禁忌搜索算法
禁忌搜索算法教程
移动 Sx
3,1 2,3 3,4 7,1 6,1
C x
2 1 -1 -2 -4
T表 1 4,5
2 3
…… ……
结论:互换1和3
30
三.TS举例
③ 迭代2 编码:2-4-7-1-5-6-3
C x 18 x* x A(s, x) C(x*) 18
第三章 禁忌搜索
1
第三章 禁忌搜索
一.导言 二.禁忌搜索 三. TS举例 四. TS中短、中、长久表旳使用 五.学习TS旳几点体会
2
1. 问题描述
一.导言
min f (x) s.t. g(x) 0
x X
目的函数 约束条件 定义域
注:X为离散点旳集合,TS排斥实优化
3
一.导言
2. 局域搜索
➢ 邻域旳概念 ① 函数优化问题: 邻域(N(x))一般定义为在给定距离空间内,以一点 (x)为中心旳一种球体 ② 组合优化问题:
xbest:=xnow=(ACBDE)
ABCDE
11
一.导言
2. 局域搜索
➢ 示例 措施:全邻域搜索 第2步 N(xbest)={(ACBDE),(ABCDE),(ADBCE),(AEBDC) ,(ACDBE),(ACEDB),(ACBED)}, 相应目的函数为f(x)={43, 45, 44, 59, 59, 58, 43}
5
一.导言
2. 局域搜索
➢ 邻域旳概念 例: 解旳邻域映射可由2-opt,推广到k-opt,即对k个元 素按一定规则互换。
邻域旳构造依赖于解旳表达,邻域旳构造 在智能优化算法中起主要旳作用。
6
练习
禁忌搜索
禁忌长度:
禁忌表的大小
候选解:
利用当前解的邻域函数产生其所有(或若干) 邻域解,并从中确定若干候选解。 候选解集的确定是选择策略的关键,对算法 性能影响很大。
藐视准则:
当一个禁忌移动在随后T次的迭代内再度出现
时,如果它能把搜索带到一个从未搜索过的区域,
则应该接受该移动即破禁,不受禁忌表的限制。
4.迭代③ 编码:4-2-7-1-5-6-3
Cx 14, C x* 18
结论:因渴望水平发挥作用,交换在破禁 表中的4和5
5.迭代④ 编码:5-2-7-1-4-6-3
Cx C x* 20
结论:交换7和1
6.迭代⑤ 编码:5-2-1-7-4-6-3
Cx C x* 20
*
.更新T表,转步骤2
四、禁忌算法示例
问题:由七层不同的绝缘材料构成的一种绝 缘体,应如何排列顺序,可获得最好的绝 缘性能
编码方式:顺序编码
初始编码:2-5-7-3-4-6-1
目标值:极大化目标值 邻域定义:两两交换是一个邻 域移动 邻域大小:Tabu Size: 3 NG: 5
禁忌搜索
专业:物流工程 姓名:冯颖 学号:201322303100
一、禁忌搜索概述
二、禁忌搜索的重要参数与基本
原理 三、禁忌搜索的算法步骤 四、禁忌算法示例
一、概述
禁忌搜索(Tabu Search或Taboo Search,简称TS ) 的思想最早由Glover提出,它是对局部领域搜索的一 种扩展,是一种全局逐步寻优算法,是对人类智力过 程的一种模拟。TS算法通过引入一个灵活的存储结构 和相应的禁忌准则来避免迂回搜索,并通过藐视准则 来赦免一些被禁忌的优良状态,进而保证多样化的有 效搜索以最终实现全局优化。
禁忌搜索算法
3 禁忌搜索的关键参数和操作
3.1 变化因素
禁忌表的主要指标(两项指标)
禁忌对象:禁忌表中被禁的那些变化元素
禁忌长度:禁忌的步数
状态变化(三种变化) 解的简单变化 解向量分量的变化
目标值变化
3 禁忌搜索的关键参数和操作
3.1 变化因素
解的简单变化
假设x, y D,邻域映射为 N,其中D为优化问题的定义域, 则简单解变化 x y N ( x) 是从一个解变化到另一 个解。
2 禁忌搜索
2.2 禁忌搜索示例
四城市非对称TSP问题
初始解x0=(ABCD),f(x0)=4,邻域映射为两个城市 顺序对换的2-opt,始、终点都是A城市。
2 禁忌搜索
2.2 禁忌搜索示例
四城市非对称TSP问题
第1步
解的形式 A B C D f(x0)=4 禁忌对象及长度 B A B C C D 候选解
2 禁忌搜索
2.1 算法的背景 使用传统的方法,我们必须对每一个问题都去设 计一套算法,相当不方便,缺乏广泛性,优点在 于我们可以证明算法的正确性,我们可以保证找 到的答案是最优的;而对于启发式算法,针对不 同的问题,我们可以套用同一个架构来寻找答案, 在这个过程中,我们只需要设计评价函数以及如 何找到下一个可能解的函数等,所以启发式算法 的广泛性比较高,但相对在准确度上就不一定能 够达到最优,但是在实际问题中启发式算法那有 着更广泛的应用。
此时H已达到4个解,新选入的解代替最早被禁的解
3 禁忌搜索的关键参数和操作
3.2 禁忌表
禁忌对象的选取
情况1:禁忌对象为简单的解变化
第5步—— xnow=(AECBD),f(xnow)=44,H={(ACBDE;43) , (ACBED;43) ,(ABCED;44) ,(AECBD;44)} Can_N(xnow)={(AEDBC;43),(ABCED;44), (AECBD;44),(AECDB;44),(AEBCD;45)}。 xnext=(AEDBC)
禁忌搜索算法.pptx
候选集合
禁忌表
3,2
[1,4,2,5,3,1] f1=8
3-4
3,5
[1,4,5,3,2,1] f2=10
2-3
5,2
[1,4,3,2,5,1] f3=14
4,2
[1,2,3,5,4,1] f4=16
对x3交换3和2时最优f(x)=8,不满足藐视准则,且由于3-2已经在禁忌表中,因此 我们退而求其次选择f2=10对应的解,此时x4=[1,4,5,3,2,1] f(x4)=10,历史最优为5, 将5-3放入禁忌表中,由于禁忌长度为2,因此将最先放入禁忌表中的3-4移出禁忌 表。
[1,4,3,5,2,1] f4=5
对x2交换2和3时,5最优,此时x3=[1,4,3,5,2,1] f(x3)=5,历史最优为5,将2-3放入禁 忌表中
禁忌表
3-4
2-3
禁忌搜索算法(Tabu search)
x3=[1,4,3,5,2,1】 5(x3)=5,历史最优为5
邻域移动(交换中间两个城市)
禁忌表 3-5 2-3
参考教材和资料
彭扬, 伍蓓. 物流系统优化与仿真[M]. 中国物资出版社, 2007.
通过局部邻域搜索和相应 的禁忌准则来避免迂回搜 索,并通过特赦准则释放 被禁忌的优良状态。以保 证多样化的有效搜索,最
终实现全局最优化。
禁忌搜索算法的思想
禁忌搜索算法的思想
1
禁忌搜索算法的思想
2
1
5
4
3
禁忌搜索算法的思想
15 14 13
11 10
12 9
2
1
58
4 6
3
7
时间步 T=1
禁忌表 1、2、3、4、5
禁忌搜索算法ppt课件
个候选解?
的解替换当前解
用新的解替换 当前解;
否
找出下一个 次好的新解
更新tabulist NI=NI+1
NI=0 Intensification
n=n+1
否 NI=M?
是 Diversification
NI=0 是
n<N
否
25
End
判断是否为tabu, 决定接受与否
接受最好的候选解,并替换当前解
NI=0 是
n<N
否
21
End
求得初始解 BS=初始解
初始解
Sequence The length of the route
132456
28
BS
Sequence The length of the route
132456
28
22
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
Sequence The length of the route
当前解 413256
30
Sequence The length of the route
BS
132456
28
Tabu list {41, },NI=1,n=1
26
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
The length of the route
30
35
38
40
45
24
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
n=0;NI=0
禁忌搜索算法
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
第4步(如果减小禁忌长度)
解的形式
禁忌对象及长度
ACBD f(x3)=7.5
BCD A
B12 C0
对换 评价值
CD 4.5☻ BC 7.5 BD 8
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
第2步
解
BCD A
B C3
候选解(邻域)
对换 评价值
CD 4.5 T BC 3.5☻ BD 4.5
禁忌搜索算法
禁忌搜索算法示例
四城市非对称TSP问题
禁忌搜索算法 领域的概念
例: TSP问题解的邻域映射可由swap,推广到k-opt。
邻域概念的重要性 邻域的构造依赖于移动操作(move), 邻域的结构在现代优化算法中起重要的作用。
禁忌搜索算法 算法的主要思路
算法的提出 禁忌搜索(Tabu search)是局部邻域搜索算法的推广,Fred Glover在1986年提出这个概念,进而形成一套完整算法。
禁忌搜索算法
禁忌搜索算法示例
Step 2: flip 5
1 2
3
7 6
5 4
Move: one-flip
函数值变化:f = 7
12345 6 7
-3 -1 2 -2 -1 -2 -1
禁忌表
1234567 2000300
禁忌搜索算法
禁忌搜索算法示例
Step 3: flip 3
1 2
3
7 6
5 4
Move: one-flip
函数值变化:f = 9
12345 6 7
禁忌搜索实验报告
一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。
该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。
近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。
本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。
二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。
三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。
首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。
2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。
TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。
VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。
3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。
四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。
在实验中,设置禁忌长度为20,迭代次数为1000。
改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。
在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。
遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。
第三章禁忌搜索
25
二.禁忌搜索
3. 算法流程
Step 3
若
且
C C
ssLL
x x
Opt A(s,
C x)
sx
,令 x
,s
x
sL (x)
N x
,转Step
5;
注:Step 3的作用破禁检查
Step 4
若 C sK x Opt C s x, s x N x \ T
7
练习
定义邻域移动为:2-opt 对顺序编码[4 2 3 5 1],下列编码是否在其邻域内:
[4 3 2 5 1] [4 3 5 1 2] [4 3 3 5 1] [5 2 3 4 1] [1 2 3 5 4] [3 4 2 5 1]
8
练习
定义邻域移动为:位值+1或-1 对整数编码[2 2 3 5 3],下列编码是否在其邻域内:
➢ 渴望水平 渴望水平A(s,x)是一个取决于s和x的值,若有
C sx As, x
成立,则s(x)不受T表限制。也就是说即使存在
s(x) T
x仍然可以移动到s(x)。 A(s,x)一般选取为历史上所能达到的最优函数值。
禁忌策略和渴望水平构成了TS的两大核心移动规则
23
二.禁忌搜索
构成要素
➢ 停止准则 ① 设定最大迭代次数 ② 得到满意解 ③ 设定某个对象的最大禁忌频率
移动 Sx
1,3 2,4 7,6 4,5 5,3
C x
-2 -4 -6 -7 -9
若选择这项 C(x)=16,渴望水平 不能发生作用
T表 1 1,3 2 4,5
计算机网络优化算法
计算机网络优化算法计算机网络优化算法(Computer Network Optimization Algorithms)是指通过使用数学、统计学和计算机科学的方法来优化计算机网络系统的性能和效率。
这些算法的设计主要是为了最大化网络资源的利用率、最小化网络延迟和最优化网络吞吐量。
本文将介绍几种常见的计算机网络优化算法,包括贪心算法、动态规划算法、遗传算法和禁忌搜索算法等。
1. 贪心算法贪心算法是一种基于局部最优选择的算法,它每次在作出选择时都只考虑当前状态下的最优解。
在计算机网络中,贪心算法可以用于一些简单的网络优化问题,如最佳路径选择、带宽分配等。
贪心算法的优点是简单易实现,但缺点是可能会导致局部最优解而非全局最优解。
2. 动态规划算法动态规划算法是一种将复杂问题分解为简单子问题并存储中间结果的算法。
在计算机网络中,动态规划算法可以用于一些具有重叠子问题的优化问题,如最短路径问题、最小生成树问题等。
动态规划算法的优点是能够得到全局最优解,但缺点是其计算复杂度较高。
3. 遗传算法遗传算法是一种模拟生物进化过程的优化算法。
在计算机网络中,遗传算法可以用于解决一些复杂的优化问题,如网络布线问题、拓扑优化问题等。
遗传算法的优点是能够找到较好的全局最优解,但缺点是其计算复杂度高且需要大量的计算资源。
4. 禁忌搜索算法禁忌搜索算法是一种通过记录和管理搜索路径来避免陷入局部最优解的优化算法。
在计算机网络中,禁忌搜索算法可以用于解决一些带有约束条件的优化问题,如链路带宽分配问题、网络拓扑优化问题等。
禁忌搜索算法的优点是能够在可行解空间中进行有效搜索,但缺点是其计算复杂度较高且需要适当的启发式规则。
综上所述,计算机网络优化算法是一类用于改善计算机网络系统性能的关键算法。
选择合适的网络优化算法取决于具体的问题和限制条件。
贪心算法适用于简单的问题,动态规划算法适用于具有重叠子问题的问题,遗传算法适用于复杂的问题,禁忌搜索算法适用于带有约束条件的问题。
禁忌搜索算法原理及应用
禁忌搜索算法原理及应用随着计算机技术的不断发展,各种算法也应运而生,其中禁忌搜索算法便是一种比较常用的优化算法。
禁忌搜索算法的一大特点就是能够避免搜索过程中出现循环现象,能够有效地提高搜索效率,因此在许多领域都有广泛的应用。
一、禁忌搜索算法的原理禁忌搜索算法是一种基于局部搜索的优化算法。
其基本思想就是在搜索过程中引入禁忌表,通过记录禁忌元素,避免进入不良搜索状态,从而获得更好的解。
禁忌表的作用是记录已经经过的解的信息,防止搜索陷入局部最优解,增加了搜索的广度和深度。
禁忌搜索算法的核心是寻找最优化解。
具体过程包括:初始化,构造邻域解,选择最优解,更新禁忌表,结束搜索。
当搜索过程中发现某个解是当前状态下的最优解时,将这个最优解加入到禁忌表中,以后在搜索过程中就不再去重复对该最优解的操作。
在禁忌搜索算法中,选择邻域解是非常重要的一环。
邻域解是指与当前解相邻的解,也就是在当前解的基础上进行一定的操作得到的解。
邻域解的选择通常根据问题的不同而定,可以是交换位置、插入、反转等。
而选择最优解的原则则是要在禁忌状态下优先选择不在禁忌表中的最优解,如果所有的最优解都处于禁忌状态,那么就选择设定的禁忌期最短的解。
二、禁忌搜索算法在实际应用中的应用禁忌搜索算法作为一种优化算法,在实际应用中有着广泛的应用。
下面我们就通过几个实际案例来了解禁忌搜索算法的应用。
1. 生产排程问题禁忌搜索算法在制造业的排程问题中有着广泛的应用。
在生产排程问题中,需要考虑的因素非常多,如时间、人员、设备、物料等。
禁忌搜索算法通过构建邻域空间,利用禁忌表避免了进入不良解的状态,从而在生产排程问题中,可以为厂家避免很多因时间不足而导致的决策错误。
2. 组合最优化问题禁忌搜索算法在组合最优化问题中有着很好的应用。
比如在公路路径设计中,需要从成千上万的路径中选择最优解。
禁忌搜索算法不仅可以找到全局最优解,还可以避免局部最优解的产生,使得结果更加准确。
禁忌搜索
• 如果在搜索的过程中,留守泰山的兔子还 没有归队,但是找到的地方全是华北平原 等比较低的地方,兔子们就不得不再次考 虑选中泰山,也就是 说,当一个有兔子留 守的地方优越性太突出,超过了“best so far”的状态,就可以不顾及有没有兔子留守, 都把这个地方考虑进来,这就叫“特赦准 则(aspiration criterion)”。
藐视准则
• 当一个禁忌移动在随后T次的迭代内再度出 现时,如果它能把搜索带到一个从未搜索 过的区域,则应该接受该移动即破禁,不 受禁忌表的限制。 • 破禁准侧保证了搜索过程在全部候选解被 禁或者是有优于当前最优解的候选解被禁 时,能够释放特定的解,从而实现全局优 化搜索。
终止规则
• 确定步数终止,无法保证解的效果,应记录当前最 优解; • 频率控制原则,当某一个解、目标值或元素序列的 频率超过一个给定值时,终止计算; • 目标控制原则,如果在一个给定步数内,当前最优 值没有变化,可终止计算.
C
• 第1步 解的形式 选解 禁忌对象及长度 候 对换 评价值
B A B
C
D
A B CD
C
f(x0)=4
CD BC BD
4.5 ☻ 7.5 8
A
1 1
1
B
5 1
四城市非对称TSP问题
D
1
0.5
1.5
C
• 第2步 解的形式 选解 禁忌对象及长度 候 对换 评价值
B A B
C
D
A B DC
C
f(x1)=4.5
邻域
• TSP问题解的一种表示方法为:
D={x=(i1,i2,…,in)|i1,i2,…,in是1,2,…,n的排列},定义 它的邻域映射为2-opt,即x中的两个元素进行对换, N(x)中共包含x的Cn2=n(n-1)/2个邻居和x本身。 • 例如:x=(1,2,3,4),则C42=6,N(x)={(1,2,3,4), (2,1,3,4), (3,2,1,4), (4,2,3,1), (1,3,2,4), (1,4,3,2), (1,2,4,3)}
禁忌搜索算法
无时限单向配送车辆优化调度问题的禁忌搜索算法无时限单向配送车辆优化调度问题,是指在制定配送路线时不考虑客户对货物送到(或取走)时间要求的纯送货(或纯取货)车辆调度问题。
无时限单向配送车辆优化调度问题可以描述为:从某配送中心用多台配送车辆向多个客户送货,每个客户的位置和需求量一定,每台配送车辆的载重量一定,其一次配送的最大行驶距离一定,要求合理安排车辆配送路线,使目标函数得到优化,并满足一下条件:(1)每条配送路径上各客户的需求量之和不超过配送车辆的载重量;(2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离;(3)每个客户的需求必须满足,且只能由一台配送车辆送货。
一、禁忌搜索算法的原理禁忌搜索算法是解决组合优化问题的一种优化方法。
该算法是局部搜索算法的推广,其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来挑出局部最优点。
在禁忌搜索算法中,首先按照随机方法产生一个初始解作为当前解,然后在当前解的领域中搜索若干个解,取其中的最优解作为新的当前解。
为了避免陷入局部最优解,这种优化方法允许一定的下山操作(使解的质量变差)。
另外,为了避免对已搜索过的局部最优解的重复,禁忌搜索算法使用禁忌表记录已搜索的局部最优解的历史信息,这可在一定程度上使搜索过程避开局部极值点,从而开辟新的搜索区域。
二、算法要素的设计1.禁忌对象的确定禁忌对象是指禁忌表中被禁的那些变化元素。
由于解状态的变化可以分为解的简单变化、解向量分量的变化和目标值变化三种情况,则在确定禁忌对象时也有相对应的三种禁忌情况。
一般来说,对解的简单变化进行禁忌比另两种的受禁范围要小,因此可能早能造成计算时间的增加,但其优点是提供了较大的搜索范围。
根据配送车辆优化调度问题的特点,可采用对解的简单变化进行禁忌的方法。
举例进行说明:当解从x变化到y时,y可能是局部最优解,为了避开局部最优解,禁忌y这一解再度出现,可采用如下禁忌规则:当y的领域中有比它更优的解时,选择更优的解;当y为其领域的局部最优解时,不再选y,而选比y稍差的解。
tabu算法
tabu算法Tabu算法是一种基于禁忌搜索的优化算法,它被广泛应用于组合优化问题的求解。
Tabu算法通过维护一个禁忌列表,来避免搜索过程中出现重复的解,从而避免陷入局部最优解。
一、算法思想Tabu算法的基本思想是在搜索过程中,通过对搜索空间中的解进行禁忌操作,来避免搜索过程中出现重复的解。
禁忌操作可以是对某个解的某个部分进行限制,也可以是对某个解的某个部分进行限制的同时,对其他部分进行放宽。
禁忌列表是Tabu算法的核心,它记录了搜索过程中已经搜索过的解,以及对这些解进行的禁忌操作。
禁忌列表的长度可以根据问题的复杂度和搜索空间的大小进行调整,一般来说,禁忌列表的长度越长,算法的搜索能力越强,但同时也会增加算法的计算时间。
二、算法流程Tabu算法的流程如下:1. 初始化禁忌列表,设置初始解和当前解为同一个解。
2. 对当前解进行搜索,找到一个邻域解。
3. 判断邻域解是否在禁忌列表中,如果在,则返回步骤2;否则,进入步骤4。
4. 对邻域解进行评估,计算其目标函数值。
5. 将邻域解加入禁忌列表,更新当前解为邻域解。
6. 如果找到的邻域解的目标函数值优于当前最优解,则更新最优解。
7. 重复步骤2-6,直到达到停止条件。
三、算法优缺点Tabu算法的优点是可以避免搜索过程中出现重复的解,从而避免陷入局部最优解。
同时,Tabu算法可以在搜索过程中动态调整禁忌列表的长度,从而适应不同复杂度的问题。
Tabu算法的缺点是需要维护禁忌列表,增加了算法的计算时间。
此外,Tabu算法对问题的求解效果也受到禁忌列表长度的影响,如果禁忌列表长度过短,可能会导致算法陷入局部最优解。
禁忌搜索算法
邻域选优的规则模拟了人类的记忆功能,找过的地方都 记下来,不再找第二次。一定的迭代次数后,早期进入 禁忌表的解被解禁退出。
7.5T 8☻ 4.5T
四城市非对称TSP问题
第 6步
解的形式 A DCB f(x5)=8 禁忌对象及长度 B A C D 候选解
对换 评价值
B
2 C
0 1
CD BC BD
3.5T 4.5T 4☻
谢谢观赏
2、禁忌对象为目标值变化 3、禁忌对象为分量变化 解的简单变化比解的分量变化和目标值变化的受禁范围要小,可 能造成计算时间的增加,但也给予了较大的搜索范围; 解分量的变化和目标值变化的禁忌范围大,减少了计算时间,可 能导致陷在局部最优点。
禁忌长度的选取
禁忌长度过短,一旦陷入局部最优点,出现循环无法跳出; 禁忌长度过长,造成计算时间较大,也可能造成计算无法继续下去。
(2)动态频率信息:从一个解、对换或目标值到另一个解、对换或目标值的变化趋势。
终止规则
(1)确定步数终止,无法保证解的效果,应记录当前最优解; (2)频率控制原则,当某一个解、目标值或元素序列的频率超过 一个给定值时,终止计算; (3)目标控制原则,如果在一个给定步数内,当前最优值没有变 化,可终止计算。
B
C
CD BC BD
4.5☻ 7.5 8
四城市非对称TSP问题
第 2步
解的形式 A B DC f(x1)=4.5 禁忌对象及长度 B A C D 候选解
对换 评价值
物流运输中的配载算法比较研究
物流运输中的配载算法比较研究随着全球贸易的不断扩大和电子商务的蓬勃发展,物流运输行业变得越来越重要。
对于物流运输公司来说,如何合理安排货物的配载成为提高运输效率和降低成本的关键。
因此,对物流配载算法的研究变得尤为重要。
本文将对几种常用的物流运输中的配载算法进行比较研究,探讨它们的优缺点。
1. 贪心算法贪心算法是一种常用的解决问题的策略,在物流运输中的配载问题上也有广泛的应用。
基本思想是根据某种标准,每次选择最符合条件的货物进行配载。
贪心算法的优点是简单高效,计算速度快。
然而,贪心算法往往只关注局部最优解,忽略了全局最优解,可能导致不够具备优化的能力。
2. 动态规划算法动态规划算法是另一种常用的解决问题的策略,也适用于物流运输中的配载问题。
动态规划算法通过将问题划分为子问题,并从子问题中得出最优解,再逐步向上推导出整体最优解。
动态规划算法的优点是能够找到全局最优解,并且具有良好的可扩展性。
然而,动态规划算法的计算复杂度较高,在规模较大的问题中可能不够高效。
3. 遗传算法遗传算法是一种模拟生物进化过程的解决问题的策略,可以用于物流运输中的配载问题。
遗传算法通过对问题的设计进行编码,然后通过遗传操作(选择、交叉、变异等)来模拟生物进化的过程,最终找到最优解。
遗传算法的优点是能够全方位地搜索解空间,并且具有较好的鲁棒性。
然而,遗传算法需要进行大量的计算,并且参数的选择对最终结果有很大的影响。
4. 禁忌搜索算法禁忌搜索算法是一种基于邻域搜索的解决问题的策略,也可以用于物流运输中的配载问题。
禁忌搜索算法通过对当前解进行邻域搜索,并加入一定的禁忌策略来避免陷入局部最优解,最终找到全局最优解。
禁忌搜索算法的优点是可以克服贪心算法的局限性,并且在计算复杂度上相对较低。
然而,禁忌搜索算法需要设计合适的邻域搜索规则和禁忌策略,参数的选择对最终结果有较大的影响。
综上所述,物流配载算法的选择应根据实际情况和需求来确定。
贪心算法简单高效,适用于规模较小的问题;动态规划算法能够找到全局最优解,适用于规模较大的问题;遗传算法能够全方位地搜索解空间,适用于复杂的问题;禁忌搜索算法能够克服贪心算法的局限性,适用于较大规模的问题。
禁忌搜索算法
如relocation、exchange、2-opt等,产生候选解(candidate solution),并计算各个候选解的适应值(即解对应的目标函数 值)。
• ③ 选择最好的候选解
爬山算法(第三天)
• 使用禁忌搜索算法后,妈妈再也不用担心我找不到人家了,阿弥陀佛~上帝这次创建小 和尚时,倒了一点禁忌搜索(Tabu Search)算法。小和尚在半山腰时想再次尝试爬山, 他发现之前走的路被自己标记了“禁止通行”的路标(禁忌策略),故成功的完成了先 下后上的爬山过程,达到了更高的山峰。
2.1 什么是禁忌搜索算法?
• 禁忌搜索算法(Tabu Search Algorithm,简称TS)起源于对于人 类记忆功能的模仿,是一种元启发式算法(meta-heuristics)。它 从一个初始可行解(initial feasible solution)出发,试探一系列的 特定搜索方向(移动),选择让特定的目标函数值提升最多的移 动。为了避免陷入局部最优解,禁忌搜索对已经经历过的搜索 过程信息进行记录,从而指导下一步的搜索方向。
• (7)停止规则(Stop Criterion):禁忌搜索中停止规则的设计多种多样,如最大迭代数、 算法运行时间、给定数目的迭代内不能改进解或组合策略等等。
• 例题1 旅行商问题(TSP)
下面我们以TSP问题为例说明介绍这些组成部分:如下图所示,有5个 城市,任何两个城市之间的距离都是确定的,现要求一个旅行商从某城市 出发必须经过每个城市一次且仅有一次,最后回到出发的城市,问如何确 定一条最短的线路(每条边的长度已在图中标出)?
如上图所示,通过3中搜索算子搜索一次得到的候选解的集合即为当前 邻域。
第七讲禁忌搜索
2
一.导言(2)
2. TS的基本思想——避免在搜索过程中的循环
① 只进不退的原则——用Tabu表锁住退路,将近期 历史搜索过程存放在禁忌表中,防止算法重新进 入。
② 不以局部最优作为停止准则,算法接受劣解,只 要不在禁忌表的较好解都可作为下一次迭代的初 始解。
③ 邻域选优的规则模拟了人类的记忆功能——找过
10
(4) 移动与邻域移动
移动是产生新解的途径,从当前解可以进 行的所有的移动构成邻域,因此移动规则 的设计是算法的关键。
移动规则类似于交叉算子,根据具体问题 进行分析设计,如排序问题中采用两两交 换方式的移动规则。
11
(5) 禁忌表(Tabu List)
禁忌表是为了防止搜索过程出现循环而陷入局部 最优的,是禁忌搜索算法的核心。 某些移动经一定迭代次数后被解禁,又可重新访 问,因此禁忌表称为短期表。 禁忌对象:放入禁忌表的元素,主要包括三种, (1)以状态本身或状态变化为禁忌对象,其禁忌 范围适中;(2)以状态分量或状态分量的变化作 为禁忌对象,其禁忌范围较小;(3)以目标值为 禁忌对象,其禁忌范围较大。 禁忌长度:禁忌表的大小。禁忌表越小,计算时 间和存储空间越少,但禁忌表过小,会造成搜索 过程进入循环。禁忌长度分为固定禁忌长度和随 时间变化禁忌长度两类。
16
(7) 渴望水平函数
在有些特定的条件下,不管某个移动是否在禁忌表中, 都接受这个移动并更新当前解和历史最优解。这个特 定的条件即为渴望水平。
渴望水平的设定有如下几种形式:
(1)基于适配值的准则,如果某个候选解的适配值高 于历史最优解,无论是否处于禁忌表中,都选择接受。
(2)基于搜索方向的准则,某禁忌对象进入紧急表时 改善了适配值,而这次这个被禁忌的候选解由改善了 适配值,故破禁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tabu search
测控二班 高钊政 201424080217
禁忌搜索
禁忌搜索概述
禁忌搜索的主要思路 禁忌搜索的流程
栗子
禁忌搜索算法概述
禁忌——禁止重复前面的操作 禁忌搜索(Tabu Search)算法是一种亚启发式(meta-heuristic)随机搜索算 法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探, 选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解, TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记 录和选择,指导下一步的搜索方向,这就是Tabu表的建立 为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索 的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不 见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但 不是完全隔绝),从而获得更多的搜索区间。
禁忌搜索算法的步骤
例子: 四城市非对称TSP问题,
始,终点都为A
第一步,假设禁忌长度为3
例子: 四城市非对称TSP问题,
始,终点都为A
第二步
例子:
第三步
例子: 四城市非对称TSP问题,
始,终点都为A
第四步
例子: 四城市非对称TSP问题,
始,终点都为A
搜索陷入循环
在邻域中找到最好的解
加入禁忌表,避免进入循环
禁忌表长度为T:{ } 规则:不得接受与禁忌表中相同的解 禁忌表的变化: 第一步搜索时:{ } 第二步搜索时:{ ① } 第三步搜索时:{ ①,②} 第四步搜索时:{ ①,②,③} . . . . .
避免陷入循环原理:当解为④时,邻域最优解为①, 下一步原本应该为①,但禁忌表中存在①,所以选择 次好的⑤,从而避免循环
3、禁忌表是一个循环表,在搜索过程中被循环的修改,使禁忌表始终保持 |T| 个移 动。 4、即使引入了禁忌表,禁忌搜索仍可能出现循环。因此,必须给定停止准则以避免 出现循环。当迭代内所发现的最好解无法改进或无法离开它时,算法停止。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的 再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一 比较,珠穆朗玛峰脱颖而出。 当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他 们知道,这里已经找过,并且有一只兔子在那里看着了。这就 是禁忌搜索中“禁忌表(tabu list)”的含义。那只留在泰山 的兔子一般不会就安家在那里了,它会在一定时间后重新回到 找最高峰的大军,因为这个时候已经有了许多新的消息,泰山 毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在 禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索 的过程中,留守泰山的兔子还没有归队,但是找到的地方全是 华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山, 也就是说,当一个有兔子留守的地方优越性太突出,超过了 “best so far”的状态,就可以不顾及有没有兔子留守,都把 这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。。
若禁忌长度减少1,第四步
例子: 四城市非对称TSP问题,
始,终点都为A
第五步
例子: 四城市非对称TSP问题,
始,终点都为A
第六步
thanks
谢谢
特赦(藐视)准则(aspiration criterion)
1)基于评价的规则,若出现一个解 的目标值好于前面任何一个最佳候 选解,可特赦。 2)基于最小错误的规则,若所有 对象都被禁忌,则特设一个评价最 优的解 3)基于影响力的大小,可特赦一 个对目标值影响大的对象
停止规则:算法在何种条件下停止 1)把最大迭代数作为停止算法的标准 2)在给定数目的迭代内所发现的最好解无法改进或 者无法离开时,算法停止 3)最优解的目标函数小于指定误差 4)最优解的禁忌频率达到指定值
禁忌搜索算法的主要思路
1、在搜索中,构造一个短期循环记忆表-禁忌表,禁忌表中存放刚刚进行过的 |T|(T 称为禁忌表)个邻居的移动,这种移动即解的简单变化。
2、禁忌表中的移动称为禁忌移动。对于进入禁忌表中的移动, 在以后的 |T| 次循环 内是禁止的,以避免回到原来的解,从而避免陷入循环。|T| 次循环后禁忌解除。