禁忌搜索算法浅析
禁忌搜索

禁忌搜索算法又名“tabu搜索算法”为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:procedure tabu search;begininitialize a string vc at random,clear up the tabu list;cur:=vc;repeatselect a new string vn in the neighborhood of vc;if va>best_to_far then {va is a string in the tabu list}begincur:=va;let va take place of the oldest string in the tabu list;best_to_far:=va;end elsebegincur:=vn;let vn take place of the oldest string in the tabu list;end;until (termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
图节点着色问题中的禁忌搜索算法

图节点着色问题中的禁忌搜索算法09-03-25 作者:编辑:校方人员图节点着色问题是组合最优化中典型的非确定多项式(NP)完全问题,也是图论中研究得最久的一类问题。
目前解决该问题的算法很多,如回溯算法、分支界定法、Welsh-Powell算法、神经网络、遗传算法以及模拟退火算法等。
综合比较各种算法,前两种算法是精确算法,但时间复杂性太大;后三种属于近似算法,虽然时间复杂性可接受,能够得到较好的近似解,但算法本身过于复杂,算法效率难以保证。
本文采用禁忌搜索算法,它同时拥有高效性和鲁棒性。
禁忌搜索是一种全局逐步寻优的人工智能算法,它常能有效的应用于一些典型NP问题,如TSP。
但禁忌搜索存在一些参数较难设置,这也是应用于通信系统时研究的热点。
本文提出针对着色问题的禁忌搜索的具体设计方案,较好的设置了参数,并优化了数据结构,通过实验比较得到了较好的效果。
最后提出通过领域简单的变化,禁忌搜索能较好的用于一般算法难以实现的List着色问题。
1图节点着色问题图的着色问题可分为边着色、顶点着色、List着色和全着色,其中最主要的给定一个无向图G=(V,E),其中V是节点集V={1,2,…n},E是边集,其中(i,j)表示有连接(i,j)的一条边。
若,且V i内部的任何两个节点没有E中的边直接相连,则称(V1,V2,…,V n)为V的一个划分。
图的节点着色问题可以描述为:求一个最小的k,使得(V1,V2,…,V n)为V的一个划分。
通常的解决着色问题的算法采用蛮力法、贪婪法、深度优先或广度优先等思想可以得到最优解,但时间复杂性太大,如回溯法,其计算时间复杂性为指数阶的;有的在多项式时间内能得到可行解,但不是最优解,如Welsh-Powell算法和贪婪算法。
Welsh-Powell算法只能保证最多使用(为图中顶点的最大度)种颜色给一个图正常着色,而由Brooks定理,对于既不是完全图又不是奇圈的简单连通图,所需的颜色数。
禁忌搜索算法评述(一)

禁忌搜索算法评述(一)摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。
禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。
本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。
关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法1引言工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。
优化算法主要分为启发式算法和智能随机算法。
启发式算法依赖对问题性质的认识,属于局部优化算法。
智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。
禁忌搜索算法(TabuSearch,TS)最早是由Glover在1986年提出,它的实质是对局部邻域搜索的一种拓展。
TS算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。
同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。
TS算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化1]。
迄今为止,TS算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经网络等领域,并显示出极好的研究前景2~9,11~15]。
目前关于TS 的研究主要分为对TS算法过程和关键步骤的改进,用TS改进已有优化算法和应用TS相关算法求解工程优化问题三个方面。
禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。
2禁忌搜索算法的基本流程TS算法一般流程描述1]:(1)设定算法参数,产生初始解x,置空禁忌表。
禁忌搜索算法

3 禁忌搜索的关键参数和操作
3.1 变化因素
目标值的变化
局部搜索主要依赖起点的选取和邻域的结构; 为了得到好的解,可以比较不同的邻域结构和不同 的初始点; 如果初始点的选择足够多,
总可以计算出全局最优解。
2 禁忌搜索
2.1 算法的背景
禁忌搜索算法(Tabu Search)是由美国 科罗拉多州大学的Fred Glover教授在 1986年左右提出来的,是一个用来跳出 局部最优的搜寻方法。在解决最优问题 上,一般区分为两种方式:一种是传统 的方法,另一种方法则是一些启发式搜 索算法。
4.5 T 3.5 T
2 禁忌搜索
2 禁忌搜索示例
四城市非对称TSP问题
第5步
解的形式 A D B C f(x4)=4.5 禁忌对象及长度 B A B 0 C 1 2 C D 候选解
对换 评价值
CD BC BD
7.5 T 8 ☻ 4.5 T
TS算法 框架
(1)是否有其他形式的候选集? (2)禁忌的长度如何确定?如果在算法中记忆下搜索到 的当前最优解,极端的两种情况是:一是将所有的对换 个数作为禁忌长度,此时等价于将候选集中的所有的对 换遍历;另外则取为1,这等价于局部搜索算法。 (3)是否有评价值的其他替代形式?有时计算目标值的 工作量较大,或无法接受计算目标值所花费的时间,于 是需要其他的方法。 (4)被禁的对换能否再一次解禁?有这样的直观现象, 当搜索到一个局部最优解后,它邻域中的其他状态都被 禁,我们是否解禁一些状态以便跳出局部最优?解禁的 功能就是为了获得更大的搜索范围,以免陷入局部最优 。 (5)如何利用更多的信息?在禁忌搜索算法中,还可记 录其他一些信息。如一个被禁对象(交换)被禁的次数 ,评价值变化的大小等。 (6)终止原则,即一个算法停止的条件,怎样给出?
禁忌搜索和应用

目录一、摘要 (2)二、禁忌搜索简介 (2)三、禁忌搜索的应用 (2)1、现实情况 (2)2、车辆路径问题的描述 (3)3、算法思路 (3)4、具体步骤 (3)5、程序设计简介 (3)6、算例分析 (4)四、禁忌搜索算法的评述和展望 (4)五、参考文献 (5)禁忌搜索及应用一、摘要工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。
禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。
本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。
二、禁忌搜索简介禁忌搜索(Tabu Search或Taboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。
TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。
相对于模拟退火和遗传算法,TS是又一种搜索特点不同的meta-heuristic算法。
迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。
禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。
禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。
禁忌搜索涉及到邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念。
禁忌搜索算法

禁忌搜索算法的关键要素
➢ 就这些参数含义一般而言,设计一个禁忌搜索算法需要确 定以下环节:
• 初始解 • 邻域和移动 • 候选集 • 禁忌表及其长度 • 选择策略 • 破禁策略 • 停止规则 • 下面对这些环节的一般操作予以讨论。
• (5)判断候选解对应的各对象的禁忌属性,选择候选解 集中非禁忌对象对应的最佳状态为新的当前解,同时用与 之对应的禁忌对象替换最早进入禁忌表的禁忌对象元 素。
• (6)转到步骤(2)。
流程图
开始
设置参数,产生初 始解置空禁忌表
满足终止准则吗?
输出优解
结束
生成当前的邻域 解,选出候选解
满足藐视准则吗?
国内外研究现状
➢ Glover教授分别在
•
1989年和1990年发表
了两篇著名的标题为
Tabu search的论文,
提出了现在大家熟知
的禁忌搜索算法的大
部分原理。
其中一些原理在学术界长期没有突破。事实上, 在20世纪90年代前半叶,大部分工作局限在关于 禁忌搜索技术的非常有限区域,如禁忌表和基本 的藐视准则。
邻域和移动
• 邻域移动亦称邻域操作,邻域变换等;邻域移动是从一个 解产生另一个解的途径。它是保证产生好的解和算法搜索 速度的最重要因素之一。邻域移动定义的方法很多,对于 不同的问题应采用不同的定义方法。
• 通过移动,目标函数值将产生变化,移动前后的目标函数 值之差,称之为移动值。如果移动值是非负的,则称此移 动为改进移动;否则称作非改进移动。最好的移动不一定 是改进移动,也可能是非改进移动,这一点就保证搜索陷 入局部最优时,禁忌搜索算法能自动把它跳出局部最优。 邻域移动的涉及策略既要保证变化的有效性,还要保证变 化的平滑性,即产生的邻域解和当前解有不同,又不能差 异太大。不同会使搜索过程向前进行,不能差异太大保证 搜索是有序而非随机的搜索。[1]
车辆路径问题的禁忌搜索算法研究

Vol 18,No 1管 理 工 程 学 报Journal of Industrial Engineering Engineering Management2004年第1期车辆路径问题的禁忌搜索算法研究郎茂祥,胡思继(北京交通大学交通运输学院,北京100044)摘要:论文在对车辆路径问题进行简单描述的基础上,通过设计一种新的解的表示方法构造了求解该问题的一种新的禁忌搜索算法,并进行了实验计算。
计算结果表明,用本文设计的禁忌搜索算法求解车辆路径问题,不仅可以取得很好的计算结果,而且算法的计算效率较高,收敛速度较快,计算结果也较稳定。
关键词:车辆路径问题;禁忌搜索算法;优化中图分类号:F502 文献标识码:A 文章编号:1004-6062(2004)01-0081-04收稿日期:2002-06-18 修回日期:2002-12-30作者简介:郎茂祥(1969 ),男(汉),山东高唐人,北京交通大学交通运输学院副教授,博士,主要研究方向为交通运输规划与管理。
0 引言车辆路径问题(VRP,Vehicle Rou ting Problem)是由Dantzig 和Ramser 于1959年提出的[1]。
该问题一直是运筹学与组合优化领域的前沿与热点问题。
在现实生产和生活中,邮政投递问题、飞机、铁路列车、水运船舶及公共汽车的调度问题、电力调度问题、管道铺设问题、计算机网络拓扑设计问题等都可以抽象为车辆路径问题。
研究车辆路径问题具有重要的理论和现实意义。
车辆路径问题作为一个NP 难题,随着客户数量的增加,可选的车辆路径方案数量将以指数速度急剧增长。
因此,用启发式算法求解该问题就成为人们研究的一个重要方向。
求解车辆路径问题的方法很多,常用的有旅行商法、动态规划法、节约法、扫描法[2]、分区配送算法[3]、方案评价法等。
禁忌搜索算法的出现,为求解车辆路径问题提供了新的工具。
Gendreau 、Jiefeng 、Barbarosoglu 、蔡延光等都曾利用禁忌搜索算法求解车辆路径问题[4-8],并取得了一些研究成果。
禁忌搜索实验报告

一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。
该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。
近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。
本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。
二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。
三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。
首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。
2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。
TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。
VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。
3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。
四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。
在实验中,设置禁忌长度为20,迭代次数为1000。
改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。
在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。
遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。
禁忌搜索算法有关介绍与举例

的结构;为了得到好的解,可以比较不同的邻域结构和不同的初始点;如果初 始点的选择足够多,总可以计算出全局最优解。
禁忌搜索算法
禁忌搜索(Tabu search)是局部邻域搜索算法的推广,Fred Glover 在 1986 年提出这个概念,进而形成一套完整算法。其特点为使用禁忌表封锁刚搜 索过的区域,禁止重复前面的工作。跳出局部最优点,也可避免陷入死循环。赦 免禁忌区域中的一些优良状态,以保证搜索的多样性。 编码方法属于灵活的选择编码方法,如背包的 0-1 编码。 同一问题有多种编码方法,如分组问题:不相同的 n 件物品分为 m 组, n=9,m=3. 编码 1: 1-3-4-0-2-6-7-5-0-8-9 (1-4-3-0-6-2-5-7-0-9-8) 0 起到隔开作用 1-3-4 分为一组,2-6-7-5 一组,8-9 一组。 编码 2: 1-2-1-1-2-2-2-3-3 (2-1-2-2-1-1-1-3-3)
int ytemp; int min=INT_MAX; for(int i=1;i<num-1;i++) { for(int j=i+1;j<num;j++) { swap(x[i],x[j]); int temp=countDis(x,v); if(temp<min&&tabutable[x[i]][x[j]]==0&&tabutable[x[j]][x[i]]==0) { min=temp; xtemp=i; ytemp=j; } swap(x[i],x[j]); } } if(min==INT_MAX) { return false; } else { swap(x[xtemp],x[ytemp]); tabutable[x[xtemp]][x[ytemp]]=1; tabutable[x[ytemp]][x[xtemp]]=1; return true; } } void tabusearchN(const vector< vector<int> > &v,vector<int> &x,int &costbest,int firstcity) { swap(x[0],x[firstcity]); int num=x.size();//城市节点个数 vector< vector<int> > tabutable;//禁忌表,tabutable[i][j]=z 表示对换对(i,j) 的禁忌长度为 z vector<int> f;//记录每一个局部最优解 initX(tabutable,num); for(int i=0;i<num;i++)//初始化禁忌长度为 0 { for(int j=i+1;j<num;j++) {
计算机网络优化算法

计算机网络优化算法计算机网络优化算法(Computer Network Optimization Algorithms)是指通过使用数学、统计学和计算机科学的方法来优化计算机网络系统的性能和效率。
这些算法的设计主要是为了最大化网络资源的利用率、最小化网络延迟和最优化网络吞吐量。
本文将介绍几种常见的计算机网络优化算法,包括贪心算法、动态规划算法、遗传算法和禁忌搜索算法等。
1. 贪心算法贪心算法是一种基于局部最优选择的算法,它每次在作出选择时都只考虑当前状态下的最优解。
在计算机网络中,贪心算法可以用于一些简单的网络优化问题,如最佳路径选择、带宽分配等。
贪心算法的优点是简单易实现,但缺点是可能会导致局部最优解而非全局最优解。
2. 动态规划算法动态规划算法是一种将复杂问题分解为简单子问题并存储中间结果的算法。
在计算机网络中,动态规划算法可以用于一些具有重叠子问题的优化问题,如最短路径问题、最小生成树问题等。
动态规划算法的优点是能够得到全局最优解,但缺点是其计算复杂度较高。
3. 遗传算法遗传算法是一种模拟生物进化过程的优化算法。
在计算机网络中,遗传算法可以用于解决一些复杂的优化问题,如网络布线问题、拓扑优化问题等。
遗传算法的优点是能够找到较好的全局最优解,但缺点是其计算复杂度高且需要大量的计算资源。
4. 禁忌搜索算法禁忌搜索算法是一种通过记录和管理搜索路径来避免陷入局部最优解的优化算法。
在计算机网络中,禁忌搜索算法可以用于解决一些带有约束条件的优化问题,如链路带宽分配问题、网络拓扑优化问题等。
禁忌搜索算法的优点是能够在可行解空间中进行有效搜索,但缺点是其计算复杂度较高且需要适当的启发式规则。
综上所述,计算机网络优化算法是一类用于改善计算机网络系统性能的关键算法。
选择合适的网络优化算法取决于具体的问题和限制条件。
贪心算法适用于简单的问题,动态规划算法适用于具有重叠子问题的问题,遗传算法适用于复杂的问题,禁忌搜索算法适用于带有约束条件的问题。
禁忌搜索算法原理及应用

禁忌搜索算法原理及应用随着计算机技术的不断发展,各种算法也应运而生,其中禁忌搜索算法便是一种比较常用的优化算法。
禁忌搜索算法的一大特点就是能够避免搜索过程中出现循环现象,能够有效地提高搜索效率,因此在许多领域都有广泛的应用。
一、禁忌搜索算法的原理禁忌搜索算法是一种基于局部搜索的优化算法。
其基本思想就是在搜索过程中引入禁忌表,通过记录禁忌元素,避免进入不良搜索状态,从而获得更好的解。
禁忌表的作用是记录已经经过的解的信息,防止搜索陷入局部最优解,增加了搜索的广度和深度。
禁忌搜索算法的核心是寻找最优化解。
具体过程包括:初始化,构造邻域解,选择最优解,更新禁忌表,结束搜索。
当搜索过程中发现某个解是当前状态下的最优解时,将这个最优解加入到禁忌表中,以后在搜索过程中就不再去重复对该最优解的操作。
在禁忌搜索算法中,选择邻域解是非常重要的一环。
邻域解是指与当前解相邻的解,也就是在当前解的基础上进行一定的操作得到的解。
邻域解的选择通常根据问题的不同而定,可以是交换位置、插入、反转等。
而选择最优解的原则则是要在禁忌状态下优先选择不在禁忌表中的最优解,如果所有的最优解都处于禁忌状态,那么就选择设定的禁忌期最短的解。
二、禁忌搜索算法在实际应用中的应用禁忌搜索算法作为一种优化算法,在实际应用中有着广泛的应用。
下面我们就通过几个实际案例来了解禁忌搜索算法的应用。
1. 生产排程问题禁忌搜索算法在制造业的排程问题中有着广泛的应用。
在生产排程问题中,需要考虑的因素非常多,如时间、人员、设备、物料等。
禁忌搜索算法通过构建邻域空间,利用禁忌表避免了进入不良解的状态,从而在生产排程问题中,可以为厂家避免很多因时间不足而导致的决策错误。
2. 组合最优化问题禁忌搜索算法在组合最优化问题中有着很好的应用。
比如在公路路径设计中,需要从成千上万的路径中选择最优解。
禁忌搜索算法不仅可以找到全局最优解,还可以避免局部最优解的产生,使得结果更加准确。
禁忌搜索算法

无时限单向配送车辆优化调度问题的禁忌搜索算法无时限单向配送车辆优化调度问题,是指在制定配送路线时不考虑客户对货物送到(或取走)时间要求的纯送货(或纯取货)车辆调度问题。
无时限单向配送车辆优化调度问题可以描述为:从某配送中心用多台配送车辆向多个客户送货,每个客户的位置和需求量一定,每台配送车辆的载重量一定,其一次配送的最大行驶距离一定,要求合理安排车辆配送路线,使目标函数得到优化,并满足一下条件:(1)每条配送路径上各客户的需求量之和不超过配送车辆的载重量;(2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离;(3)每个客户的需求必须满足,且只能由一台配送车辆送货。
一、禁忌搜索算法的原理禁忌搜索算法是解决组合优化问题的一种优化方法。
该算法是局部搜索算法的推广,其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来挑出局部最优点。
在禁忌搜索算法中,首先按照随机方法产生一个初始解作为当前解,然后在当前解的领域中搜索若干个解,取其中的最优解作为新的当前解。
为了避免陷入局部最优解,这种优化方法允许一定的下山操作(使解的质量变差)。
另外,为了避免对已搜索过的局部最优解的重复,禁忌搜索算法使用禁忌表记录已搜索的局部最优解的历史信息,这可在一定程度上使搜索过程避开局部极值点,从而开辟新的搜索区域。
二、算法要素的设计1.禁忌对象的确定禁忌对象是指禁忌表中被禁的那些变化元素。
由于解状态的变化可以分为解的简单变化、解向量分量的变化和目标值变化三种情况,则在确定禁忌对象时也有相对应的三种禁忌情况。
一般来说,对解的简单变化进行禁忌比另两种的受禁范围要小,因此可能早能造成计算时间的增加,但其优点是提供了较大的搜索范围。
根据配送车辆优化调度问题的特点,可采用对解的简单变化进行禁忌的方法。
举例进行说明:当解从x变化到y时,y可能是局部最优解,为了避开局部最优解,禁忌y这一解再度出现,可采用如下禁忌规则:当y的领域中有比它更优的解时,选择更优的解;当y为其领域的局部最优解时,不再选y,而选比y稍差的解。
禁忌搜索算法评述

禁忌搜索算法评述摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。
禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。
本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。
关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法1 引言工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。
优化算法主要分为启发式算法和智能随机算法。
启发式算法依赖对问题性质的认识,属于局部优化算法。
智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。
禁忌搜索算法(tabu search, ts)最早是由lover在1986年提出,它的实质是对局部邻域搜索的一种拓展。
ts算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。
同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。
ts算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化[1]。
迄今为止,ts算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经网络等领域,并显示出极好的研究前景[2~9,11~15]。
目前关于ts的研究主要分为对ts算法过程和关键步骤的改进,用ts 改进已有优化算法和应用ts相关算法求解工程优化问题三个方面。
禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。
2 禁忌搜索算法的基本流程ts算法一般流程描述[1]:(1)设定算法参数,产生初始解x,置空禁忌表。
tabu算法

tabu算法Tabu算法是一种基于禁忌搜索的优化算法,它被广泛应用于组合优化问题的求解。
Tabu算法通过维护一个禁忌列表,来避免搜索过程中出现重复的解,从而避免陷入局部最优解。
一、算法思想Tabu算法的基本思想是在搜索过程中,通过对搜索空间中的解进行禁忌操作,来避免搜索过程中出现重复的解。
禁忌操作可以是对某个解的某个部分进行限制,也可以是对某个解的某个部分进行限制的同时,对其他部分进行放宽。
禁忌列表是Tabu算法的核心,它记录了搜索过程中已经搜索过的解,以及对这些解进行的禁忌操作。
禁忌列表的长度可以根据问题的复杂度和搜索空间的大小进行调整,一般来说,禁忌列表的长度越长,算法的搜索能力越强,但同时也会增加算法的计算时间。
二、算法流程Tabu算法的流程如下:1. 初始化禁忌列表,设置初始解和当前解为同一个解。
2. 对当前解进行搜索,找到一个邻域解。
3. 判断邻域解是否在禁忌列表中,如果在,则返回步骤2;否则,进入步骤4。
4. 对邻域解进行评估,计算其目标函数值。
5. 将邻域解加入禁忌列表,更新当前解为邻域解。
6. 如果找到的邻域解的目标函数值优于当前最优解,则更新最优解。
7. 重复步骤2-6,直到达到停止条件。
三、算法优缺点Tabu算法的优点是可以避免搜索过程中出现重复的解,从而避免陷入局部最优解。
同时,Tabu算法可以在搜索过程中动态调整禁忌列表的长度,从而适应不同复杂度的问题。
Tabu算法的缺点是需要维护禁忌列表,增加了算法的计算时间。
此外,Tabu算法对问题的求解效果也受到禁忌列表长度的影响,如果禁忌列表长度过短,可能会导致算法陷入局部最优解。
禁忌搜索算法

邻域选优的规则模拟了人类的记忆功能,找过的地方都 记下来,不再找第二次。一定的迭代次数后,早期进入 禁忌表的解被解禁退出。
7.5T 8☻ 4.5T
四城市非对称TSP问题
第 6步
解的形式 A DCB f(x5)=8 禁忌对象及长度 B A C D 候选解
对换 评价值
B
2 C
0 1
CD BC BD
3.5T 4.5T 4☻
谢谢观赏
2、禁忌对象为目标值变化 3、禁忌对象为分量变化 解的简单变化比解的分量变化和目标值变化的受禁范围要小,可 能造成计算时间的增加,但也给予了较大的搜索范围; 解分量的变化和目标值变化的禁忌范围大,减少了计算时间,可 能导致陷在局部最优点。
禁忌长度的选取
禁忌长度过短,一旦陷入局部最优点,出现循环无法跳出; 禁忌长度过长,造成计算时间较大,也可能造成计算无法继续下去。
(2)动态频率信息:从一个解、对换或目标值到另一个解、对换或目标值的变化趋势。
终止规则
(1)确定步数终止,无法保证解的效果,应记录当前最优解; (2)频率控制原则,当某一个解、目标值或元素序列的频率超过 一个给定值时,终止计算; (3)目标控制原则,如果在一个给定步数内,当前最优值没有变 化,可终止计算。
B
C
CD BC BD
4.5☻ 7.5 8
四城市非对称TSP问题
第 2步
解的形式 A B DC f(x1)=4.5 禁忌对象及长度 B A C D 候选解
对换 评价值
物流运输中的配载算法比较研究

物流运输中的配载算法比较研究随着全球贸易的不断扩大和电子商务的蓬勃发展,物流运输行业变得越来越重要。
对于物流运输公司来说,如何合理安排货物的配载成为提高运输效率和降低成本的关键。
因此,对物流配载算法的研究变得尤为重要。
本文将对几种常用的物流运输中的配载算法进行比较研究,探讨它们的优缺点。
1. 贪心算法贪心算法是一种常用的解决问题的策略,在物流运输中的配载问题上也有广泛的应用。
基本思想是根据某种标准,每次选择最符合条件的货物进行配载。
贪心算法的优点是简单高效,计算速度快。
然而,贪心算法往往只关注局部最优解,忽略了全局最优解,可能导致不够具备优化的能力。
2. 动态规划算法动态规划算法是另一种常用的解决问题的策略,也适用于物流运输中的配载问题。
动态规划算法通过将问题划分为子问题,并从子问题中得出最优解,再逐步向上推导出整体最优解。
动态规划算法的优点是能够找到全局最优解,并且具有良好的可扩展性。
然而,动态规划算法的计算复杂度较高,在规模较大的问题中可能不够高效。
3. 遗传算法遗传算法是一种模拟生物进化过程的解决问题的策略,可以用于物流运输中的配载问题。
遗传算法通过对问题的设计进行编码,然后通过遗传操作(选择、交叉、变异等)来模拟生物进化的过程,最终找到最优解。
遗传算法的优点是能够全方位地搜索解空间,并且具有较好的鲁棒性。
然而,遗传算法需要进行大量的计算,并且参数的选择对最终结果有很大的影响。
4. 禁忌搜索算法禁忌搜索算法是一种基于邻域搜索的解决问题的策略,也可以用于物流运输中的配载问题。
禁忌搜索算法通过对当前解进行邻域搜索,并加入一定的禁忌策略来避免陷入局部最优解,最终找到全局最优解。
禁忌搜索算法的优点是可以克服贪心算法的局限性,并且在计算复杂度上相对较低。
然而,禁忌搜索算法需要设计合适的邻域搜索规则和禁忌策略,参数的选择对最终结果有较大的影响。
综上所述,物流配载算法的选择应根据实际情况和需求来确定。
贪心算法简单高效,适用于规模较小的问题;动态规划算法能够找到全局最优解,适用于规模较大的问题;遗传算法能够全方位地搜索解空间,适用于复杂的问题;禁忌搜索算法能够克服贪心算法的局限性,适用于较大规模的问题。
禁忌搜索算法

禁忌搜索算法2009210042 李同玲运筹学与控制论搜索是人工智能的一个基本问题,一个问题的求解过程就是搜索。
人工智能在各应用领域中,被广泛的使用。
现在,搜索技术渗透在各种人工智能系统中,可以说没有哪一种人工智能的应用不用搜索方法。
禁忌搜索算法(Tabu Search或Taboo Search,简称TS)的思想最早由Glover (美国工程院院士,科罗拉多大学教授)在1977年提出,它是对局部邻域搜索的一种扩展,是一种全局邻域搜索算法,是人工智能的一种体现,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。
TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。
迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。
1.1引言1.1.1局部邻域搜索局部邻域搜索是基于贪婪思想持续地在当前的邻域中进行搜索,虽然算法通用易实现,且容易理解,但其搜索性能完全依赖于邻域结构和初始解,尤其容易陷入局部极小而无法保证全局优化性。
局部搜索的算法可以描述为:1、 选定一个初始可行解:0x ;记录当前最优解0best x x =,()best T N x =;2、 当\best T x =∅时,或满足其他停止运算准则时,输出计算结果,停止运算;否则,从T 中选一集合S ,得到S 中的最好解now x ;若()()now best f x f x <,则best now x x =,()best T N x =;否则,\T T S =;重复2,继续搜索这种邻域搜索方法容易实现理解,容易实现,而且具有很好的通用性,但是搜索结果完全依赖于初始解和邻域的结构,而且只能搜索到局部最优解。
为了实现全局搜索,禁忌搜索采用允许接受劣解来逃离局部最优解。
基于禁忌搜索算法参数设置的探讨

[ ] Go e, F 1 lvr .Hert sfritgrpormmiguig sr gt u sc o nee rga n s ur ae ii n o
从表 2可以得 出:①初始解越好 ,T S算 法求 得的最优 解越佳 ;② 2阶 T s法 ( 先利用 求 得初始解 ,再利用
具体实验如下 。
( )迭 代 次 数 :随 机 产 生 2 0个 城 市 坐 标 ,经 历 不 同 1 4
的迭 代 次 数 的实 验 数 据 如 表 l所 示
, 计 数 器 tO = 。设 置 禁 忌 表 为
表 1 迭代次数对 T S算 法 的 影 响
的 目标 函数 值 ,则 = 【 。 f + ”
来 求 解 Q P ( uda cA s n et rbe 问 题 ,L - A Q art si m n olm) i g P a
gn u a& G oe 以小 、 中 、 大 三 种 不 同 变 动 范 围 的禁 忌 表 大 l r v
小 来 求 解 通 信 带 宽 封包 问 题 ( e cmm n ai a d i h T l o u i t nB n wd e c o t
[ ]G o e,F T b a h a J OR A Ju a o o - 3 l r . aus r :pr I[ v ec t ]. S o r l nC r n n
示 , 两 个 城 市 之 间 的 距 离 利 用 两点 问 的 距 离 公 式 来 求 得 。
常 见 的 有 :循 环 迭 代 次 数 、C U 运 行 时 间 、连 续 获 得 没 有 P
改 进 过 解 的次 数 。一 旦 搜 索 达 到 这 些 预设 的 停 止 条 件 .则 停 止 搜 索 ,当 前 的 最 优 解 即 为 最 终 解 。 一 般 情 况 下 选 择 “ 环 迭 代 次 数 ” 作 为停 止 条 件 ,可 以 保 证 在 一 段 迭 代 次 循 数 后 终 止 搜 索 且 不 因使 用 电脑 的 系 统 不 同 而 影 响 解 。 1 法基本步骤如下 : ’ S算 Se :初 始 化 。选 择 一 个 初 始 可 行 解 ( tp0 m.最 大 迭 代 次 数 一, 当 前 解 = 空 以及 禁 忌 表 的大 小 £ 。 Se :停 止 。 如 果 # ,那 么停 止 搜 索 , 当前 解 t 1 p =一 就是最优解 。
基于禁忌搜索算法的路径规划优化研究

基于禁忌搜索算法的路径规划优化研究近年来,随着机器人和自动驾驶汽车等技术的飞速发展,路径规划问题逐渐成为一个备受关注的前沿研究领域。
而基于禁忌搜索算法的路径规划优化研究,也是近年来热点研究方向之一。
一、路径规划问题简介路径规划就是在给定的地图上,寻找一条从起点到终点的最优路径。
在真实世界中,路径规划问题有着广泛的应用。
例如,自动驾驶汽车需要识别周围环境,并规划一条安全高效的行驶路径;机器人需要规划行动路线,避开障碍物、优化运动轨迹等。
因此,路径规划问题的优化问题一直受到学术界和工业界的关注。
二、禁忌搜索算法的原理在路径规划问题中,寻找最优路径是一个NP-hard 问题,也就是说,它的规模越大,计算复杂度呈指数级增长,难以直接用传统的穷举搜索方法来解决。
而禁忌搜索算法正是为了对于这类问题提出的一种通用优化算法。
禁忌搜索算法的基本思想是在候选解空间中搜索最优解。
它类似于爬山算法,每次迭代时,算法会从当前解附近的候选解中选择最优解作为当前解,直到找到满足要求的最优解。
与爬山算法不同的是,禁忌搜索算法在搜索过程中还会维护一个禁忌表,记录已搜索过但不应该再被搜索的解。
这种做法有时会牺牲局部最优解,但可以在更广的解空间中搜索到更优解。
三、禁忌搜索算法在路径规划优化中的应用在路径规划问题中,禁忌搜索算法通常与启发式方法组合使用。
启发式方法是一种基于经验的、高效的搜索算法,能够有效地搜索到候选解中的更优解。
在具体的规划过程中,禁忌搜索算法与启发式方法可以互相补充、协同工作,从而在变化复杂、需要快速响应的环境下找到路径规划问题的较好解。
禁忌搜索算法在路径规划优化中的应用,也得到了众多学者的支持和认可。
一些研究表明,禁忌搜索算法可以有效地较少计算时间,提高路径规划的精度和效率,从而为完成复杂交通任务提供了可靠的帮助。
四、结论基于禁忌搜索算法的路径规划优化研究,是一个前沿、迅速发展的领域。
禁忌搜索算法可以解决大规模、复杂路径规划问题,并将路径规划问题的计算复杂度降至可承受的范围,从而为相关领域的进一步发展绘就基础。
供应链管理中的订单分配优化算法

供应链管理中的订单分配优化算法在现代商业运作中,供应链管理扮演着重要的角色。
供应链管理旨在通过优化供应链中的各个环节,提高整个供应链的效率和效益。
其中,订单分配是供应链管理中的关键环节之一,它涉及到将来自客户的订单分配给不同的供应商或分销商,以满足客户需求并最大化供应链的整体效益。
为了实现有效的订单分配,优化算法被广泛应用。
订单分配的目标是合理分配订单,使得订单可以按照最佳的方式被处理。
优化算法在此过程中发挥重要作用,通过数学模型和计算方法,找到最佳的分配方案。
下面将介绍几种常用的供应链管理中的订单分配优化算法。
1. 贪心算法贪心算法是一种简单而常用的优化算法,它根据当前的情况做出局部最优的选择。
在订单分配中,贪心算法可以根据一定的策略选择最符合条件的供应商或分销商来处理订单。
例如,可以选择距离最近的供应商处理订单,或者选择存货量最充足的供应商。
贪心算法的优势在于计算简单、速度快,但可能无法得到全局最优解。
2. 动态规划算法动态规划算法通过递推的方式,将原问题拆解为多个子问题,并保存已解决的子问题的最优解。
在订单分配中,可以将订单分配问题转化为子问题,通过动态规划算法找到最佳的分配方案。
动态规划算法需要存储大量的中间结果,计算时间较长,但可以得到全局最优解。
3. 遗传算法遗传算法是一种模仿自然界中生物进化过程的优化算法。
在订单分配中,可以将订单分配方案看作是一个个体的染色体,通过模拟自然选择、交叉和变异等操作,逐步优化分配方案。
遗传算法具有全局搜索能力,能够找到相对较优的解,但计算时间较长。
4. 禁忌搜索算法禁忌搜索算法通过维护一个禁忌表,记录已经搜索过但不宜再次选择的解,从而避免陷入局部最优解。
在订单分配中,可以使用禁忌搜索算法来避免重复选择供应商或分销商,以达到更优的分配方案。
禁忌搜索算法具有较好的局部搜索能力,并可以在一定程度上得到全局最优解。
综上所述,供应链管理中的订单分配优化算法有多种选择,包括贪心算法、动态规划算法、遗传算法和禁忌搜索算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
禁忌搜索算法浅析摘要:本文介绍了禁忌搜索算法的基本思想、算法流程及其实现的伪代码。
禁忌搜索算法(Tabu Search或Taboo Search,简称TS算法)是一种全局性邻域搜索算法,可以有效地解决组合优化问题,引导算法跳出局部最优解,转向全局最优解的功能。
关键词:禁忌搜索算法;组合优化;近似算法;邻域搜索1禁忌搜索算法概述禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。
在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。
使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。
禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。
为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。
TS是人工智能的一种体现,是局部领域搜索的一种扩展。
禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu 1ength)、候选解(candidate)、藐视准则(candidate)等影响禁忌搜索算法性能的关键因素。
迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。
2禁忌搜索算法的基本思想禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索,TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。
禁忌搜索是对局部邻域搜索的一种扩展,是一种全局逐步寻求最优算法。
局部邻域搜索是基于贪婪思想持续地在当前解的邻域中进行搜索,虽然算法通用易实现,且容易理解,但搜索性能完全依赖于邻域结构和初解,尤其会陷入局部极小而无法保证全局优化型。
禁忌搜索算法中充分体现了集中和扩散两个策略,它的集中策略体现在局部搜索,即从一点出发,在这点的邻域内寻求更好的解,以达到局部最优解而结束,为了跳出局部最优解,扩散策略通过禁忌表的功能来实现。
禁忌表中记下已经到达的某些信息,算法通过对禁忌表中点的禁忌,而达到一些没有搜索的点,从而实现更大区域的搜索。
TS算法作为一种全局性邻域搜索算法,模拟人类具有记忆功能的寻优特征。
它通过局部邻域搜索机制和相应的禁忌准则来避免迂回搜索,并通过破禁水平来释放一些被禁忌的优良状态,进而保证多样化的有效探索,以最终实现全局优化。
考虑最优化问题,对于X中每一个解x,定义一个邻域N(x),禁忌搜索算法首先确定一个初始可行解x,初始可行解x可以从一个启发式算法获得或者在可行解集合X中任意选择,确定完初始可行解后,定义可行解x的邻域移动集s(x),然后从邻域移动中挑选一个能改进当前解x的移动,s(x),再从新解x’开始,重复搜索。
如果邻域移动中只接受比当前解x好的解,搜索就可能陷入循环的危险。
为避免陷入循环和局部最优,构造一个短期循环记忆表——禁忌表(TabuList),禁忌表中存放刚刚进行过的(称为禁忌表长度)个邻域移动,这些移动称作为禁忌移动(Tabu Move)。
对于当前的移动,在以后的T次循环内是禁止的,以避免回到原先的解,次以后释放该移动。
禁忌表是一个循环表,搜索过程中被循环的修改,使禁忌表始终保存着个移动。
即使引入了一个禁忌表,禁忌搜索算法仍有可能出现循环。
因此必须给定停止准则以避免算法出现循环。
当迭代内所发现的最好解无法改进或无法离开它时,则算法停止。
3禁忌搜索算法构成要素简单的禁忌搜索是在局部邻域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用特赦准则来奖励一些优良状态,其中邻域结构、候选解、禁忌长度、禁忌对象、特赦准则、终止准则等是影响禁忌搜索算法性能的关键。
禁忌搜索算法是一种由多种策略组成的混合启发式算法。
每个策略均是一个启发式过程,它们对整个禁忌搜索起着关键的作用。
3.1初始解的确定禁忌搜索对初始解的依赖较大,不同的初始解,在搜索过程中耗费时间和资源往往不同,同一邻域结构,不同的初始点会得到不同的计算结果,好的初始解往往会提高最终的优化效果。
一个直观的结论就是:如果初始点选择的足够好,总可以计算出全局最优解。
初始解的构造可以随机产生,但效果往往不够理想,常用方法是基于问题的特征信息,借助一下启发式方法产生的,这样可以保证初始解的性能。
【4】3.2邻域移动邻域移动亦称邻域操作,邻域变换等;邻域移动是从一个解产生另一个解的途径。
它是保证产生好的解和算法搜索速度的最重要因素之一。
邻域移动定义的方法很多,对于不同的问题应采用不同的定义方法。
通过移动,目标函数值将产生变化,移动前后的目标函数值之差,称之为移动值。
如果移动值是非负的,则称此移动为改进移动;否则称作非改进移动。
最好的移动不一定是改进移动,也可能是非改进移动,这一点就保证搜索陷入局部最优时,禁忌搜索算法能自动把它跳出局部最优。
邻域移动的涉及策略既要保证变化的有效性,还要保证变化的平滑性,即产生的邻域解和当前解有不同,又不能差异太大。
不同会使搜索过程向前进行,不能差异太大保证搜索是有序而非随机的搜索。
【1】3.3禁忌表禁忌表是用来存放禁忌对象的一个容器,放入禁忌表中的禁忌对象在解禁之前不能被再次搜索。
禁忌表模拟了人的记忆机制,主要目的是阻止搜索过程中出现循环和避免陷入局部最优,进而探索更多搜索空间;禁忌表可以使用数组、队列、栈、链表等顺序结构实现。
它通常记录前若干次的移动,禁止这些移动在近期内返回。
在迭代固定次数后,禁忌表释放这些移动,重新参加运算,因此它是一个循环表,每迭代一次,将最近的一次移动放在禁忌表的末端,而它的最早的一个移动就从禁忌表中释放出来。
为了节省记忆时间,禁忌表并不记录所有的移动,只记录那些有特殊性质的移动,如记载能引起目标函数发生变化的移动。
禁忌表是禁忌搜索算法的核心,禁忌表的大小在很大程度上影响着搜索速度和解的质量。
如果选择的好,可有助于识别出曾搜索过的区域。
实验表明,如果禁忌表长度过小,那么搜索过程就可能进入死循环,整个搜索将围绕着相同的几个解徘徊;相反,如果禁忌表长度过大,那它将在相当大的程度上限制了搜索区域,好的解就有可能被跳过,同时,不会改进解的效果反而增加算法运算时间。
因此一个好的禁忌表长度应该是尽可能小却又能避免算法进入循环。
禁忌表的这种特性非常类似于“短期记忆”,因而人们把禁忌表称作短期记忆函数。
禁忌表另一个作用是通过调整禁忌表的大小使搜索发散或收敛。
初始搜索时,为提高解的分散性,扩大搜索区域,使搜索路径多样化,经常希望禁忌表长度小。
相反当搜索过程接近最优解时,为提高解的集中性,减少分散,缩小搜索区域,这时通常希望禁忌表长度大。
为达到这样的目的,最近越来越多的人们允许禁忌表的大小和结构随搜索过程发生改变,即使用动态禁忌表,实验结果表明了动态禁忌表往往比固定禁忌表获得更好的解。
禁忌长度就是每个禁忌对象在禁忌表中的生存时间,也成为禁忌对象的任期;每一个禁忌对象加入禁忌表的时候,设置任期为禁忌长度值,搜索过程没迭代一次,禁忌表中的各个禁忌对象的任期自动减一,当某一禁忌对象任期为0时,将其从禁忌表中删除;任期不为0的禁忌对象处于禁忌状态,不能被搜索过程选为新解。
长期表,短期记忆用来避免最近所作的一些移动被重复,但是在很多的情况下短期记忆并不足以把算法搜索带到能够改进解的区域。
因此在实际应用中常常短期记忆与长期记忆相结合使用,以保持局部的强化和全局多样化之间的平衡,即在加强与好解有关性质的同时还能把搜索带到未搜索过的区域。
在长期记忆中,频率起着非常重要的作用,使用频率的目的就是通过了解同样的选择在过去做了多少次来重新指导局部选择。
当在非禁忌移动中找不到可以改进的解时用长期记忆更有效。
目前长期记忆函数主要有两种形式,一种通过惩罚的形式,即用一些评价函数来惩罚在过去的搜索中用得最多或最少的那些选择,并用一些启发方法来产生新的初始点。
用这种方式获得的多样性可以通过保持惩罚一段时间来得到加强,然后取消惩罚,禁忌搜索继续按照正常的评价规则进行。
另一种形式采用频率矩阵,使用两种长期记忆,一种是基于最小频率的长期记忆,另一种是基于最大频率的长期记忆。
通过使用基于最小频率的长期记忆,可以在未搜索的区域产生新的序列;而使用基于最大频率的长期记忆,可以在过去的搜索中认为是好的可行区域内产生不同的序列。
在整个搜索过程中频率矩阵被不断的修改。
3.4选择策略选择策略即择优规则,是对当前的邻域移动选择一个移动而采用的准则。
择优规则可以采用多种策略,不同的策略对算法的性能影响不同。
一个好的选择策略应该是既保证解的质量又保证计算速度。
当前采用最广泛的两类策略是最好解优先策略和第一个改进解优先策略。
最好改进解优先策略就是对当前邻域中选择移动值最好的移动产生的解,作为下一次迭代的开始。
而第一个改进解优先策略是搜索邻域移动时选择第一改进当前解的邻域移动产生的解作为下一次迭代的开始。
最好改进解优先策略相当于寻找最陡的下降,这种择优规则效果比较好,但是它需要更多的计算时间;而最快的下降对应寻找第一个改进解的移动,由于它无需搜索整个一次邻域移动,所以它所花计算时间较少,对于比较大的邻域,往往比较适合。
3.5破禁策略相关文献亦称藐视准侧、特赦准则、释放准侧等;破禁策略通常指渴望水平(Aspiration)函数选择,当一个禁忌移动在随后T次的迭代内再度出现时,如果它能把搜索带到一个从未搜索过的区域,则应该接受该移动即破禁,不受禁忌表的限制。
衡量标准就是定义一个渴望水平函数,渴望水平函数通常选取当前迭代之前所获得的最好解的目标值或此移动禁忌时的目标值作为渴望水平函数。
破禁准侧保证了搜索过程在全部候选解被禁或者是有优于当前最优解的候选解被禁时,能够释放特定的解,从而实现全局优化搜索。
3.6停止规则停止规则亦称终止准则,即算法在何种条件下停止搜索过程;在禁忌搜索中停止规则通常有如下四种:(1)是把最大迭代数作为停止算法的标准,而不以全局最优为停止规则;(2)是在给定数目的迭代内所发现的最好解无法改进或无法离开它时,算法停止;(3)最优解的目标函数值小于指定误差;(4)最优解的禁忌频率达到指定值。