,∵S四边形AMPN=S△AGM+S△ANH=S△AGH﹣S△AMN,∴S△AMN的值最小时,S四边形AMPN的值最大,∴MN=GM=NH=时∴S四边形AMPN=S△AGH﹣S△AMN=2500 ﹣=平方米.【解析】【解答】(1)∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2 ,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:【分析】(1)延长AB到M,使BM=AB,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,根据勾股定理求出AE长,根据矩形性质得出AB∥CD,推出△ECP∽△MBP,得出比例式,代入即可求出CP长;(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,要使四边形APQE的周长最小,只要AP+EQ最小就行,证△MNQ∽△FCQ即可求BP的长;(3)作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.S四=S△AGM+S△ANH=S△AGH-S△AMN,即S△AMN的值最小时,S四边形AMPN的值最大.边形AMPN6.操作:和都是等边三角形,绕着点按顺时针方向旋转,是、的中点,有以下三种图形.探究:(1)在上述三个图形中,是否一个固定的值,若是,请选择任意一个图形求出这个比值;(2)的值是否也等于这个定值,若是,请结合图(1)证明你的结论;(3)与有怎样的位置关系,请你结合图(2)或图(3)证明你的结论.【答案】(1)解:∵是等边三角形,由图(1)得AO⊥BC,∴,∴;(2)证明:,,∴∴∴(3)证明:在图(3)中,由(2)得∴,∴∠2+∠4=∠1+∠3,即∠AEF =∠AOB∵∠AOB=90°,∴∴ .【解析】【分析】(1)由等边三角形的性质可得AO⊥BC,BO= BC= AB,根据勾股定理计算即可求得AO= BO,即AO∶BO是一个固定的值∶1;(2)由等边三角形的性质可得AO⊥BC,,由同角的余角相等可得,由(1)可得,可得,根据相似三角形的性质可得;(3)在图(3)中,由(2)得,根据相似三角形的性质可得∠1=∠2,根据对顶角相等得∠3=∠4,则∠2+∠4=∠1+∠3=∠AOB=90°,即 .7.已知:如图,BC为⊙O的弦,点A为⊙O上一个动点,△OBC的周长为16.过C作CD∥AB交⊙O于D,BD与AC相交于点P,过点P作PQ∥AB交于Q,设∠A的度数为α.(1)如图1,求∠COB的度数(用含α的式子表示);(2)如图2,若∠ABC=90°时,AB=8,求阴影部分面积(用含α的式子表示);(3)如图1,当PQ=2,求的值.【答案】(1)解:∵∠A的度数为α,∴∠COB=2∠A=2α(2)解:当∠ABC=90°时,AC为⊙O的直径,∵CD∥AB,∴∠DCB=180°﹣90°=90,∴BD为⊙O的直径,∴P与圆心O重合,∵PQ∥AB交于Q,∴OQ⊥BC,∴CQ=BQ,∵AB=8,∴OQ= AB=4,设⊙O的半径为r,∵△OBC的周长为16,∴CQ=8﹣r,∴(8﹣r)2+42=r2,解得r=5,CB=6,∴阴影部分面积=(3)解:∵CD∥AB∥PQ,∴△BPQ∽△BDC,△CPQ∽△CAB,∴,∴,∵PQ=2,∴,∴=2【解析】【分析】(1)根据圆周角定理可得∠COB=2∠A=2α;(2)当∠ABC=90°时,可得点P与圆心O重合,根据△OBC的周长为16以及AB=8,可求得⊙O的半径为5,可得出扇形COB的面积以及△OBC的面积,进而得出阴影部分面积;(3)由CD∥AB∥PQ,可得△BPQ∽△BDC,△CPQ∽△CAB,即,两式子相加可得,即可得出的值.8.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【答案】(1)解:当x=0,y=3,∴C(0,3)设抛物线的解析式为y=a(x+1)(x- ).将c(0,3)代入得:- a=3,解得a=2,∴抛物线的解析式为y=-2x2+x+3(2)解:过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N。

人教中考数学知识点过关培优 易错 难题训练∶相似含详细答案

人教中考数学知识点过关培优 易错 难题训练∶相似含详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【答案】(1)解:如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC= ,∴A(-1,),把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴ =4,∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=± ,∵a>0,∴a= ;∴B(1,);(3)解:如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴,∴,∴,DE=am2n,∴,∵OC∥AE,∴△BCO∽△BAE,∴,∴,∴CO= =am2n,∴DE=CO.【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。

人教中考数学知识点过关培优训练∶相似附详细答案

人教中考数学知识点过关培优训练∶相似附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).(1)直接写出点C坐标及OC、BC长;(2)连接PQ,若△OPQ与△OBC相似,求t的值;(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,∴A(0,),令y=0,则x=10,∴B(10,0),由,解得,∴C(,).∴OC= =8,BC= =10(2)解:①当时,△OPQ∽△OCB,∴,∴t= .②当时,△OPQ∽△OBC,∴,∴t=1,综上所述,t的值为或1s时,△OPQ与△OBC相似(3)解:如图作PH⊥OC于H.∵OC=8,BC=6,OB=10,∴OC2+BC2=OB2,∴∠OCB=90°,∴当∠PCH=∠CBQ时,PC⊥BQ.∵∠PHO=∠BCO=90°,∴PH∥BC,∴,∴,∴PH=3t,OH=4t,∴tan∠PCH=tan∠CBQ,∴,∴t= 或0(舍弃),∴t= s时,PC⊥BQ.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接算出OC,OB的长;(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的值,经检验即可得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似真题与模拟题分类汇编(难题易错题)1.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B(A,B两点到路灯正下方的距离相等),他的影长y随他与点A之间的距离x的变化而变化.(1)求y与x之间的函数关系式;(2)作出函数的大致图象.【答案】(1)解:如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C'.小亮从点A到达点O的过程中,影长越来越小,直到影长为0;从点O到达点B的过程中,影长越来越大,到点B达到最大值.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,∵MA'⊥AB,CO⊥AB,∴△MC'A'∽△CC'O,∴,即 = ,∴y= x- (0≤x≤m),(此时m,l,h为常数),②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)解:如图②所示:【解析】【分析】(1)如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C';根据中心投影的特点可知影长随x的变化情况.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,根据相似三角形的判定和性质可得y与x的函数解析式.②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)根据(1)的函数解析式可画出图像.2.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)已知:CD=1,EH=3,求AF的长.【答案】(1)证明:如图,连接OE.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)解:如图,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.(3)解:由(2)得,CD=HF.又CD=1∴HF=1在Rt△HFE中,EF= =∵EF⊥BE∴∠BEF=90°∴∠EHF=∠BEF=90°∵∠EFH=∠BFE∴△EHF∽△BEF∴,即∴BF=10∴ , ,∴在Rt△OHE中, ,∴在Rt△EOA中, ,∴∴∴ .【解析】【分析】(1)连接OE.利用角平分线的定义和等腰三角形的性质可证得OE∥BC,从而得∠AEO=∠C=90°,可得到证明;(2)连结DE.利用AAS可证△CDE≌△HFE,从而得到证明;(3)证△EHF∽△BEF,由相似三角形的性质可求得BF,从而得到OE,在Rt△OHE和△EOA中,由cos∠EOA可求出OA,从而求出AF.3.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°).(1)当α=0°时,连接DE,则∠CDE=________°,CD=________;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当旋转的角度α恰为∠ACB的大小时,求线段BD的长;(4)若m=6,n= ,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.【答案】(1)90;(2)解:如图3中,∵∠ACB=∠DCE,∴∠ACE=∠BCD.∵,∴△ACE∽△BCD,∴.(3)解:如图4中,当α=∠ACB时.在Rt△ABC中,∵AC=10,BC=8,∴AB= =6.在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,∴AE= = =3 ,由(2)可知△ACE∽△BCD,∴,∴ = ,∴BD= .故答案为:(4)解:∵m=6,n= ,∴CE=3,CD=2 ,AB= =2,①如图5中,当α=90°时,半圆与AC相切.在Rt△DBC中,BD= ==2 .②如图6中,当α=90°+∠ACB时,半圆与BC相切,作EM⊥AB于M.∵∠M=∠CBM=∠BCE=90°,∴四边形BCEM是矩形,∴,∴AM=5,AE= = ,由(2)可知 = ,∴BD= .故答案为:2 或.【解析】【解答】(1)①如图1中,当α=0时,连接DE,则∠CDE=90°.∵∠CDE=∠B=90°,∴DE∥AB,∴ =.∵BC=n,∴CD= .故答案为:90°, n.【分析】(1)连接DE,当α=0时,由直径所对的圆周角时直角可得∠CDE=90°,判断DE∥AB,从而可得比例式进而求解。

(2)旋转过程中 B D: A E 的大小有无变化,可以看 B D, A E 所在的三角形相似,从而可的△ACE∽△BCD,进而得出结论。

(3)根据勾股定理求得AB和AE,即可求出BD。

(4)由题意分两种情况:当α=90°时,半圆与AC相切。

当α=90°+∠ACB时,半圆与BC相切。

4.如图:在中,BC=2,AB=AC,点D为AC上的动点,且 .(1)求AB的长度;(2)求AD·AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH. 【答案】(1)解:作AM⊥BC,∵AB=AC,BC=2,AM⊥BC,∴BM=CM= BC=1,在Rt△AMB中,∵cosB= ,BM=1,∴AB=BM÷cosB=1÷ = .(2)解:连接CD,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,又∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE=∠CAD,∴△EAC∽△CAD,∴ ,∴AD·AE=AC2=AB2=()2=10.(3)证明:在BD上取一点N,使得BN=CD,在△ABN和△ACD中∵∴△ABN≌△ACD(SAS),∴AN=AD,∵AH⊥BD,AN=AD,∴NH=DH,又∵BN=CD,NH=DH,∴BH=BN+NH=CD+DH.【解析】【分析】(1)作AM⊥BC,由等腰三角形三线合一的性质得BM=CM= BC=1,在Rt△AMB中,根据余弦定义得cosB= ,由此求出AB.(2)连接CD,根据等腰三角形性质等边对等角得∠ACB=∠ABC,再由圆内接四边形性质和等角的补角相等得∠ADC=∠ACE;由相似三角形的判定得△EAC∽△CAD,根据相似三角形的性质得;从而得AD·AE=AC2=AB2.(3)在BD上取一点N,使得BN=CD,根据SAS得△ABN≌△ACD,再由全等三角形的性质得AN=AD,根据等腰三角形三线合一的性质得NH=DH,从而得BH=BN+NH=CD+DH.5.在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点(1)求、两点的坐标;(2)求直线的解析式;(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,∴x1=-2,x2=4,∴A(-2,2),C(4,8)(2)解:①设直线l的解析式为y=kx+b(k≠0),∵A(-2,2)在直线l上,∴2=-2k+b,∴b=2k+2,∴直线l的解析式为y=kx+2k+2①,∵抛物线y= x2②,联立①②化简得,x2-2kx-4k-4=0,∵直线l与抛物线只有一个公共点,∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,∴k=-2,∴b=2k+2=-2,∴直线l的解析式为y=-2x-2;②平行于y轴的直线和抛物线y= x2只有一个交点,∵直线l过点A(-2,2),∴直线l:x=-2(3)解:由(1)知,A(-2,2),C(4,8),∴直线AC的解析式为y=x+4,设点B(m,m+4),∵C(4.8),∴BC= |m-4|= (4-m)∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,∴D(m, m2),E(m,-2m-2),∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,∵DC∥EF,∴△BDC∽△BEF,∴,∴,∴BF=6 .【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.6.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=________时,PQ∥AB(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB 能否垂直?若能,求出相应的t值;若不能,请说明理由.能垂直,理由如下:延长QE交AC于点D,∵将△PQC翻折,得到△EPQ,∴△QCP≌△QEP,∴∠C=∠QEP=90°,若PE⊥AB,则QD∥AB,∴△CQD∽△CBA,∴,∴,∴QD=2.5t,∵QC=QE=2t∴DE=0.5t∵∠A=∠EDP,∠C=∠DEP=90°,∴△ABC∽△DPE,∴∴,解得:,综上可知:当t= 时,PE⊥AB【答案】(1)2.4(2)解:∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB 向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,∴S△CPQ= CP•CQ= =5,∴t2-6t+5=0解得t1=1,t2=5(不合题意,舍去)∴当t=1秒时,△PCQ的面积等于5cm2(3)解:【解析】【解答】解:(1) ∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q 从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,当PQ∥AB时,∴△PQC∽△ABC,∴PC:AC=CQ:BC,∴(6-t):6=2t:8∴t=2.4∴当t=2.4时,PQ∥AB【分析】(1)根据题意可得PC=AC-AP=6-t,CQ=2t,根据平行线可得△PQC∽△ABC,利用相似三角形对应边成比例可得PC:AC=CQ:BC,即得(6-t):6=2t:8,求出t值即可;(2)由S△CPQ=CP•CQ =5,据此建立方程,求出t值即可;(3)延长QE交AC于点D,根据折叠可得△QCP≌△QEP,若PE⊥AB,则QD∥AB,可得△CQD∽△CBA,利用相似三角形的对应边成比例,求出DE=0.5t,根据两角分别相等可证△ABC∽△DPE,利用相似三角形对应边成比例,据此求出t 值即可.7.问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=________时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?【答案】(1)(2)解:点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2 ,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)解:如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH=120°,且AG=AH,∴∠AGH=∠AHG=30°,过点A作AO⊥GH,∴AO=50米,HO=GO=50 米,∴GH=100 米,∴S△AGH= GH×AO=2500 平方米,∵S四边形AMPN=S△AGM+S△ANH=S△AGH﹣S△AMN,∴S△AMN的值最小时,S四边形AMPN的值最大,∴MN=GM=NH=时∴S四边形AMPN=S△AGH﹣S△AMN=2500 ﹣=平方米.【解析】【解答】(1)∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2 ,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:【分析】(1)延长AB到M,使BM=AB,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,根据勾股定理求出AE长,根据矩形性质得出AB∥CD,推出△ECP∽△MBP,得出比例式,代入即可求出CP长;(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,要使四边形APQE的周长最小,只要AP+EQ最小就行,证△MNQ∽△FCQ即可求BP的长;(3)作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.S四=S△AGM+S△ANH=S△AGH-S△AMN,即S△AMN的值最小时,S四边形AMPN的值最大.边形AMPN8.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【答案】(1)解:当x=0,y=3,∴C(0,3)设抛物线的解析式为y=a(x+1)(x- ).将c(0,3)代入得:- a=3,解得a=2,∴抛物线的解析式为y=-2x2+x+3(2)解:过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N。

相关文档
最新文档