专题06 分式及分式方程-2016年中考数学考点总动员系列(原卷版)

合集下载

方程与不等式的实际运用【考点专练】- 中考数学考点总复习高分导航(全国通用)(原卷版)

方程与不等式的实际运用【考点专练】- 中考数学考点总复习高分导航(全国通用)(原卷版)

专题06 方程与不等式的实际运用题型1:工程问题1.九龙坡区某工程公司积极参与“精美城市,幸福九龙坡建设,该工程公司下属的甲工程队、乙工程队别承包了杨家坪地区的A工程、B工程,甲工程队晴天需要14天完成,雨天工作效率下降30%,乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工.两工程队各工作了天.2.(湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?题型2:行程问题3.某体育场的环形跑道长400m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,他们每隔30s相遇一次.如果同向而行,那么每隔80s乙就追上甲一次.则甲的速度是m/s.4.(山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.5.(湖南岳阳市·中考真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.题型3:历史文献问题6.(甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为()A.3(2)29y xy x-=⎧⎨-=⎩B.3(2)29y xy x+=⎧⎨+=⎩C.3(2)29y xy x-=⎧⎨+=⎩D.3(2)29y xy x-=⎧⎨+=⎩7.(浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)8.(湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.题型4:数字问题9.(山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).题型5:增长率问题10.(内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .()50712833.6x +=B .()50721833.6x ⨯+=C .()25071833.6x +=D .()()250750715071833.6x x ++++= 11.(四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.题型6:几何图形问题12.在一幅长50cm ,宽40cm 的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm 2,设边框的宽为x cm ,那么x 满足的方程是( )A.(50﹣2x)(40﹣2x)=3000B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000D.(50+x)(40+x)=300013.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.题型7:方案问题14.(江苏无锡市·中考真题)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?15.(黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?16.(黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?题型8:利润问题17.(四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?18.(浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.∶若丙种门票价格下降10元,求景区六月份的门票总收入;∶问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?题型9:一般问题19.(辽宁本溪市·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?20.(江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?21.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润.(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?题型10:分段收费22.为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.。

中考数学复习专题06 配方法题研究(原卷版)

中考数学复习专题06 配方法题研究(原卷版)

备战2020中考数学解题方法专题研究专题6 配方法专题【方法简介】配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。

这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。

把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用.运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.【真题演练】1. 用配方法解一元二次方程x2﹣4x﹣6=0,变形正确的是()A.(x﹣2)2=0 B.(x﹣4)2=22 C.(x﹣2)2=10 D.(x﹣2)2=82. 用配方法解下列方程:(1)x2+3x-4=0;(2)x(x+8)=609.3. 已知一元二次方程(x-3)2=1的两个根恰好分别是等腰三角形ABC的底边长和腰长,求△ABC的周长.4. 用配方法证明:不论x,y取何实数时,代数式x2+y2+2x-4y+7的值总不小于常数2.【名词释义】把一个式子或一个式子的某一部分化成完全平方式或几个完全平方式的和、差形式,这种方法叫“配方法”.“直接开平方法”告诉我们根据完全平方公式2222()a ab b a b ±+=±可以将一元二次方程化为形如2()(0)ax b c c +=≥的形式后求解,这就自然而然地导出了另一种解一元二次方程的解法——“配方法”.它的理论依据是完全平方公式2222()a ab b a b ±+=±.用“配方法”解一元二次方程的一般步骤:1.方程两边同除以二次项系数,化二次项系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为2()ax b c +=的形式;4.若0c ≥,用“直接开平方法”解出;若0c <,则原方程无实数根即原方程无解.“配方法”是一种重要的数学方法,它不仅可应用于解一元二次方程,而且在数学的其它领域中也有着广泛的应用.【典例示例】例题1:有n 个方程:x 2+2x -8=0;x 2+2×2x-8×22=0;…;x 2+2nx -8n 2=0.小静同学解第1个方程x 2+2x -8=0的步骤为“①x 2+2x =8;②x 2+2x +1=8+1;③(x +1)2=9;④x +1=±3;⑤x =1±3;⑥x 1=4,x 2=-2.”(1)小静的解法是从步骤________开始出现错误的;(2)用配方法解第n 个方程x 2+2nx -8n 2=0(用含n 的式子表示方程的根).例题2:先仔细阅读材料,冉尝试解决问题完全平方公式a 2±2ab+b 2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x 2+12x ﹣4的最小值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x =﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x =﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x 2+4x+5的最小值是多少,并写出此时x 的值;(2)请根据上面的解题思路探求:多项式﹣3x 2﹣6x+12的最大值是多少,并写出此时x 的值.的值.【归纳总结】关于配方法主要在以下几个方面进行运用,①配方法在确定二次根式中字母的取值范围的应用,在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

专题06一次函数(原卷版)

专题06一次函数(原卷版)

专题06 一次函数知识点1:变量与常量定义:在一个变化过程中,我们称数值发生改变的量为变量,数值始终不变的量为常量. 一般地,在一个变化过程中,如果有两个变量x 和 y ,并且对于 的每一个确定的值, 都有唯一确定的值与其对应,那么我们就说x 是自变量, y 是因变量,y 是x 的函数.如果 当 x=a 时,y=b ,b 那么 a 叫做当自变量 x 的值为a 时的函数值.知识点2:自变量取值范围初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况: (1)函数关系式为整式形式:自变量取值范围为任意实数; (2)函数关系式为分式形式:分母0 (3)函数关系式含算术平方根:被开方数0; (4)函数关系式含0指数:底数0。

知识点3:函数定义像r 2,40,40s Π===s x y t 这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式知识点4:函数的图像 知识点5:正比例函数的定义一般地,形如y=kx(k≠0)函数,叫做正比例函数,其中k叫做比例系数.知识点6:正比例函数图像和性质正比例函数图象与性质用表格概括下:k的符号图像经过象限性质k>0 第一、三象限y随x的增大而增大k<0 第二、四象限y随x的增大而较少知识点7:待定系数法求正比例函数解析式1.正比例函数的表达式为y=kx(k≠0),只有一个待定系数k,所以只要知道除(0,0)外的自变量与函数的一对对应值或图象上一个点的坐标(原点除外)即可求出k的值,从而确定表达式.2.确定正比例函数表达式的一般步骤:(1)设——设出函数表达式,如y=kx(k≠0);(2)代——把已知条件代入y=kx中;(3)求——解方程求未知数k;(4)写——写出正比例函数的表达式知识点8:一次函数的定义如果y=kx+b(k,b是常数,k ≠0 )的函数,叫做一次函数,k叫比例系数。

注意:当b=0时,一次函数y=kx+b 变为y=kx,正比例函数是一种特殊的一次函数。

2016年中考数学真题汇编(8)分式、分式方程及其应用(含解析)A

2016年中考数学真题汇编(8)分式、分式方程及其应用(含解析)A

一、选择题1. ( 2016四川省内江市,8,3分)甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( ) A.1102x +=100x B. 110x =1002x + C. 110-2x =100x D. 110x =100-2x【答案】A.【逐步提示】此题是行程问题,涉及的等量关系是时间=路程速度.列方程解应用题的关键是找出题中的等量关系,该题中的等量关系是:甲、乙两人同时不同地出发,“结果两人同时到达C 地”,值得注意的是甲的平均速度比乙快2千米/时,千万别弄颠倒了.【详细解答】解:设乙骑自行车的平均速度为x 千米/时,则甲的平均速度为(x +2)千米/时. 则根据题意,得1102x +=100x ,故选择A .【解后反思】此题是分式方程的应用,列方程解应用题一直是部分学生的难点,除认真审题外,用表格分析法,有助于难点的突破,可让学生尝试.例如,本题可用表格分析如下:【关键词】分式方程的应用2. . ( 2016山东青岛,6,3分)A ,B 两地相距180km ,新修的高速公路开通后,在A , B 两地间行驶的长途客车平均车速提高了 50%,而从A 地到B 地的时间缩短了 1h .若设原 来的平均车速为xkm /h ,则根据题意可列方程为( ). A .()1801801150%x x -=+ B . ()1801801150%x x -=+ C .()1801801150%x x -=- D . ()1801801150%x x -=- 【答案】A【逐步提示】先根据题意表示出新修的高速公路开通后的车速、原来的行驶时间和现在的行驶时间,再根据原来和现在的行驶时间之间的关系列出方程.【详细解答】解:设原来的平均车速为xkm /h ,则新修的高速公路开通后车速为(1+50%)xkm /h ,原来的行驶时间为180x h ,现在的行驶时间为()180150%x +h ,根据“原来行驶时间-现在行驶时间=1 h ”可列方程为()1801801150%x x-=+,故选择A . 【解后反思】列分式方程解应用题的一般步骤:(1)审题:找出题目中的等量关系,这是关键;(2)设未知数:根据题目的要求设合适的未知数;(3)列方程:根据等量关系列出方程;(4)解分式方程;(5)验根:分式方程要写出检验的步骤.【关键词】 分式方程的应用3. ( 2016山东泰安,4,3分)计算:()222244422121a a a a a a a ÷--+-++-+的结果为( ) A .22a a +- B .42a a -- C .2aa - D .a 【答案】C【逐步提示】本题考查了分式的化简,解题的关键是掌握分式的通分、约分及因式分解.分式的分子、分母能因式分解的先进行因式分解,然后再根据分式的乘除法法则进行约分化简,最后依据同分母分式的加减法进行计算. 【详细解答】解:()222244422121a a a a a a a ÷--+-++-+=()()()()()2222222211a a a a a a ÷+----++ =()()()()()2222212×212a a a a a a +-+--+-=2222a a a +---=2a a -,故选择C . 【解后反思】将分式的除法转化为乘法后利用乘法法则:分子、分母分别相乘,并注意根据分式的基本性质,对分式进行约分.切忌不约分直接进行计算.最后依据同分母分式的加减法法则:分母不变,分子相加减. 【关键词】 因式分解;分式的基本性质;分式的乘除法;约分;同分母分式的加减.4. ( 2016山东泰安,13,3分)某机加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A .()21001200302026x x =-B .2100120026x x =- C .()21001200203026x x =- D .21001200302026x x⨯⨯=- 【答案】A【逐步提示】本题考查了分式方程应用中的工程问题,解题的关键是准确找出题中的等量关系.根据加工A 零件的总数和每人每天的加工个数,可以知道x 人加工A 零件需要的天数,同样根据加工B 零件的总数和每人每天的加工个数,可以知道剩余的(26-x )人加工B 零件所需的天数,由于要求同时完工,所以通过时间相等找到等量关系,从而列出方程.【详细解答】解:设x 人加工A 零件,(26-x )人加工B 零件,则x 人每天可加工A 零件30x 个,(26-x )人每天可加工B 零件20(26-x )个.根据题意可列方程: ()21001200302026x x =-.故答案为A . 【解后反思】解决工程问题,要抓住工作总量、工作时间和工作效率三者之间的关系:工作总量=工作效率×工作时间.再结合题意找到其中的等量关系,列出方程即可.另外,再解分式方程的应用题时,一定要记得检验. 【关键词】 分式方程的应用;工程问题.5. ( 2016山东潍坊,10,3分)若关于x 的方程3333x m mx x++=--的解为正数,则m 的取值范围是( ) A .92m <B .92m <且32m ≠C .94m >-D .94m >-且34m ≠- 【答案】B【逐步提示】本题考查了分式方程的解与一元一次不等式,解题的关键是化分式方程为整式方程,注意分母不能为零.先把两边同乘以x -3,化分式方程为整式方程,解这个含有字母m 的方程,根据解为正数转化为求字母m 的不等式,再结合分母不能为0的条件来确定m 的取值范围. 【详细解答】解:方程两边同乘以x -3,得:33(3)x m m x +-=- 解得:922mx -=,由题意方程的解为正数, 故9202m ->,解得:92m < 又∵x -3≠0,∴x ≠3,即9232m -≠,m ≠32. ∴92m <且32m ≠. 故选择B .【解后反思】解有关带有字母的分式方程解的题目时,首先考虑到先用题目中含有的字母的代数式(如本题中的m )表示方程的解x ,然后根据题目的条件确定字母的取值范围,解答时要注意字母的取值不能使分式方程产生增根.【关键词】分式方程;一元一次不等式;6.(2016天津,7,3分)计算11x x x+- 的结果为( ) A .1 B .x C .1xD .2x x + 【答案】A【逐步提示】本题考查了分式的加减运算.利用分式的加减法则进行计算,同分母的分子相加减,分母不变,分子相加减,再根据分式的除法法则进行约分. 【解析】原式=111x xx x+-== ,故选择 A. 【解后反思】本题考查分式的运算,包括分式的加减、分式的乘除,解题的关键是掌握分式的运算法则.【关键词】分式的运算7(2016新疆,9,5分)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二小组早15分钟到达乙地,设第二小组的步行速度为x 千米/每小时,根据题意列方程得( )A .75007500151.2x x -= B .7500750011.24x x -= C .7.57.5151.2x x -= D .7.57.511.24x x -= 【答案】D【逐步提示】本题考查了根据实际问题中的等量关系列出分式方程,解题的关键是审题并找出等量关系.分析题意可知路程已知,速度设成未知数,只能从时间上寻找相等关系,即“第一小组比第二小组早15分钟到达乙地”用未知数表示相等关系左右两边可列出方程.【解析】7500米=7.5米,15分钟= 41小时,第一组所用的时间为x 2.15.7小时,第二组所用的时间为x 5.7 根据“第一小组比第二小组早15分钟到达乙地”列方程得7.57.511.24x x -=,故选择D . 【解后反思】列分式方程与列整式方程一样,先分析题意,准确找出应用题中包含的等量关系,恰当地设出未知数,列出方程.在行程类问题中,有一个基本的等量关系:路程=速度×时间.一般地,在路程、速度、时间三个数量中,必定会有一个已知量(这里是路程),设另外两个量中的一个量(这里是速度),则应根据第三个数量(这里是时间)之间的等量关系列方程;列方程时应注意“多退少补”的原则,使等号两边的数量在大小上保持相等. 【关键词】分式;可化为一元一次方程的分式方程;分式方程的应用;;8.(2016淅江丽水,4,3分)1a +1b 的运算结果正确的是 A.1a b+ B.2a b+ C.a b ab+ D.ab【答案】C【逐步提示】先通分,再合并. 【解析】1a +1b =a ab +b ab =a b ab+,故选择C. 【解后反思】异分母分式相加减,先通分转化为同分母分式再进行加减. 【关键词】分式加减;通分9.(2016浙江台州,6,4分)化简222)(x y y x --的结果是( )A .-1B .1C .x y y x -+ D .yx yx -+ 【答案】D【逐步提示】这一题是分式的化简,对于这一题首先,对分子分母进行因式分解,然后进行约分.【解析】yx yx y x y x y x x y y x -+=--+=--2222)())(()(,故答案为D . 【解后反思】在这一题中,最容易错的是符号出错,或者是学生对于平方差公式不熟悉而出错,另外相关的方法如下:1.分式化简的一般过程:(1)有括号先计算括号内的(加减法关键是通分); (2)除法变为乘法;(3)分子分母能因式分解进行分解; (4)约分,化最简分式. 2.【关键词】分式的化简;平方差公式;完全平方公式;10 ( 2016四川省成都市,7,3分)分式方程23xx -=1的解为( ) A .x =-2 B .x =-3 C .x =2 D .x =3 【答案】B .【逐步提示】本题考查了解分式方程,解题的关键是将分式方程转化为整式方程求解.首先去分母把分式方程转化为整式方程,然后解这个整式方程,最后进行检验即可.【详细解答】解:去分母,两边同乘以(x -3),得2x =x -3,解得x =-3.经检验x =-3是原方程的根 ,故选择B .【解后反思】解分式方程的基本思路是通过去分母,将分式方程转化为整式方程来解.另外,解分式方程时,检验是必不可少的重要步骤之一,因为在方程两边都乘以最简公分母时,可能会产生增根.在解分式方程时,易在去分母时,容易漏乘.【关键词】分式方程的解法-增根12. ( 2016四川省凉山州,7,4分)关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A .5- B .8- C .2- D .5【答案】A【逐步提示】先将分式方程两端进行通分,如果方程无解,那么方程两端的分母必定为0,这样就可以得出x 的取值了;由于分式相等且分母相等,因此分子相等,这样就得到了一个关于m 的一元一次方程,解得m 的值. 【详细解答】解:通分得322211x x mx x -++=++,由于方程无解,故x +1=0,即x =-1,;由于分式相等,故有3x -2=2x +2+m ,代入x =-1,解得m =-5.故选择A.【解后反思】分式方程无解或出现增根,只有在公分母为0时才会发生. 【关键词】分式方程的解法;一元一次方程的解法13. ( 2016四川南充,6,3分)某次列车平均提速20km /h ,用相同的时间,列车提速前行驶400km ,提速前比提速后多行驶100km ,设提速前列车的平均速度为x km /h ,下列方程正确的是( )A .40040010020x x +=+ B .40040010020x x -=- C .40040010020x x +=- D .40040010020x x -=+ 【答案】B【逐步提示】本题考查了根据实际问题中的等量关系列出分式方程,解题的关键是审题并找出等量关系.分别表示出提速前和提速后列车行驶的时间,根据“列车提速前后时间一样”列出方程。

专题06 分式及分式方程-2016年中考数学考点总动员系列(原卷版)

专题06 分式及分式方程-2016年中考数学考点总动员系列(原卷版)

专题06 分式及分式方程2016年中考数学考点总动员系列 一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n n n = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程 分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

名师点睛☆典例分类考点典例一、分式的值【例1】(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________.【点睛】分式6265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】1.要使分式x 1x 2+-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211x x -+的值为0,则x =考点典例二、分式的化简 【例2】化简:2x x x 1x 1---=( ) A 、0 B 、1 C 、x D 、1x x -【点睛】观察所给式子,能够发现是同分母的分式减法。

2016年全国中考数学真题分类 分式方程及其应用(习题解析)

2016年全国中考数学真题分类 分式方程及其应用(习题解析)

2016年全国中考数学真题分类分式方程及其应用一、选择题1.(2016安徽,5,4分)方程=3的解是()A.﹣ B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.2.(2016甘肃定西,8,3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得: =,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.3.(2016广东深圳,9,3分)施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。

设原计划每天施工x米,则根据题意所列方程正确的是()A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx 【答案】A4.(2016广西贺州,8,3分)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4 【答案】C5.(2016河北,12,2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x =+答案:B解析:根据题意,3X 的倒数比8X 的倒数大5,故选B 项。

中考数学分式知识点精讲参考_2016中考数学题及答案

中考数学分式知识点精讲参考_2016中考数学题及答案

中考数学分式知识点精讲参考_2016中考数学题及答案对于数学的学习,下面是老师对分式知识的内容讲解,希望给同学们的学习很好的帮助哦。

分式1、分式定义:形如的式子叫分式,其中A、B是整式,且B中含有字母。

(1)分式无意义:B=0时,分式无意义;B≠0时,分式有意义。

(2)分式的值为0:A=0,B≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:(1);(2)(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

以上对数学中分式知识的讲解学习,同学们都能很好的掌握了吧,后面我们将进行更多的知识点的内容总结学习哦。

中考数学有理数知识点精讲同学们对数学中有理数知识点的内容还熟悉吧,下面是老师对此知识点的内容做的详解,希望给同学们的学习上很好的帮助。

有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

中考数学分式方程专题训练有答案解析

中考数学分式方程专题训练有答案解析

分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。

中考数学考点07分式方程及其应用总复习(原卷版)

中考数学考点07分式方程及其应用总复习(原卷版)

分式方程及其应用【命题趋势】在中考中.解分式方程常以选择题、填空题和计算题考查;分式方程的实际应用再选择题考查列方程.解答题多与不等式、函数的实际应用结合考查。

【中考考查重点】一、能解可化一元一次方程的分式方程二、能根据具体问题的实际意义.检验方程的解是合理考点一:解分式方程1.(2021•广州)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6 2.(2021•贵池区模拟)分式方程+2=的解是()A.1B.0C.﹣1D.无解3.(2021•饶平县校级模拟)在下列方程中.()是分式方程.A .=1B .C .D .4.(2020•郴州)解方程:=+1.考点二:分式方程的实际应用行程问题时间速度路程= 工程问题 工作完成时间工作效率工作总量= (当题干中没有给出具体工作总量时.默认工作总量为1)购买问题总量单价总价= 航行问题顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度【提分要点】双检验:1.检验是否为分式方程的解; 2.检验是否符号实际问题5.(2021•黔西南州)高铁为居民出行提供了便利.从铁路沿线相距360km 的甲地到乙地.乘坐高铁列车比乘坐普通列车少用3h .已知高铁列车的平均速度是普通列车平均速度的3倍.设普通列车的平均速度为xkm/h.依题意.下面所列方程正确的是()A.B.C.D.=36.(2021•黔东南州模拟)2020年在抗击“新型冠状病毒”期间.甲、乙两人准备帮助某抗疫指挥中心整理一批新到的物资.甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后.乙需再单独整理30分钟才能完工.设乙单独整理这批物资需要x分钟完工.则根据题意列得方程()A.B.C.D.7.(2021•市中区三模)开学在即.由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生.若两次购买口罩的费用相同.且第一次购买口罩的单价是第二次购买口罩单价的1.5倍.则第二次购买口罩的单价是元.8.(2020•沈河区一模)某服装商预测一种应季衬衫能畅销市场.就用4000元购进一批衬衫.面市后果然供不应求.该服装商又用9000元购进了第二批这种衬衫.所购数量是第一批购进数量的2倍.但单价贵了5元.则该服装商第一批进货的单价是元.1.(2021秋•遵化市期中)下列哪个是分式方程()A.﹣﹣3x=6B.﹣1=0C.﹣3x=5D.2x2+3x=﹣2 2.(2021秋•江油市期末)一艘轮船在两个码头之间航行.顺水航行81km所需的时间与逆水航行69km所需的时间相同.已知水流速度是速度2km/h.则轮船在静水中航行的速度是()A.25km/h B.24km/h C.23km/h D.22km/h3.(2021•张湾区模拟)某单位向一所希望小学赠送1080本课外书.现用A、B两种不同的包装箱进行包装.单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本.则根据题意列得方程为()A.B.C.D.4.(2021•安阳二模)中国标准动车组“复兴号”是世界上商业运营时速最高的动车组列车.达到世界先进水平.安全、舒适、快速是它的显著优点.从安阳东站到北京西站的距离是516千米.乘坐复兴号动车组列车将比乘坐特快列车节省2小时6分钟.已知复兴号动车组的平均速度比特快列车快100千米/小时.设复兴号动车组的平均速度为x千米/小时.根据题意可列方程()A.﹣=2.6B.﹣=2C.﹣=D.﹣=25.(2021秋•铁岭县期末)解下列分式方程:(1)+4=;(2)﹣1=.1.(2021•阿坝州)已知关于x的分式方程=3的解是x=3.则m的值为()A.3B.﹣3C.﹣1D.1 2.(2021•百色)方程=的解是()A.x=﹣2B.x=﹣1C.x=1D.x=33.(2021•巴中)关于x的分式方程﹣3=0有解.则实数m应满足的条件是()A.m=﹣2B.m≠﹣2C.m=2D.m≠2 4.(2021•兴安盟)若关于x的分式方程+=2无解.则a的值为()A.﹣1B.0C.3D.0或3 5.(2021•鄂尔多斯)2020年疫情防控期间.鄂尔多斯市某电信公司为了满足全体员工的需要.花1万元购买了一批口罩.随着2021年疫情的缓解.以及各种抗疫物资充足的供应.每包口罩下降10元.电信公司又花6000元购买了一批口罩.购买的数量比2020年购买的数量还多100包.设2020年每包口罩为x元.可列方程为()A.B.C.D.6.(2021•株洲)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十.粝米三十…”(粟指带壳的谷子.粝米指糙米).其意为:“50单位的粟.可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升).若按照此“粟米之法”.则可以换得的粝米为()A.1.8升B.16升C.18升D.50升7.(2020•阜新)在“建设美丽阜新”的行动中.需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响.实际施工时每天的工效比原计划增加25%.结果提前30天完成这一任务.设实际每天铺xm管道.根据题意.所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=308.(2021•大庆)解方程:+=4.1.(2014•日照校级模拟)下列说法:①解分式方程一定会产生增根;②方程=0的根为2;③方程的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A.1个B.2个C.3个D.4个2.(2021•安徽模拟)若x=6是分式方程的根.则a的值为()A.6B.﹣6C.4D.﹣4 3.(2021•郯城县模拟)分式方程=0的解是()A.1B.﹣1C.±1D.无解4.(2021•西湖区校级三模)某生产厂家更新技术后.平均每天比更新技术前多生产3万件产品.现在生产50万件产品与更新技术前生产40万件产品所需时间相同.设更新技术前每天生产产品x万件.则可以列方程为()A.B.C.D.5.中国高铁目前是世界高铁的领跑者.无论里程和速度都是世界最高的.郑州、北京两地相距约700km.乘高铁列车从郑州到北京比乘特快列车少用3.6h.已知高铁列车的平均行驶速度是特快列车的2.8倍.设特快列车的平均行驶速度为xkm/h.则下面所列方程中正确()A.﹣=3.6B.﹣=3.6C.﹣=3.6D.=3.6﹣6.(2020•河北模拟)某学校食堂需采购部分餐桌.现有A、B两个商家.A商家每张餐桌的售价比B商家的优惠20元.若该校花费4400元采购款在B商家购买餐桌的张数等于花费4000元采购款在A商家购买餐桌的张数.则A商家每张餐桌的售价为()A.197元B.198元C.199元D.200元7.(2021•碑林区校级模拟)解方程:=1﹣.。

中考母题题源系列-专题06分式及分式方程(数学)

中考母题题源系列-专题06分式及分式方程(数学)

【母题来源一】2016年福建龙岩中考第18题【母题原题】先化简再求值:21131--⋅⎪⎭⎫ ⎝⎛--+x x x x ,其中22+=x . 【答案】x+2,24+.考点:分式化简求值. 【名师点睛】本题考查了分式的化简求值,解题的关键是要对分子分母进行因式分解,再按照分式的混合运算顺序进行计算.【母题来源二】2016黑龙江大庆中考第22题【母题原题】某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?【答案】原计划每天能加工6个零件.【解析】试题分析:此题等量关系为:原计划天数=实际生产天数+10.据此等量关系列方程求解即可.试题解析:设原计划每天能加工x 个零件,由题意得:1012360360+=xx ,解得:x=6,经检验:x=6是原方程的解,答:原计划每天能加工6个零件.考点:分式方程的应用.【名师点睛】本题考查了分式方程的应用,根据题意找出等量关系“原计划天数=实际生产天数+10”,根据等量关系列出方程求解即可,注意解分式方程一定要验根.【命题意图】母题1考查了分式的化简求值,解题的关键是要对分子分母进行因式分解,再按照分工的混合运算顺序进行计算。

意在考察基本的运算能力.母题2考查了分式方程的应用,意在考察学生分析问题、解决问题的能力以及建模能力.【方法、技巧、规律】1.分式的化简首先将括号里面的分式进行通分,然后将除法改成乘法进行约分化简,注意瞄准目标,抓住条件,还要根据题目来调整目标,最后将x 和y 根据三角函数的计算法则求出x 和y 的值,最后代入进行计算.分式化简求值有时也可以恰当引入参数,整体代入,取倒数或用倒数关系,也可利用比例关系等来考查应用所学知识解决问题的能力等.2.由于列方程解应用题手段独特,方法灵活,因而常出现在中考试卷中,事实上,列分式方程解应用题的方法可以简单地分为:设、找、列、解、检、答六个步骤,具体就是:(1)设:弄清题意和题目中的数量关系,用字母表示题目中的未知数;(2)找:找到能够表示应用题全部含义的等量关系;(3)列:根据这个等量关系,列出所需的代数式,从而列出方程;(4)解:解这个所列出的方程,求出未知数的解;(5)检:检验所解得未知数的值是不是方程的根;(5)答:根据所得结果作出回答.【母题1】计算(1﹣1x +1)(x+1)的结果是 .【答案】x.考点:分式的混合运算.【母题2】解分式方程1x -1+1=0,正确的结果是( )A .x=0B .x=1C .x=2D .无解【答案】A.【解析】试题分析:1x -1+1=0,1+x-1=0,x=0,经检验:x=0是原方程的根,故选A.考点:解分式方程.【母题3】若关于x 的方程333x mmx x ++--=3的解为正数,则m 的取值范围是() A .m <92B .m <92且m ≠C .m >﹣D .m >﹣且m ≠﹣34【答案】B.考点:分式方程的解.【母题4】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( )A . 152.175007500=-x xB .412.175007500=-x xC .152.15.75.7=-x x D .412.15.75.7=-x x 【答案】D.【解析】试题分析: 此题应注意单位换算.本题等量关系为:第二组时间-第一组时间=14小时.据此可得方程:412.15.75.7=-x x .故选D.考点:分式方程的应用.【母题5】张家界到长沙的距离约为320km ,小明开着大货车,小华开着小轿车,都从张家界同时去长沙,已知小轿车的速度是大货车的1.25倍,小华比小明提前1小时到达长沙.试问:大货车和小轿车的速度各是多少?【答案】大货车的速度是64千米/时,小轿车的速度是80千米/时.【解析】试题分析:此题等量关系是:小明用时-小华用时=1小时.根据此等量关系列方程即可解决此问题.试题解析:设大货车的速度是x 千米/时,则小轿车的速度是1.25x/时,由题意,得320x - 3201.25x=1, 解得:x=64;经检验,x=64是原方程的解,∴1.25 x=1.25×64=80.答:大货车的速度是64千米/时,小轿车的速度是80千米/时.考点:分式方程的应用.【母题6】先化简,再求值:⎪⎪⎭⎫ ⎝⎛+-÷++-1211222x x x x x ,其中x=3. 【答案】x -1x ,333-.考点:分式化简求值.【母题7】先化简,再求代数式11132122+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中a=2sin60°+tan45°. 【答案】11-a .33. 【解析】 试题分析:先化简,再根据特殊角三角函数值求出a 得值,代入求值即可. 试题解析:()()()()1113222111321211132122-=-+--=+⋅-++--=+÷⎪⎭⎫ ⎝⎛---+a a a a a a a a a a a a a .当a=2sin60°+tan45°=131232+=+⨯时,原式=331131=-+. 考点:1分式化简求值;2特殊角三角函数.【母题8】早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【答案】(1)60;(2)240.考点:1分式方程的应用;2一元一次方程的应用.【母题9】先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。

2016中考数学总复习分式人教版.doc

2016中考数学总复习分式人教版.doc

第 3 讲分式分式的概念概念A形如B(A 、B 是整式, B 中含有① ________,且 B≠0) 的式子叫做分式 . 分式分母不为 0.有意义的条件值为零的条件分子为 0,且分母不为 0.分式的基本性质分式的基本性质约分通分A A×M A A÷M=,=(M 是不为零的整式).B B×M B B÷M把分式的分子和分母中的②________约去,叫做分式的约分.根据分式的③ ________,把异分母的分式化为④________的分式,这一过程叫做分式的通分 .分式的运算分式的乘除法分式的乘方分式的加减法分式的混合运算【易错提示】a c ac a c a d ad· =,÷=·=.b d bd b d bc bca n a n( b) =b n(n 为整数 ).a b a±b a c ad±bcc±c=c,b±d=bd.在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.遇到有括号,先算括号里面的.分式运算的结果一定要化成最简分式.1.乘方时一定要先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.2.在分式的加减运算中,如需要通分时,一定要先把分母可以分解因式的多项式分解因式后再找最简公分母,分式的乘除运算中,需要约分时,也要先把可以分解因式的多项式先分解因式再约分.命题点 1分式有意义、值为零的条件1(2014 ·乐山 ) 当分式x-2有意义时, x 的取值范围为 ________.当分式的分母为零时,分式无意义;当分式的分母不为零时,分式有意义;当分式的分子为零,且分式的分母不为零时,分式的值为零.11.当分式x+5有意义时, x 的取值范围为________.x2- 12.(2013 ·攀枝花 ) 若分式x+1的值为 0,则实数x 的值为 ________.| x| -33.(2014 ·凉山 ) 分式x+3的值为零,则x 的值为 ()A. 3 B.- 3C.± 3 D.任意实数命题点 2 分式的运算2x2 + 2x x2- x x(2015 ·广元 ) 先化简: ( x2 -1-x2-2x+1)÷x+1,然后解答下列问题:(1)当 x= 3 时,求原代数式的值;(2)原代数式的值能等于- 1 吗?为什么?【思路点拨】(1) 先进行括号内的异分母加减运算,再进行分式的除法运算;最后代数求值;(2) 先假设原代数式的值等于-1,即是原式化简后的值为1,求出未知数x 的值,再看x 的值能否使原代数式有意义,若有意义,则能;否则不能.【解答】分式运算的常见技巧有: (1) 式子中的某些分式的分子、分母能约分的可先约分,再按运算法则计算化简; (2) 当括号外的因式与括号内的分母能约分时,可依照分配律先去括号,再化简计算.对于分式化简求值题目,还必须注意一点:未知数的取值不仅要使得所有分式的分母不为零,而且还要使除式的分子不为零,如本例第(2) 小题.x2 11.(2015 ·绍兴 ) 化简x-1+1-x的结果是 ()1A. x+1 B.x+ 1xC. x-1 D.x- 12.(2015 a+ 21 a- 1·成都 ) 化简: ( ) ÷.a+2 a - 4 a+ 22aa 23.(2015 ·乐山 ) 化简求值: a 2- 4÷ ( a - 2- a) ,其中 a = 3-2.11.(2015 ·丽水 ) 分式- 1- x 可变形为 ()1 1 A .- x - 1 B.1+ x 1 1 C .- 1+ xD.x - 1x + 12.(2014 ·温州 ) 要使分式 x - 2有意义,则x 的取值应满足 ()A . x ≠2B . x ≠- 1C . x =2D . x =- 1x 2- 13.(2014 ·毕节 ) 若分式 x -1 的值为零,则 x 的值为 () A . 0 B . 1 C .- 1D .±1a 2+ 2ab + b 2b4.(2015 ·山西 ) 化简 a 2- b 2- a - b 的结果是 ()a bA.a -b B.a - bab C.a + bD.a + b2x有意义,那么 x 的取值范围是 ________. 5.(2015 ·上海 ) 如果分式x + 36.当 x= ________时,代数式1无意义.|x| -17.(2015 x2- 5x+ 60,则 x= ________.·绥化 ) 若代数式的值等于2x- 62x+68.(2015 ·无锡 ) 化简x2-9得 ________.a 49.(2015 ·临沂 ) 计算:a+2-a2+2a= ________.1 x- 210.(2014 ·广安 ) 化简 (1 -x-1) ÷x2-2x+1的结果是 ________.11.(2015 ·眉山 ) 计算:2 x2- 1 ÷ x2+x.x - 2x+ 1 x- 112.(2015 ·巴中 ) 化简:2a 2a- 4 a- 2- 2 ÷ 2 . a+1 a - 1 a - 2a+11 1 a2- a13.(2015 ·宜宾 ) 化简: ( a-1-a2-1) ÷a2-1.52a-414.(2015 ·南充 ) 计算: (a + 2-a-2) ·3-a .11x+ 215.(2015 ·资阳 ) 先化简,再求值:( x-1-x+1) ÷x2-1,其中 x 满足 2x-6= 0.16.(2014 ·泰州 ) 已知 a 2+ 3ab + b 2=0(a ≠0, b ≠0) ,则代数式 b +a的值等于 ________.a b 17.(2015 ·凉山 ) 先化简: ( x + 1 x 2+ x 2- 2x+1) ÷ 2 + 2,然后从- 2≤x ≤2 的范围内选取x - 1 x -2x + 1 x - 1 一个合适的整数作为 x 的值代入求值.18. (2 015·达州) 化简a ·a 2- 4a + 2 2a - 3a- 1 ,并求值,其中2- aa 与2、3构成△ ABC 的三边,且a 为整数.参考答案 考点解读 考点 1 ①字母 考点 2②公因式各个击破③基本性质④同分母例 1 x ≠2题组训练1.x ≠- 52.13.A2x (x + 1) x ( x -1) x + 1 例 2(1) 原式= [ ( x + 1)( x - 1) - ( x - 1) 2]· x= ( 2x - x ) · x + 1 x - 1 x - 1xx x + 1 = x - 1· xx + 1=.x - 13+ 1当 x = 3 时,原式= 3- 1=2.x + 1(2) 如果 - 1=- 1,那么 x + 1= 1-x ,解得 x = 0,x当 x = 0 时,除式x = 0,原式无意义,x + 1 故原代数式的值不能等于-1.题组训练 1.Aa 2- 2a1a +22. 原式= ( a 2- 4 +a 2- 4 ) · a -1(a - 1) 2 a +2 = ( a + 2)( a - 2)·a -1a - 1=.a - 22aa 2- a ( a - 2) 3. 原式=( a + 2)( a - 2) ÷ a -22a a -2= ( a + 2)( a - 2)·2a1 = a + 2.当 a = 3- 2 时,原式=133-2+ 2= .3整合集训 基础过关2a -2 1. D 2.A 3.C 4.A 5.x ≠- 3 6. ±1 7.2 8. x -3 9. a10. x -1( x + 1)( x - 1)x - 11 11. 原式= ( x - 1) 2· x ( x + 1) = x .2a 2( a - 2) ( a - 1) 212.原式=a + 1-( a + 1)( a - 1) · a - 22a2( a -1)= a + 1-( a + 1)2=.a + 1a + 11( a - 1)( a + 1)13.原式= [( a - 1)( a + 1) -( a - 1)( a + 1) ] ·a ( a -1)a ( a - 1)( a + 1)= ( a - 1)( a + 1)· a ( a - 1)1 = a - 1.( a + 2)( a - 2)- 5 · 2( a - 2)14. 原式= a - 23- a( a + 3)( a - 3) 2(a - 2)=·3- aa - 2=- 2(a + 3) =- 2a - 6.x + 1 x - 1 x + 215.原式= [( x - 1)( x + 1) - ( x - 1)( x + 1) ] ÷ x 2- 12( x - 1)( x + 1)=·( x - 1)( x + 1)x + 22=x + 2.∵ 2x -6= 0, ∴ x = 3.2 当 x =3 时,原式=.5能力提升 16.- 3x + 1 x - 1( x - 1) 22( 1- x )17.原式= (x - 1+ x - 1) · x ( x + 1)+ ( x + 1)( x - 1)2x( x - 1) 22=x - 1·x ( x +1) -x + 12( x -1) 2 =x + 1 - x + 12x - 4=.x + 1满足- 2≤x ≤2 的整数有:- 2、- 1、 0、 1、2,但是, x =- 1、0、 1 时,原式无意义, ∴ x =- 2 或 2.2×(- 2)- 4 - 8当 x =- 2 时,原式= - 2+ 1 =- 1=8; 2×2- 4 0当 x = 2 时,原式= 2+ 1 =3= 0.aa + 2 1 18.原式=( a + 2)( a - 2) · a ( a - 3) + a -211 =( a - 2)( a - 3)+a -21+ a - 3 =( a - 2)( a -3)a - 2=( a - 2)( a - 3)1=a - 3.∵ a 与 2、 3 构成△ ABC 的三边,且 a 为整数,∴ 1< a < 5,即 a = 2, 3,4.当 a = 2 或 a = 3 时,原式没有意义,则a = 4 时,原式= 1.。

专题22 分式及其计算-2016年中考数学考点总动员系列(原卷版)

专题22 分式及其计算-2016年中考数学考点总动员系列(原卷版)

2016年中考数学考点总动员系列考点二十二:分式及其计算 聚焦考点☆温习理解1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

当B ≠0时,分式B A 有意义,当B=0时,分式B A 无意义;当A=0且B ≠0,分式BA 的值等于0. 2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

用式子表示为:A B =A×M B×M ,A B =A÷M B÷M(M 是不等于零的整式) (2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则 ;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n n n = ;cb ac b c a ±=± bdbc ad d c b a ±=± 4.最简分式如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式.5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质.把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.解分式方程,其思路是去分母转化为整式方程,要特别注意验根.使分母为0的未知数的值是增根,需舍去. 名师点睛☆典例分类考点典例一、分式的概念,求字母的取值范围【例1】((2015.上海市,第1题, 3分)如果分式23x x +有意义,那么x 的取值范围是____________. 【例2】(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________.【举一反三】(2015·辽宁葫芦岛)(3x 的取值范围是 . 考点典例二、分式的性质【例3】已知x+y=xy ,求代数式11x y+-(1-x )(1-y )的值. 【举一反三】1.分式22x-可变形为【 】 A. 22x + B.22x -+ C. 2x 2- D.2x 2-- 考点典例三、分式的加减法【例4】(2015.山东临沂第16题,3分)计算:2422a a a a-=++____________.【举一反三】化简21639x x ++-的结果是 考点典例四、分式的四则混合运算【例5】(2015.上海市,第19题,10分) (本题满分10分)先化简,再求值:2124422+--+÷++x x x x x x x ,其中12-=x .【举一反三】1.(2015.山东烟台,第19题,6分)(本题满分6分) 先化简2221()211x x x x x x+÷--+-,再从23x -<<的范围内选取一个你喜欢的x 值代入求值。

2016中考数学分式最常考考点:分式方程的基本解法_考点解析

2016中考数学分式最常考考点:分式方程的基本解法_考点解析

2016中考数学分式最常考考点:分式方程的基本解法_考点解析
初三学期的学习知识范围更广,课程的内容更加抽象,更加难以理解,尽快地掌握科学知识,迅速提高学习能力,由小编为您提供的2016中考数学分式最常考考点,希望给您带来启发!
解分式方程的一般步骤:
(1)去分母,把分式方程转化为整式方程;
(2)解这个整式方程,求得方程的根;
(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为零,则它不是原方程的根,而是方程的增根,必须舍去;如果使最简公分母不为零,则它是原分式方程的根.
为大家推荐的2016中考数学分式最常考考点的内容,还满意吗?相信大家都会仔细阅读,加油哦!。

2016中考数学分式知识点复习指导:列分式方程基本步骤

2016中考数学分式知识点复习指导:列分式方程基本步骤

2016中考数学分式知识点复习指导:列分式方程基本步骤
临近中考,学生要有一定的自主性,光跟着老师”跑没用。

因为每位学生对知识点的掌握程度不同,复习进度也不同。

学习网初中频道为大家提供了中考数学分式知识点复习指导,希望能够切实的帮助到大家。

① 审-仔细审题,找出等量关系。

② 设-合理设未知数。

③ 列-根据等量关系列出方程(组)。

④ 解-解出方程(组)。

注意检验
⑤ 答-答题。

这就是我们为大家准备的中考数学分式知识点复习指导的内容,希望符合大家的实际需要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题06 分式及分式方程
2016年中考数学考点总动员系列 聚焦考点☆温习理解
一、分式
1、分式的概念
一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质
(1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则
;;bc
ad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n b
a b a n n n = ;c
b a
c b c a ±=± bd
bc ad d c b a ±=± 二、分式方程
1、分式方程 分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:
(1)去分母,方程两边都乘以最简公分母
(2)解所得的整式方程
(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

名师点睛☆典例分类
考点典例一、分式的值
【例1】(2015·黑龙江绥化)若代数式6
265x 2-+-x x 的值等于0 ,则x=_________.
【点睛】分式6
265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】
1.要使分式x 1x 2
+-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211
x x -+的值为0,则x =
考点典例二、分式的化简 【例2】化简:2x x x 1x 1
---=( ) A 、0 B 、1 C 、x D 、
1
x x -
【点睛】观察所给式子,能够发现是同分母的分式减法。

利用同分母分式的减法法则计算即可得到结果.
【举一反三】
1.化简22
a b ab b a
--结果正确的是【 】 2.若241()w 1a 42a
+⋅=--,则w=( ) A.a 2(a 2)+≠- B. a 2(a 2)-+≠ C. a 2(a 2)-≠ D. a 2(a 2)--≠-
3.计算:2111
a a a -=-- 考点典例三、分式方程
【例3】(2015自贡)方程01
12=+-x x 的解是( ) A .1或﹣1 B .﹣1 C .0 D .1
【点睛】先去掉分母,观察可得最简公分母是x+1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解。

【举一反三】
1.(2015攀枝花)分式方程
1311
x x =-+的根为 . 2.(2015绵阳)(8分)解方程:311221x x =-++. 考点典例四、分式方程的应用
【例5】((2015遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )
A .
36369201.5x x +-= B .3636201.5x x -= C .36936201.5x x +-= D .36369201.5x x
++=
【点睛】方程的应用解题关键是设出未知数,找出等量关系,列出方程求解.
【举一反三】
1..甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x 千米/时,可列方程为( )
A .42042021.5x x +=
B .42042021.5x x -= C. 1.52420420x x +=D . 1.52420420
x x -= 2.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意,下列方程正确的是( )
A .
2001801452x x =⋅+ B .2002201452
x x =⋅+ C .2001801452x x =⋅- D . 2002201452x x =⋅- 课时作业☆能力提升
一.选择题
1.(2015·黑龙江省黑河市、齐齐哈尔市、大兴安岭)关于x 的分式方程
52a x x =-有解,则字母a 的取值范围是( )
A .a =5或a =0
B .a ≠0
C .a ≠5
D .a ≠5且a ≠0
2.(2015·辽宁营口)若关于x 的分式方程2233x m x x
++=--有增根,则m 的值是( ). A .1m =- B .0m = C .3m = D .0m =或=3m 3.(2015·湖南常德)分式方程
23122x x x
+=--的解为:( ) A 、1 B 、2 C 、13
D 、0 4.(2015·山东济宁)解分式方程22311x x x ++=--时,去分母后变形正确的为( ) A .2+(x+2)=3(x-1) B .2-x+2=3(x-1)
C .2-(x+2)=3
D . 2-(x+2)=3(x-1)
二.填空题
5. (2015·湖北衡阳,16题,3分)方程
132x x =-的解为 . 6.(2015·湖北襄阳,14题)分式方程
2110051025x x x -=--+的解是 . 7.分式方程212011
x x +=--的解是__________. 8.若分式方程1x x -﹣1m x
-=2有增根,则这个增根是 . 9.(山东威海,第16题,4分)分式方程的解为 .
三、解答题
10.计算:22a 1a 1a 2a a
--÷+. 11.先化简,再求值:2221a a a 1a a 2a 1
+⎛⎫-÷ ⎪--+⎝⎭,其中2a a 20+-=. 12.先化简,再求值:22x 9x 3x x 8x 16x 4x 4
--÷-++++
,其中x 4=. 13.先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭
,其中x 1= 14. (2015·山东枣庄,第19题,8分)(本题满分8分) 先化简,再求值:x x x x x x x -++÷⎪⎪⎭
⎫ ⎝⎛-+-+-144214222,其中x 满足x ²-4x+3=0 15.(2015·山东泰安,第25题)(8分)某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T 恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?
16.(2015·山东济南,第24题,8分)(8分)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.
17.(2015·辽宁大连)甲乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲乙两人每小时各做多少个零件?
18.(2015.宁夏,第17题,6分)解方程:221111
x x x x --=-- 19. (2015.北京市,第21题,5分)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车
供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年成平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将租赁点多少个?。

相关文档
最新文档