极限配合与技术测量

合集下载

极限配合与技术测量

极限配合与技术测量

技术测量的重要性
高精度
数据处理
准确的测量可以保证产品符合制 定的标准,促进企业的健康发展。
数据化的处理可以将多个生产阶 段的数据及时记录,方便后续的 跟踪和纠正。
成本控制
技术测量的数据及时传递,可以 在生产过程中减少浪费,降低成 本。
常用极限配合技术测量方法
1
百分位法
通过判断零件的实际尺寸与理论尺寸之
极限配合与技术测量
学习本课程,了解极限配合的需求以及技术测量的必要性,及如何使用实用 的方法来解决实际问题。
什么是极限配合?
定义
极限配合指大量生产的零件之间尺寸的范围,以及它们之间最小的空隙量,以保证它们可以 组装在一起而无需调整或切削。
意义
实现极限配合可以保证生产出的商品符合标准,减少零部件之间摩擦和磨损,增加零部件的 耐用度和工作效率。
2 案例2
一家电子设备制造商使用测量仪器的方法检测了微处理器的每个焊点的尺寸,从而确保 其电气特性符合规格要求。
影响极限配合与技术测量的因素
材料
材料的特性,如热膨胀系数、 硬度等会影响到零件的尺寸精 度。
生产工艺
生产过程中的温度、压力、加 工精度等因素会影响到零件尺 寸和配合的实际结果。
人为操作因素
统计学检验法
2
间的差距 如何控制?而确定配合范围。
根据正态分布等统计规律,确定配合的
上下限。
3
测量仪器法
使用各种测量仪器,如卡尺、测微计等, 进行精确测量并以此确定配合范围。
极限配合与技术测量的案例
1 案例1
一家汽车配件厂商在生产刹车室的过程中使用百分位法确定了配件之间的空隙量,在几 次生产批次的测试中得到了一致的结果,大大减少了调整和切削的时间。

极限配合与技术测量(第三章)

极限配合与技术测量(第三章)
量块长度l是指一个测量面上的任意点到与另一测量面相研合的 辅助体表面的垂直距离。
量块标称长度ln是指标记在量块上的量值,如图3-1中的“40”。
图3-1 量块
量块的研和性——量块的测量面非常平整和光洁,用少许压力推合量块,使它们的测量面紧密接 触,量块就能黏合在一起。量块的这种特性称为研合性。 利用量块的研合性,可以用不同尺寸的量块组合成所需的各种尺寸。
3.2 测量方法与计量器具基础
3.2.1 测量方法的分类
(1)直接测量和间接测量 直接测量指直接从计量器具的读数装置上得到被测量数值或偏差的测量方法。 间接测量指先测出与被测量有一定函数关系的量,然后通过函数关系计算出被测量值的测量方法。 (2)接触测量和非接触测量 接触测量指工件表面与计量器具测头直接接触,并有机械测量力存在的测量方法。 非接触测量指工件表面与计量器具测头不接触的测量方法。 (3)单项测量和综合测量 单项测量指单独地、彼此没有联系地测量零件各项参数的测量方法。 综合测量指同时测量零件几个相关参数的综合效应或综合参数,从而综合判断零件合格
性的测量方法。
(4)主动测量和被动测量 主动测量指在加工过程中对零件进行测量的测量方法。其测量结果可直接用于控制工件的加工过
程,能够主动及时地预防废品的产生。 被动测量指加工完成后对零件进行测量的测量方法。其测量结果只能判断零件是否合格,仅用于
发现并剔除废品。 (5)静态测量和动态测量 静态测量指测量时被测零件表面与计量器具测头相对静止的测量方法。 动态测量指测量时被测零件表面与计量器具测头相对运动的测量方法。 (6)等精度测量和不等精度测量 等精度测量指决定测量精度的全部因素或条件都不变的测量方法。 不等精度测量指在测量过程中,决定测量精度的全部因素或条件可能部分改变或完全改变的

极限配合与技术测量基础第一章

极限配合与技术测量基础第一章

ф 40G7
只标注公差带代号的方法(适用于 大批量的生产要求)
只标注上、下极限偏差数值的方法 (适用于单件或小批量的生产要求)
公差带代号与极限偏差值共同标注的方 法(适用于批量不定的生产要求)
3.公差带系列
公称尺寸至500mm的一般、常用和优先轴公差带
公称尺寸至500mm一般、常用和优先孔公差带
基孔制配合
(2)基轴制配合:基本偏差为一定的轴的公差带,与 不同基本偏差的孔的公差带形成各种配合的一种制度。
2.间隙与过盈
间隙——孔的尺寸减去相配合的轴的尺寸为正,一 般用X表示,其数值前应标“+”号。
过盈——孔的尺寸减去相配合的轴的尺寸为负,一 般用Y表示,过盈数值前应标“-”号。
3.配合的类型
间隙配合 过渡配合 过盈配合
(1)间隙配合
间隙配合——孔的公差带在轴的公差带之上且总 是具有间隙(包括最小间隙等于零)的配合。
(4)代号j、J及P~ZC的基本偏差数值与公差等级有关。
三、公差带
1.公差带代号
孔、轴公差带代号由基本偏差代号与公差等级数字组 成。
例如: 孔公差带代号 H9、D9、B11、S7、T7 轴公差带代号h6、d8、k6、s6、u6
2.图样上标注尺寸公差的方法
公称尺寸与公差带代号表示 公称尺寸与极限偏差表示 公称尺寸与公差带代号、极限偏差共同表示
公差带图
【例1-5】绘出孔φ25 图。
mm和轴φ25
mm的公差带
解题过程
四、配合的术语及其定义
1.配合 2.间隙与过盈 3.配合的类型 4.配合公差(Tf)
1.配合
配合——基本尺寸相同的,相互结合的孔和轴公差带 之间的关系。
相互配合的孔和轴其基本尺寸应该是相同的。 孔、轴公差带之间的不同关系,决定了孔、轴结合的 松紧程度,也就是决定了孔、轴的配合性质。

极限配合与技术测量基础(第四版)第一章

极限配合与技术测量基础(第四版)第一章
原则
了解通过公差设计和配合选择来实现机械零件稳定性和可靠性的基本原则。
实例分析
通过实例分析,深入理解极限配合的概念和原则。
技术测量的意义和作用
1 质量控制
探讨技术测量在质量控制 中的作用,确保产品符合 规定的要求。
2 工程设计
了解技术测量如何在工程 设计中发挥重要作用,确 保每个零件都具有准确的 尺寸。
关联性
探讨极限配合与技术测量之间的 关系,以确保零件在装配过程中 的质量和稳定性。
测量工具
了解测量工具在极限配合和技术 测量中的重要性,如卡尺和测微 计。
实例分析
通过实例分析,展示极限配合与 技术测量在齿轮装配中的应用。
极限配合与技术测量的应用范围
机械制造
探索极限配合和技术测量在机 械制造领域的应用,如汽车制 造和航天工程。
电子工程
了解极限配合和技术测量在电 子工程中的应用,如印刷电路 板制造和芯片封装。
医疗技术
展示极限配合和技术测量在医 疗技术领域的应用,如医疗器 械生产和人工关节制造。
结论和要点
极限配合
总结极限配合的定义、原则和应用范围。
技术测量
总结技术测量的意义、基本原理和方法。
重要性
强调极限配合和技术测量的重合与技术测量基础 (第四版)第一章
本章将介绍极限配合和技术测量的基础知识。你将了解到它们的重要性、原 理、方法以及它们在各个领域的应用。
极限配合的定义和重要性
了解极限配合的定义,并探讨它在工程领域中的重要性。这是确保零件之间紧密配合的关键工艺。
极限配合的基本概念和原则
基本概念
探索极限配合的基本概念,包括公差、配合类别和配合制图符号。
3 过程监控
理解技术测量在生产过程 中的监控作用,确保每个 工序都达到预期标准。

极限配合与技术测量单选题100道及答案

极限配合与技术测量单选题100道及答案

极限配合与技术测量单选题100道及答案1.基本尺寸是()。

A.测量时得到的尺寸B.设计时给定的尺寸C.加工后得到的尺寸D.装配后得到的尺寸2.实际尺寸是()。

A.测量时得到的尺寸B.设计时给定的尺寸C.加工后得到的尺寸D.装配后得到的尺寸3.最大极限尺寸与基本尺寸的差值为()。

A.上偏差B.下偏差C.公差D.误差4.最小极限尺寸与基本尺寸的差值为()。

A.上偏差B.下偏差C.公差D.误差5.尺寸公差是()。

A.最大极限尺寸与最小极限尺寸之差B.最大极限尺寸与基本尺寸之差C.最小极限尺寸与基本尺寸之差D.实际尺寸与基本尺寸之差6.当孔的上偏差小于相配合的轴的下偏差时,此配合性质是()。

A.间隙配合B.过渡配合C.过盈配合D.无法确定7.当孔的下偏差大于相配合的轴的上偏差时,此配合性质是()。

A.间隙配合B.过渡配合C.过盈配合D.无法确定8.当孔的上偏差大于相配合的轴的上偏差,且孔的下偏差小于相配合的轴的下偏差时,此配合性质是()。

A.间隙配合B.过渡配合C.过盈配合D.无法确定9.基孔制是基本偏差为一定的孔的公差带,与不同()的轴的公差带形成各种配合的一种制度。

A.基本偏差B.上偏差C.下偏差D.公差10.基轴制是基本偏差为一定的轴的公差带,与不同()的孔的公差带形成各种配合的一种制度。

A.基本偏差B.上偏差C.下偏差D.公差11.标准公差等级分为()级。

A.18B.20C.22D.2412.公差带的大小由()决定。

A.标准公差B.基本偏差C.配合公差D.实际偏差13.公差带的位置由()决定。

A.标准公差B.基本偏差C.配合公差D.实际偏差14.φ30H7/g6 是()配合。

A.间隙B.过渡C.过盈D.无法确定15.φ30H8/js7 是()配合。

A.间隙B.过渡C.过盈D.无法确定16.φ30H7/k6 是()配合。

A.间隙B.过渡C.过盈D.无法确定17.φ30H7/p6 是()配合。

A.间隙B.过渡C.过盈D.无法确定18.测量误差按其性质可分为()。

极限配合与技术测量基础(第五版)

极限配合与技术测量基础(第五版)
精品课件
极限偏差尺寸标注为:公称尺寸下 上极 极限 限偏 偏差 差
精品课件
(2)实际偏差
实际尺寸减其公称尺寸所得的代数差称为实际 偏差。合格零件的实际偏差应在规定的上、下极限偏差 之间。
精品课件
【例1-1】某孔直径的公称尺寸为φ50mm,上极限尺寸 为φ50.048mm,下极限尺寸为φ50.009mm,求孔的上、下极
Ymax=Dmin-dmax=EI-es
最小过盈:孔为上极限尺寸而与其相配的轴为下极 限尺寸,配合处于最松状态。
Ymin=Dmax-dmin=ES-ei
精品课件
过盈配合的孔、轴公差带
精品课件
【例1-7】孔φ32
mm和轴φ32
mm相配合,
试判断其配合类型,并计算其极限间隙或极限过盈。
解题过程
精品课件
寸为φ50mm,孔的公差带代号为H8,轴的公差带代号为f7,
为基孔制间隙配合。
精品课件
3.常用和优先配合
国标在公称尺寸至500mm范围内,对基孔制规定了 59种常用配合,对基轴制规定了47种常用配合。这些配合 分别由轴、孔的常用公差带和基准孔、基准轴的公差带组 合而成。在常用配合中又对基孔制、基轴制各规定了13种 优先配合,优先配合分别由轴、孔的优先公差带与基准孔 和基准轴的公差带组合而成。
精品课件
4.极限尺寸 极限尺寸——允许尺寸变化的两个界限值。
允许的最大尺寸称为上极限尺寸,允许的最小 尺寸称为下极限尺寸。
精品课件
三、偏差与公差的术语及其定义
1.偏差
2.尺寸公差(T)
3.零线与公差带
精品课件
1.偏差
偏差——某一尺寸,如实际尺寸、极限尺寸等减 其公称尺寸所得的代数差。

极限配合与技术测量(高教版)课件:极限与配合国家标准

极限配合与技术测量(高教版)课件:极限与配合国家标准

最小二乘法测量
最小二乘法是一种常用的测量方法,可用于处理测量误差。该方法通过对测 量数据进行数学拟合,找到最优解,提高测量结果的准确性和可靠性。
测量数据处理
测量数据处理是测量工作中非常重要的一环,包括数据的整理、分析和合理运用。合适的数据处理方法 可以提高测量结果的准确性和可靠性。
实例分析
通过实例分析不同类型的极限配合应用场景,我们可以更好地理解和掌握极 限配合的原理和应用技巧。
总结和注意事项
在极限配合和技术测量中,我们需要遵循国家标准,准确计算配合公差,并采用合适的测量方法和数据 处理技术。同时,注意实践中可能遇到的问题和注意事项。
极限配合与技术测量(高 教版)课件:极限与配合 国家标准
本课件介绍极限配合的国家标准,包括定义和分类、极限配合公差的计算方 法、最小二乘法测量以及测量数据处理。我们通过实例分析来加深理解,最 后总结注意事项。
国家标准介绍
国家标准是制定和推广极限配合相关规范的基础。准确了解国家标准的要求 对于正确应用极限配合是至关重要的。
极限配合的定义和分类
极限配合是工程中用于连接和定位零件的一种方法。根据配合的松紧程度和 允许公差的大小,可以将极限配合划分为间隙配合、过盈配合和过度配合。
极限配合公差的计算方法
计算极限配合公差的方法包括等级制、基本偏差和公差分配等。了解这些计算方法可以帮助工程师准确 计算配合尺寸,确保零件之间的配合质量。ቤተ መጻሕፍቲ ባይዱ

极限配合与技术测量教案

极限配合与技术测量教案

极限配合与技术测量教案教案标题:极限配合与技术测量教案教学目标:1. 了解极限配合的概念和重要性。

2. 掌握极限配合的计算方法和实际应用。

3. 理解技术测量的基本原理和方法。

4. 学会使用测量工具进行技术测量。

教学准备:1. 教学工具:投影仪、计算器、测量工具(卷尺、游标卡尺、千分尺等)。

2. 教学材料:极限配合和技术测量的相关教材和练习题。

教学过程:1. 导入(5分钟)- 利用投影仪展示一些实际生活中需要进行极限配合和技术测量的例子,引发学生对本课主题的兴趣和思考。

2. 知识讲解(15分钟)- 介绍极限配合的概念和重要性,解释在不同工程领域中的应用。

- 讲解极限配合的计算方法,包括公差的计算和配合的选择原则。

- 介绍技术测量的基本原理和方法,包括测量误差的概念和常见的测量工具。

3. 实例演练(20分钟)- 提供几个极限配合的实例,让学生运用所学知识进行计算和分析。

- 引导学生讨论实际工程中选择合适配合的因素,并解释其影响。

4. 小组合作(15分钟)- 将学生分成小组,每个小组选择一个实际工程项目进行技术测量。

- 要求学生使用测量工具进行测量,并记录测量结果。

- 学生之间互相讨论和比较测量结果,分析可能的误差来源。

5. 总结(10分钟)- 回顾本节课所学内容,强调极限配合和技术测量在工程中的重要性。

- 概括极限配合的计算方法和技术测量的基本原理。

- 鼓励学生在实际生活中注意极限配合和技术测量的应用,并提出问题和疑惑。

6. 作业布置(5分钟)- 布置相关的练习题,巩固学生对极限配合和技术测量的理解和应用能力。

- 鼓励学生自主查找更多实例,并进行计算和分析。

教学延伸:1. 针对学生的不同水平和兴趣,可以提供更复杂的极限配合实例和技术测量项目,挑战他们的思维和解决问题的能力。

2. 引导学生进行实际工程项目的实践操作,让他们亲自体验极限配合和技术测量的过程,增强实际操作能力。

3. 鼓励学生进行小组报告,分享他们在实践中的发现和经验,促进学生之间的交流和合作。

极限配合与技术测量

极限配合与技术测量

渡 配 合
Ymax Dmin dmax ESei
X av (Yav )

Xmax Ymax 2
配 合
对于间隙配合 Tf X max X min


对于过盈配合 Tf Ymin Ymax


对于过渡配合 Tf 合
1.2 极限与配合的基本内容
返回
1.2.1 基准
基孔制是指以孔的公差带位 置为基准固定不变,与不同基本 偏差的轴的公差带形成不同配合 的一种制度。
基轴制是指以轴的公差带位置为 基准固定不变,与不同基本偏差的孔 的公差带形成不同配合的一种制度。
第1章 孔、轴的极限与配合
1.2 极限与配合的基本内容
1.2.2 标准公差系列
1.标准公差的等级和作用 GB/T 1800.1—2009在公称尺寸不大于500 mm内规定了IT01、IT0、IT1、 IT2、…、IT17、IT18共20个标准公差等级,在公称尺寸500~3 150 mm内规 定了IT1~IT18共18个标准公差等级。其中,IT01等级最高,依次降低, IT18为最低级。标准公差的大小,即标准公差等级的高低,决定了孔、轴 的尺寸精度和配合精度。在确定孔、轴公差时,应按标准公差等级取值, 以满足标准化和互换性的要求。 2. 为了减少公差数目,统一公差值,简化公差表格,特别考虑到便于应 用,国标对基本尺寸进行了分段。尺寸分段内的所有基本尺寸,在相同公 差等级的情况下,规定相同的标准公差值。
第1章 孔、轴的极限与配合
1.2 极限与配合的基本内容
1.2.3 公差带与配合在图样上的标注
对功能上无特殊要求的要素可给出一般公差。一般公差可应用在 线性尺寸、角度尺寸、形状和位置等几何要素。为了明确而统一地处 理这类尺寸的公差要求问题,国家标准GB/T 1804—2000中规定了线 性尺寸一般公差的等级和极限偏差。

极限配合与技术测量基础教案

极限配合与技术测量基础教案

极限配合与技术测量基础教案第一章:概述1.1 课程介绍了解极限配合与技术测量基础课程的目的和意义。

理解课程的内容和要求。

1.2 极限配合的概念解释极限配合的定义。

介绍极限配合的应用范围。

1.3 技术测量概述介绍技术测量的基本概念。

解释技术测量的重要性和应用。

第二章:极限配合的基本原理2.1 极限配合的基本参数介绍极限配合的三个基本参数:基本尺寸、公差和配合。

解释这些参数之间的关系。

2.2 极限配合的分类介绍极限配合的分类:间隙配合、过盈配合和过渡配合。

解释每种配合的特点和应用。

2.3 极限配合的选用介绍如何选择合适的极限配合。

解释选择极限配合时需要考虑的因素。

第三章:技术测量基础3.1 测量概述介绍测量的基本概念。

解释测量的重要性和应用。

3.2 测量工具和仪器介绍常用的测量工具和仪器。

解释每种工具和仪器的使用方法和注意事项。

3.3 测量误差与精度解释测量误差和精度的概念。

介绍如何减小测量误差和提高测量精度。

第四章:尺寸公差与配合设计4.1 尺寸公差的概念解释尺寸公差的概念。

介绍尺寸公差的作用和意义。

4.2 配合设计的原则介绍配合设计的原则。

解释每种原则的应用和注意事项。

4.3 配合设计的实例给出配合设计的实例。

解释如何解决实际问题并进行配合设计。

第五章:测量技术在工程中的应用5.1 测量技术在机械工程中的应用介绍测量技术在机械工程中的应用。

解释测量技术在机械工程中的重要性。

5.2 测量技术在汽车工程中的应用介绍测量技术在汽车工程中的应用。

解释测量技术在汽车工程中的关键作用。

5.3 测量技术在其他工程领域的应用介绍测量技术在其他工程领域的应用。

解释测量技术在不同领域中的重要性。

第六章:极限配合的应用案例分析6.1 案例一:机械零件的配合设计分析一个机械零件的配合设计案例。

解释如何根据零件的功能和制造条件选择合适的极限配合。

6.2 案例二:装配过程中的配合问题解决分析一个装配过程中出现的配合问题。

解释如何通过调整配合公差来解决装配问题。

极限配合与技术测量知识点

极限配合与技术测量知识点

一、名词解释1、加工误差:零件的实际尺寸和理论上的绝对准确尺寸之差称为加工误差。

2、尺寸误差:加工后零件某处的实际尺寸对理想尺寸的偏差量。

3、形状误差:加工后零件上实际的线或面对理想形状的偏差量。

4、位置误差:实际零件形体上的点、线、面对各自要求的理想方向和理想位置的偏差量。

5、表面轮廓误差:零件加工表面上的较小间距和峰谷所组成的微观几何形状对理想轮廓的偏差量。

6、公差:零件的尺寸、几何形状、几何位置关系及表面轮廓参数数值允许变动的范围。

7、互换性:在制成同一规格的零件中,不需要作任何挑选或附加加工就可以直接使用,组装成部件或整机,并能到达设计要求。

8、孔:通常指工件的圆柱形内表面,也包括非圆柱形内表面(由两个平行平面或切面形成的包容面)9、轴:通常指工件的圆柱形外表面,也包括非圆柱形外表面(由两个平行平面或切面形成的被包容面)10、尺寸:以特定单位表示线性尺寸的数值。

11、基本尺寸:零件的基本尺寸是设计时给定的,是根据零件的使用要求,通过计算、实验或经验确定的。

12、实际尺寸:通过测量获得的某一孔、轴的尺寸。

13、局部实际尺寸:一个孔或轴的任意横截面中的任一距离,即在任何两相对点之间测得的距离。

14、极限尺寸:一个孔或轴允许的尺寸的两个界限值。

15、尺寸偏差:某一尺寸(实际尺寸、极限尺寸)减去其基本尺寸所得的代数差。

16、上偏差:最大极限尺寸减去其基本尺寸所得的代数差。

17、下偏差:最小极限尺寸减去其基本尺寸所得的代数差。

18、极限偏差:上偏差、下偏差称为极限偏差。

19、尺寸公差:允许尺寸的变动量,大小等于最大极限尺寸与最小极限尺寸之差,或上偏差与下偏差之差。

20、配合:基本尺寸相同、相互结合的孔和轴公差带之间的位置关系。

21、间隙配合:孔的尺寸减去相配合的轴的尺寸之差为正值,即具有间隙(包括最小间隙等于零)的配合。

22、过盈配合:孔的尺寸减去相配合的轴的尺寸之差为负值,即具有过盈(包括最小过盈等于零)的配合。

极限配合与技术测量

极限配合与技术测量

附加加工就可以直接使用,组装成部件或整机,并能达到设计
要求。
• 判断零件是否具有互换性可以从以下三点考虑: (1)同一规格。 (2)不经任何附加加工(挑选、调整、修理),就能装配。 (3)满足使用要求。
例如:机械或仪器上掉一个螺钉,换上一个相同规格的新螺钉就合适; 灯泡坏了,买一个相同规格新的灯泡安上就能亮;汽车、拖拉机、自 行车、电视、计算机、手表中某个机件磨损了,换上一个新的便能继 续使用。零件的更换之所以这样方便,是因为这些合格的产品和零部 件具有在尺寸、功能上能够彼此相互替换的性能,即它们具有互换性。
第一章
概述
加工误差 公差
互换性
标准化
技术测量
问题:
1、为什么汽车的组装(每隔几分钟就可以组装一 部合格的汽车);流水线和自动线等先进生产方 式怎样保证等。 2、一些轴承工业加工精度要求很高和小规模生产 应该采取哪种互换性为宜?
一、互换性
1、互换性的定义
互换性是指在制成的同一规格的零件中,不需要作任何挑选或
2、互换性的分类
• (1)完全互换性 • 是指零、部件在装配时,不需要作任何选择或附加 加工。 • (2)不完全互换性 • 是指零部件在装配时允许进行附加加工、选择和调 整,以提高装配的精度和解决加工的困难。
• 分组装配法:装配时通常按零件实际尺寸大小分成若干 组,使同组零件的相配尺寸相差值很小,再与相对应组 内零件进行装配,这种方法称为分组装配法。
零件的实际尺寸和理论上的绝对准确尺寸之差称为加工误差。
◆举例 φ=60mm,L=100mm的圆柱工件
2、分类:
尺寸误差:实际尺寸与理想尺寸的偏差量 形状误差:实际形状对理想形状的偏差量 位置误差:实际零件上点、 线、 面间的位置与理想位置的偏差量 表面轮廓误差(表面粗糙度):零件表面上的微观几何形状对理想轮廓的偏 差量

极限配合与技术测量基础教案

极限配合与技术测量基础教案

极限配合与技术测量基础教案一、教学目标1. 了解极限配合与技术测量的基本概念和作用。

2. 掌握尺寸公差、形状和位置公差、表面粗糙度的基本知识。

3. 学会使用量具进行尺寸测量,并能够进行简单的尺寸控制。

二、教学内容1. 极限配合与技术测量的基本概念和作用1.1 极限配合的概念1.2 技术测量的重要性2. 尺寸公差、形状和位置公差、表面粗糙度2.1 尺寸公差2.2 形状和位置公差2.3 表面粗糙度三、教学重点与难点1. 教学重点:1.1 极限配合的基本概念1.2 尺寸公差、形状和位置公差、表面粗糙度的定义和应用2. 教学难点:2.1 尺寸公差、形状和位置公差、表面粗糙度的计算和应用四、教学方法1. 采用讲授法,讲解极限配合与技术测量的基本概念和作用。

2. 采用案例分析法,分析尺寸公差、形状和位置公差、表面粗糙度的实际应用。

3. 采用实践操作法,让学生亲自动手使用量具进行尺寸测量。

五、教学准备1. 教学材料:教案、PPT、测量工具(卡尺、千分尺、量块等)。

2. 教学环境:教室、实验室。

教案内容:第一节:极限配合与技术测量的基本概念和作用一、导入讲解极限配合的概念,引导学生了解极限配合在工程中的重要性。

二、极限配合的基本概念1. 讲解极限配合的定义。

2. 讲解上偏差和下偏差的含义。

三、技术测量的重要性1. 讲解技术测量在工程中的作用。

2. 强调准确测量对产品质量和安全的重要性。

第二节:尺寸公差、形状和位置公差、表面粗糙度一、尺寸公差1. 讲解尺寸公差的定义。

2. 讲解尺寸公差的表示方法。

二、形状和位置公差1. 讲解形状和位置公差的定义。

2. 讲解形状和位置公差的表示方法。

三、表面粗糙度1. 讲解表面粗糙度的定义。

2. 讲解表面粗糙度的表示方法。

第三节:尺寸测量一、测量工具的使用1. 讲解卡尺的使用方法。

2. 讲解千分尺的使用方法。

3. 讲解量块的使用方法。

二、尺寸测量实例1. 进行实际尺寸测量,让学生亲自动手操作。

极限配合与技术测量基础

极限配合与技术测量基础
列, 相交处为0.21,0mm,查表求IT9的公差值。
解:Ф80属于50~80mm这一行,然后找到IT9这一列, 相交处为74,单位为μm,所以IT9=74μm=0.074mm。
例3:基本尺寸为Ф10mm,查表求IT16的公差值。
解:Ф10属于6~10mm这一行,然后找到IT16这一 列,相交处为0.9,单位为mm,所以IT16=0.9mm
4.公称尺寸分段:为减少标准公差的数目,简化公 差表格以利于生产,国标对基本尺寸进行了分段, 见课本14页表1-2。
标准公差查表举例
例1:基本尺寸为Ф20mm,查表求IT6、IT12的公差值。
解:IT6:基本尺寸为20mm,属于18~30mm这一行,然后找 到IT6这一列,相交处为13,单位为μm,所以 IT6I=T1132μ:m还=是0.01183~m3m0m。m这一行,然后找到IT12这一
1.2 极限与配合标准的基本规定 一、标准公差
1.标准公差IT(ISO Tolerance):是国标规定的, 用以确定公差带大小的任一公差值。
2.标准公差两要素:a:标准公差等级 b:公称尺寸分段
3.标准公差等级:国标规定标准公差分为20个等级, 即IT01、IT0、IT1 IT2、…、IT18。从IT01到IT18, 等级依次降低,而相应的标准公差值依次增大。
自己练习:Ф2200mm,IT13;Ф500mm, IT8;Ф120mm,IT9
练习查表1-2求标准公差:
1.公称尺寸Φ2200,求IT13 2.公称尺寸Φ500,求IT8 3.公称尺寸Φ120,求IT9
课堂小结:1.标准公差的符号和等级
2.标准公差表的使用方法及注意事项

极限配合与技术测量基础教案

极限配合与技术测量基础教案

极限配合与技术测量基础教案一、教学目标1. 让学生了解极限配合的基本概念和意义。

2. 使学生掌握极限配合的计算方法和应用技巧。

3. 让学生熟悉技术测量的基础知识和常用测量工具。

4. 培养学生进行实际操作和解决实际问题的能力。

二、教学内容1. 极限配合的基本概念:极限、公差、配合等。

2. 极限配合的计算方法:标准公差、基本偏差、配合制度等。

3. 极限配合的应用实例:尺寸链、装配精度等。

4. 技术测量基础知识:测量概念、测量工具、测量误差等。

5. 常用测量工具的使用方法:卡尺、千分尺、百分表、测微等。

三、教学方法1. 采用讲授法,讲解极限配合的基本概念、计算方法和应用实例。

2. 采用演示法,展示常用测量工具的使用方法和测量过程。

3. 采用实践操作法,让学生动手进行实际测量,提高实际操作能力。

4. 采用案例分析法,分析实际问题,培养学生解决实际问题的能力。

四、教学准备1. 教学PPT:包含极限配合与技术测量基础的相关内容。

2. 测量工具:卡尺、千分尺、百分表、测微等。

3. 实物模型:展示尺寸链、装配精度等实例。

4. 练习题:用于巩固所学知识。

五、教学过程1. 导入新课:介绍极限配合与技术测量基础的重要性。

2. 讲解基本概念:讲解极限、公差、配合等基本概念。

3. 讲解计算方法:讲解标准公差、基本偏差、配合制度的计算方法。

4. 讲解应用实例:讲解尺寸链、装配精度等实例。

5. 演示测量工具使用:演示卡尺、千分尺、百分表、测微等工具的使用方法。

6. 实践操作:让学生动手进行实际测量,巩固所学知识。

7. 案例分析:分析实际问题,培养学生解决实际问题的能力。

8. 课堂小结:总结本节课的主要内容和知识点。

9. 布置作业:让学生课后巩固所学知识。

六、教学评价1. 评价方式:过程性评价与终结性评价相结合,以过程性评价为主。

2. 评价内容:a. 学生对极限配合的基本概念的理解和掌握程度。

b. 学生对极限配合计算方法的运用能力。

极限配合课程标准

极限配合课程标准

《极限配合与技术测量》课程标准一、课程名称:极限配合与技术测量(56课时)二、适用专业:数控技术应用专业、机械加工技术三、前言《极限配合与技术测量技术》是机械类专业必修的一门技术基础课。

它以数学、机械制图、金属材料等课程为基础,为培养学生确立互换性、标准化以及公差与配合的基本概念;掌握公差与配合标准、极限与配合制、计量和测量知识;为学习有关后续课程、专业课程打基础,对实现生产一线应用型技术人才的培养目标,具有十分重要的作用。

四、课程目标1、知识目标(1)初步认识公差配合与技术测量技术的基本范畴。

(2)通过对课程的学习,及对各具体工程事物的技术规范和标准的要求,进行广泛的分析、综合、比较、归纳、概括等认知活动及练习活动,培养思维能力和解决问题的能力。

2、技能目标掌握极限配合与技术测量技术的基本知识,应会用有关的公差配合标准,具有选用公差配合的初步能力(),能正确选用量具量仪,会进行一般的技术测量工作,会设计常用量规,并为今后的学习与工作打下良好的基础。

3、关键能力(1)解决问题:能够自主正确分析问题,并能提出解决方案;(2)自主学习:能够自主学习并掌握新知识、新技能;(3)负责耐劳:能够在一定目标下,负责、踏实、稳定、注重质量地完成工作任务;(4)人际沟通:具有较复杂地书面和口头表达能力;五、教学设计思路本课程标准的总体设计思路:将“示范与讲解'、"实践与理论”、“技能与知识”、“单元与综合”、“训练与考核”有机地融于一体;变三段式课程体系为任务引领型课程体系,紧紧围绕完成工作任务的需要来选择课程内容;变知识学科本位为职业能力本位,打破传统的以“了解”、“掌握”为特征设定的学科型课程目标,从“任务与职业能力”分析出发,设定职业能力培养目标;变书本知识的传授为动手能力的培养,打破传统的知识传授方式,创设企业工作情景,采用项目训练的模式,按“看”、“练”、“思”、“考”的顺序,依据工作任务的难易程度组织教学,结合职业技能证书考证,培养学生的实践动手能力和理论基础。

汽车机械基础第五章极限配合与技术测量ppt课件

汽车机械基础第五章极限配合与技术测量ppt课件
二、测量器具与测量方法的分类 1.测量器具的分类 测量器具包括量具与量仪两大类。 量具———使用时,以固定形式复现一给定量的一个或多个已知值的一种测量器具。 量仪———将被测的或有关的量转换成批示值或等效信息的一种测量器具。
解:孔的极限偏差 ES=Dmax-D=50.025-50=+0.025mm EI=Dmin-D=50-50=0 轴的极限偏差 es=dmax-d=49.950-50=-0.050mm ei=dmin-d=49.934-50=-0.066mm 孔的实际偏差 Da-D=50.010-50=+0.010mm 轴的实际偏差 da-d=49.946-50=-0.054mm 孔的公差 TD=Dmax-Dmin=50.025-50=0.025mm 轴的公差 Td=dmax-dmin=49.950-49.934=0.016mm
图5-1
*
二、 有关尺寸的术语定义 1. 尺寸 是指用特定单位表示线性尺寸值的数值。 长度值包括:直径、半径、宽度、深度、高度和中心距等。单位:毫米(mm) 2.基本尺寸(D,d) 基本尺寸是由设计给定的,孔用D表示,轴用d表示。 3.实际尺寸(Da,da) 实际尺寸是通过测量所得的尺寸。孔的实际尺寸以Da表示,轴的实际尺寸以da表示。 4.极限尺寸 允许尺寸变化的两个界限值称为极限尺寸,如图5-2所示。
图5-3 公差与配合示意图
*
5.尺寸公差带 零件的尺寸相对其基本尺寸所允许变动的范围,叫做尺寸公差带。用图所表示的公差带称为公差带图。 零线为确定极限偏差的一条基准线,是偏差的起始线,零线上方表示正偏差,零线下方表示负偏差。在画公差带图时,注上相应的符号“0”“+”和“-”号,并在零线下方画上带单箭头的尺寸线标上基本尺寸值。 上、下偏差之间的宽度表示公差带的大小,即公差值。公差带沿零线方向的长度可适当选取。公差带图中,尺寸单位为毫米(mm),偏差及公差的单位也可以用微米(μm)表示,单位省略不写。 6.标准公差 标准中表列的,用以确定公差带大小的任一公差称为标准公差。 7.基本偏差 用以确定公差带相对于零线位置的上偏差或下偏差称为基本偏差。一般为公差带靠近零线的那个偏差。

极限配合与技术测量概述

极限配合与技术测量概述

一般来说,在厂际协作或 配件生产,对互换程度要 求较高或大批量生产时, 应采用完全互换。而对于 部件或构件在同一厂内部 制造和装配时,对互换程 度要求不高或单件、小批 量生产时,可采用不完全 互换。
Page 4
3. 互换性的重要性
• 在设计方面
▪ 可以最大限度地采用标准件、通用件和标准部件,大大简化了绘图
Page 5
1.2 标准化与技术测量
Page 6
1. 加工误差与公差
• 零件的实际状态与理想状态之间的差别,称为加工误差
▪ 尺寸偏差 ▪ 形状误差 ▪ 位置误差 ▪ 表面粗糙度
• 允许零件几何参数的变动量称为公差
Page 7
2. 标准化与标准
• 标准是对重复性事物和概念所作的统一规定,它以科学
和计算工作,缩短了设计周期,并有利于计算机辅助设计和产品的 多样化。
• 在制造方面
▪ 有利于组织专业化生产,便于采用先进工艺和高效率的专用设备,
有利于计算机辅助制造,及实现加工过程和装配过程的机械化、自 动化,有利于提高产品质量、降低成本和减轻劳动强度。
• 在使用维修方面
▪ 减少了机器的使用、维修的时间和费用,提高了机器的使用价值。
须具有相应的技术检测措施。
• 检测包含检验与测量
▪ 检验是确定零件的几何参数是否在规定的极限范围内,并作出合格性判断,而不必得
出被测量的具体数值的过程。
▪ 测量是将被测量与作为计量单位的标准量进行比较,以确定被测量的具体数值的过程

• 合理地确定公差与正确进行检测,是保证产品质量、实现互换性生产的两
、技术和实践经验的综合成果为基础,经有关方面协商 一致,由主管机构批准,以特定形式发布,作为共同遵 守的准则和依据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、测量器具与测量方法的分类
1.测量器具的分类 测量器具包括量具与量仪两大类。
量具———使用时,以固定形式复现一给定量的一个或多个已知值 的一种测量器具。
量仪———将被测的或有关的量转换成批示值或等效信息的一种测 量器具。
2.测量方法的分类 测量方法的分类,按不同的方式进行分类有多 种分类。
按是否直接测量被测参数,可分为直接测量与间接测量;按量具与 量仪的读数值是否直接表示被测尺寸的数值,可分为绝对测量与相对测 量;按被测表面与量具量仪的测量头是否接触,分为接触测量与非接触 测量;按一次测量参数的多少,分为单项测量和综合测量。
三、常用测量器具 的使用方法
1.游标类量具的使用方 法(如图5-10所示)
如图5-12所示是0.1mm游 标量具的读尺寸方法示例。
2.螺旋测微类量具的使用方法 现以外径千分尺为例说明其测量方法,其结构如图5-13所示。
图5-14所示为千分尺的读尺寸方法 3.指示量具的使用方法 (1)百分表 百分表的结构如图5-15所示。
二、偏差与公差的术语及定义
1.偏差
偏差是指某一尺寸(实际尺寸、极限尺寸)减其基本尺寸所得 的代数差。
(1)极限偏差 极限偏差 是指极限尺寸减其基本尺寸所 得的代ቤተ መጻሕፍቲ ባይዱ差。
(2)实际偏差 实际偏差 是指实际尺寸减其基本尺寸所 得的代数差。
2.公差
允许尺寸的变动量称为尺寸公差(简称公差)
三、零线、公差带与公差带图解
(2)表面粗糙度符号、代号及注法 在表面粗糙度符号的基础 上,注出表面粗糙度数值及其有关的规定项目后就形成了表面粗糙 度代号。常见的标注及意义如表5-2所示。
3.表面粗糙度的选用
第三节 测量技术基础
一、长度计量单位
当前国际上通常使用的长度单位有米制和英制两种。目前,我国采 用的长度单位制是国际单位制(表5-3)
了解形位公差的基本概念。熟悉形状和位置公差。能正确理解 图样上形位公差符号的技术含义。掌握形位误差的常用检测方法。
第一节 互换性与标准化概念
一、互换性的基本概念
1.互换性的含义 互换性是指同规格一批产品(包括零件、部件、构件)在尺寸、 功能上能够彼此互相替换的功能。 2.互换性的种类 互换性按其程度和范围的不同,可分为完全互换性(绝对互换) 和不完全互换性(有限互换)。 3.互换性的作用 互换性是机械产品设计和制造的重要原则。
(2)内径百分表 其结构如图5-17所示,由百分表和表架等 组成。
内径百分表的使用方法:
第一步:确定要测量内孔的大小范围,正确选择合适的测量 头。
第二步:将对零正确的外径千分尺调整到所需测量尺寸的名 义值。
第三步:用内径百分表对 外径千分尺进行测量,使百分 表量杆略有压缩(即大指针有 转动)。
第四步:转动表圈“对零”。
2.间隙与过盈 孔的尺寸减去相配合的轴的尺寸为正时是间隙,一 般用“X”表示;孔的尺寸减去与其相配合的轴的尺寸为负时是过盈,一 般用“Y”表示。间隙数值前应标有“+”号;过盈数值前应标“-”号。
3.间隙配合 具有间隙(包括最小间隙等于零)的配合称为 间隙配合。
间隙配合时,孔的公差带在轴的公差带之上,如图5-7所示。
解:(如图5-6所示)
四、公差带代号与配合代号
1.公差带代号 标准规定,在基本偏差代号之后加注公差等级的代 号(数字),就称为公差带代号。
2.配合代号 将相配孔、轴的公差带代号写成分数形式,分子为孔 的公差带代号,分母为轴的公差带代号,就称为配合代号。
3.公差带与配合的优化
五、配合的有关术语
1.配合 基本尺寸相同的,相互结合的孔和轴的公差带之间的关系 称为配合。
4.过盈配合 具有过盈(包括最小过盈等于零)的配合称为过 盈配合。过盈配合时.孔的公差带在轴的公差带之下,如图5-8所示。
5.过渡配合 可能具有间隙或过盈的配合称为过渡配合。过渡 配合时,孔的公差带与轴的公差带相互交叠,如图5-9所示。
六、表面粗糙度
1.表面粗糙度的概念 国家标准规定,表面粗糙度就是指加工表面上具有的较小间距和 峰谷所组成的微观几何形状特性,即表面微观的不平度。 2.表面粗糙度符号、代号及注法 (1)表面粗糙度符号 表面粗糙度的符号及说明见表5-1。
第五步:如图5-18所示对 所需测量内孔进行测量.测量 时应放正。
第四节 形位公差与测量
一、形位误差和形位公差术语
1.形状误差和公差 1)形状误差 形状误差是指被测实际要素对其理想要素的变 动。 2)形状公差 形状公差就是单一实际要素的形状所允许的变 动全量。 2.位置误差和公差 位置误差是指被测实际要素的位置对其理想要素的位置变动量。 位置公差就是关联实际被测要素的位置,对于基准所允许的变动全 量。 各个公差项目的名称和符号见表5-4所示。
极限、配合与技术测量
学习目的:
通过本章的学习具备极限,配合与技术测量方面的基本知识, 为后面从事专业课程学习和工作打下一定的基础。
学习要求:
了解互换性的意义和种类。
掌握尺寸、偏差和公差的基本概念。了解公差带图解、公差代 号及配合代号的含义。熟悉配合的基本概念。
了解表面粗糙度的基本概念及对机械零件使用功能的影响。能 正确理解图样上表面粗糙度代号的技术含义。
为了清晰地表示上述各量及其相互关系,一般采用极限与配合的示 意图,在图中将公差和极限偏差部分放大,如图5-4所示。图5-5就是图 5-4的公差带图。
1.零线
在公差带图中,确定偏差的一条基准直线称为零线,即零偏差线。
2.尺寸公差带(简称公差带)
在公差带图中,由代表上、下偏 差的两条直线所限定的一个区域称为 尺寸公差带。
二、标准化的基本概念
标准化是指为在一定的范围内获得最佳秩序,对实际的或潜在 的问题制定共同的和重复使用规则的活动。
第二节 公差的基本术语及定义
一、尺寸的术语及定义
1.尺寸 用特定单位表示长度值的数字称为尺寸。 2.基本尺寸 设计给定的尺寸称为基本尺寸。 3.实际尺寸 通过测量获得的尺寸,称为实 际尺寸。 4.极限尺寸 允许尺寸变化的两个界限值, 称为极限尺寸。(如图5-1所示)
相关文档
最新文档