通用版2020学高考数学二轮复习练酷专题课时跟踪检测十八数列理

合集下载

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案
(2)过点A(1,0)且斜率不为0的直线l与椭圆交于M,N两点,记MN中点为B,坐标原点为O,直线BO交椭圆于P,Q两点,当四边形MPNQ的面积为 时,求直线l的方程.
解析(1)设椭圆的焦距为2c,则 = ,又a2=b2+c2,所以b=c= .因为4× ×b× b=2 ,所以b=1,a= ,故所求椭圆的标准方程为 +y2=1.
所以弦长|PQ|=2 =2 .
不妨设点M在直线OB:y=- x上方,点N在直线OB:y=- x下方,即 x1+y1>0, x2+y2<0.
所以点M(x1,y1)到直线PQ的距离为d1= = = ,点N(x2,y2)到直线PQ的距离为d2= =- .
所以d1+d2=
= =2 .
所以面积S= |PQ|·(d1+d2)= ·2 ·2 =2 = ⇒m=±2.
(2)设A ,B ,S(xS,yS).
因为 - = - = ,所以 =2,所以y3-y4=8,
因为线段AB的中点的纵坐标为8,所以y3+y4=16,
联立解得y3=12,y4=4,所以A(36,12),B(4,4).
设直线SA的斜率为k,则直线SA的方程为y-12=k(x-36),
由 消去x得 -与y轴负半轴的交点,经过F的直线l与椭圆交于点M,N,经过B且与l平行的直线与椭圆交于点A,若|MN|= |AB|,求直线l的方程.
解析(1)设椭圆的标准方程为 + =1(a>b>0),
依题意知,c=1,e= = ,所以a= ,b2=a2-c2=1,
所以所求椭圆的标准方程为 +y2=1.
A. B.
C.2D.
D解析抛物线y2=4x的焦点为F(1,0),准线l的方程为x=-1,所以|OF|=1,又双曲线的渐近线方程为y=± x,不妨设A ,B ,所以|AB|= =4|OF|=4,所以b=2a,所以e= = = .故选D项.

2020届高考数学二轮复习专题《与数列奇偶项有关的问题》

2020届高考数学二轮复习专题《与数列奇偶项有关的问题》

(2k-1)·2k 2

(2k-2)(2k+3) 2
=4k2-3=
n2+64n-3,
特别地,当n=1时,P1=1也符合上式;
③当n=4k-1(k∈N*)时,Pn=S2k-1+B2k=(2k-21)2k+2k(22k+5) =4k2+4k=n2+64n+5.
14n2+32n,n=2k, 综上,Pn=n2+64n-3,n=4k-3,k∈N*,
②当n=2m-1,m∈N*时,Tn=T2m-1=T2m-(-1)2m-1a2ma2m+1=-
1 9
(8m2+12m)+
1 9
(16m2+16m+3)=19(8m2+4m+3)=19(2n2+6n+7).
所以Tn=19-(219n(22+n26+n+6n7),),nn为为偶奇数数,.
要使Tn≥tn2对n∈N*恒成立,只要使-
n2+64n+5,n=4k-1.
数列{an}的前n项和Sn=n(n2+1),数列{bn}的前n项和Bn=n(n2+5),
①当n=2k(k∈N*)时,Pn=Sk+Bk=
k(k+1) 2

k(k+5) 2
=k2+3k=
n 2
2+3×n2

1 4
n2+
3 2
n;
②当n=4k-3(k∈N*)时,Pn=S2k-1+B2k-2=
Sn=n2;
设数列{an}的公差为d.因为2a5-a3=13,S4=16, 所以42a(a1+1+64dd=)-16(,a1+2d)=13, 解得da=1=21,, 所以an=2n-1,Sn=n2.
n
(2)设Tn= (-1)i·ai,若对一切正整数n,不等式λTn<[an+1+(-1)n+1an]·2n-1恒成

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训9含答案

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训9含答案
所以0<x<1时、m≥2.
综合①②可知m的最小整数值为2.
当x∈ 时、f′(x)≤0、f(x)是减函数;
当x∈ 时、f′(x)>0、f(x)是增函数.
③若a>1、则0< <1.
当x∈ 时、f′(x)>0、f(x)是增函数;
当x∈ 时、f′(x)≤0、f(ห้องสมุดไป่ตู้)是减函数;
当x∈(1、+∞)时、f′(x)>0、f(x)是增函数.
综上所述、当a=1时、f(x)在(0、+∞)上是增函数;
①当a≥0时、因为f′(x)=-1-alnx-a<0、所以f(x)在[1、+∞)上单调递减、
所以f(x)max=f(1)=0、无最小值.
②当-1<a<0时、f(x)在(1、e- -1)上单调递减、在(e- -1、+∞)上单调递增、
所以f(x)min=f(e- -1)=ae- -1+1、无最大值.
③当a≤-1时、因为f′(x)=-1-a(lnx+1)≥0、当且仅当 时、等号成立、
(1)讨论f(x)的单调性;
(2)若1<a<e、试判断f(x)的零点个数.
解析(1)函数f(x)的定义域为(0、+∞)、f′(x)=a(x-1)-1+ = 、令f′(x)=0、则x1=1、x2= .
①若a=1、则f′(x)≥0恒成立、所以f(x)在(0、+∞)上是增函数.
②若0<a<1、则 >1.
当x∈(0,1)时、f′(x)>0、f(x)是增函数;
②当0<x<1时、因为0<a≤1、所以f(x)≤1-x-xlnx、所以g(x)≤ 、
令h(x)= 、x∈(0,1)、由条件可知h(x)≤m在(0,1)上恒成立、

2020通用版高考数学二轮复习课时跟踪检测十八文2

2020通用版高考数学二轮复习课时跟踪检测十八文2

课时跟踪检测(十八)1.(2017·石家庄质检)设M ,N ,T 是椭圆x 216+y 212=1上的三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 的斜率分别为k 1,k 2,求证:k 1k 2为定值;(2)若M ,N 不是椭圆长轴的端点,点L 的坐标为(3,0),△M 1N 1L 与△MNL 的面积之比为5∶1,求MN 中点K 的轨迹方程.解:(1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2=y 0-qy 0+q x 0-p x 0+p =y 20-q2x 20-p2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,故x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34,所以k 1k 2=-34,为定值. (2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |,S △M 1N 1L =12·5·|yM 1-yN 1|.因为S △M 1N 1L =5S △MNL ,所以12·5·|yM 1-yN 1|=5·12|r -3|·|y M -y N |,又|yM 1-yN 1|=|y M -y N |,解得r =4(舍去),或r =2,即直线MN 经过点F (2,0). 设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当MN 垂直于x 轴时,MN 的中点K 即为F (2,0);②当MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k x -2消去y 得,(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k 2,x 1x 2=16k 2-483+4k 2.x 0=8k 23+4k 2,y 0=-6k3+4k2.消去k ,整理得(x 0-1)2+4y 23=1(y 1≠0).经检验,(2,0)也满足(x 0-1)2+4y 23=1.综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).2.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.3.(2017·宁波模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点P (-2,0)与点(1,1).(1)求椭圆的方程;(2)过P 点作两条互相垂直的直线PA ,PB ,交椭圆于A ,B ,求证:直线AB 经过定点.解:(1)由题意得,⎩⎪⎨⎪⎧4a 2+0b 2=1,1a 2+1b 2=1,解得a 2=4,b 2=43,椭圆的方程为x 24+3y24=1.(2)证明:由对称性知,若存在定点,则必在x 轴上, 当k PA =1时,l PA :y =x +2,∴⎩⎪⎨⎪⎧y =x +2,x 2+3y 2=4,∴x 2+3(x 2+4x +4)=4⇒x =-1. 以下验证:定点为(-1,0),由题意知,直线PA ,PB 的斜率均存在,设直线PA 的方程为y =k (x +2),A (x A ,y A ),B (x B ,y B ). 则x 2+3k 2(x 2+4x +4)=4⇒x A =2-6k 21+3k2,y A =4k1+3k2, 同理x B =2k 2-6k 2+3,y B =-4kk 2+3,则y Ax A +1=4k 3-3k 2=y B x B +1,得证. 4.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1.由e =c a =22得a =2,∴b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0),k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0,①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,由根与系数的关系得, x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-11+2k 2, 由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0, 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).5.(2017·台州模拟)如图,已知椭圆C :x 24+y 2=1,过点P (1,0)作斜率为k 的直线l ,且直线l 与椭圆C 交于两个不同的点M ,N .(1)设点A (0,2),k =1,求△AMN 的面积;(2)设点B (t,0),记直线BM ,BN 的斜率分别为k 1,k 2.问是否存在实数t ,使得对于任意非零实数k ,(k 1+k 2)·k 为定值?若存在,求出实数t 的值及该定值;若不存在,请说明理由.解:(1)当k =1时,直线l 的方程为y =x -1.由⎩⎪⎨⎪⎧x 24+y 2=1,y =x -1,得x =0或x =85,当x =0时,y =-1, 当x =85时,y =35,不妨设N (0,-1),M ⎝ ⎛⎭⎪⎫85,35.所以|AN |=3.所以S △AMN =12×3×85=125.(2)由题意知,直线MN 的方程为y =k (x -1), 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -1,得(1+4k 2)x 2-8k 2x +4k 2-4=0.所以x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.由k 1=y 1x 1-t,k 2=y 2x 2-t,得(k 1+k 2)·k =k ⎝ ⎛⎭⎪⎫y 1x 1-t +y 2x 2-t=k 2⎝ ⎛⎭⎪⎫x 1-1x 1-t +x 2-1x 2-t=k 2[x 1-tx 2-1+x 2-t x 1-1]x 1-t x 2-t=k 2[2x 1x 2-t +1x 1+x 2+2t ]x 1x 2-t x 1+x 2+t 2=k 22t -8k 24-8t +4t 2+t 2-4. 若2t -8=0,则t =4,(k 1+k 2)·k =0为定值. 若2t -8≠0,则当t 2-4=0, 即t =±2时,(k 1+k 2)·k =2t -84-8t +4t2为定值.所以当t =4时,(k 1+k 2)·k =0; 当t =2时,(k 1+k 2)·k =-1; 当t =-2时,(k 1+k 2)·k =-13.。

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训5

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训5

11 1
11
1
则 P(X=0)=10×10=100,P(X=1)=10×5×2=25,P(X=2)
112 1
3
13
1 2 11
22 3 1
=5×5+5×10×2=25,P(X=3)=10×10×2+5×5×2=50,P(X=4)=5×5+10×5×2=
7
23
6
33 9
25,P(X=5)=5×10×2=25,P(X=6)=10×10=100,
所以 X 的分布列为
X0
1
2
3
4
5
6
1
1
3
11
7
6
9
P
100 25 25 50 25 25 100
(2)选择延保方案一时,所需费用 Y1 所有可能的取值为 7 000,9 000,11 000,13 000,15 000,
17
则 P(Y1=7 000)=P(X=0)+P(X=1)+P(X=2)=100,
先修课程考 试分数 a
人数
95≤a≤1 00
85≤ a<9
5
75≤ a<8
5
60≤ a<7
5
a<6 0
25
50 100 50 25
参加自主招
生获得通过
0.9
0.8 0.6 0.4 0.3
的概率
(1)这两年学校共培养出优等生 150 人,根据如图所示等高条形图,填写相应列联表,
并根据列联表检验能否在犯错的概率不超过 0.01 的前提下认为学习先修课程与优等生有关
误的概率不超过 0.01 的前提下认为学习先修课程与优等生有关系.
25
50
100
50

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训3含答案

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训3含答案
因为 =(-1, , ),
所以|cos〈n, 〉|= = .
所以直线AF与平面AEC所成角的正弦值为 .
2.(20xx·湖北华中师大一附中期中)如图,四棱锥PABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为棱PC上的动点,且 =λ(λ∈[0,1]).
所以△ABD为直角三角形,且∠ADB=90°.
因为DE⊥平面ABCD,BD⊂平面ABCD,所以DE⊥BD.
又AD∩DE=D,所以BD⊥平面ADE.
因为BD⊂平面BDEF,所以平面BDEF⊥平面ADE.
(2)由(1)可得,在Rt△ABD中,∠BAD= ,BD= AD,又由ED=BD,设AD=1,则BD=ED= .因为DE⊥平面ABCD,BD⊥AD,
所以可以点D为坐标原点,DA,DB,DE所在直线分别为x轴、y轴、z轴建立空间直角坐标系Dxyz,如图所示,
则A(1,0,0),C(-1, ,0),E(0,0, ),F(0, , ),
所以 =(-1,0, ), =(-2, ,0).
设平面AEC的法向量为n=(x,y,z),
则 即
令z=1,得n=( ,2,1)为平面AEC的一个法向量.
(1)求证:△PBC为直角三角形;
(2)试确定λ的值,使得二面角PADM的余弦值为 .
解析(1)证明:取AD中点O,连接OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD,又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,
所以AD⊥理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训3含答案
编 辑:__________________
时 间:__________________

【2019-2020】通用高考数学二轮复习课时跟踪检测十八文

【2019-2020】通用高考数学二轮复习课时跟踪检测十八文
①当MN垂直于x轴时,MN的中点K即为F(2,0);
②当MN与x轴不垂直时,设MN的方程为y=k(x-2),则 消去y得,(3+4k2)x2-16k2x+16k2-48=0.
x1+x2= ,x1x2= .
x0= ,y0= .
消去k,整理得(x0-1)2+ =1(y1≠0).
经检验,(2,0)也满足(x0-1)2+ =1.
解:(1)由题意知椭圆的一个焦点为F(1,0),则c=1.由e= = 得a= ,∴b=1,
∴椭圆C的方程为 +y2=1.
(2)由(1)知A(0,1),当直线BC的斜率不存在时,
设BC:x=x0,设B(x0,y0),则C(x0,-y0),
kAB·kAC= · = = = ≠ ,
不合题意.故直线BC的斜率存在.
解:(1)由题意得,
解得a2=4,b2= ,椭圆的方程为 + =1.
(2)证明:由对称性知,若存在定点,则必在x轴上,
当kPA=1时,lPA:y=x+2,

∴x2+3(x2+4x+4)=4⇒x=-1.
以下验证:定点为(-1,0),
由题意知,直线PA,PB的斜率均存在,
设直线PA的方程为y=k(x+2),A(xA,yA),B(xB,yB).
(2)若M,N不是椭圆长轴的端点,点L的坐标为(3,0),△M1N1L与△MNL的面积之比为5∶1,求MN中点K的轨迹方程.
解:(1)证明:设M(p,q),N(-p,-q),T(x0,y0),则k1k2= = ,
又 故 + =0,
即 =- ,所以k1k2=- ,为定值.
(2)设直线MN与x轴相交于点R(r,0),
(1)设点A(0,2),k=1,求△AMN的面积;
(2)设点B(t,0),记直线BM,BN的斜率分别为k1,k2.问是否存在实数t,使得对于任意非零实数k,(k1+k2)·k为定值?若存在,求出实数t的值及该定值;若不存在,请说明理由.

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案 (3)

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案 (3)
解析(1)证明:直线恒过定点(1,1),且这个点在圆内,故直线l与圆C总有两个不同的交点.
(2)设A(x1,y1),B(x2,y2),则 =(1-x1,1-y1), =(x2-1,y2-1).由 = P 得x2=3-2x1,将直线与圆的方程联立得(1+m2)x2-2m2x+m2-5=0,(*)
所以x1+x2= ,可得x1= ,代入(*)式,解得m=±1,所以直线方程为x-y=0或x+y-2=0.
②若直线l的斜率不存在,因为直线l经过点(-1,1),所以直线l的方程为x=-1,此时A(-1, ),B(-1,- ),而O ·O =(-1, )·(-1,- )=-2,不满足 · =0.综上可知,存在直线l:x-y+2=0满足条件.
因为圆心到原点的距离为 =2,
所以x2+y2的最大值是(2+ )2=7+4 ,最小值是(2- )2=7-4 .
10.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有两个不同的交点;
(2)若定点P(1,1)分弦AB所得向量满足A = P ,求此时直线l的方程.
能力提升(建议用时:25分钟)
11.若圆x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:ax+by=0的距离为2 ,则直线l的倾斜角的取值范围是________.
解析圆x2+y2-4x-4y-10=0化为标准方程为(x-2)2+(y-2)2=18,所以圆心坐标为C(2,2),半径r=3 .因为在圆上至少有三个不同的点到直线l:ax+by=0的距离为2 ,所以圆心到直线的距离小于或等于r-2 = ,由点到直线的距离公式得 ≤ ,所以(2a+2b)2≤2(a2+b2),整理得 2-4 +1≤0,解得2- ≤- ≤2+ ,因为直线l:ax+by=0的斜率k=- ,所以2- ≤k≤2+ ,设直线l的倾斜角为α,则2- ≤tanα≤2+ ,即tan ≤tanα≤tan ,即tan ≤tanα≤tan .由此可得直线l的倾斜角的取值范围是 .

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训1含答案

2020高考数学(理科)二轮专题复习课标通用版(跟踪检测):解答题分类特训解答题分类特训1含答案
解析(1)由题意得、f(x)=sinωxcosωx+ cos2ωx-
= sin 2ωx+ (2cos2ωx-1)
= sin 2ωx+ cos 2ωx
=sin (ω>0)、
由它的最小正周期为 =π、得ω=1、
所以f(x)=sin 、
由2kπ- ≤2x+ ≤ +2kπ、k∈Z、得kπ- ≤x≤kπ+ 、k∈Z.
所以1=b2+c2-bc≥2bc-bc=bc、
所以bc≤1、当且仅当b=c时、等号成立.
所以△ABC的面积S△ABC= bcsinA≤ 、
故△ABC面积的最大值为 .
4.(20xx·四川绵阳模拟)在△ABC中、a、b、c分别为内角A、B、C的对边、且2asinA=(2b+c)sinB+(2c+b)sinC.
3.(20xx·山东德州联考)已知函数f(x)=sinωxcosωx+ cos2ωx- (ω>0)的最小正周期为π、将函数f(x)的图象向右平移 个单位长度、再向下平移 个单位长度、得到函数y=g(x)的图象.
(1)求函数f(x)的单调递增区间;
(2)在锐角△ABC中、内角A、B、C的对边分别为a、b、c、若g =0、a=1、求△ABC面积的最大值.
2.已知在△ABC中、内角A、B、C所对的边分别为a、b、c、且2acosC-c=2b.
(1)求角A的大小;
(2)若c= 、角B的平分线BD= 、求a.
解析(1)因为2acosC-c=2b、所以2sinAcosC-sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC、
所以-sinC=2cosAsinC、
(1)求A的大小;
(2)若sinB+sinC=1、试判断△ABC的形状.
解析(1)由已知、结合正弦定理、得2a2=(2b+c)b+(2c+b)c、即a2=b2+c2+bc.

2020届高三理科数学二轮复习跟踪强化训练:18Word版含解析.doc

2020届高三理科数学二轮复习跟踪强化训练:18Word版含解析.doc

追踪加强训练 (十八 )一、 1.在数列{ a n }中, a 1 = 1 , 于全部的n ≥2 , n ∈ N都有a 1·a 2·a 3·⋯·a n =n 2,a 3+a 5=()61 2525 31A. 16B.9C.16D.15[分析]解法一:令n =2,3,4,5,分 求出9 25a 3=4,a 5=16,∴ a 361+a 5=16,故 A.解法二:当 n ≥2 ,a 1·a 2·a 3·⋯·a n =n 2.当 n ≥3 ,a 1·a 2·a 3·⋯ ·a n-1=(n -1)2.两式相除得 a =n2,∴ a =9,a =25,∴a +a =61,故nn -1 34 516 3516A.[答案]A2.已知 a 1=1,a n =n(a n +1-a n )(n ∈N * ), 数列 { a n } 的通 公式是 a n =()A .nB. n +1 n - 1nC .n 2D .2n -1[分析]由 a n =n(a n + 1-a n ,得 a n+1=a n,所以数列 a n常数列,) n +1 n na n a n -1a 1所以 n =n -1=⋯= 1 =1,所以 a n =n ,故 A.[答案] A3 . 已 知 数 列 { a n } 足 a 1 = 2 , a n + 1 =1+a n(n ∈ N *) ,1-a n···⋯·=()a1 a2a3a2017A.-6 B.6 C.-2 D.2[分析]∵a1=2,a n+1=1+an,∴a2=1+2=- 3,同理,a3=-1-a n1-21,a =1,a = 2,⋯,∴ a +=a , a= 1,∴ a···⋯·2435n4n1a2a3a41a2 a3a2017=(a1a2a3a4)504×a1=1×2=2.故 D.[答案] D4.(2017 ·衡水中学二 )已知 S n是数列 { a n} 的前 n 和, a1=1,a2=2,a3=3,数列 { a n+a n+1+a n+2} 是公差 2 的等差数列,S25=()A .232 B.233 C.234 D.235[ 分析 ]∵数列{ a n+a n+1+a n+2}是公差2 的等差数列,∴ a n+3-a n=(a n+1+a n+2+a n+3)-(a n+a n+1+a n+2)=2,∴a1,a4,a7,⋯是首1,公差 2 的等差数列, a2,a5,a8,⋯是首 2,公差 2的等差数列, a3,a6,a9,⋯是首 3,公差 2 的等差数列,∴ S25=(a1+a4+a7+⋯+ a25)+(a2+ a5+a8+⋯+a23)+(a3+a6+a9+⋯+a24)=9×1+9×8×28×7×2+8× 3+8×7×2=233,故2+8×2+22B.[答案]B5.(2017 · 州模 )已知等比数列 { a n} 的前 n 和 S n,以下必定建立的是 ()A .若 a3>0, a2013<0B.若 a4>0, a2014<0C.若 a3>0, S2013>0D.若 a4>0, S2014>0[ 分析] 依据等比数列的通公式得a2013=a1·q2012=a3q2010,a2014=a1q2013=a4q2010,易知 A, B .于 C,因 a3=a1q2>0,所以 a1>0,当 q>0 ,随意 a n>0,故有 S2013>0;当 q<0 ,仍旧有S2013=a11-q2013 >0,C 正确.于 D,可列公比 q=- 1 的等1-q比数列- 1,1,-1,1,⋯,然足 a4>0,但 S2014=0,故 D .故C.[答案]C.·山西大同模)已知数列n的通公式an= (-1)n(2n6 (2017{ a }nπ-1) ·cos 2+1(n∈N* ),其前 n 和 S n, S60=()A .- 30 B.- 60 C.90 D.120[ 分析 ]由意可得,当n=4k-3(k∈N*),a n=a4k-3=1;当n=4k-2(k∈N* ),a n=a4k-2=6-8k;当 n=4k-1(k∈N* ),a n=a4k-1=1;当 n=4k(k∈N* ),a n=a4k=8k.∴a4k-3+a4k-2+a4k-1+a4k=8,∴S60=8×15=120.[答案] D二、填空7.已知数列 { a n} 的前 n 和 S n,且足log2(S n+1)=n+ 1(n ∈N*),a n=________.[ 分析 ] 由已知可得 S n+1=2n+1, S n=2n+1-1.当 n=1 , a1=S1=3,当 n≥2 , a n=S n-S n-1=2n+1-1-2n+1=2n,因 n=13,n=1,不足an =2n,故 an=2n,n≥2.3,n=1,[答案]2n,n≥28.(2017 ·河南新三模 )若数列 { a n+1-a n} 是等比数列,且 a1=1,a2=2,a3=5, a n=________.[ 分析 ]∵a2-a1=1,a3-a2=3,∴ q=3,∴a n+1-a n=3n-1,∴ a n-a1=a2- a1+a3-a2+⋯+a n-1-a n-2+n-21-3n-1a n-a n-1=1+3+⋯+3=1-3,3n-1+1∵a1=1,∴ a n=2 .3n-1+1[答案]29.(2017 ·安徽省淮北一中高三最后一卷改)若数列 { a n} 足1a n+1-1=d(n∈N*,d 常数 ),称数列 { a n} “ 和数列”,已知正 a n 1数列b n“ 和数列”,且 b1+b2+⋯+ b2019=20190, b2b2018的最大是________.1[ 分析 ]因数列b n是“ 和数列”,所以b n+1-b n=d,即数列 { b n} 是等差数列,所以 b1+ b2+⋯+ b2019=2019 b1+b2019=2019 b2+ b2018=2220190,所以 b2+b2018= 20.1又b n>0,所以 b2>0,b2018>0,所以 b2+b2018= 20≥2 b2b2018,即 b 2b 2018≤100(当且 当 b 2= b 2018 等号建立 ),所以 b 2b 2018 的最大 100.[答案] 100三、解答10.(2017 · 州 )已知数列 { a n } 的首 a 1=1,前 n 和 S n ,且数列Snn是公差 2 的等差数列. (1)求数列 { a n } 的通 公式;(2)若 b n =(-1)na n ,求数列 {b n } 的前 n 和 T n .S n[ 解] (1)由已知条件得 n =1+(n -1)×2=2n -1,∴ S n =2n 2-n.当 n ≥2 , a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3.当 n =1 , a 1=S 1=1,而 4×1-3=1,∴ a n =4n -3.(2)由(1)可得 b n =(-1)n a n =(-1)n(4n -3),当 n 偶数 ,nT n =- 1+5-9+13-17+ ⋯+(4n -3)=4×2=2n ,当 n 奇数 , n +1 偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=- 2n +1.2n , n =2k ,k ∈ N*上,T n =-2n +1, n =2k -1,k ∈N *.11.(2017 ·北京海淀模 )数列 { a n } 的前 n 和 S n 足 S n =2a n -a 1,且 a 1,a 2+1,a 3 成等差数列.(1)求数列 { a n } 的通 公式;(2)b n = a n+1,求数列 {b n } 的前 n 和 T n .S n S n +1[ 解] (1)∵S n =2a n -a 1,∴当 n ≥2 , S n -1=2a n - 1-a 1,∴ a n =2a n -2a n - 1,化 a n =2a n -1.由 a 1,a 2+1,a 3 成等差数列得, 2(a 2+1)=a 1+a 3,∴ 2(2a 1+1)=a 1+4a 1,解得 a 1=2.∴数列 { a n } 是等比数列,首2,公比 2.∴ a n =2n .+2 2n -1++(2)∵a n + 1=2n 1,∴ S n = =2n 1-2,S n +1=2n 2-2.n +111+1= n + 12=1∴ b =a nn +2n- n + 1nS n S n +1 2 -2 2 -222-1 2 -1 .∴数列 { b n } 的前 n 和T n =111 1- 3 111- 2-1 + 2 -1 +⋯+n- n+1-12 2-1 2 2 -1 22-1 21 1= 2 1-2n +1-1 .12.(2017 山· 卷 )已知 { x n } 是各 均 正数的等比数列,且x 1+x 2= 3,x 3-x 2=2.(1)求数列 { x n } 的通 公式;(2) 如 ,在平面直角坐 系xOy 中,挨次 接点 P 1(x 1,1),P 2(x 2,2),⋯,P n + 1(x n +1,n +1)获得折 P 1P 2⋯P n +1,求由 折 与直y=0,x=x1,x= x n+1所成的地区的面T n.[ 解] (1)数列 { x n} 的公比 q,由已知知 q>0.x1+ x1q=3,由意得x1q2-x1q=2.所以 3q2-5q-2=0.因 q>0,所以 q=2,x1=1.所以数列 { x n} 的通公式 x n=2n-1.(2) P1,P2,⋯,P n+1向 x 作垂,垂足分Q1,Q2,⋯,Q n+1.由 (1)得 x n+1-x n=2n-2n-1=2n-1,梯形 P n P n+1Q n+1Q n的面 b n,由意 b =n+n+1×2n-1=(2n+1)×2n-2,n2所以 T n=b1+b2+⋯+b n=3×2-1+5×20+ 7×21+⋯+(2n-1)×2n-3+(2n+1)×2n-2,①2T n=3×20+5×21+7×22+⋯+ (2n-1)×2n-2+(2n+1)×2n-1.②①-②得- T n= 3×2- 12n-1n-1=3++(2+2+⋯+2) - (2n+ 1)×2221-2n-1-(2n+1)×2n-1.1-2-1×n+12n2.所以 T n=2。

2020高考数学(理科)二轮专题复习通用版(跟踪检测):解答题分类特训解答题分类特训8含答案

2020高考数学(理科)二轮专题复习通用版(跟踪检测):解答题分类特训解答题分类特训8含答案
(2)当直线AB斜率存在时,设直线AB的方程为y-t=k(x-1),联立 得(3+4k2)x2+8k(t-k)x+4(t-k)2-12=0,由题意可知Δ>0,设A(x1,y1),B(x2,y2),则x1+x2=- ,
因为 = ,所以P是AB的中点,即 =1,得- =2,即3+4kt=0,①
又l⊥AB,则l的斜率为- ,
(2)联立 可得(3k2+1)x2-12k2x+12k2-6=0.设P(x1,y1),Q(x2,y2),则由韦达定理得x1+x2= ,x1x2= ,
所以y1+y2=k(x1+x2)-4k= ,|PQ|= · = · ,
所以PQ的中点N的坐标为 ,
所以直线ON的方程为y=- x,从而点M为 ,又F2的坐标为(2,0),所以|MF2|= .
(1)求椭圆C的方程;
(2)过右焦点F2的直线交椭圆于P,Q两点,若PQ的中点为N,O为原点,直线ON交直线x=3于点M,求 的最大值.
解析(1)连接AF2,由题意得 = = ,所以BO为△F1AF2的中位线,又因为BO⊥F1F2,所以AF2⊥F1F2,且 =2 = = .
又e= = ,a2=b2+c2,所以a2=6,b2=2,故所求椭圆C的方程为 + =1.
设I= = ,令u=3k2+1,则I= =- =- ,
因此当u=4,即k=±1时, 取得最大值 .
所以直线l的方程为y-t=- (x-1),②
把①代入②可得y=- ,
所以直线l恒过定点 .
当直线AB斜率不存在时,直线AB的方程为x=1,此时直线l为x轴,也过 .
综上所述,直线l恒过点 .
2.(20xx·湖北黄冈中学模拟)已知椭圆C: + =1(a>b>0)的离心率为 ,左、右焦点分别为F1,F2,A为椭圆C上一点,AF1与y轴交于点B,|AB|=|F2B|,|OB|= .

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1

专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.(2018·高考全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12答案:B解析:设该等差数列的公差为d ,根据题中的条件可得3⎝ ⎛⎭⎪⎫3×2+3×22×d =2×2+d +4×2+4×32×d ,整理解得d =-3,所以a 5=a 1+4d =2-12=-10,故选B.2.(2017·江西省五市联考)已知等差数列{a n }的前10项和为30,a 6=8,则a 100=( ) A .100 B .958 C .948 D .18 答案:C解析:法一 因为等差数列{a n }的前10项和为30,所以a 1+a 10=6,即a 5+a 6=6,因为a 6=8,所以a 5=-2,公差d =10,所以-2=a 1+4×10,即a 1=-42,所以a 100=-42+99×10=948,故选C.法二 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧a 1+5d =8,10a 1+10×92d =30,解得⎩⎪⎨⎪⎧a 1=-42,d =10,所以a 100=-42+99×10=948,故选C. 3.已知数列{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110答案:D解析:a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9. 所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20, 所以S 10=10×20+10×92×(-2)=110.故选D.4.(2019·吉林模拟)已知等比数列{a n }的前n 项和为S n ,若1a 1+1a 2+1a 3=2,a 2=2,则S 3=( ) A .8 B .7 C .6 D .4答案:A解析:1a 1+1a 2+1a 3=a 1+a 3a 1a 3+1a 2=a 1+a 2+a 3a 22=S 34=2,则S 3=8.故选A.5.(2019·怀化三模)《孙子算经》是中国古代重要的数学著作,书中有一道题为:今有出门望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?若记堤与枝的个数分别为m ,n ,一等差数列{a n }的前n 项和为S n ,且a 2=m ,S 6=n ,则a 5为( ) A .18 B .81 C .234 D .243 答案:C解析:∵a 2=9,S 6=93, ∴729=6(a 2+a 5)2=3(a 5+9),∴a 5=234.故选C.6.(2018·昆明市调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( ) A .-2nB .2nC .2n -1D .2n +1答案:B解析:由题意,得a 2a 8=a 24.又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.7.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k =( ) A .22 B .23 C .24 D .25答案:A解析:{a n }为等差数列,所以a k =a 1+a 2+…+a 7=7a 4,则a 1+(k -1)d =7(a 1+3d ).因为a 1=0,所以(k -1)d =21d ,d ≠0,解得k =22,故选A.8.正项等比数列{a n }中的a 1,a 4 037是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2 019=()A .1B .2 C. 2 D .-1答案:A解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 037是方程x 2-8x +6=0的两根,所以a 1·a 4 037=a 22 019=6,即a 2 019=6,所以log6a 2 019=1,故选A.9.(2018·湖北八校联考)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=( ) A .36 B .33 C .32 D .31答案:D解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选D.10.(2018·大连模拟)在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( ) A .n (3n -1) B .n (n +3)2 C .n (n +1) D .n (3n +1)2答案:C解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.11.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32 B .53 C.256 D .不存在答案:A解析:∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,∴q 2-q -2=0,∴q =2.∵存在两项a m ,a n 使得a m a n =4a 1,∴a m a n =16a 21,∴q m +n -2=16=24,而q =2,∴m +n -2=4,∴m +n =6,∴1m +4n =16(m +n )·⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当m =2,n =4时,等号成立,∴1m +4n 的最小值为32.故选A.12.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510答案:A解析:由于cos 2n π3-sin 2n π3=cos 2n π3以3为周期,故S 30=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2 =∑k =110 ⎝ ⎛⎭⎪⎫9k -52=9×10×112-25=470.二、填空题13.(2019·北京四中热身卷)若等差数列{a n }满足a 1=12,a 4+a 6=5,则a 2 019=________. 答案:2 0192解析:∵等差数列{a n }满足a 1=12,a 4+a 6=5, ∴12+3d +12+5d =5, 解得d =12,∴a 2 019=12+2 018×12=2 0192.14.等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则{a n }的公比q =__________. 答案:-12解析:由题意得,2S 3=S 1+S 2,∴2(a 1+a 2+a 3)=a 1+(a 1+a 2),整理得a 2+2a 3=0,∴a 3a 2=-12,即公比q =-12.15.(2017·石家庄市高三质量检测)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =__________.答案:78解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2, 所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n4.令T n =n 2+n 4=14,解得n =7,所以a k =78.16.(2018·云南师大附中月考)已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.答案:n ·2n2n -1解析:由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎝ ⎛⎭⎪⎪⎫n -1a n -1-1(n ≥2,n ∈N *). 又1a 1-1=-12,∴数列⎩⎨⎧⎭⎬⎫n a n -1是以-12为首项,12为公比的等比数列,故n a n-1=-12n ,∴a n =n ·2n 2n-1(n ∈N *). 专题限时训练 (大题规范练)(建议用时:60分钟)1.(2019·河北模拟)已知数列{a n }满足a 1=2且a n +1=3a n +2n -1(n ∈N *). (1)求证:数列{a n +n }为等比数列; (2)求数列{a n }的通项公式; (3)求数列{a n }的前n 项和S n .解析:(1)数列{a n }满足a 1=2且a n +1=3a n +2n -1, 可得a n +1+n +1=3a n +3n =3(a n +n ),可得数列{a n +n }是首项为3,公比为3的等比数列. (2)a n +n =3n ,即a n =3n -n (n ∈N *). (3)S n =(3+9+…+3n )-(1+2+…+n ) =3(1-3n )1-3-12n (n +1)=32(3n -1)-12n (n +1).2.(2017·山西省八校联考)已知等比数列{a n }的公比q >1,a 1=1,且2a 2,a 4,3a 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2na n ,求数列{b n }的前n 项和T n .解析:(1)由2a 2,a 4,3a 3成等差数列可得2a 4=2a 2+3a 3,即2a 1q 3=2a 1q +3a 1q 2. 又q >1,a 1=1,故2q 2=2+3q , 即2q 2-3q -2=0,得q =2, 因此数列{a n }的通项公式为a n =2n -1. (2)b n =2n ×2n -1=n ×2n ,T n =1×2+2×22+3×23+…+n ×2n , ① 2T n =1×22+2×23+3×24+…+n ×2n +1, ② ①-②得-T n =2+22+23+…+2n -n ×2n +1,-T n =2(2n -1)2-1-n ×2n +1,T n =(n -1)×2n +1+2.3.(2017·福建省高中毕业班质量检测)已知等差数列{a n }的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }的前n 项和T n 满足T n =(n +5)a n . (1)求a n ;(2)求数列{1a nb n}的前n 项和.解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧ a 2=2,S 5=15,即⎩⎪⎨⎪⎧a 1+d =2,5a 1+10d =15,解得a 1=d =1,所以a n =n .(2)由(1)得,a n =n ,所以T n =n (n +5).当n ≥2时,b n =T n -T n -1=n (n +5)-(n -1)(n +4)=2n +4, 当n =1时,b 1=T 1=6也满足上式, 所以b n =2n +4(n ∈N *).所以1a n b n =1n (2n +4)=12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2. 设{1a nb n }的前n 项和为P n ,则当n ≥2时,P n =1a 1b 1+1a 2b 2+…+1a n b n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12+13+…+1n -⎝ ⎛⎭⎪⎫13+14+…+1n +1n +1+1n +2 =14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14(n +1)-14(n +2).当n =1时,P 1=1a 1b 1=16也满足上式.综上,P n =38-14(n +1)-14(n +2).4.已知数列{a n }满足:a 1=1,na n +1=2(n +1)a n +n (n +1)(n ∈N *). (1)若b n =a nn +1,试证明数列{b n }为等比数列; (2)求数列{a n }的通项公式a n 及其前n 项和S n .解析:(1)证明:由na n +1=2(n +1)a n +n (n +1)得a n +1n +1=2a nn +1,得a n +1n +1+1=2a n n +2=2⎝ ⎛⎭⎪⎫a n n +1,即b n +1=2b n .又b 1=2,所以数列{b n }是以2为首项,2为公比的等比数列. (2)由(1)知b n =2n ,得a nn +1=2n ,即a n =n (2n -1),∴S n =1×(2-1)+2×(22-1)+3×(23-1)+…+n (2n -1) =1×2+2×22+3×23+…+n ·2n -(1+2+3+…+n ) =1×2+2×22+3×23+…+n ·2n-n (n +1)2.令T n =1×2+2×22+3×23+…+n ·2n , 则2T n =1×22+2×23+3×24+…+n ·2n +1, 两式相减,得-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,∴T n =2(1-2n )+n ·2n +1=(n -1)·2n +1+2,n(n+1)∴S n=(n-1)·2n+1+2-2.。

高考理科数学通用版练酷专题二轮复习课时跟踪检测:(十八) 数 列 Word版含解析

高考理科数学通用版练酷专题二轮复习课时跟踪检测:(十八) 数 列 Word版含解析

课时跟踪检测(十八) 数 列1.(2017· 长沙模拟)已知数列{a n }满足a 1=32,a n +1=3a n -1(n ∈N *). (1)若数列{b n }满足b n =a n -12,求证:{b n }是等比数列; (2)求数列{a n }的前n 项和S n .解:(1)证明:由已知得a n +1-12=3⎝⎛⎭⎫a n -12(n ∈N *),从而有b n +1=3b n .又b 1=a 1-12=1, 所以{b n }是以1为首项,3为公比的等比数列.(2)由(1)得b n =3n -1,从而a n =3n -1+12, 所以S n =1+12+3+12+…+3n -1+12=1+3+…+3n -1+n 2=1-3n 1-3+n 2=3n +n -12. 2.(2017·云南模拟)已知数列{a n }中,a 2n +2a n -n 2+2n =0.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由a 2n +2a n -n 2+2n =0,得(a n -n +2)(a n +n )=0.∴a n =n -2或a n =-n .∴{a n }的通项公式为a n =n -2或a n =-n .(2)①当a n =n -2时,易知{a n }为等差数列,且a 1=-1, ∴S n =n (a 1+a n )2=n (-1+n -2)2=n (n -3)2. ②当a n =-n 时,易知{a n }也为等差数列,且a 1=-1, ∴S n =n (a 1+a n )2=n (-1-n )2=-n (n +1)2. 故S n =⎩⎨⎧ n (n-3)2(a n =n -2),-n (n +1)2(a n =-n ).3.(2017·南京模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解:(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5,可得a 1+a 2+a 3=a 5,即3a 2=a 5,所以3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1),可得b n =(-1)n -1·(2n -1). ∴T 2n =1-3+5-7+…+(4n -3)-(4n -1)=(1-3)+(5-7)+…+(4n -3-4n +1)=(-2)×n =-2n .4.已知等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n .数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式;(2)求1S 1+1S 2+…+1S n . 解:(1)设等差数列{a n }的公差为d ,d >0,等比数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =q n -1. 依题意有错误!解得错误!或错误!(舍去).故a n =n ,b n =2n -1. (2)由(1)知S n =1+2+…+n =12n (n +1), 即1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 故1S 1+1S 2+…+1S n =2⎣⎡⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎦⎤⎝⎛⎭⎫1n -1n +1=2⎝⎛⎭⎫1-1n +1=2n n +1. 5.(2018届高三·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.解:(1)根据已知a 1=1,a n +1=a n +2,即a n +1-a n =2=d ,所以数列{a n }是首项为1,公差为2的等差数列,a n =a 1+(n -1)d =2n -1.(2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12. T n ≤S n 即3n -12≤n 2,又n ∈N *, 所以n =1或2.6.(2017·石家庄模拟)已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *).(1)求m 的值;(2)若数列{b n }满足a n 2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和. 解:(1)由已知得,a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14, 设数列{a n }的公差为d ,则有2a m +3d =14, ∴d =2.由S m =0,得ma 1+m (m -1)2×2=0, 即a 1=1-m ,∴a m =a 1+(m -1)×2=m -1=4, ∴m =5.(2)由(1)知a 1=-4,d =2,∴a n =2n -6, ∴n -3=log 2b n ,得b n =2n -3, ∴(a n +6)·b n =2n ×2n -3=n ×2n -2. 设数列{(a n +6)·b n }的前n 项和为T n , 则T n =1×2-1+2×20+…+(n -1)×2n -3+n ×2n -2,① 2T n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1,② ①-②,得-T n =2-1+20+…+2n -2-n ×2n -1 =2-1(1-2n )1-2-n ×2n -1 =2n -1-12-n ×2n -1, ∴T n =(n -1)×2n -1+12(n ∈N *).。

专题6-2 数列大题综合18种题型(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题6-2 数列大题综合18种题型(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题6-2数列大题综合18种题型目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】恒成立求参...............................................................................................................................................2【题型二】数列“存在型”求参.............................................................................................................................2【题型三】“存在型”证明题.................................................................................................................................3【题型四】数列“存在型不定方程型...................................................................................................................3【题型五】双数列相同项“存在型”...................................................................................................................4【题型六】新数列与“子数列”型........................................................................................................................4【题型七】“下标”数列型......................................................................................................................................5【题型八】指数型常规裂项求和.............................................................................................................................5【题型九】“指数等差型”裂项求和...................................................................................................................5【题型十】“指数分子拆分型”裂项求和..........................................................................................................6【题型十一】“正负裂和”型裂项求和...............................................................................................................7【题型十二】“分离常数型”裂项求和...............................................................................................................7【题型十三】先放缩再裂项求和.............................................................................................................................7【题型十四】前n 项积型...........................................................................................................................................8【题型十五】解数列不等式......................................................................................................................................8【题型十六】证明数列不等式.................................................................................................................................9【题型十七】求和:范围最值型.............................................................................................................................9【题型十八】“隐和型”...........................................................................................................................................9专题训练. (10)讲高考1.(·湖南·高考真题)数列{}n a 22122π0,2,1cos 4sin ,1,2,3,22n nn n a a a a n π+⎛⎫===++=⋅⋅⋅ ⎪⎝⎭.(1)求34,a a ,并求数列{}n a 的通项公式;(2)设()13212422,,2kk k k k k kS S a a a T a a a W k T *-=+++=+++=∈+N ,求使1k W >的所有k 的值,并说明理由.2.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.5.(2021·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n n S b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.题型全归纳【题型一】恒成立求参【讲题型】例题1.已知正项数列{}n a 的前n 项和为n S,且1n a +=.(1)求{}n a 的通项公式;(2)数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,且()112nn n n n T a S λ++≤对任意的*N n ∈恒成立,求实数λ的取值范围.(参考数据:132 1.26≈)已知数列{}n a 中,111,31n n a a a +==+.(1)求证:12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()1312nn n nn b a +=-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式()(8)42252n T n n λλ+-≤-+成立的自然数n 恰有4个,求正整数λ的值.【题型二】数列“存在型”求参【讲题型】例题1.设正项数列{}n a 的前n 项和为n S ,首项为1,已知对任意整数,m n ,当n m >时,m n m n m S S q S --=⋅(q 为正常数)恒成立.(1)求证:数列{}n a 是等比数列;(2)证明:数列1{}n n SS +是递增数列;(3)是否存在正常数c ,使得{lg()}n c S -为等差数列?若存在,求出常数c 的值;若不存在,说明理由.【练题型】已知n S 是数列{}n a 的前n 项和,且11a =,数列n n S a ⎧⎫⎨⎩⎭是公差为12的等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}2nn a 的前n 项和为n T ,是否存在实数t 使得数列2n n T t +⎧⎫⎨⎬⎩⎭成等差数列,若存在,求出实数t 的值;若不存在,说明理由.【题型三】“存在型”证明题【讲题型】例题1.已知正项数列{}n a ,其前n 项和n S ,满足()12N n n nS a n a *=+∈.(1)求证:数列{}2n S 是等差数列,并求出n a 的表达式;(2)数列{}n a 中是否存在连续三项12,,k k k a a a ++,使得()12111,,N k k k k a a a *++∈构成等差数列?请说明理由.在数列{}n a 中,已知10a =,26a =,且对于任意正整数n 都有2156n n n a a a ++=-.(1)令12n n n b a a +=-,求数列{}n b 的通项公式;(2)设m 是一个正数,无论m 为何值,是否都有一个正整数n 使13n na m a +-<成立.【题型四】数列“存在型不定方程型【讲题型】例题1.设公比为正数的等比数列{}n a 的前n 项和为n S ,已知38a =,248S =,数列{}n b 满足24log n n b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*N m ∈,使得12m m m b b b ++⋅是数列{}n b 中的项?若存在,求出m 的值;若不存在,请说明理由.已知数列{}n a 满足()121232n n n a a a a -⋅⋅⋅= .(1)证明:{}n a 是等比数列.(2)判断()223*8mm -∈N 是否可能是数列{}na 中的项.若是,求出m 的最大值;若不是,请说明理由.【题型五】双数列相同项“存在型”【讲题型】例题1.已知{}n a 是等差数列,{}n b 是公比不为1的等比数列,1122532,,a b a b a b ====.(1)求数列{}{},n n a b 的通项公式;(2)若集合*,,N M b b a m k ==∈∣,且1100k ≤≤,求M 中所有元素之和.已知数列{}n a 的通项公式为21n a n =+,等比数列{}n b 满足211b a =-,321b a =-.(1)求数列{}n b 的通项公式;(2)记{}n a ,{}n b 的前n 项和分别为n S ,n T ,求满足n m T S =(410n <≤)的所有数对(),n m .【题型六】新数列与“子数列”型【讲题型】例题1.已知数列{}n a ,{}n b 其前n 项和分别为n S ,n T 且分别满足23122n S n n =-,()31N 22n n T b n +=-∈.(1)求数列{}n a ,{}n b 的通项公式.(2)将数列{}n a ,{}n b 的各项按1a ,1b ,2a ,2b …n a ,n b 顺序排列组成数列{}n c ,求数列{}n c 的前n 项和n M .【练题型】已知等差数列{}n a 和等比数列{}n b 满足3121,8,log n n a b a b ===,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n a 中不在数列{}n b 中的项按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n S ,求50S .【题型七】“下标”数列型【讲题型】例题1.已知数列{}n a ,{}n b ,n S 是数列{}n a 的前n 项和,已知对于任意*N n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且25b +,41b +,63b -成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记2,,n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前n 项和n T .【练题型】定义集合{}1*2N k M k -=∈,数列{}n a 满足12,0,n n a n M a n M-+∉⎧=⎨∈⎩(1)定义数列122n n n b a -+=,证明:{}n b 为等比数列(2)记数列{}n a 的前n 项和为n S ,求满足2310n S =的正整数n【题型八】指数型常规裂项求和【讲题型】例题1.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎬⎩⎭的前m 项和127258m T ,求m 的值.已知数列{}n a 满足1123333n n nn a a a n -+++=⋅ .(1)求数列{}n a 的通项公式;(2)令()()111nn n n a b a a +=++,设{}n b 的前n 项和为n S ,若n m S >对*N n ∈恒成立,求实数m的取值范围.【题型九】“指数等差型”裂项求和【讲题型】例题1..等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足13a =,11b =,2210b S +=,5232a b a -=.(1)求数列{}n a 和{}n b 的通项公式;(2)令n n n c a b =⋅,设数列{}n c 的前n 项和为n T ,求n T ;(3)令()121nn n n n b d a a +-⋅=-⋅,设数列{}n d 的前n 项和为n K ,求证:13n K <.天津市宝坻区第四中学2022-2023学年高二上学期期末数学试题已知{}n a 为等差数列,{}n b 为公比大于0的等比数列,且11a =,12b =,2312b b +=,4642a a b +=.(1)求{}n a 和{}n b 的通项公式;(2)设22,381,.n nn n n n n a n b c a n a a b ++⎧⎪⎪=⎨+⎪⋅⎪⎩为偶数;为奇数求数列{}n c 的前2n 项和2n T .【题型十】“指数分子拆分型”裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和为n S ,152a =,124n n S a +=-.(1)求{}n a 的通项公式;(2)若()()()121111n n n n n a b a a +--=++,求数列{}n b 的前n 项和为nT .已知数列{}n a 是公比1q >的等比数列,前三项和为13,且1a ,22a +,3a 恰好分别是等差数列{}n b 的第一项,第三项,第五项.(1)求{}n a 和{}n b 的通项公式;(2)已知*k ∈N ,数列{}n c 满足21,21,2n n n n nn k b b c a b n k +⎧=-⎪=⎨⎪=⎩,求数列{}n c 的前2n 项和2n S ;(3)设()()2(810)12121n n n n n a d a a +--=++,求数列{}n d 的前n 项和n T .【题型十一】“正负裂和”型裂项求和【讲题型】例题1.记正项数列{}n a 的前n 项积为n T ,且121n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1441n n n n n b T T ++=-⋅,求数列{}n b 的前2n 项和2n S .已知数列{}n a 的满足11a =,m n m n a a a +=+()*,m n ∈N .(1)求{}n a 的通项公式;(2)记121(1)n n n n n b a a ++=-⋅,数列{}n b 的前2n 项和为2n T ,证明:2213n T -<≤-.【题型十二】“分离常数型”裂项求和【讲题型】例题1.数列{}n a12a =且324,3,a a a 成等差数列.(1)求数列{}n a 的通项公式;(2)若2122log ,n nn n n b b b ac b b +-==+,求数列{}n c 的前n 项和n S .已知等差数列{}n a 的通项公式为()22n a n c c =-<,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)求数列}n a 的通项公式;(2)设数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【题型十三】先放缩再裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和()2n S n n λλ=+∈R ,且36a =,正项等比数列{}n b 满足:11b a =,2324.b b a a +=+(1)求数列{}n a 和{}n b 的通项公式;(2)若2022n nc b =-,求数列{}n c 的前n 项和n T ;(3)证明:()2131nii i b b =<-∑.【练题型】已知函数()e 1xf x a x =--,a ∈R(1)讨论函数()f x 的单调性;(2)若()0f x ≥恒成立,①求a 的取值范围;②设*n ∈N ,证明:()()1121ln 1.32121ini i i +=⎡⎤+<⎢⎥++⎢⎥⎣⎦∑【题型十四】前n 项积型【讲题型】例题1.在等比数列{}n a 中,18a =,前n 项和为2,1n S S -是1S 和3S 的等差中项.(1)求{}n a 的通项公式;(2)设12n n T a a a =⋅ ,求n T 的最大值.已知数列{}n a 满足()*123N ,2n n a a n n n -+=+∈≥,且24a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()12,1log ,2n nn n b a n +=⎧⎪=⎨≥⎪⎩,*N n ∈,若()*1238N k b b b b k ⋅⋅=∈ ,求k 的值.【题型十五】解数列不等式【讲题型】例题1.已知数列{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)已知数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列,求公比q ;(2)若11100ni ia =<∑,求满足条件的最大整数n .【练题型】已知等差数列{}n a 的前n 项和为n S ,且412716,28a a S +==.(1)求{}n a 的通项公式;(2)若数列{}n b 满足43n nn a a b =,且{}n b 的前n 项和为n T ,求满足不等式31n n a T ⋅->的n 的值.【题型十六】证明数列不等式【讲题型】例题1.已知等差数列{}n a 满足312a =,5748a a +=,{}n a 的前n 项和为n S .(1)求n a 及n S 的通项公式;(2)记12111n n T S S S =++⋅⋅⋅+,求证:1142n T ≤<.【练题型】已知数列{}n a ,11a =,11nn na a a +=+.(1)求数列{}n a 通项公式;(2)若数列{}n b 满足:2111n n i i i i b a -===∑∑.(i )证明:1n b ≤;(ii )证明:11112321nn ++++≤- .【题型十七】求和:范围最值型【讲题型】例题1.已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,且11111n n n n S a S a +++-=+.(1)求数列{}n a 的通项公式;(2)设13n n n a ab -=,且数列{}n b 的前n 项和为n T ,求n T 的取值范围.【练题型】已知数列{}n a 的前n 项和为n S ,且满足 2 3n n S a n =+-,*n ∈N .(1)求数列{}n a 的通项公式;(2)21n n n b a =-,数列{}n b 是否存在最大项,若存在,求出最大项.【题型十八】“隐和型”【讲题型】例题1.已知等差数列{an }的首项a 1=1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{bn }的第二、三、四项.(1)求数列{an }与{bn }的通项公式;(2)设数列{cn }对任意自然数n 均有1231123nn nc c c c a b b b b +++++= 成立,求1232023c c c c ++++ 的值.【练题型】已知等比数列{}n a 的前n 项和为3614126n S S S ==,,.(1)求数列{}n a 的通项公式;(2)当*n ∈N 时,112141nn n n a b a b a b -++⋯+=-,求数列{}n b的通项公式.1.已知n T 为数列{}n a 的前n 项积,且131n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1651nn n n n b T T ++=-⋅,求数列{}n b 的前n 项和n S .2.记n S 为数列{}n a 的前n 项和,已知()12121n n na n a a S +-++=- .(1)求n S ;(2)设()121n n n b n n S ++=+,数列{}n b 的前n 项和为n T ,证明:1n T <.3.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(1)求数列{}n a 的通项公式;(2)设14(1)2n a n n n b λ-=+-⋅(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有1n n b b +>成立.4.(河北省邯郸市2023届高三上学期期末数学试题)设n S 为数列{}n a 的前n 项和,已知0n a >,2364n n n a a S +=+.(1)求数列{}n a 的通项公式;(2)若11n n n c a a +=,记数列{}n c 的前n 项和为n T ,证明:112812n T ≤<.5(2022秋·贵州贵阳·高三贵阳一中校考阶段练习)已的数列{}n a 的首项123a =,112n n n n a a a a ++=-,+n ∈N .(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭等比数列;(2)记12111n n T a a a =++⋅⋅⋅+,若7n T <,求n 的最大值.。

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:数列第1部分专题3第2讲 含答案

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:数列第1部分专题3第2讲 含答案
7.已知数列{an}的前n项和Sn=3+2n、则数列{an}的通项公式为________.
解析因为Sn=3+2n、所以n≥2时、an=Sn-Sn-1=2n-1、而n=1时、a1=S1=5不适合上式、所以an=
答案an=
8.(20xx·广东深圳适应性考试)在数列{an}中、a1= 、an+1=an+ (n∈N*)、则a2 019的值为________.
12.(20xx·四川百校模拟)定义在[0、+∞)上的函数f(x)满足:当0≤x<2时、f(x)=2x-x2;当x≥2时、f(x)=3f(x-2).记函数f(x)的极大值点从小到大依次记为a1、a2、…、an、…、并记相应的极大值为b1、b2、…、bn、…、则a1b1+a2b2+…+a20b20的值为( )
(2)因为cn= = 、
所以Tn= + + +…+ + 、①
则3Tn= + + +…+ + 、②
②-①得2Tn=6+ - =6+ - = - .
所以Tn= - .
15.已知等差数列{an}的公差为2、前n项和为Sn、且S1、S2、S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1· 、求数列{bn}的前n项和Tn.
所以Tn=
则Tn=0×30+1×31+2×32+…+(n-1)×3n-1、③
则3Tn=0×31+1×32+2×33+…+(n-1)×3n、④
③-④得、-2Tn=31+32+33+…+3n-1-(n-1)×3n= -(n-1)×3n= .
所以Tn= .
能力提升(建议用时:25分钟)
11.(20xx·福建质检)数列{an}中、a1=2、且an+an-1= +2(n≥2)、则数列 的前2 019项和为( )
解析(1)因为S1=a1、S2=2a1+ ×2=2a1+2、S4=4a1+ ×2=4a1+12、由题意得S =S1S4、即(2a1+2)2=a1(4a1+12)、解得a1=1、所以an=2n-1.

2020高三高考数学二轮复习专题训练+18+Word版含答案

2020高三高考数学二轮复习专题训练+18+Word版含答案
2020高三高考数学二轮复习专题训练+18+Word版含答案
编 辑:__________________
时 间:__________________
20xx最新高三高考数学二轮复习专题训练+18+Word版含答案
二、累加累乘
1、递推公式满足:型或()型
思路:利用累加法,将,=,......,
=,各式相加,正负抵消,得,即;
解:,
即,,上式对于也成立,所以,,。
补充练习:
1、已知数列满足,(),则数列的通项公式为 。
2、已知数列满足,(),则数列的通项公式为 。
3、已知数列满足,(),则数列的通项公式为 。
4、已知数列满足,则数列的通项公式为 。
答案:1、 2、 3、 4、
2、递推公式满足:型或()型
思路:利用累乘法,将
补充练习:
1、若数列满足,,,则数列通项公式为( D )
A、 B、 C、 D、2、已知数列满足,求数列 Nhomakorabea通项公式。
解:因为,所以,则,故
所以数列的通项公式为
3、已知数列满足,求数列的通项公式。
解:因为......①
所以......②
用②—①式得则,故;
所以......③
由,,则,又知,则,代入③得。
各式相乘得,,得,
即,;
用累乘符号表示为。
例4:在数列中,,,求数列的通项公式。
解:由条件等式得,,得。
评注:此题亦可构造特殊的数列,由得,,则数列是以为首项,以1为公比的等比数列,得。
例5:设数列是首项为1的正项数列,且,,则数列
的通项公式是 。
解:原递推式可化为:0
∵0,,则 ……,,

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:数列第1部分专题3 第1讲 含答案

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:数列第1部分专题3 第1讲 含答案
能力提升(建议用时:25分钟)
13.设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=4,则m=( )
A.3B.4
C.5D.6
A解析由等差数列的性质可知 也是等差数列,所以 , , 成等差数列,所以2· = + ,所以m=3.故选A项.
14.(20xx·广东六校联考)数列bn=ancos 的前n项和为Sn,已知S2 017=5 710,S2 018=4 030,若数列{an}为等差数列,则S2 019=________.
6.已知数列{an}的前n项和为Sn,且a1=1,an+1-an=cos ,则S678=( )
A.0B.678
C.339D.340
D解析由已知可得,当n=2k-1(k∈N*)时,a2k=a2k-1;当n=2k(k∈N*)时,a2k+1=a2k+coskπ,则a1=a2=1,a3=a4=0,a5=a6=1,…,因此{an}中的项呈现一定周期性,S678=S4×169+2=2×169+2=340.故选D项.
7.(20xx·福建适应性练习)如图,方格蜘蛛网是由一族正方形环绕而成的图形.每个正方形的四个顶点都在其外接正方形的四边上,且分边长为3:4.现用13米长的铁丝材料制作一个方格蜘蛛网,若最外边的正方形边长为1米,由外到内顺序制作,则完整的正方形的个数最多为(参考数据:lg ≈0.15)( )
A.6个B.7个
A.15B.
C.6D.3
C解析因为数列{an}为等差数列,且2a1,2,2a6成等比数列,所以a1,1,a6成等差数列,
所以2=a1+a6,所以2=a1+a1+5d,即2a1+5d=2,
所以{an}前6项的和为S6=6a1+ d=6a1+15d=3(2a1+5d)=6.故选C项.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十八) 数 列
1.(2017· 长沙模拟)已知数列{a n }满足a 1=32,a n +1=3a n -1(n ∈N *). (1)若数列{b n }满足b n =a n -12
,求证:{b n }是等比数列; (2)求数列{a n }的前n 项和S n .
解:(1)证明:由已知得a n +1-12=3⎝ ⎛⎭⎪⎫a n -12(n ∈N *),从而有b n +1=3b n .又b 1=a 1-12
=1, 所以{b n }是以1为首项,3为公比的等比数列.
(2)由(1)得b n =3n -1
,从而a n =3n -1+1
2,
所以S n =1+12+3+12+…+3n -1+12=1+3+…+3n -1
+n 2=1-3n 1-3+n 2=3n
+n -1
2.
2.(2017·云南模拟)已知数列{a n }中,a 2n +2a n -n 2
+2n =0.
(1)求数列{a n }的通项公式;
(2)求数列{a n }的前n 项和S n .
解:(1)由a 2n +2a n -n 2
+2n =0,
得(a n -n +2)(a n +n )=0.
∴a n =n -2或a n =-n .
∴{a n }的通项公式为a n =n -2或a n =-n .
(2)①当a n =n -2时,易知{a n }为等差数列,且a 1=-1,
∴S n =n a 1+a n 2=n -1+n -22=n n -3
2.
②当a n =-n 时,易知{a n }也为等差数列,且a 1=-1,
∴S n =n a 1
+a n 2=n -1-n 2=-n n +1
2.
故S n =
⎩⎪⎨⎪⎧ n n -32a n =n -2,
-n n +1
2a n =-n .
3.(2017·南京模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.
(1)求数列{a n }的通项公式;
(2)令b n =(-1)n -1
a n ,求数列{
b n }的前2n 项和T 2n .
解:(1)设等差数列{a n }的公差为d ,
由S 3+S 4=S 5,可得a 1+a 2+a 3=a 5,即3a 2=a 5,
所以3(1+d )=1+4d ,解得d =2.
∴a n =1+(n -1)×2=2n -1.
(2)由(1),可得b n =(-1)n -1·(2n -1).
∴T 2n =1-3+5-7+…+(4n -3)-(4n -1)
=(1-3)+(5-7)+…+(4n -3-4n +1)
=(-2)×n =-2n .
4.已知等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n .数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.
(1)求数列{a n }与{b n }的通项公式;
(2)求1S 1+1S 2+…+1S n
. 解:(1)设等差数列{a n }的公差为d ,d >0,等比数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =q n -1.
依题意有⎩
⎪⎨⎪⎧ q 2+d =6,q +3+3d =8, 解得⎩⎪⎨⎪⎧ d =1,q =2或⎩⎪⎨⎪⎧ d =-43,q =9
(舍去). 故a n =n ,b n =2n -1
. (2)由(1)知S n =1+2+…+n =12
n (n +1), 即1S n =2n n +1=2⎝ ⎛⎭
⎪⎫1n -1n +1, 故1S 1+1S 2+…+1S n =2⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+
⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 5.(2018届高三·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项
a 1=1. (1)求数列{a n }的通项公式;
(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.
解:(1)根据已知a 1=1,a n +1=a n +2,
即a n +1-a n =2=d ,
所以数列{a n }是首项为1,公差为2的等差数列,
a n =a 1+(n -1)d =2n -1.
(2)数列{a n }的前n 项和S n =n 2.
等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,
所以q =3,b n =3n -1.
数列{b n }的前n 项和T n =1-3n 1-3=3n -12
. T n ≤S n 即3n -12
≤n 2,又n ∈N *, 所以n =1或2.
6.(2017·石家庄模拟)已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *).
(1)求m 的值;
(2)若数列{b n }满足a n 2
=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和. 解:(1)由已知得,a m =S m -S m -1=4,
且a m +1+a m +2=S m +2-S m =14,
设数列{a n }的公差为d ,则有2a m +3d =14,
∴d =2.
由S m =0,得ma 1+
m m -12×2=0, 即a 1=1-m ,
∴a m =a 1+(m -1)×2=m -1=4,
∴m =5.
(2)由(1)知a 1=-4,d =2,∴a n =2n -6,
∴n -3=log 2b n ,得b n =2
n -3, ∴(a n +6)·b n =2n ×2n -3=n ×2n -2.
设数列{(a n +6)·b n }的前n 项和为T n ,
则T n =1×2-1+2×20+…+(n -1)×2
n -3+n ×2n -2,① 2T n =1×20+2×21+…+(n -1)×2
n -2+n ×2n -1,② ①-②,得-T n =2-1+20+…+2
n -2-n ×2n -1 =2-11-2
n 1-2-n ×2n -1
=2n -1-12
-n ×2n -1, ∴T n =(n -1)×2n -1+12
(n ∈N *).。

相关文档
最新文档