禁忌搜索算法

合集下载

禁忌搜索算法教程

禁忌搜索算法教程
C x 16 x* x A(s, x) C(x*) 16
移动 Sx
3,1 2,3 3,4 7,1 6,1
C x
2 1 -1 -2 -4
T表 1 4,5
2 3
…… ……
结论:互换1和3
30
三.TS举例
③ 迭代2 编码:2-4-7-1-5-6-3
C x 18 x* x A(s, x) C(x*) 18
第三章 禁忌搜索
1
第三章 禁忌搜索
一.导言 二.禁忌搜索 三. TS举例 四. TS中短、中、长久表旳使用 五.学习TS旳几点体会
2
1. 问题描述
一.导言
min f (x) s.t. g(x) 0
x X
目的函数 约束条件 定义域
注:X为离散点旳集合,TS排斥实优化
3
一.导言
2. 局域搜索
➢ 邻域旳概念 ① 函数优化问题: 邻域(N(x))一般定义为在给定距离空间内,以一点 (x)为中心旳一种球体 ② 组合优化问题:
xbest:=xnow=(ACBDE)
ABCDE
11
一.导言
2. 局域搜索
➢ 示例 措施:全邻域搜索 第2步 N(xbest)={(ACBDE),(ABCDE),(ADBCE),(AEBDC) ,(ACDBE),(ACEDB),(ACBED)}, 相应目的函数为f(x)={43, 45, 44, 59, 59, 58, 43}
5
一.导言
2. 局域搜索
➢ 邻域旳概念 例: 解旳邻域映射可由2-opt,推广到k-opt,即对k个元 素按一定规则互换。
邻域旳构造依赖于解旳表达,邻域旳构造 在智能优化算法中起主要旳作用。
6
练习

禁忌搜索

禁忌搜索


禁忌长度:
禁忌表的大小

候选解:
利用当前解的邻域函数产生其所有(或若干) 邻域解,并从中确定若干候选解。 候选解集的确定是选择策略的关键,对算法 性能影响很大。
藐视准则:
当一个禁忌移动在随后T次的迭代内再度出现
时,如果它能把搜索带到一个从未搜索过的区域,
则应该接受该移动即破禁,不受禁忌表的限制。
4.迭代③ 编码:4-2-7-1-5-6-3
Cx 14, C x* 18

结论:因渴望水平发挥作用,交换在破禁 表中的4和5
5.迭代④ 编码:5-2-7-1-4-6-3
Cx C x* 20

结论:交换7和1
6.迭代⑤ 编码:5-2-1-7-4-6-3
Cx C x* 20
*
.更新T表,转步骤2
四、禁忌算法示例
问题:由七层不同的绝缘材料构成的一种绝 缘体,应如何排列顺序,可获得最好的绝 缘性能
编码方式:顺序编码
初始编码:2-5-7-3-4-6-1
目标值:极大化目标值 邻域定义:两两交换是一个邻 域移动 邻域大小:Tabu Size: 3 NG: 5
禁忌搜索
专业:物流工程 姓名:冯颖 学号:201322303100
一、禁忌搜索概述
二、禁忌搜索的重要参数与基本
原理 三、禁忌搜索的算法步骤 四、禁忌算法示例
一、概述
禁忌搜索(Tabu Search或Taboo Search,简称TS ) 的思想最早由Glover提出,它是对局部领域搜索的一 种扩展,是一种全局逐步寻优算法,是对人类智力过 程的一种模拟。TS算法通过引入一个灵活的存储结构 和相应的禁忌准则来避免迂回搜索,并通过藐视准则 来赦免一些被禁忌的优良状态,进而保证多样化的有 效搜索以最终实现全局优化。

车间排程优化问题的禁忌搜索算法研究

车间排程优化问题的禁忌搜索算法研究

车间排程优化问题的禁忌搜索算法研究车间排程优化是制造业中一个重要的问题,通过合理地安排生产任务,可以提高生产效率和资源利用率,减少生产成本和交货期延误。

而禁忌搜索算法作为一种经典的启发式优化算法,可以有效地解决这个问题。

一、问题描述车间排程优化问题是指在给定的工作车间、机器和作业序列的情况下,通过合理的调度工序和机器安排,最大程度地提高生产效率。

该问题涉及到多个因素的综合考虑,如工序之间的先后关系、机器之间的冲突、作业的紧急程度等。

二、禁忌搜索算法原理禁忌搜索算法是一种通过维护一个禁忌列表来避免搜索过程中陷入局部最优解的方法。

它基于贪婪策略,在每一步选择移动方案时,优先考虑能够带来最大改善的邻域解。

同时,它还引入了一个禁忌列表,记录了已经搜索过的解禁忌信息。

在搜索过程中,如果发现一个解与禁忌列表中的解相似度太高,则不会继续搜索该解,以避免重复的计算和陷入局部最优解。

三、禁忌搜索算法在车间排程优化中的应用禁忌搜索算法在车间排程优化中有着广泛的应用。

它可以针对车间排程问题的各种约束条件,自动调整工序的先后次序和机器的分配,以达到最优的排程效果。

1. 邻域解生成禁忌搜索算法中的邻域解一般通过交换相邻工序的位置来产生。

在车间排程中,邻域解的生成可以通过调整工序的先后次序和机器的分配来实现。

通过确定合适的邻域解生成规则,禁忌搜索算法能够快速生成多个可行解,为搜索过程提供了丰富的选择。

2. 目标函数定义在车间排程中,目标函数一般包括生产效率、资源利用率、成本和交货期延误等多个指标。

禁忌搜索算法可以通过合理定义目标函数,将多个指标进行综合考虑,并制定相应的优化策略。

3. 禁忌搜索策略禁忌搜索算法通过维护一个禁忌列表,避免搜索过程中陷入局部最优解。

禁忌列表中的每个元素记录了一个解的局部信息,如交换的工序、机器的分配等。

当在搜索过程中发现一个解与禁忌列表中的解相似度太高时,禁忌搜索算法将终止搜索该解并选择其他的邻域解,以保证搜索的多样性和全局最优解的寻找。

禁忌搜索算法

禁忌搜索算法

3 禁忌搜索的关键参数和操作
3.1 变化因素

目标值的变化
局部搜索主要依赖起点的选取和邻域的结构; 为了得到好的解,可以比较不同的邻域结构和不同 的初始点; 如果初始点的选择足够多,
总可以计算出全局最优解。
2 禁忌搜索
2.1 算法的背景

禁忌搜索算法(Tabu Search)是由美国 科罗拉多州大学的Fred Glover教授在 1986年左右提出来的,是一个用来跳出 局部最优的搜寻方法。在解决最优问题 上,一般区分为两种方式:一种是传统 的方法,另一种方法则是一些启发式搜 索算法。
4.5 T 3.5 T
2 禁忌搜索
2 禁忌搜索示例

四城市非对称TSP问题
第5步
解的形式 A D B C f(x4)=4.5 禁忌对象及长度 B A B 0 C 1 2 C D 候选解
对换 评价值
CD BC BD
7.5 T 8 ☻ 4.5 T
TS算法 框架





(1)是否有其他形式的候选集? (2)禁忌的长度如何确定?如果在算法中记忆下搜索到 的当前最优解,极端的两种情况是:一是将所有的对换 个数作为禁忌长度,此时等价于将候选集中的所有的对 换遍历;另外则取为1,这等价于局部搜索算法。 (3)是否有评价值的其他替代形式?有时计算目标值的 工作量较大,或无法接受计算目标值所花费的时间,于 是需要其他的方法。 (4)被禁的对换能否再一次解禁?有这样的直观现象, 当搜索到一个局部最优解后,它邻域中的其他状态都被 禁,我们是否解禁一些状态以便跳出局部最优?解禁的 功能就是为了获得更大的搜索范围,以免陷入局部最优 。 (5)如何利用更多的信息?在禁忌搜索算法中,还可记 录其他一些信息。如一个被禁对象(交换)被禁的次数 ,评价值变化的大小等。 (6)终止原则,即一个算法停止的条件,怎样给出?

禁忌搜索算法.pptx

禁忌搜索算法.pptx

候选集合
禁忌表
3,2
[1,4,2,5,3,1] f1=8
3-4
3,5
[1,4,5,3,2,1] f2=10
2-3
5,2
[1,4,3,2,5,1] f3=14
4,2
[1,2,3,5,4,1] f4=16
对x3交换3和2时最优f(x)=8,不满足藐视准则,且由于3-2已经在禁忌表中,因此 我们退而求其次选择f2=10对应的解,此时x4=[1,4,5,3,2,1] f(x4)=10,历史最优为5, 将5-3放入禁忌表中,由于禁忌长度为2,因此将最先放入禁忌表中的3-4移出禁忌 表。
[1,4,3,5,2,1] f4=5
对x2交换2和3时,5最优,此时x3=[1,4,3,5,2,1] f(x3)=5,历史最优为5,将2-3放入禁 忌表中
禁忌表
3-4
2-3
禁忌搜索算法(Tabu search)
x3=[1,4,3,5,2,1】 5(x3)=5,历史最优为5
邻域移动(交换中间两个城市)
禁忌表 3-5 2-3
参考教材和资料
彭扬, 伍蓓. 物流系统优化与仿真[M]. 中国物资出版社, 2007.
通过局部邻域搜索和相应 的禁忌准则来避免迂回搜 索,并通过特赦准则释放 被禁忌的优良状态。以保 证多样化的有效搜索,最
终实现全局最优化。
禁忌搜索算法的思想
禁忌搜索算法的思想
1
禁忌搜索算法的思想
2
1
5
4
3
禁忌搜索算法的思想
15 14 13
11 10
12 9
2
1
58
4 6
3
7
时间步 T=1
禁忌表 1、2、3、4、5

禁忌搜索算法优化物流调度

禁忌搜索算法优化物流调度

、、、禁忌搜索算法优化物流调度禁忌搜索算法优化物流调度随着物流行业的不断发展,物流调度已经成为了企业运营中不可或缺的一环。

而物流调度的优化,也一直是企业所关注的问题之一。

在物流调度的优化中,搜索算法起到了至关重要的作用。

然而,对于一些敏感的物流领域,如事物资运输、药品配送等,一些特定的信息不应该被搜索算法所搜寻,这就需要禁忌搜索算法的应用。

禁忌搜索算法(Tabu Search)是一种智能化的优化算法,它通过约束条件来限制搜索空间,从而得到最优的解决方案。

禁忌搜索算法的核心思想是“不走回头路”,即避免搜索过程中陷入死循环。

在物流调度中,禁忌搜索算法可以通过设置禁忌表来约束搜索空间,从而避免出现重复的解决方案。

在物流调度中,禁忌搜索算法的应用主要分为两个方面:1. 避免重复路径的搜索在物流调度中,每个货物都需要按照一定的路径进行运输。

如果搜索算法在搜索过程中出现了重复路径,那么就会浪费宝贵的时间和资源。

禁忌搜索算法可以通过约束条件来避免搜索过程中出现重复路径的情况,从而提高物流调度的效率。

2. 隐私保护在一些敏感领域的物流调度中,一些特定的信息不应该被搜索算法所搜寻,例如事物资的运输路径、药品配送的细节等。

禁忌搜索算法可以通过设置禁忌表来限制搜索空间,从而避免搜索算法出现不应该搜索到的信息,从而保护隐私。

禁忌搜索算法在物流调度中的应用,可以大大提高物流调度的效率和准确性,同时也可以保护隐私。

然而,禁忌搜索算法也存在一些问题,例如搜索空间较大时算法的效率就会受到影响,这就需要在实际应用中进行合理的优化。

在禁忌搜索算法的优化中,可以采用以下几个方面:1. 禁忌表的合理设置禁忌表的设置是禁忌搜索算法中的关键。

在物流调度中,可以通过合理设置禁忌表来限制搜索空间,从而避免搜索算法出现重复路径和隐私泄露的情况。

禁忌表的设置需要根据具体的业务需求进行灵活调整。

2. 改进启发式函数启发式函数是禁忌搜索算法中的重要组成部分,它用于评估搜索过程中的解决方案。

禁忌搜索算法ppt课件

禁忌搜索算法ppt课件

个候选解?
的解替换当前解
用新的解替换 当前解;

找出下一个 次好的新解
更新tabulist NI=NI+1
NI=0 Intensification
n=n+1
否 NI=M?
是 Diversification
NI=0 是
n<N

25
End
判断是否为tabu, 决定接受与否
接受最好的候选解,并替换当前解
NI=0 是
n<N

21
End
求得初始解 BS=初始解
初始解
Sequence The length of the route
132456
28
BS
Sequence The length of the route
132456
28
22
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
Sequence The length of the route
当前解 413256
30
Sequence The length of the route
BS
132456
28
Tabu list {41, },NI=1,n=1
26
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
The length of the route
30
35
38
40
45
24
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
n=0;NI=0

禁忌搜索算法

禁忌搜索算法
CD 4.5 T BC 4.5 T BD 3.5 T
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
第4步(如果减小禁忌长度)
解的形式
禁忌对象及长度
ACBD f(x3)=7.5
BCD A
B12 C0
对换 评价值
CD 4.5☻ BC 7.5 BD 8
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
第2步

BCD A
B C3
候选解(邻域)
对换 评价值
CD 4.5 T BC 3.5☻ BD 4.5
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
禁忌搜索算法 领域的概念
例: TSP问题解的邻域映射可由swap,推广到k-opt。
邻域概念的重要性 邻域的构造依赖于移动操作(move), 邻域的结构在现代优化算法中起重要的作用。
禁忌搜索算法 算法的主要思路
算法的提出 禁忌搜索(Tabu search)是局部邻域搜索算法的推广,Fred Glover在1986年提出这个概念,进而形成一套完整算法。
禁忌搜索算法
禁忌搜索算法示例
Step 2: flip 5
1 2
3
7 6
5 4
Move: one-flip
函数值变化:f = 7
12345 6 7
-3 -1 2 -2 -1 -2 -1
禁忌表
1234567 2000300
禁忌搜索算法
禁忌搜索算法示例
Step 3: flip 3
1 2
3
7 6
5 4
Move: one-flip
函数值变化:f = 9
12345 6 7

禁忌搜索实验报告

禁忌搜索实验报告

一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。

该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。

近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。

本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。

二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。

三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。

首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。

2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。

TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。

VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。

3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。

四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。

在实验中,设置禁忌长度为20,迭代次数为1000。

改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。

在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。

遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。

禁忌搜索算法原理及应用

禁忌搜索算法原理及应用

禁忌搜索算法原理及应用随着计算机技术的不断发展,各种算法也应运而生,其中禁忌搜索算法便是一种比较常用的优化算法。

禁忌搜索算法的一大特点就是能够避免搜索过程中出现循环现象,能够有效地提高搜索效率,因此在许多领域都有广泛的应用。

一、禁忌搜索算法的原理禁忌搜索算法是一种基于局部搜索的优化算法。

其基本思想就是在搜索过程中引入禁忌表,通过记录禁忌元素,避免进入不良搜索状态,从而获得更好的解。

禁忌表的作用是记录已经经过的解的信息,防止搜索陷入局部最优解,增加了搜索的广度和深度。

禁忌搜索算法的核心是寻找最优化解。

具体过程包括:初始化,构造邻域解,选择最优解,更新禁忌表,结束搜索。

当搜索过程中发现某个解是当前状态下的最优解时,将这个最优解加入到禁忌表中,以后在搜索过程中就不再去重复对该最优解的操作。

在禁忌搜索算法中,选择邻域解是非常重要的一环。

邻域解是指与当前解相邻的解,也就是在当前解的基础上进行一定的操作得到的解。

邻域解的选择通常根据问题的不同而定,可以是交换位置、插入、反转等。

而选择最优解的原则则是要在禁忌状态下优先选择不在禁忌表中的最优解,如果所有的最优解都处于禁忌状态,那么就选择设定的禁忌期最短的解。

二、禁忌搜索算法在实际应用中的应用禁忌搜索算法作为一种优化算法,在实际应用中有着广泛的应用。

下面我们就通过几个实际案例来了解禁忌搜索算法的应用。

1. 生产排程问题禁忌搜索算法在制造业的排程问题中有着广泛的应用。

在生产排程问题中,需要考虑的因素非常多,如时间、人员、设备、物料等。

禁忌搜索算法通过构建邻域空间,利用禁忌表避免了进入不良解的状态,从而在生产排程问题中,可以为厂家避免很多因时间不足而导致的决策错误。

2. 组合最优化问题禁忌搜索算法在组合最优化问题中有着很好的应用。

比如在公路路径设计中,需要从成千上万的路径中选择最优解。

禁忌搜索算法不仅可以找到全局最优解,还可以避免局部最优解的产生,使得结果更加准确。

禁忌搜索

禁忌搜索

• 如果在搜索的过程中,留守泰山的兔子还 没有归队,但是找到的地方全是华北平原 等比较低的地方,兔子们就不得不再次考 虑选中泰山,也就是 说,当一个有兔子留 守的地方优越性太突出,超过了“best so far”的状态,就可以不顾及有没有兔子留守, 都把这个地方考虑进来,这就叫“特赦准 则(aspiration criterion)”。
藐视准则
• 当一个禁忌移动在随后T次的迭代内再度出 现时,如果它能把搜索带到一个从未搜索 过的区域,则应该接受该移动即破禁,不 受禁忌表的限制。 • 破禁准侧保证了搜索过程在全部候选解被 禁或者是有优于当前最优解的候选解被禁 时,能够释放特定的解,从而实现全局优 化搜索。
终止规则
• 确定步数终止,无法保证解的效果,应记录当前最 优解; • 频率控制原则,当某一个解、目标值或元素序列的 频率超过一个给定值时,终止计算; • 目标控制原则,如果在一个给定步数内,当前最优 值没有变化,可终止计算.
C
• 第1步 解的形式 选解 禁忌对象及长度 候 对换 评价值
B A B
C
D
A B CD
C
f(x0)=4
CD BC BD
4.5 ☻ 7.5 8
A
1 1
1
B
5 1
四城市非对称TSP问题
D
1
0.5
1.5
C
• 第2步 解的形式 选解 禁忌对象及长度 候 对换 评价值
B A B
C
D
A B DC
C
f(x1)=4.5
邻域
• TSP问题解的一种表示方法为:
D={x=(i1,i2,…,in)|i1,i2,…,in是1,2,…,n的排列},定义 它的邻域映射为2-opt,即x中的两个元素进行对换, N(x)中共包含x的Cn2=n(n-1)/2个邻居和x本身。 • 例如:x=(1,2,3,4),则C42=6,N(x)={(1,2,3,4), (2,1,3,4), (3,2,1,4), (4,2,3,1), (1,3,2,4), (1,4,3,2), (1,2,4,3)}

禁忌搜索算法

禁忌搜索算法

无时限单向配送车辆优化调度问题的禁忌搜索算法无时限单向配送车辆优化调度问题,是指在制定配送路线时不考虑客户对货物送到(或取走)时间要求的纯送货(或纯取货)车辆调度问题。

无时限单向配送车辆优化调度问题可以描述为:从某配送中心用多台配送车辆向多个客户送货,每个客户的位置和需求量一定,每台配送车辆的载重量一定,其一次配送的最大行驶距离一定,要求合理安排车辆配送路线,使目标函数得到优化,并满足一下条件:(1)每条配送路径上各客户的需求量之和不超过配送车辆的载重量;(2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离;(3)每个客户的需求必须满足,且只能由一台配送车辆送货。

一、禁忌搜索算法的原理禁忌搜索算法是解决组合优化问题的一种优化方法。

该算法是局部搜索算法的推广,其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来挑出局部最优点。

在禁忌搜索算法中,首先按照随机方法产生一个初始解作为当前解,然后在当前解的领域中搜索若干个解,取其中的最优解作为新的当前解。

为了避免陷入局部最优解,这种优化方法允许一定的下山操作(使解的质量变差)。

另外,为了避免对已搜索过的局部最优解的重复,禁忌搜索算法使用禁忌表记录已搜索的局部最优解的历史信息,这可在一定程度上使搜索过程避开局部极值点,从而开辟新的搜索区域。

二、算法要素的设计1.禁忌对象的确定禁忌对象是指禁忌表中被禁的那些变化元素。

由于解状态的变化可以分为解的简单变化、解向量分量的变化和目标值变化三种情况,则在确定禁忌对象时也有相对应的三种禁忌情况。

一般来说,对解的简单变化进行禁忌比另两种的受禁范围要小,因此可能早能造成计算时间的增加,但其优点是提供了较大的搜索范围。

根据配送车辆优化调度问题的特点,可采用对解的简单变化进行禁忌的方法。

举例进行说明:当解从x变化到y时,y可能是局部最优解,为了避开局部最优解,禁忌y这一解再度出现,可采用如下禁忌规则:当y的领域中有比它更优的解时,选择更优的解;当y为其领域的局部最优解时,不再选y,而选比y稍差的解。

禁忌搜索算法 (第6章)

禁忌搜索算法 (第6章)
10
8.终止条件
(1)给定最大迭代步数,如N =10000.优点是易于 操作和控制计算时间,但无法保证解的质量. (2)给定当前的最好解保持不变的最大连续迭代次 数.如2500次. (3)设定目标值的偏离幅度.若ZLB为问题的下界, ε为给定的偏离幅度,则当f (x)-ZLB≤ε时,终止计 算. (4) 设定禁忌对象的最大禁忌频率.若某个禁忌对 象的禁忌频率超过给定的值,则终止计算.
6.2 TS的基本思想和步骤
算法的基本思想:给定一个当前解(初始解)和候 选解产生函数(邻域结构),然后在当前解的邻域 中确定若干候选解;若最佳候选解对应的目标值优 于到目前为止搜索到的“最好解”(best-sofar),则忽视其禁忌特性,用其替代当前解和 “最好解”;若不存在上述候选解,则在候选解集 中选择非禁忌的最佳候选解为新的当前解,而无视 它与当前解的优劣;两种情况下都将相应的对象加 入禁忌表,并修改禁忌表中各对象的任期;如此重 复上述迭代搜索过程,直到满足停止准则.
5.禁忌对象
被置入禁忌表中的那些变化元素.禁忌的目的是为 了尽量避免迂回搜索. (1)以整个解的变化为禁忌对象.当解状态由x变化到 解状态y时,将解y(或x→y的变化)视为禁忌对 象. (2)以解分量的变化为禁忌对象.如示例中的情形. (3)以目标值的变化作为禁忌对象.
6.禁忌表和禁忌长度
禁忌表(tabu list)是针对禁忌对象所设计的一种结 构,可以是一维或二维的. 禁忌长度t(tabu length)是禁忌对象的禁忌期,即 9 不允许再次被选取的迭代次数.每迭代一步,t减
11

TS求解过程演示
当前解 最好解 (best-so-far) 逐步减小
显示 总迭代次数 最好解保持 不变的连续 迭代次数 特点 累加 波动

禁忌搜索算法代码

禁忌搜索算法代码
{
int i=0,j=0,count=0;
int n;
while(count<sum)
{
for(n=0;n<count;n++)/*根据禁忌表判断此人是否还在圈内*/
if(result[n]==data[i])
break;
if(n>=count)/*若此人还在圈内*/
Байду номын сангаасj++;
if(j==k)
{
result[count++]=data[i];/*把出圈的人的编号存入禁忌表*/
禁忌搜索法:使用一个禁忌表,记录下不允许搜索的元素。在后面的搜索中,根据禁忌表来决定如何处理当前元素。用在约瑟夫环中,我们可以用一个数组记录下已经出圈的人的编号,这样再数数时,可以根据禁忌表来判断此人是否还在圈内。
#define N 100
void yuesefu1(int data[],int result[],int sum,int k)
scanf("%d",&k);
yuesefu1(data,result,total,k);
printf("\nThe sequence is:\n");
for(i=0;i<total;i++)
printf("%d ",result[i]);
{
int input;
scanf("%d",&input);
if(input==0)
break;
for(j=0;j<i;j++)
if(data[j]==input)

禁忌搜索算法

禁忌搜索算法
只进不退原则——用Tabu表锁住退路,将近期历史搜索 过程放在禁忌表中,防止算法迂回。 不以局部最优作为停止准则,算法接受劣解,只要不在 禁忌表的较好解都可以作为下一次迭代的初始解。
邻域选优的规则模拟了人类的记忆功能,找过的地方都 记下来,不再找第二次。一定的迭代次数后,早期进入 禁忌表的解被解禁退出。
7.5T 8☻ 4.5T
四城市非对称TSP问题
第 6步
解的形式 A DCB f(x5)=8 禁忌对象及长度 B A C D 候选解
对换 评价值
B

2 C
0 1
CD BC BD
3.5T 4.5T 4☻
谢谢观赏
2、禁忌对象为目标值变化 3、禁忌对象为分量变化 解的简单变化比解的分量变化和目标值变化的受禁范围要小,可 能造成计算时间的增加,但也给予了较大的搜索范围; 解分量的变化和目标值变化的禁忌范围大,减少了计算时间,可 能导致陷在局部最优点。
禁忌长度的选取
禁忌长度过短,一旦陷入局部最优点,出现循环无法跳出; 禁忌长度过长,造成计算时间较大,也可能造成计算无法继续下去。
(2)动态频率信息:从一个解、对换或目标值到另一个解、对换或目标值的变化趋势。
终止规则
(1)确定步数终止,无法保证解的效果,应记录当前最优解; (2)频率控制原则,当某一个解、目标值或元素序列的频率超过 一个给定值时,终止计算; (3)目标控制原则,如果在一个给定步数内,当前最优值没有变 化,可终止计算。
B
C
CD BC BD
4.5☻ 7.5 8
四城市非对称TSP问题
第 2步
解的形式 A B DC f(x1)=4.5 禁忌对象及长度 B A C D 候选解
对换 评价值

遗传算法与禁忌搜索算法的融合策略与实施指南

遗传算法与禁忌搜索算法的融合策略与实施指南

遗传算法与禁忌搜索算法的融合策略与实施指南引言:在解决复杂问题的过程中,计算机算法起着至关重要的作用。

遗传算法和禁忌搜索算法是两种常用的优化算法,它们分别从生物进化和搜索空间中的禁忌区域的角度出发,具有独特的优势。

本文将探讨如何将这两种算法进行融合,以提高问题求解的效率和准确性。

一、遗传算法概述与优势遗传算法是模拟生物进化过程的一种算法,通过模拟自然选择、交叉和突变等过程,逐步优化问题的解。

其基本步骤包括初始化种群、选择操作、交叉操作和变异操作。

遗传算法具有以下几个优势:1. 并行性:遗传算法可以同时处理多个个体,加速了问题求解的过程。

2. 全局搜索能力:由于遗传算法采用随机的方式进行搜索,可以避免陷入局部最优解,从而更有可能找到全局最优解。

3. 适应性:遗传算法可以根据问题的具体情况进行调整,以适应不同的求解需求。

二、禁忌搜索算法概述与优势禁忌搜索算法是一种基于局部搜索的优化算法,通过设置禁忌表来避免搜索过程中陷入局部最优解。

其基本步骤包括初始化禁忌表、定义邻域操作、选择最优解和更新禁忌表。

禁忌搜索算法具有以下几个优势:1. 局部搜索能力:禁忌搜索算法通过定义邻域操作,可以在局部搜索空间中进行精确的搜索,从而更有可能找到局部最优解。

2. 禁忌策略:通过设置禁忌表,禁忌搜索算法可以避免陷入局部最优解,从而有更大的机会找到全局最优解。

3. 灵活性:禁忌搜索算法可以根据问题的具体情况进行调整,以适应不同的求解需求。

三、遗传算法与禁忌搜索算法的融合策略将遗传算法与禁忌搜索算法进行融合,可以充分发挥两者的优势,提高问题求解的效率和准确性。

以下是一些常用的融合策略:1. 初始解生成策略:可以采用遗传算法生成一组初始解,然后使用禁忌搜索算法进行局部搜索,以找到更优的解。

2. 禁忌表的设计:可以根据问题的特点,设置合适的禁忌表长度和禁忌期限,以平衡全局搜索和局部搜索的效果。

3. 交叉和变异操作的调整:可以通过调整交叉和变异操作的概率,以控制遗传算法的全局搜索能力,从而更好地与禁忌搜索算法进行融合。

禁忌搜索算法

禁忌搜索算法
设置禁忌长度。 • ② 邻域搜索产生候选解 • 根据步骤①产生初始解,通过搜索算子(search operators),
如relocation、exchange、2-opt等,产生候选解(candidate solution),并计算各个候选解的适应值(即解对应的目标函数 值)。
• ③ 选择最好的候选解
爬山算法(第三天)
• 使用禁忌搜索算法后,妈妈再也不用担心我找不到人家了,阿弥陀佛~上帝这次创建小 和尚时,倒了一点禁忌搜索(Tabu Search)算法。小和尚在半山腰时想再次尝试爬山, 他发现之前走的路被自己标记了“禁止通行”的路标(禁忌策略),故成功的完成了先 下后上的爬山过程,达到了更高的山峰。
2.1 什么是禁忌搜索算法?
• 禁忌搜索算法(Tabu Search Algorithm,简称TS)起源于对于人 类记忆功能的模仿,是一种元启发式算法(meta-heuristics)。它 从一个初始可行解(initial feasible solution)出发,试探一系列的 特定搜索方向(移动),选择让特定的目标函数值提升最多的移 动。为了避免陷入局部最优解,禁忌搜索对已经经历过的搜索 过程信息进行记录,从而指导下一步的搜索方向。
• (7)停止规则(Stop Criterion):禁忌搜索中停止规则的设计多种多样,如最大迭代数、 算法运行时间、给定数目的迭代内不能改进解或组合策略等等。
• 例题1 旅行商问题(TSP)
下面我们以TSP问题为例说明介绍这些组成部分:如下图所示,有5个 城市,任何两个城市之间的距离都是确定的,现要求一个旅行商从某城市 出发必须经过每个城市一次且仅有一次,最后回到出发的城市,问如何确 定一条最短的线路(每条边的长度已在图中标出)?
如上图所示,通过3中搜索算子搜索一次得到的候选解的集合即为当前 邻域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要设计一个禁忌搜索算法,需要确 定以下环节
1)初始解和适配值函数(目标函数); 2)邻域结构(如何生成相邻解)和禁忌对象(禁 忌表中的元素); 3)候选解选择; 4)禁忌表及其长度; 5)藐视准则 6)集中搜索和分散搜索策略 7)终止准则。 ’
变量定义:
n = 搜索次数 N = 搜索N 次,程序结束
假设记录生成相邻解的方法,Tabu list = {②, ③, ④},下一步采用②方法生成了迄今 为止最好的解,仍然接受这个,更新Tabu list={②, ③, ②},
分散搜索(Diversification)和 集中搜索(Intensification)策略
• 分散搜索:是为了对整个解的空间 进行更广泛的覆盖,而不是仅仅局 限在某个局部的区域。
NI=NI+1
n=n+1 NI=M? 是 Diversification NI=0 是 n<N 否 End 否
Intensification
判断是否为tabu, 决定接受与否
BS
Sequence The length of the route
132456 28 Tabu list {41, },NI=1,n=1
考虑最好的候选解
当前解 候选解
Sequence The length of the route 30 413256 29 143256 新生成相邻关系(14), is Tabu! Reject it
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解 n=0;NI=0
禁忌表长度
太短:计算速度快,但容易陷入死循环 太长:计算速度慢 在搜索过程中,禁忌表长度设为固定 在搜索过程中,禁忌表长度可动态变化
禁忌表长度:5—10
藐视准则(Aspiration criterion)
如果找到了一个新的解比当前记录的最好 解还要好,那么即使从当前得到这个新的 解被tabu list禁止,仍然接受这个新的解, 并更新tabu list. 即tabu list对这个解没有禁 止作用

是否为最后一 个候选解?
用新的解替换 当前解;
NI=0
否 找出下一个 次好的新解
求得一系列候选解, 并按优劣排序
NI=NI+1
n=n+1 NI=M? 是 Diversification NI=0 是 n<N 否 End 否
Intensification
求得初始解 BS=初始解
初始解
Sequence The length of the route 132456 28

是否为最后一 个候选解?
用新的解替换 当前解;
NI=0
否 找出下一个 次好的新解
求得一系列候选解, 并按优劣排序
NI=NI+1
n=n+1 NI=M? 是 Diversification NI=0 是 n<N 否 End 否
Intensification
Tabu list 初始化(清空)设M,N的值

是否为最后一 个候选解?
接受新的解;用新 的解替换当前解
更新tabulist
用新的解替换 BS;
NI=0
否 找出下一个 次好的新解
求得一系列候选解, 并按优劣排序
NI=NI+1
n=n+1 否 NI=M? 是 Diversification NI=0 是 n<N 否 End
Intensification
无邻域的搜索
有邻域的搜索
有邻域的搜索 & 分散搜索策略
分散搜索(Diversification)和 集中搜索(Intensification)策略
• 集中搜索:如果当前搜索区域内发 现了比较好的解,如果进一步对当 前区域进行更集中的搜索,那么可 能会发现更多更好的解。
• 分散搜索策略(Diversification strategy)在当前 搜索区域内进行了一定次数的搜索了之后(如 25次),若不能发现更好的解,那么就执行分 散搜索策略。把tabu list清空,然后从一个新 的初始解开始搜索。 • 集中搜索:如果最好解的记录被更新,那么就 执行集中搜索策略,即清空tabu list. 这样可以 在当前区域进行更自由的搜索。
TSP算例
City to city
1 1 2 3
2 12
3 4 11
4 7 20 6
5 9 13 17
6 10 8 13
4
5 6
6
9
15
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解 n=0;NI=0

是 最好的新解比 BS好? 接受新的解用新的 It’s in tabu? 解替换当前解 否 是 接受新的解;用新 的解替换当前解 更新tabulist
Sequence 413256 143256 134256 132546 132564
The length of the route 30 35 38 40 45
Hale Waihona Puke StartTabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解 n=0;NI=0

是 最好的新解比 BS好? 接受新的解用新的 It’s in tabu? 解替换当前解 否 是 接受新的解;用新 的解替换当前解 更新tabulist
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解 n=0;NI=0

是 最好的新解比 BS好? 接受新的解用新的 It’s in tabu? 解替换当前解 否 是 接受新的解;用新 的解替换当前解 更新tabulist

是否为最后一 个候选解?
用新的解替换 当前解;
在邻域中找到最好的解
加入禁忌表,避免陷入循环
禁忌表长度为3:{①, ②, ③} 规则:不得接受与禁忌表中相同的解 禁忌表的变化: 第一步搜索时{ } 第二步搜索时{① } 第三步搜索时{①, ②, } 第四步搜索时{①, ②, ③}
避免循环的原理:当前解为④时,其领域中 最好的解为①,原本下一步应为①,但其与 禁忌表中的元素相同,所以选择次好的解⑤, 从而避免死循环
• Tabu list { },长度为2。 记录从当前解生 成新的解的过程中,产生的新的相邻关系 • M=2 • N=4
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解 n=0;NI=0

是 最好的新解比 BS好? 接受新的解用新的 It’s in tabu? 解替换当前解 否 是 接受新的解;用新 的解替换当前解 更新tabulist
Tabu Search
• 特点 – Neighborhood search + memory • Neighborhood search • Memory –Record the search history –Forbid cycling search
搜索陷入循环
1的邻域
2 2的邻域
1
3 4的邻域 4
NI =连续没有找到更好解的次数
M =连续M次没有找到更好解, 执行分散搜索策略 BS = 找到的最好的解
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解 n=0;NI=0

是 最好的候选 解比BS好? 接受新的解用新的 It’s in tabu? 解替换当前解 否 是
禁忌搜索 Tabu Search
禁忌搜索概述
• 禁忌搜索(Tabu Search或Taboo Search, 简称TS)的思想最早由Glover(1986)提出, 它是对局部邻域搜索的一种扩展,是一种 全局逐步寻优算法,是对人类智力过程的 一种模拟。
禁忌搜索概述
• TS算法通过引入一个灵活的存储结构和相应的禁 忌准则来避免迂回搜索,并通过藐视准则来赦免 一些被禁忌的优良状态,进而保证多样化的有效 探索以最终实现全局优化。 • 相对于模拟退火和遗传算法,TS是又一种搜索特 点不同的算法。迄今为止,TS算法在组合优化、 生产调度、机器学习、电路设计和神经网络等领 域取得了很大的成功,近年来又在函数全局优化 方面得到较多的研究,并大有发展的趋势。

是 最好的新解比 BS好? 接受新的解用新的 It’s in tabu? 解替换当前解 否 是 接受新的解;用新 的解替换当前解 更新tabulist

是否为最后一 个候选解?
用新的解替换 当前解;
NI=0
否 找出下一个 次好的新解
求得一系列候选解, 并按优劣排序
NI=NI+1
n=n+1 NI=M? 是 Diversification NI=0 是 n<N 否 End 否
BS
Sequence The length of the route
132456
28
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解 n=0;NI=0

是 最好的新解比 BS好? 接受新的解用新的 It’s in tabu? 解替换当前解 否 是 接受新的解;用新 的解替换当前解 更新tabulist
1的邻域 1
2 2的邻域 3
5 4的邻域
4
禁忌表的更新
更新原则:先进先出 {①, ②, ③} {②, ③, ④}
{③ , ④, ⑤} ….
禁忌表中元素
禁忌表中元素的可以是完整的解,可以是完 整解的一部分,也可以是采取的一个生成相 邻解的动作等等
完整解:{12345,13245,31245} 生成相邻解的操作(如交换的动作): {32, 31} 从12345开始,取3出来,插入1245 每个位置前面
相关文档
最新文档