人教版数学2018年九年级下《第28章锐角三角函数》检测卷 (4)
人教版九年级下册数学《第28章 锐角三角函数》单元测试卷(解析版)

人教版九年级下册数学《第28章锐角三角函数》单元测试卷(解析版)一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°2.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°3.Rt△ABC中,∠C=90°,已知cos A=,那么tan A等于()A.B.C.D.4.在Rt△ABC中,∠C=90°,如果sin A=,那么sin B的值是()A.B.C.D.35.若∠B,∠A均为锐角,且sin A=,cos B=,则()A.∠A=∠B=60°B.∠A=∠B=30°C.∠A=60°,∠B=30°D.∠A=30°,∠B=60°6.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()A.5÷tan26°=B.5÷sin26°=C.5×cos26°=D.5×tan26°=7.下列命题:①所有锐角三角函数值都为正数;②解直角三角形时只需已知除直角外的两个元素;③Rt△ABC中,∠B=90°,则sin2A+cos2A=1;④Rt△ABC中,∠A=90°,则tan C•sin C=cos C.其中正确的命题有()A.0个B.1个C.2个D.3个8.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.B.C.D.9.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米B.36米C.米D.米10.如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米二.填空题(共5小题)11.正方形网格中,∠AOB如图放置,则tan∠AOB的值为.12.比较大小:sin44°cos44°(填>、<或=).13.在△ABC中,∠C=90°,cos A=,则tan A等于.14.计算:cot44°•cot45°•cot46°=.15.计算:2cos60°+tan45°=.三.解答题(共4小题)16.在△ABC中,∠B、∠C均为锐角,其对边分别为b、c,求证:=.17.下列关系式是否成立(0<α<90°),请说明理由.(1)sinα+cosα≤1;(2)sin2α=2sinα.18.计算:3tan30°+cos245°﹣2sin60°.19.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sin B=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.2019年人教版九年级下册数学《第28章锐角三角函数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°【分析】根据余弦为邻边比斜边,可得答案.【解答】解:由cos B==,得BC=7cos B=7cos35°,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°【分析】明确cos45°=,余弦函数随角增大而减小进行分析.【解答】解:根据cos45°=,余弦函数随角增大而减小,则∠A一定小于45°.故选:A.【点评】熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.3.Rt△ABC中,∠C=90°,已知cos A=,那么tan A等于()A.B.C.D.【分析】根据cos A=设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出tan A的值.【解答】解:∵cos A=知,设b=3x,则c=5x,根据a2+b2=c2得a=4x.∴tan A===.故选:A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.4.在Rt △ABC 中,∠C =90°,如果sin A =,那么sin B 的值是( )A .B .C .D .3【分析】一个角的正弦值等于它的余角的余弦值.【解答】解:∵Rt △ABC 中,∠C =90°,sin A =,∴cos A ===,∴∠A +∠B =90°,∴sin B =cos A =. 故选:A .【点评】此题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.5.若∠B ,∠A 均为锐角,且sin A =,cos B =,则( )A .∠A =∠B =60°B .∠A =∠B =30°C .∠A =60°,∠B =30°D .∠A =30°,∠B =60° 【分析】根据三角函数的特殊值解答即可.【解答】解:∵∠B ,∠A 均为锐角,且sin A =,cos B =,∴∠A =30°,∠B =60°.故选:D .【点评】本题考查了特殊角的三角函数值.6.如图,在△ABC 中,∠ACB =90°,∠ABC =26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是( )A .5÷tan26°=B .5÷sin26°=C .5×cos26°=D .5×tan26°=【分析】根据正切函数的定义,可得tan ∠B =,根据计算器的应用,可得答案.【解答】解:由tan∠B=,得AC=BC•tan B=5×tan26.故选:D.【点评】本题考查了计算器,利用了锐角三角函数,计算器的应用,熟练应用计算器是解题关键.7.下列命题:①所有锐角三角函数值都为正数;②解直角三角形时只需已知除直角外的两个元素;③Rt△ABC中,∠B=90°,则sin2A+cos2A=1;④Rt△ABC中,∠A=90°,则tan C•sin C=cos C.其中正确的命题有()A.0个B.1个C.2个D.3个【分析】根据锐角三角函数的定义判断所有的锐角三角函数值都是正数;根据锐角三角函数的概念结合勾股定理可以证明sin2A+cos2A=1,tan C•sin C=cos C.【解答】解:①根据锐角三角函数的定义知所有的锐角三角函数值都是正数,故正确;②两个元素中,至少得有一条边,故错误;③根据锐角三角函数的概念,以及勾股定理,得sin2A+cos2A==1,故正确;④根据锐角三角函数的概念,得tan C=,sin C=,cos C=,则tan C•cos C=sin C,故错误.故选:C.【点评】根据锐角三角函数的定义可证明锐角三角函数之间的关系式.8.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.B.C.D.【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=,即可求出BC的长度.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.9.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米B.36米C.米D.米【分析】求滑下的距离;设出下降的高度,表示出水平宽度,利用勾股定理即可求解.【解答】解:当t=4时,s=10t+2t2=72.设此人下降的高度为x米,过斜坡顶点向地面作垂线.在直角三角形中,由勾股定理得:x2+(x)2=722.解得x=36.故选:B.【点评】此题主要考查了坡角问题,理解坡比的意义,使用勾股定理,设未知数,列方程求解是解题关键.10.如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=6米,∠BAC=α,利用三角函数即可求出BC的高度.【解答】解:∵BC⊥AC,AC=6米,∠BAC=α,∴=tanα,∴BC=AC•tanα=6tanα(米).故选:D.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.二.填空题(共5小题)11.正方形网格中,∠AOB如图放置,则tan∠AOB的值为2.【分析】根据正切定义:锐角A的对边a与邻边b的比进行计算即可.【解答】解:tan∠AOB==2,故答案为:2.【点评】此题主要考查了正切定义,关键是正确掌握三角函数的定义.12.比较大小:sin44°<cos44°(填>、<或=).【分析】首先根据互余两角的三角函数的关系,得cos44°=sin46°,再根据正弦值随着角的增大而增大,进行分析.【解答】解:∵cos44°=sin46°,正弦值随着角的增大而增大,又∵44°<46°,∴sin44°<cos44°.故答案为<.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小).同时考查了互余两角的三角函数的关系.13.在△ABC 中,∠C =90°,cos A =,则tan A 等于 .【分析】根据cos A =,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出tan A 的值.【解答】解:∵cos A =知,设b =3x ,则c =5x ,根据a 2+b 2=c 2得a =4x .∴tan A ===.故答案为:.【点评】本题考查了锐角三角函数定义的应用,利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值. 14.计算:cot44°•cot45°•cot46°= 1 .【分析】根据互余两角的三角函数的关系、特殊角的三角函数值就可以求解.【解答】解:cot44°•cot45°•cot46°=cot44°•cot46°•cot45°=1•cot45°=1.【点评】本题考查了互余两角的三角函数的关系、特殊角的三角函数值.15.计算:2cos60°+tan45°= 2 .【分析】直接利用特殊角的三角函数值代入求出即可.【解答】解:2cos60°+tan45°=2×+1=2.故选:2.【点评】此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.三.解答题(共4小题)16.在△ABC 中,∠B 、∠C 均为锐角,其对边分别为b 、c ,求证:=. 【分析】如图,过A 作AD ⊥BC 于D ,如果利用三角函数可以分别在△ABD 和△ADC 中可以得到sin sB ,sin C 的表达式,由此即可证明题目的结论.【解答】证明:过A 作AD ⊥BC 于D ,在Rt △ABD 中,sin B =,∴AD =AB sin B ,在Rt △ADC 中,sin C =, ∴AD =AC sin C ,∴AB sin B=AC sin C,而AB=c,AC=b,∴c sin B=b sin C,∴=.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.解题的关键是作辅助线把普通三角形转化为直角三角形解决问题.17.下列关系式是否成立(0<α<90°),请说明理由.(1)sinα+cosα≤1;(2)sin2α=2sinα.【分析】(1)利用三角函数的定义和三角形的三边关系得到该结论不成立;(2)举出反例进行论证.【解答】解:(1)该不等式不成立,理由如下:如图,在△ABC中,∠B=90°,∠C=α.则sinα+cosα=+=>1,故sinα+cosα≤1不成立;(2)该等式不成立,理由如下:假设α=30°,则sin2α=sin60°=,2sinα=2sin30°=2×=1,∵≠1,∴sin2α≠2sinα,即sin2α=2sinα不成立.【点评】本题考查了同角三角函数的关系.解题的关键是掌握锐角三角函数的定义和特殊角的三角函数值.18.计算:3tan30°+cos245°﹣2sin60°.【分析】根据特殊角的三角函数值,即可解答.【解答】解:3tan30°+cos245°﹣2sin60°===.【点评】考查了特殊角的三角函数值,属于识记性题目,基础题.19.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sin B=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.【分析】(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,然后根据BC=BD+DC 即可求解;(2)先由三角形的中线的定义求出CE的值,则DE=CE﹣CD,然后在Rt△ADE中根据正切函数的定义即可求解.【解答】解:(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sin B=,AD=1,∴AB==3,∴BD==2,∴BC=BD+DC=2+1;(2)∵AE是BC边上的中线,∴CE=BC=+,∴DE=CE﹣CD=+﹣1=﹣,∴tan∠DAE===﹣.【点评】本题考查了解直角三角形,三角形的高、中线的定义,勾股定理,难度中等,分别解Rt△ADC与Rt△ADB,得出DC=1,AB=3是解题的关键.期末复习:人教版九年级数学下册第28章锐角三角函数单元检测试卷(解析版)一、单选题(共10题;共30分)1.sin60°的值为()A. B. C. D.2.在△ABC中,∠C =90o,若cosB= ,则∠B的值为().A. B. C. D.3.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A. B. C. D.4.在中,,,则的值等于()A. B. C. D.5.在△ABC中,∠C=90°,AC=9,sinB=,则AB=( )A. 15B. 12C. 9D. 66.一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米.A. B. 3 C. D. 以上的答案都不对7.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()A. 5÷tan26°=B. 5÷sin26°=C. 5×cos26°=D. 5×tan26°=8.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A. 45°B. 75°C. 105°D. 120°9.在中,,,,则cosA等于()A. B. C. D.10.在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡的坡角为30°,旗杆的高度AB约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)A. 10.61B. 10.52C. 9.87D. 9.37二、填空题(共10题;共30分)11.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端A点的仰角为α,则建筑物AB的高可表示为________.12.如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为________.13.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)14.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________ .15.如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点.若沿AD将△ACD翻折,点C刚好落在AB边上点E处,则BD=________.16.如下图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为________.17.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N 处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为________米(结果保留根号).18.在Rt△ABC中,∠ACB=90°,a=2,b=3,则tanA=________19.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.20.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达(结果保留根号)三、解答题(共8题;共60分)21.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB的值.22.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)23.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)24.热气球的探测器显示,从热气球底部A处看一栋高楼顶部B的仰角为30°,看这栋楼底部C的俯角为45°,已知楼高是120m,热气球若要飞越高楼,问至少要继续上升多少米?(结果保留根号)25.如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值)26.如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距8米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(结果保留根号).27.如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)28.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1 cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)答案解析部分一、单选题1.【答案】B【考点】特殊角的三角函数值【解析】【解答】解:sin60°= .故答案为:B.【分析】由特殊角的三角函数值可求解。
Y_人教版九年级下《第28章锐角三角函数》单元检测试卷(有答案)

2017-2018学年度第二学期人教版九年级数学下册第28章 锐角三角函数 单元检测试卷考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.梯子(长度不变)跟地面所成的锐角为,关于的三角函数值与梯子的倾斜程度之间,叙A ∠A 述正确的是( )A.的值越大,梯子越陡B.的值越大,梯子越陡sinA cosA C.的值越小,梯子越陡D.陡缓程度与的函数值无关tanA ∠A 2.温州市处于东南沿海,夏季经常遭受台风袭击.一次,温州气象局测得台风中心在温州市的A 正西方向千米的处(如图),以每小时千米的速度向东偏南的方向移动,并检300B 10730∘BC 测到台风中心在移动过程中,温州市将受到影响,且距台风中心千米的范围是受台风严重A 200影响的区域.则影响温州市的时间会持续多长?( )A A.5 B.6 C.8 D.10 3.如图,两建筑物水平距离为米,从点测得对点的俯角为,对点的俯角为,则建32A C 30∘D 45∘筑物的高约为( )CD A.米14 B.米17 C.米20 D.米22 4.在如图所示的方格纸中,点、、都在方格线的交点.则 A B C ∠ACB =()A.120∘B.135∘C.150∘D.165∘ 5.已知,且,则锐角等于( )α+β=90∘sinα+cosβ‒3=0αA.30∘ B.45∘C.60∘ D.无法求 6.如图,一根铁管固定在墙角,若米,,则铁管的长为( )CD BC =5∠BCD =55∘CD A.米5sin 55∘ B.米5⋅sin 55∘.C.米5cos 55∘ D.米5⋅cos 55∘7.为美化环境,在空地上种植售价为元/平方米的一种草皮,已知,△ABC a AB =20m ,,则购买草皮至少需要( )AC =30m ∠A =150∘A.元450a B.元225a C.元150a D.元300a 8.如图,在中.,,,则 △ABC ∠ACB =90∘∠ABC =15∘BC =1AC =()A.2+3 B.2‒3C.0.3D.3‒29.堤的横断面如图.堤高是米,迎水斜坡的长时米,那么斜坡的坡度是( )BC 5AB 13AB A.1:3 B.1:2.6C.1:2.4D.1:2 10.小明去爬山,在山脚看山顶角度为,小明在坡比为的山坡上走米,此时小明看30∘5:121300山顶的角度为,求山高( )60∘A.米600‒2505 B.米6003‒250C.米350+3503 D.米5003二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 11.在中,,,,则等于________.Rt △ABC ∠C =90∘tanA =3AC =10S △ABC 12.小美同学从地沿北偏西方向走到地,再从地向正南方向走到地,此时A 60∘200m B B 100m C 小美同学离地________.A 13.如图,岛在岛的北偏东方向,岛在岛的北偏西方向,若海里,CA 50o CB 40o AC =40海里,则,两岛的距离等于________ 海里. (结果保留根号)BC =20A B 14.如图,在中,,是高,如果,,那么Rt△ABC∠ACB =90∘CD ∠B =αBC =3________.(用锐角的三角比表示)AD =α15.如图,当小明沿坡度的坡面由到行走了米,那么小明行走的水平距离i =1:3A B 100.________米.(结果可以用根号表示).AC = 16.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成角时,测得旗杆在地28∘AB 面上的投影长为米,则旗杆的高度是________米.BC 25AB 17.在离建筑物米处,用测角仪测得建筑物顶的仰角为,已知测角仪的高度为米,求12030∘ 1.5这个建筑的高度________米(精确到米)0.1 18.如图,的三个顶点分别在边长为的正方形网格的格点上,则________△ABC 1tan (α+β).(填“”“”“”)tanα+tanβ>=<19.如图,渔船在处看到灯塔在北偏东方向上,渔船向正东方向航行了海里到达处,A C 60012B 在处看到灯塔在正北方向上,这时渔船与灯塔的距离是________.B C C 20.请从以下两题中任选一题作答,若多选,则按所选的第一题计分.如图所示的四边形中,若去掉一个的角得到一个五边形,则________.(A )50∘∠1+∠2=如果某人沿坡度的斜坡前进,那么他所在的位置比原来的位置升高了(B )i =1:3100m ________.(结果精确到)m 0.1m 三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.21. (1)2sin 60∘+3tan 30∘(2)sin 260∘+cos 260∘‒tan 45∘ .(3)cos 60∘‒tan 45∘+sin 60∘tan 30∘+sin 30∘(4)22sin 45∘+sin 60∘‒2cos 45∘ 22.如图,一艘货轮以海里/时的速度在海面上航行,当它行驶到处时,发现在它的北偏东30A 方向有一港口,货轮继续向北航行分钟后到达处,发现港口在它的北偏东方向上,48∘B 40C B 76∘若货轮急需到港口补充供给,请求出处与港口的距离的长度.(结果保留整数)B C B CB (参考数据:,,,)sin 76∘≈2021tan 76∘≈4tan 48∘≈109sin 48∘≈45.23.如图,在小山的东侧处有一热气球,以每分钟米的速度沿着仰角为的方向上升,A 1075∘分钟后上升到处,这时气球上的人发现在点的正西方向俯角为的处有一着火点,求气20B A 45∘C 球的升空点与着火点之间的距离.(结果保留根号)AC24.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东100P 匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.A B 4∠APO =60∘∠BPO =45∘求、之间的路程;(1)A B 请判断此出租车是否超过了城南大道每小时千米的限制速度?(2)60 25.如图,小明想测山高和索道的长度.他在处仰望山顶,测得仰角,再往山的方B A ∠B =31∘向(水平方向)前进至索道口处,沿索道方向仰望山顶,测得仰角.80m C ∠ACE =39∘求这座山的高度(小明的身高忽略不计);(1).求索道的长(结果精确到).(2)AC 0.1m (参考数据:,,,)tan 31∘≈35sin 31∘≈12tan 39∘≈911sin 39∘≈711 26.某居民楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,,,斜坡BC // AD BE ⊥AD 长为米,坡角.为了减缓坡面防止山体滑坡,居委会决定对该斜坡进行改AB 30∠BAD =75∘造.经地质人员勘测,当坡角不超过时,可确保山体不滑坡.如果改造时保持坡脚不动,50∘A 坡顶沿向左移米到点处,问这样改造能确保安全吗?(参考数据:,B BC 15F sin 75∘≈0.97,,,)cos 75∘≈0.26tan 75∘≈3.73tan 49∘30'≈1.17tan 51∘57'≈1.28答案1.A2.D3.A4.B5.C6.C7.C8.B9.C10.B .11.15012.1003m13.20514.3sinαtanα15.301016.25⋅tan 28∘17.76.518.>19.海里4320.230∘31.621.解:(1)2sin 60∘+3tan 30∘;=2×32+3×33=3+3=23(2)sin 260∘+cos 260∘‒tan 45∘;=1‒1=0(3)cos 60∘‒tan 45∘+sin 60∘tan 30∘+sin 30∘;=12‒1+3233+32=32‒12536=3‒35(4)22sin 45∘+sin 60∘‒2cos 45∘.=22×22+32‒2×22=12+32‒222.解:海里,AC =30×4060=20在中,,Rt △BDC BD CD =tan 76∘则,BD =CD ⋅tan 76∘在中,Rt △ABD ,BDAD =tan 48∘.即,CD ⋅tan 76∘20+CD =tan 48∘于是,4CD20+CD=109解得,CD =10013,BD =10013×4=40013在中,,Rt △BDC BD CB =sin 76∘,40013BC =2021则海里.BC ≈3223.解:过点作于点,A AD ⊥BCD 由题意得,,,,BE // AC ∠EBC =45∘∠BAD =75∘∴,∠ABD =30∘∵,AB =10×20=200(m )在中,Rt △ABD ,AD =ABsin∠ABD =12×200=100(m )∵,BE // AC ∴,∠BCA =∠EBC =45∘∴,AC =ADsin 45∘=10022=1002(m )即气球的升空点与着火点之间的距离为.A C 1002m 24.解:由题意知:米,,,(1)PO =100∠APO =60∘∠BPO =45∘在直角三角形中,BPO ∵,∠BPO =45∘∴米,BO =PO =100在直角三角形中,APO .∵,∠APO =60∘∴米,AO =PB ⋅tan 60∘=1003∴(米);∵从处行驶到处所用的时间为秒,AB =AO ‒BO =(1003‒100)=100(3‒1)(2)A B 4∴速度为米/秒,100(3‒1)÷4=25(3‒1)∵千米/时米/秒,60=60×10003600=503而,25(3‒1)>503∴此车超过了每小时千米的限制速度6025.索道长约为米.AC 282.926.解;过作,垂足为,连接,F FG ⊥AD G AF ∵斜坡长为米,坡角,AB 30∠BAD =75∘∴,BE =sin∠BAD ×AB =sin 75∘×30=0.97×30=29.1,AE =cos∠BAD ×AB =cos 75∘×30=0.26×30=7.8∴,,AG =AE +GE =7.8+15=22.8FG =29.1∴,tan∠FAG =FG AG =29.122.8≈1.28∴,∠FAG >50∘∴这样改造不能确保安全....。
九年级下学期第28章《锐角三角函数》达标检测卷含答案

九年级下学期第28章《锐角三角函数》达标检测卷时间:100分钟 满分:120分 一、选择题(每题3分,共30分) 1.cos 45°的值为( ) A.12 B.22 C.32 D .12.如图,CD 是Rt △ABC 斜边上的高.若AB =5,AC =3,则tan ∠BCD 为( )A.43B.34C.45D.35(第2题) (第4题) (第5题) (第6题) 3.在△ABC 中,若⎪⎪⎪⎪⎪⎪cos A -12+(1-tan B )2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( ) A.12B.13C.14D.245.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24 m ,那么旗杆AB 的高度是( ) A .12 mB .8 3 mC .24 mD .24 3 m6.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( ) A .26 mB .28 mC .30 mD .46 m7.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .2 3 mB .2 6 mC .(23-2)mD .(26-2)m(第7题)(第8题)8.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB等于()A.25 B.23 C.52 D.329.如图,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sin A=35,则下列结论中正确的有()①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=210 cm.A.1个B.2个C.3个D.4个(第9题)(第10题) (第12题)10.如图,在Rt△ABC中,∠B=90°,∠BAC=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心,AB的长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312 B.36 C.33 D.32二、填空题(每题3分,共24分)11.已知α为锐角,sin(α-20°)=32,则α=________.12.如图,若点A的坐标为(1,3),则∠1=________.13.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.(第14题) (第15题) (第16题) (第18题)14.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,若sin ∠CAM =35,则tan B =________.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90 m ,那么该建筑物的高度BC 约为________m(精确到1 m ,参考数据:3≈1.73). 16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D =________.17.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为________. 18.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF ∥MN ,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿河岸走了30 m ,到达B 处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD =10 m .请根据这些数据求出河的宽度为______________m. 三、解答题(19,21,24题每题12分,其余每题10分,共66分) 19.计算:(1)(-2)3+16-2sin 30°+(2 019-π)0;(2)sin 2 45°-cos 60°-cos 30°tan 45°+2sin 2 60°·tan 60°.20.在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.已知2a =3b,求∠B的正弦、余弦和正切值.21.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sin A=45,求AD的长.(第21题)22.数学拓展课程《玩转学具》课堂中,小陆同学发现,一副三角尺中,含45°角的三角尺的斜边与含30°角的三角尺的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角尺直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.(第22题)23.如图,天星山山脚下西端A处与东端B处相距800(1+3)m,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为22m/s.若小明与小军同时到达山顶C处,则小明的行走速度是多少?(第23题)24.如图,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3 m到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2 m,∠BCA=30°,且B,C,D三点在同一直线上.求:(1)树DE的高度;(2)食堂MN的高度.(第24题)答案一、1. B 2. A 3. C 4. B 5. B 6. D7.B 8. B 9. C10.B 点拨:如图,设BC =x .在Rt △ABC 中,∠B =90°,∠BAC =30°,∴AC =2BC =2x ,AB =3BC =3x .根据题意,得AD =BC =x ,AE =DE =AB =3x ,过点E 作EM ⊥AD 于点M ,则AM =12AD =12x .在Rt △AEM 中,cos ∠EAD =AM AE =12x3x=36.(第10题)二、11. 80° 12. 60° 13. 12 14. 23 15. 20816.22 点拨:如图,连接BC ,易知∠D =∠A .∵AB 是⊙O 的直径,∴∠ACB =90°.∵AB =3×2=6,AC =2,∴BC 2=62-22=32, ∴BC =4 2.∴tan D =tan A =BC AC =422=2 2.(第16题)17.123 点拨:如图,过A 点作AD ⊥CB ,交CB 的延长线于点D ,则∠ABD =180°-120°=60°.在Rt △ABD 中,AD =AB ·sin ∠ABD =6×32=33,∴S △ABC =12AD ·BC =12×33×8=12 3.(第17题)18.(30+103)三、19.解:(1)原式=-8+4-2×12+1=-8+4-1+1=-4;(2)原式=(22)2-12-32+2×(32)2×3= 3.20.解:由2a =3b ,可得a b =32.设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k ,∴sin B =b c =2k 13k =21313,cos B =a c =3k 13k =31313,tan B =b a =2k 3k =23.21.解:(1)在Rt △ABE 中,∵∠A =60°,∠ABE =90°,AB =6,tan A =BEAB ,∴∠E =30°,BE =AB ·tan A =6×tan 60°=6 3.在Rt △CDE 中,∵∠CDE =90°,CD =4,sin E =CDCE ,∠E =30°, ∴CE =CD sin E =412=8.∴BC =BE -CE =63-8.(2)∵∠ABE =90°,AB =6,sin A =45=BEAE ,∴可设BE =4x (x >0),则AE =5x ,由勾股定理可得AB =3x , ∴3x =6,解得x =2. ∴BE =8,AE =10.∴tan E =AB BE =68=CD DE =4DE , 解得DE =163.∴AD=AE-DE =10-163=143.22.解:在Rt△ABC中,BC=2,∠A=30°,∴AC=BCtan A=2 3.∴EF=AC=2 3.∵∠E=45°,∴FC=EF·sin E= 6.∴AF=AC-FC=23- 6.23.解:如图,过点C作CD⊥AB于点D,设AD=x,小明的行走速度是a.(第23题)∵∠A=45°,CD⊥AB,∴CD=AD=x,∴AC=2x.在Rt△BCD中,∵∠B=30°,∴BC=CDsin 30°=x12=2x.∵小军的行走速度为22m/s,小明与小军同时到达山顶C处,∴2x22=2xa,解得a=1(m/s).答:小明的行走速度是1 m/s. 24.解:(1)设DE=x.∵AB=DF=2,∴EF=DE-DF=x-2.∵∠EAF=30°,∴AF=EFtan∠EAF=x-233=3(x-2).又∵CD=DEtan ∠DCE =x3=33x,BC=ABtan ∠ACB=233=23,∴BD=BC+CD=23+3 3x.由AF=BD可得3(x-2)=23+33x,解得x=6(m).答:树DE的高度为6 m.(2)如图,延长N M交DB的延长线于点P,则AM=B P=3.(第24题)由(1)知CD=33x=33×6=23,BC=23,∴PD=BP+BC+CD=3+23+23=3+4 3. ∵∠NDP=45°,∴NP=PD=3+4 3.∵MP=AB=2,∴NM=NP-MP=3+43-2=1+43(m).答:食堂M N的高度为(1+43)m.。
人教版九年级数学下册 第28章 锐角三角函数 单元检测试卷(有答案)

人教版九年级数学下册第28章锐角三角函数单元检测试卷(有答案)一、单选题(共10题;共30分)1.在中,,若cosB= ,则sinA的值为( )A. B. C. D.2.在中,°, °,AB=5,则BC的长为( )A. 5tan40°B. 5cos40°C. 5sin40°D.3.sin60°的值等于()A. B. C. D.4.已知在R t △ABC中,∠C = 90°,∠A =,AB = 2,那么BC的长等于A. B. C. D.5.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A. 45°B. 1C.D. 无法确定6.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A. B. C. D.7.sin30°+tan45°﹣cos60°的值等于()A. B. 0 C. 1 D. -8.如图,菱形OABC在平面直角坐标系中的位置如图所示,若sin∠AOC= ,OA=5,则点B的坐标为()A. (4,3)B. (3,4)C. (9,3)D. (8,4)9.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A. B. C. D.10.如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm2二、填空题(共10题;共30分)11.在△ABC中,∠C=90°,若tanA= ,则sinB=________.12.如图,在Rt△ABC中,斜边BC上的高AD=4,,则AC=________.13.计算:2cos60°﹣tan45°=________.14.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式子:①a=c•sinB,②a=c•cosB,③a=c•tanB,④a= ,必定成立的是________.15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为________.16.如图,在△ABC中,∠C=90°,AC=2,BC=1,CD是AB上的高,则tan∠BCD的值是________.17.如图,正方形ABCD的边长为12,点O为对角线AC、BD的交点,点E在CD上,tan∠CBE=,过点C作CF⊥BE,垂足为F,连接OF,将△OCF绕着点O逆时针旋转90°得到△ODG,连接FG、FD,则△DFG的面积是________.18.如图,在8×4的正方形网格中,每个小正方形的边长都是1,若△ABC的三个顶点都在图中相应的格点上,则tan∠ACB=________ .19.如图,在Rt△ABC中,∠B=90°,sin∠BAC= ,点D是AC上一点,且BC=BD=2,将Rt△ABC绕点C旋转到Rt△FEC的位置,并使点E在射线BD上,连接AF交射线BD于点G,则AG 的长为________.20.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则cos∠MCN=________.三、解答题(共8题;共60分)21.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB的值.22.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)23.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)24.我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).25.如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.26.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A 处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).27.目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:=1.41,=1.73)28.如图,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速行驶向港口P,乙船从港口P出发,沿南偏东45°方向匀速行驶驶离岗口P,现两船同时出发,2小时后乙船在甲船的正东方向,求乙船的航行速度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】C4.【答案】A5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】B10.【答案】C二、填空题11.【答案】12.【答案】513.【答案】014.【答案】②15.【答案】16.【答案】17.【答案】18.【答案】19.【答案】20.【答案】三、解答题21.【答案】解:过点A作AH⊥BC于H,∵S△ABC=27,∴,∴AH=6,∵AB=10,∴BH= = =8,∴tanB= = = .22.【答案】解:设AC的长为x,那么BC的长就为2x.x2+(2x)2=AB2,x2+(2x)2=(4)2,x=4.答:河床面的宽减少了4米.23.【答案】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD= ,则AD=AC•sin∠ACD=250 ≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.24.【答案】解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,∴tan∠BCN= =0.75,∴= ,解得:x=1 ≈1.3.经检验:x=1 是原分式方程的解25.【答案】.解:过点A作AE⊥CD于点E,过点B作BF⊥CD,交CD的延长线于点F,则四边形ABFE为矩形,所以AB=EF,AE=BF,由题意可知AE=BF=1 100-200=900(米),CD=19 900米.∵在Rt△AEC中,∠C=45°,AE=900米,∴CE=900米.在Rt△BFD中,∠BDF=60°,BF=900米,∴DF= = =300 (米).∴AB=EF=CD+DF-CE=19 900+300 -900=19 000+300 (米).答:两海岛间的距离AB是(19 000+300 )米26.【答案】解:作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°= x,在直角△BDH中,∠DBH=45°,BH=DH=x,BD= x,∵AH﹣BH=AB=10米,∴x﹣x=10,∴x=5(+1),∴小明此时所收回的风筝的长度为:AD﹣BD=2x﹣x=(2﹣)×5(+1)≈(2﹣1.414)×5×(1.732+1)≈8米27.【答案】解:此车没有超速.理由如下:过C作CH⊥MN,垂足为H,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200× =100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∴车速为=14.6m/s.∵60千米/小时=m/s,又∵14.6<,∴此车没有超速.28.【答案】解:设乙船的航行速度为每小时x海里,2小时后甲船在点B处,乙船在点C 处,则PC=2x海里,过P作PD⊥BC于D,则BP=86﹣2×15=56(海里),在Rt△PDB中,∠PDB=90°,∠BPD=60°,∴PD=PB•cos60°=28(海里),在Rt△PDC中,∠PDC=90°,∠DPC=45°,∴PD=PC•cos45°=2x• = x,∴x=28,即x=14 ≈20,答:乙船的航行速度约为每小时20海里人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、342、在△ABC中,若1sin 02A B -=,则△ABC 是( )A 、等腰三角形B 、等腰直角三角形C 、直角三角形D 、等边三角形 3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21B 、2C 、25D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .32 m B .62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( ) A 、72米 B 、36米 C 、336米 D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( ) A .8.1米 B .17.2米 C .19.7米 D .25.5米 二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α= 9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离(第3题) (第4题) (第6题) ED CB A DB C AB D CE ABC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°, 则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示) 三、解答题(共61分) 14、计算:(8分)(1)45sin 60)︒-︒ (2)3sin60°﹣2cos30°﹣tan60°•tan45°.15、(8分)如图,防洪大堤的横断面是梯形,背水坡AB 的坡比i =(指坡面的铅直高(第10题)(第11题) (第13题)D 图1 C图2度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A 处水平飞行至B 处需8秒,在地面C 处同一方向上分别测得A 处的仰角为75°,B 处的仰角为30°.已知无人飞D CBA机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01) (2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
人教版九年级数学下册《第28章锐角三角函数》单元检测试卷(有答案)

2017-2018学年度第二学期人教版九年级数学下册第28章锐角三角函数单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.梯子(长度不变)跟地面所成的锐角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.的值越大,梯子越陡B.的值越大,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的函数值无关2.温州市处于东南沿海,夏季经常遭受台风袭击.一次,温州气象局测得台风中心在温州市的正西方向千米的处(如图),以每小时千米的速度向东偏南的方向移动,并检测到台风中心在移动过程中,温州市将受到影响,且距台风中心千米的范围是受台风严重影响的区域.则影响温州市的时间会持续多长?()A. B. C. D.3.如图,两建筑物水平距离为米,从点测得对点的俯角为,对点的俯角为,则建筑物的高约为()A.米B.米C.米D.米4.在如图所示的方格纸中,点、、都在方格线的交点.则A. B. C. D.5.已知,且,则锐角等于()A. B.C. D.无法求6.如图,一根铁管固定在墙角,若米,,则铁管的长为()A.米B.米C.米D.米7.为美化环境,在空地上种植售价为元/平方米的一种草皮,已知,,,则购买草皮至少需要()A.元B.元C.元D.元8.如图,在中.,,,则A. B.C. D.9.堤的横断面如图.堤高是米,迎水斜坡的长时米,那么斜坡的坡度是()A. B.C. D.10.小明去爬山,在山脚看山顶角度为,小明在坡比为的山坡上走米,此时小明看山顶的角度为,求山高()A.米B.米C.米D.米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在中,,,,则等于________.12.小美同学从地沿北偏西方向走到地,再从地向正南方向走到地,此时小美同学离地________.13.如图,岛在岛的北偏东方向,岛在岛的北偏西方向,若海里,海里,则,两岛的距离等于________ 海里.(结果保留根号)14.如图,在中,,是高,如果,,那么________.(用锐角的三角比表示)15.如图,当小明沿坡度的坡面由到行走了米,那么小明行走的水平距离________米.(结果可以用根号表示).16.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成角时,测得旗杆在地面上的投影长为米,则旗杆的高度是________米.17.在离建筑物米处,用测角仪测得建筑物顶的仰角为,已知测角仪的高度为米,求这个建筑的高度________米(精确到米)18.如图,的三个顶点分别在边长为的正方形网格的格点上,则________.(填“ ”“ ”“ ”)19.如图,渔船在处看到灯塔在北偏东方向上,渔船向正东方向航行了海里到达处,在处看到灯塔在正北方向上,这时渔船与灯塔的距离是________.20.请从以下两题中任选一题作答,若多选,则按所选的第一题计分.如图所示的四边形中,若去掉一个的角得到一个五边形,则________.如果某人沿坡度的斜坡前进,那么他所在的位置比原来的位置升高了________.(结果精确到)三、解答题(共 6 小题,每小题 10 分,共 60 分)21.21..22.如图,一艘货轮以海里/时的速度在海面上航行,当它行驶到处时,发现在它的北偏东方向有一港口,货轮继续向北航行分钟后到达处,发现港口在它的北偏东方向上,若货轮急需到港口补充供给,请求出处与港口的距离的长度.(结果保留整数)(参考数据:,,,)23.如图,在小山的东侧处有一热气球,以每分钟米的速度沿着仰角为的方向上升,分钟后上升到处,这时气球上的人发现在点的正西方向俯角为的处有一着火点,求气球的升空点与着火点之间的距离.(结果保留根号)24.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.求、之间的路程;请判断此出租车是否超过了城南大道每小时千米的限制速度?25.如图,小明想测山高和索道的长度.他在处仰望山顶,测得仰角,再往山的方向(水平方向)前进至索道口处,沿索道方向仰望山顶,测得仰角.求这座山的高度(小明的身高忽略不计);求索道的长(结果精确到).(参考数据:,,,)26.某居民楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,,,斜坡长为米,坡角.为了减缓坡面防止山体滑坡,居委会决定对该斜坡进行改造.经地质人员勘测,当坡角不超过时,可确保山体不滑坡.如果改造时保持坡脚不动,坡顶沿向左移米到点处,问这样改造能确保安全吗?(参考数据:,,,,)答案1.A2.D3.A4.B5.C6.C7.C8.B9.C10.B11.12.13.14.15.16.17.18.19.海里20.21.解:;;;.22.解:海里,在中,,则,在中,,即,于是,解得,,在中,,,则海里.23.解:过点作于点,由题意得,,,,∴ ,∵ ,在中,,∵ ,∴ ,∴,即气球的升空点与着火点之间的距离为.24.解:由题意知:米,,,在直角三角形中,∵ ,∴ 米,在直角三角形中,∵ ,∴米,∴(米); ∵从处行驶到处所用的时间为秒,∴速度为米/秒,∵ 千米/时米/秒,而,∴此车超过了每小时千米的限制速度25.索道长约为米.26.解;过作,垂足为,连接,∵斜坡长为米,坡角,∴ ,,∴ ,,∴,∴ ,∴这样改造不能确保安全.。
人教版九年级数学下册第28章《锐角三角函数》综合测试卷(含答案)

人教版数学九年级下册 第28章 锐角三角函数综合测试卷(时间90分钟,满分120分)一.选择题(本大题共10小题,每小题3分,共30分)1.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cosα的值是( ) A.34 B.43 C.35 D.452.如图,CD 是Rt △ABC 斜边上的高.若AB =5,AC =3,则tan ∠BCD 为( ) A.43 B.34C.45D.353.一个公共房门前的台阶高出地面1.2 m ,台阶拆除后,换成供轮椅行走的斜坡,数据如图1所示,则下列关系或说法正确的是( B )A .斜坡AB 的坡比是10° B .斜坡AB 的坡比是tan10°C .AC =1.2tan10° mD .AB = 1.2cos10°m4.如图,在坡度为1∶2的山坡上种树,要求相邻两棵树的水平距离是6 m ,则斜坡上相邻两棵树的坡面距离是( B )A .3 mB .3 5 mC .12 mD .6 m5.下列式子:①sin60°>cos30°;②0<tanα<1(α为锐角);③2cos30°=cos60°;④sin30°=cos60°,其中正确的个数有()A.1个B.2个C.3个D.4个6.若(a-bcos60°)2+|b-2tan45°|=0,则(a-b)2019的值是( )A.1 B.-1 C.0 D.20197.如图,河堤横断面迎水坡AB的坡比是1∶3,堤高BC=10 m,则坡面AB的长度是() A.15 m B.20 3 m C.20 m D.10 3 m8.如图,AC⊥BC,AD=a,BD=b,∠A=α,∠B=β,则AC等于()A.asinα+bcosβ B.acosα+bsinβC.asinα+bsinβ D.acosα+bcosβ9. 如图,长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.23m B.26m C.(23-2)m D.(26-2)m10.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60 n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P之间的距离为()A.60 3 n mile B.60 2 n mile C.30 3 n mile D.30 2 n mile二.填空题(共8小题,3*8=24)11.如图,∠ACB =90°,CD ⊥AB 于点D ,sinα=13,AC =4,则BC =_______,AB =________,CD =_________.12.在△ABC 中,若|sinA -32|+|cosB -22|=0,则∠C =______. 13.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,则树高AB =________m.14. 如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是________.15.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D ,如果AD =2 2,那么△ABC 的周长为________.16.如图,点P 在等边三角形ABC 的内部,且PC =6,PA =8,PB =10,将线段PC 绕点C 顺时针旋转60°得到P′C ,连结AP′,则sin ∠PAP′的值为________.17.如图,∠AOB 的边OB 与x 轴正半轴重合,P 是OA 上的一动点,N(3,0)是OB 上的一定点,M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为________.18.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF ∥MN ,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿河岸走了30 m ,到达B 处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD =10 m .请根据这些数据求出河的宽度为______________m.三.解答题(共7小题,66分)19.(8分) 如图,在坐标平面内有一点P(-2,5),连结OP.求OP 与x 轴的负半轴的夹角α的各个三角函数值.20.(8分) 已知tanα的值是方程x 2-x -2=0的一个根,求式子3sinα-cosα2cosα+sinα的值.21.(8分) 如图,在矩形ABCD 中,BC =2.将矩形ABCD 绕点D 顺时针旋转90°,点A ,C 分别落在点A′,C′处,如果点A′,C′,B 在同一条直线上,求tan ∠ABA′的值.22.(10分)为了保证端午龙舟赛在汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).23.(10分) 如图,在平面直角坐标系中,矩形OABC的顶点坐标为O(0,0),A(23,0),B(23,2),把矩形OABC绕点O按逆时针方向旋转α度,使点B正好落在y轴正半轴上,得到矩形OA1B1C1.(1)求角α的度数;(2)求直线A1B1的函数关系式,并判断直线A1B1是否经过点B,为什么?24.(10分) 如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100 km 的点B处,再航行至位于点B的北偏东75°且与点B相距200 km的点C处.(1)求点C与点A的距离(精确到1 km);(2)确定点C相对于点A的方向.(参考数据:2≈1.414,3≈1.732)25.(12分) 如图为某区域部分交通线路图,其中直线l1∥l2∥l3,直线l与直线l1,l2,l3都垂直,垂足分别为点A、点B和点C,(高速路右侧边缘),l2上的点M位于点A的北偏东30°方向上,且BM=3千米,l3上的点N位于点M的北偏东α方向上,且cosα=13 13,MN=213千米,点A和点N是城际线L上的两个相邻的站点.(1)求l2和l3之间的距离;(2)若城际火车平均时速为150千米/小时,求市民小强乘坐城际火车从站点A到站点N需要多少小时?(结果用分数表示)参考答案:1-5DABBA 6-10BCBBB 11. 2,32,4312. 75° 13. 5.5 14.3215.6+2 3 16.35 17.(32,32)18.(30+103)19. 解:∵OP =OA 2+PA 2=22+52=4+25 =29,∴sinα=PA OP =529=52929,cosα=OA OP =229=22929,tanα=PA OA =52.20. 解:解方程x 2-x -2=0 得x 1=2,x 2=-1. 又∵tanα>0,∴tanα=2, 又∵tanα=sinαcosα,∴原式=3tanα-12+tanα=3×2-12+2=5421. 解: 设AB =x ,则CD =x ,A′C =x +2. ∵AD ∥BC ,∴C′D BC =A′D A′C ,即x 2=2x +2,解得x 1=5-1,x 2=-5-1(舍去). ∵AB ∥CD ,∴∠ABA′=∠BA′C. ∵tan ∠BA′C =BC A′C =25-1+2=5-12,∴tan∠ABA′=5-1 2.22. 解:如图,过P点作PC⊥AB于点C,由题意可知∠PAC=60°,∠PBC=30°,在Rt△PAC中,PCAC=tan∠PAC,∴AC=33PC,在Rt△PBC中,PCBC=tan∠PBC,∴BC=3PC,∵AB=AC+BC=33PC+3PC=10×40=400,∴PC=1003,答:建筑物P到赛道AB的距离为1003米23. 解:(1)∵OA1=23,A1B1=2,∴tan∠A1OB1=223=33,∴锐角∠A1OB1=30°,∴∠α=60°(2)由点A1(3,3),B1(0,4)得直线A1B1表达式为y=-33x+4,当x=23时,y=-33×23+4=2,∴点B(23,2)在直线A1B1上24. 解:(1)过点A作AD⊥BC于点D.由图得,∠ABC=75°-15°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100.∴BD=50,AD=50 3.∴CD=BC-BD=200-50=150.在Rt△ACD中,由勾股定理得:AC=AD2+CD2=1003≈173(km).即点C与点A的距离约为173 km(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°,∴∠CAF=∠BAC-∠BAF=90°-15°=75°.答:点C位于点A的南偏东75°方向25. 解:(1)如图,过点M作MD⊥NC于点D,∵cosα=1313,MN =213千米, ∴cosα=DM MN =DM 213=1313,解得DM =2千米,答:l 2和l 3之间的距离为2千米(2)∵点M 位于点A 的北偏东30°方向上,且BM =3千米, ∴tan30°=BM AB =3AB =33,解得AB =3千米, 可得AC =3+2=5(千米),∵MN =213千米,DM =2千米,∴DN =(213)2-22=43(千米), 则NC =DN +BM =53(千米),∴AN =AC 2+CN 2=(53)2+52=10(千米), ∵城际火车平均时速为150千米/小时,∴市民小强乘坐城际火车从站点A 到站点N 需要10150=115小时。
2018-2019学年人教版九年级数学第二学期第28章锐角三角函数单元检测卷及答案

九年级数学下册第28章锐角三角函数单元检测卷时间120分钟分数120分一、选择题(每小题3分计30分)1.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的5倍,则∠A 的正弦值( )A .扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tanA 的值是( ) A.34 B.43 C.35 D.453.计算2cos60°的结果为( )A .1 B. 3 C. 2 D.124.在Rt △ABC 中,∠C =90°,若AB =4,sinA =35,则斜边上的高等于( ) A.6425 B.4825 C.165 D.1255.如图K -17-3,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为( )图K -17-3A.4 B.25C.181313D.1213136.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,如果a2+b2=c2,那么下列结论正确的是( )A.csinA=a B.bcosB=cC.atanA=b D.ctanB=b7.某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为( )A.3.5sin29° B.3.5cos29° C.3.5tan29° D.3.5 cos29°8.如图K-22-4,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是( )图K-22-4A.20(3+1)米/秒 B.20(3-1)米/秒C.200米/秒 D.300米/秒9.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1∶2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A.29.1米 B.31.9米 C.45.9米 D.95.9米10.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图K-20-3,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( )图K-20-3A.11-sinα米 B.11+sinα米C.11-cosα米 D.11+cosα米二、填空题(每小题3分计18分)11.在Rt△ABC中,∠C=90°,AC∶BC=1∶2,则sinB=________.12.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是________.13.若cosα是关于x的一元二次方程2x2-3 3x+3=0的一个根,则锐角α=________.14.如图K-21-5,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10 m的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE =1.5 m,则这棵树的高度为________m.(结果保留小数点后一位.参考数据:sin54°≈0.8090,cos54°≈0.5878,tan54°≈1.3764)图K-21-515.一艘货轮由西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为________海里(结果保留根号).16.如图K-22-7,小华站在河岸上的点G处看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离DG=1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4∶3,坡长AB=8米,点A,B,C,D,F,G在同一平面内,则此时小船C到岸边的距离CA的长为__________米(结果保留根号).图K-22-7三、解答题(17题10分;18题10分;19题12分;20题12分;21题14分;22题14分;计72分)17.在Rt△ABC中,∠C=90°,AC=1 cm,BC=2 cm,求sinA和sinB的值.18.如图K-17-12,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1)求sin∠BAC的值;(2)如果OE⊥AC,垂足为E,求OE的长;(3)求tan∠ADC的值.图K-17-1219.某太阳能热水器的横截面示意图如图K-18-4所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD.支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80 cm,AC=165 cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果均保留根号)图K-18-420.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,根据下列条件解直角三角形.(1)b=10,∠A=60°;(2)a=25,b=2 1521.甲、乙两艘轮船于上午8时同时从A地分别沿北偏东23°和北偏西67°的方向出发,如果甲轮船的速度为24海里/时,乙轮船的速度是32海里/时,那么下午1时两艘轮船相距多少海里?22.某广场的旗杆AB旁边有一个半圆的时钟模型,如图K-20-12所示,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径为2米,旗杆的底端A到钟面9点处刻度C的距离为5米.一天李华同学观察到阳光下旗杆顶端B的影子刚好投到钟面11点的刻度上,同时测得1米长的标杆的影长为1.6米.(1)计算时钟的时针从9点转到11点时的旋转角是多少度;(2)求旗杆AB的高度(结果精确到0.1米,参考数据:2≈1.414,3≈1.732)图K-20-1223.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长(精确到1米)(参考数据:3≈1.7)?九年级数学下册第28章锐角三角函数单元检测卷时间120分钟分数120分二、选择题(每小题3分计30分)1.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的5倍,则∠A 的正弦值( D )A .扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tanA 的值是( A ) A.34 B.43 C.35 D.453.计算2cos60°的结果为( A )A .1 B. 3 C. 2 D.124.在Rt △ABC 中,∠C =90°,若AB =4,sinA =35,则斜边上的高等于(B ) A.6425 B.4825 C.165 D.1255.如图K -17-3,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为( A )图K-17-3A.4 B.25C.181313D.1213136.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,如果a2+b2=c2,那么下列结论正确的是( A )A.csinA=a B.bcosB=cC.atanA=b D.ctanB=b7.某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为( B )A.3.5sin29° B.3.5cos29° C.3.5tan29° D.3.5 cos29°8.如图K-22-4,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是( A )图K-22-4A.20(3+1)米/秒 B.20(3-1)米/秒C.200米/秒 D.300米/秒9.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1∶2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( B )A.29.1米 B.31.9米 C.45.9米 D.95.9米10.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图K-20-3,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( A )图K-20-3A.11-sinα米 B.11+sinα米C.11-cosα米 D.11+cosα米二、填空题(每小题3分计18分)11.在Rt△ABC中,∠C=90°,AC∶BC=1∶2,则sinB=________.[答案] 3 412.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是________.[答案] 3 713.若cosα是关于x的一元二次方程2x2-3 3x+3=0的一个根,则锐角α=________.[答案] 30°14.如图K-21-5,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10 m的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE =1.5 m,则这棵树的高度为________m.(结果保留小数点后一位.参考数据:sin54°≈0.8090,cos54°≈0.5878,tan54°≈1.3764)图K-21-5[答案] 15.315.一艘货轮由西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为________海里(结果保留根号).[答案]43-416.如图K-22-7,小华站在河岸上的点G处看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离DG=1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4∶3,坡长AB=8米,点A,B,C,D,F,G在同一平面内,则此时小船C到岸边的距离CA的长为__________米(结果保留根号).图K-22-7[答案] (8 3-5.5)三、解答题(17题10分;18题10分;19题12分;20题12分;21题14分;22题14分;计72分)17.在Rt△ABC中,∠C=90°,AC=1 cm,BC=2 cm,求sinA和sinB的值.解:在Rt△ABC中,由勾股定理,得AB=AC2+BC2=12+22=5(cm),∴sinA=BCAB=25=2 55,sinB=ACAB=15=55.即sinA=255,sinB=55.18.如图K-17-12,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1)求sin∠BAC的值;(2)如果OE⊥AC,垂足为E,求OE的长;(3)求tan∠ADC的值.图K-17-12 解:(1)∵AB是⊙O的直径,∴∠ACB=90°. ∵AB=5,BC=3,∴sin∠BAC=BCAB=35.(2)∵OE⊥AC,O是⊙O的圆心,∴E是AC的中点,∴OE=12BC=32.(3)∵AC=AB2-BC2=4,∴tan∠ADC=tan∠ABC=ACBC=43.19.某太阳能热水器的横截面示意图如图K-18-4所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD.支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80 cm,AC=165 cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果均保留根号)图K-18-4解:(1)在Rt△CDE中,∠CDE=30°,DE=80 cm,∴cos30°=CD80=32,解得CD=40 3(cm).即支架CD的长为40 3 cm.(2)在Rt△OAC中,∠BAC=30°,AC=165 cm,∴tan30°=OC165=33,解得OC=55 3(cm),∴OA=2OC=110 3 cm,OB=OD=OC-CD=55 3-40 3=15 3(cm),AB=OA-OB=110 3-15 3=95 3(cm).即真空热水管AB的长为95 3 cm.20.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,根据下列条件解直角三角形.(1)b=10,∠A=60°;(2)a=25,b=2 15解: (1)∠B=90°-∠A=90°-60°=30°.∵cosA=bc,∴c=bcosA=10cos60°=1012=20,∴a=c2-b2=202-102=10 3.(2)c=a2+b2=(2 5)2+(215)2=4 5.∵tanA=ab=2 5215=33,∴∠A=30°,∴∠B=90°-∠A=90°-30°=60°.21.甲、乙两艘轮船于上午8时同时从A地分别沿北偏东23°和北偏西67°的方向出发,如果甲轮船的速度为24海里/时,乙轮船的速度是32海里/时,那么下午1时两艘轮船相距多少海里?解:如图所示,设下午1时,甲轮船到达B,乙轮船到达C,根据题意知∠BAE =23°,∠CAE=67°,所以∠BAC=∠CAE+∠BAE=90°.又因为AB=24×5=120,AC=32×5=160,由勾股定理得BC2=1202+1602=40000,所以BC=200,答:下午1时两艘轮船相距200海里.22.某广场的旗杆AB旁边有一个半圆的时钟模型,如图K-20-12所示,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径为2米,旗杆的底端A到钟面9点处刻度C的距离为5米.一天李华同学观察到阳光下旗杆顶端B的影子刚好投到钟面11点的刻度上,同时测得1米长的标杆的影长为1.6米.(1)计算时钟的时针从9点转到11点时的旋转角是多少度;(2)求旗杆AB的高度(结果精确到0.1米,参考数据:2≈1.414,3≈1.732)图K-20-12解:(1)时钟的时针从9点转到11点转过2个大格,则旋转角的度数为2×30°=60°.(2)如图,过点D作DE⊥AC于点E,DF⊥AB于点F,设半圆圆心为O,连接OD.∵点D在11点的刻度上,∴∠COD=60°,∴DE=OD·sin60°=2×32=3(米),OE=OD·cos60°=2×12=1(米),∴CE=2-1=1(米),∴DF=AE=5+1=6(米).∵同时测得1米长的标杆的影长为1.6米,∴DFBF=1.61,∴BF=61.6=154(米),∴AB=BF+DE=154+3≈5.5(米).答:旗杆AB的高度约为5.5米.23.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长(精确到1米)(参考数据:3≈1.7)?(1) 解:连接AP,由题意得AH⊥MN,AH=15,AP=39,在Rt△APH中,由勾股定理得PH=36.答:此时汽车与点H的距离为36米;(2) 解:由题意可知,PQ段高架道路旁需要安装隔音板,QC⊥AB,∠QDC=30°,QC=39.在Rt△DCQ中,DQ=2QC=78,在Rt△ADH中,DH=AH·cot30°=15 3.∴PQ=PH-DH+DQ≈114-15×1.7=88.5≈89(米)。
2018人教版九年级下《第28章锐角三角函数》单元检测试卷含答案

第28章锐角三角函数单元检测一、选择题(共9题;共27分)1.如图,一座厂房屋顶人字架的跨度AC=12m,上弦AB=BC,∠BAC=25°.若用科学计算器求上弦AB的长,则下列按键顺序正确的是()A. B.C. D.2.下列三角函数值最大的是()A. tan46°B. sin50°C. cos50°D. sin40°3.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A. 30+10B. 40C. 45D. 30+154.已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A. 1:B. :1C. 1:D. :15.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()A. 25海里B. 25海里C. 50海里D. 25海里6.如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方向角为北偏东80°,测得C处的方向角为南偏东25°,航行1小时后到达C处,在C处测得A的方向角为北偏东20°,则C到A的距离是()A. 15 kmB. 15 kmC. 15(+ )kmD. 5(+3 )km7.如图,为了测得电视塔的高度EC,在D处用高2米的测角仪AD,测得电视塔顶端E的仰角为45°,再向电视塔方向前进100米到达B处,又测得电视塔顶端E的仰角为60°,则电视塔的高度EC为()A. (50+152)米B. (52+150)米C. (50+150)米D. (52+152)米8.小宇想测量他所就读学校的高度,他先站在点A处,仰视旗杆的顶端C,此时他的视线的仰角为60°,他再站在点B处,仰视旗杆的顶端C,此时他的视线的仰角为45°,如图所示,若小宇的身高为1.5m,旗杆的高度为10.5cm,则AB的距离为()A. 9mB. (9﹣)mC. (9﹣3 )mD. 3 m9.如图,AC是电线杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为( )A. 米B. 米C. 6·cos52°米D. 米二、填空题(共8题;共24分)10.规定sin(α﹣β)=sinα•cosβ﹣cosα•sinβ,则sin15°= ________.11.在Rt△ABC中,∠ACB=90°,BC=1,AB=2,CD⊥AB于D,则tan∠ACD=________.12.如图所示,BD⊥AC于点D ,DE∥AB ,EF⊥AC于点F ,若BD平分∠ABC ,则与∠CEF相等的角(不包括∠CEF)的个数是________.13.计算:cot44°•cot45°•cot46°=________14.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是________ m(结果保留根号).15.在△ABC中,∠C=90°,sinA=,BC=12,那么AC=________.16.一艘观光游船从港口A以北偏东60°的方向出港观光,航行60海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事故船C处所需的时间大约为________ 小时(用根号表示).17.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于________三、解答题(共6题;共36分)18.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)19.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)20.如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈ ,计算结果用根号表示,不取近似值).21.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).22.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板的长为5米,点、、在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)23.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).四、综合题(共13分)24.为倡导“低碳生活”,常选择以自行车作为代步工具.如图1所示是一辆自行车的实物图,车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,车轮半径28cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2(1)求车座点E到地面的距离;(结果精确到1cm)(2)求车把点D到车架档直线AB的距离.(结果精确到1cm).参考答案一、选择题1.B2.A3.A4.A5.D6.D7.A8.C9.D二、填空题10.11.12.4 13.1 14.15.5 16.17.三、解答题18.解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.19.解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,DG∥HC,∴∠DAH=∠FAE=30°,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3 ,∴CG=3,设BC为x,在直角三角形ABC中,AC= = ,∴DG=3 + ,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3 + )解得:x≈13,∴大树的高度为:13米.20.解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15 ,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60 ﹣15 =45 ,在RT△ABM中,tan∠ABM= = ,∴AM=27 ,∴AC=AM+CM=15+27 .21.解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=AB=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.22.解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板约会加长2.07米.23.解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,sin∠DBF= = ,cos∠DBF= = ,∵BD=6,∴DF=3,BF=3 ,∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=3 ,CF=BE=CD﹣DF=1,在Rt△ACE中,∠ACE=45°,∴AE=CE=3 ,∴AB=3 +1.答:铁塔AB的高为(3 +1)m.四、综合题24.(1)解:作EF⊥AB于点F,如右图所示,∵AC=45cm,EC=20cm,∠EAB=75°,∴EF=AE•sin75°=(45+20)×0.9659≈63cm,即车座点E到车架档AB的距离是63cm,∵车轮半径28cm,∴车座点E到地面的距离是63+28=91cm (2)解:作EF⊥AB于点F,如右图所示,∵AC=45cm,EC=20cm,∠EAB=75°,∴EF=AE•sin75°=(45+20)×0.9659≈63cm,即车座点E到车架档AB的距离是63cm.。
人教版2018届九年级下《第28章锐角三角函数》检测卷含答案

第二十八章《锐角三角函数》检测卷时间:120分钟 满分:150分题号 -一- -二二 三四 五 六七八总分得分、选择题(本大题共10小题,每小题4分,满分40分)1. tan30的值等于( )2.如图,在 Rt A ABC 中,/ C = 90° AB = 2BC ,贝U sinB 的值为()33. 已知在 Rt △ ABC 中,/ C = 90 ° sinA = 3,则 cosB的值为()A 三 B.3 C.5 D ・44455A . 30 °B . 60 °C . 90 °D . 120 ° A 5.在等腰厶 ABC 中,AB = AC = 10cm , BC = 12cm ,贝U co%的值是()- 3 5A.”B.5C.4D.4 6. 如图,在边长为 1的小正方形组成的网格中,△ ABC 的三个顶点均在格点上,则 tan / ABC 的值为() 3 3 10 BQ C W D . 17.如图,一河坝的横断面为等腰梯形 A BCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i = 1 : 1.5,则坝底AD 的长度为()A . 26 米B . 28 米C . 30 米D . 46 米&如图,为了测得电视塔的高度 AB ,在D 处用高为1米的测角仪CD 测得电视塔顶 端A 的仰角为30°再向电视塔方向前进 100米到达F 处,又测得电视塔顶端 A 的仰角为 60 °则这个电视塔的高度 AB 为( )B FC 迪 C. 3 3 D.2A.1B •乎 2 2□ AZ Z □ /\二-□4 .在△ ABC 中,若 si nA —+ cosB — 于=0,则/ C 的度数为(疔D . 1第6题图A. 50 ,3米B . 51 米C . (50 . 3 + 1)米D . 101 米9. 如图,O O的直径AB= 4, BC切O O于点B, OC平行于弦AD , OC= 5,贝U AD的110. 如图,在△ ABC 中,/ ACB = 90° AB = 10, tanA =-.点P 是斜边 AB 上一个动点,过点P 作PQ 丄AB ,垂足为P ,交边AC (或边CB )于点Q.设AP = x ,A APQ 的面积为y ,则 y 与x 之间的函数图象大致为()二、填空题(本大题共4小题,每小题5分,满分20分)11. _______________________________________________________ 在△ ABC 中,/ C = 90° AB = 13, BC = 5,贝U tanB = ______________________________________cos 0= _______ .13.如图,一艘轮船在小岛 A 的北偏东60。
【人教版】2018届九年级下《第28章锐角三角函数》检测卷含答案

【人教版】2018届九年级下《第28章锐角三角函数》检测卷时间:120分钟 满分:150分题号 一 二 三 四 五 六 七 八 总分 得分一、选择题(本大题共10小题,每小题4分,满分40分) 1.tan30°的值等于( ) A.13 B.22 C.33 D.322.如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( )A.12B.22C.32D .1第2题图 第6题图 第7题图3.已知在Rt △ABC 中,∠C =90°,sin A =34,则cos B 的值为( )A.74 B.34 C.35 D.454.在△ABC 中,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -322=0,则∠C 的度数为( )A .30°B .60°C .90°D .120°5.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则cos A2的值是( )A.35B.45C.34D.546.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为( )A.35B.34C.105D .1 7.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( )A .26米B .28米C .30米D .46米8.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD 测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB 为( )A .503米B .51米C .(503+1)米D .101米9.如图,⊙O 的直径AB =4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC =5,则AD 的长为( )A.65B.85C.75D.23510.如图,在△ABC 中,∠ACB =90°,AB =10,tan A =12.点P 是斜边AB 上一个动点,过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )二、填空题(本大题共4小题,每小题5分,满分20分) 11.在△ABC 中,∠C =90°,AB =13,BC =5,则tan B =________.12.菱形的两条对角线长分别为16和12,较长的对角线与菱形的一边的夹角为θ,则cos θ=________.13.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.14.规定:sin(-x )=-sin x ,cos(-x )=cos x ,sin(x +y )=sin x ·cos y +cos x ·sin y .据此判断下列等式成立的是__________(填序号).①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sin x ·cos x ;④sin(x -y )=sin x ·cos y -cos x ·sin y .三、(本大题共2小题,每小题8分,满分16分)15.计算: (1)3tan30°+cos 245°-2sin60°; (2)tan 260°-2sin45°+cos60°.16.根据下列条件解直角三角形:(1)在Rt△ABC中,∠C=90°,c=83,∠A=60°;(2)在Rt△ABC中,∠C=90°,a=36,b=9 2.四、(本大题共2小题,每小题8分,满分16分)17.巢湖为我国五大淡水湖之一,是皖中著名的旅游胜地.如图,某同学欲测量巢湖的东西向长度,于是他选择了巢湖沿岸三个地点A,B,C,并测得B,C两地直线距离为40km,∠A=45°,∠B=30°,求巢湖东西向长度AB(结果精确到0.1km,参考数据:3≈1.73).18.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:课题测量教学楼高度方案一二图示测得数据CD=6.9米,∠ACG=22°,∠BCG=13°.EF=10米,∠AEB=32°,∠AFB=43°.参考数据sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin13°≈0.22,cos13°≈0.97,tan13°≈0.23.sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.请你选择其中的一种方法,求教学楼的高度(结果保留整数).五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,点E 是AB 的中点,tan D =2,CE =1,求sin ∠ECB的值和AD 的长.20.将一盒足量的牛奶按如图①所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P 时停止倒入.图②是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm ,参考数据:3≈1.73,2≈1.41).六、(本题满分12分)21.如图,在四边形ABCD 中,∠BCD 是钝角,AB =AD ,BD 平分∠ABC .若CD =3,BD =26,sin ∠DBC =33,求对角线AC 的长.七、(本题满分12分)22.某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,如图,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D 处沿山坡向着雕像方向前进1620尺到达E 点,在点E 处测得雕像顶端A 的仰角为60°,求雕像AB 的高度.八、(本题满分14分)23.如图,在南北方向的海岸线MN 上,有A 、B 两艘巡逻船,现均收到故障船C 的求救信号.已知A 、B 两船相距100(3+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C 、A 与D 之间的距离AC 和AD (如果运算结果有根号,请保留根号);(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 航行去营救船C ,在去营救的途中有无触暗礁危险(参考数据:2≈1.41,3≈1.73)?参考答案与解析1.C 2.C 3.B 4.D 5.B 6.B 7.D 8.C9.B 解析:连接BD .∵AB 是⊙O 的直径,AB =4,∴∠ADB =90°,OB =2.∵OC ∥AD ,∴∠A =∠BOC ,∴cos A =cos ∠BOC .∵BC 切⊙O 于点B ,∴OB ⊥BC ,∴cos ∠BOC =OB OC =25,∴cos A =cos ∠BOC =25.又∵cos A =AD AB ,AB =4,∴AD =85.故选B.10.B 解析:当点Q 在AC 上时,∵在Rt △APQ 中,tan A =12,AP =x ,∴PQ =12x ,∴y =12AP ·PQ=12x ·12x =14x 2;当点Q 在BC 上时,∵AP =x ,AB =10,∴BP =10-x .在Rt △BPQ 中,tan B =AC BC =1tan A =2,∴PQ =2BP =20-2x ,∴y =12AP ·PQ =12x (20-2x )=-x 2+10x ,∴该函数图象前半部分是抛物线,开口向上,后半部分也为抛物线,开口向下,并且当Q 点在C 时,x =8,y =16.故选B.11.125 12.45 13.40+403314.②③④ 解析:cos(-60°)=cos60°=12,故①错误;sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°=12×22+32×22=24+64=2+64,故②正确;sin2x =sin(x +x )=sin x ·cos x +cos x ·sin x=2sin x ·cos x ,故③正确;sin(x -y )=sin x ·cos(-y )+cos x ·sin(-y )=sin x ·cos y -cos x ·sin y ,故④正确.故答案为②③④.15.解:(1)原式=3×33+⎝⎛⎭⎫222-2×32=3+12-3=12.(4分)(2)原式=(3)2-2×22+12=3-2+12=72- 2.(8分) 16.解:(1)∠B =30°,a =12,b =4 3.(4分)(2)∠A =30°,∠B =60°,c =6 6.(8分)17.解:过点C 作CD ⊥AB 于点D ,∴∠ADC =∠BDC =90°.(1分)∵在Rt △BDC 中,∠B =30°,BC =40km ,∴CD =BC ·sin B =40×12=20(km),BD =BC ·cos B =40×32=203(km).(4分)∵在Rt △ADC中,∠A =45°,CD =20km ,∴AD =CD =20km ,∴AB =AD +BD =20+203≈54.6(km).(7分)答:巢湖东西向长度AB 大约是54.6km.(8分)18.解:若选择方法一,解法如下:∵在Rt △BGC 中,∠BCG =13°,BG =CD =6.9米,tan ∠BCG =BG CG ,∴CG =BG tan13°≈6.90.23=30(米).(3分)∵在Rt △ACG 中,∠ACG =22°,CG ≈30米,tan ∠ACG =AGCG,∴AG =CG ×tan22°≈30×0.40=12(米),(6分)∴AB =AG +BG =12+6.9≈19(米).(7分) 答:教学楼的高度约为19米.(8分)若选择方法二,解法如下:∵在Rt △AFB 中,∠AFB =43°,tan ∠AFB =AB FB ,∴FB =AB tan43°≈AB0.93.(3分)∵在Rt △ABE 中,∠AEB =32°,tan ∠AEB =AB EB ,∴EB =AB tan32°≈AB0.62.(5分)∵EF =EB -FB =10米,∴AB 0.62-AB0.93=10,∴AB ≈19米.(7分) 答:教学楼的高度约为19米.(8分)19.解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°.∵点E 是AB 的中点,CE =1,∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB .(3分)∵BC CD =32,∴设BC =3x ,CD =2x .在Rt △ACD 中,tan D =2,∴AC CD =2,∴AC =4x .在Rt △ACB 中,由勾股定理得AB =AC 2+BC 2=5x ,∴sin ∠ECB =sin B =AC AB =45.(7分)由AB =2,得x =25,∴AD =AC 2+CD 2=(4x )2+(2x )2=25x =25×25=455.(10分)20.解:过点P 作PN ⊥AB 于点N .(1分)由题意可得∠APB =∠90°,ABP =30°,AB =8cm ,∴AP =4cm ,BP =AB ·cos30°=43cm.(4分)∵S △APB =12AB ·PN =12AP ·BP ,∴PN =AP ·BP AB =4×438=23(cm),(8分)∴9-23≈5.5(cm).(9分)答:容器中牛奶的高度约为5.5cm.(10分)21.解:如图,过点D 作DE ⊥BC 交BC 的延长线于点E ,(1分)则∠E =90°.∵在Rt △BDE 中,sin ∠DBC =33,BD =26,∴DE =22,∴BE =BD 2-DE 2=4.∵在Rt △CDE 中,CD =3,DE =22,∴CE =CD 2-DE 2=1,∴BC =BE -CE =3,∴BC =CD ,∴∠CBD =∠CDB .(4分)∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴∠ABD =∠CDB ,∴AB ∥CD .同理AD ∥BC ,∴四边形ABCD 是菱形.(7分)设AC 交BD 于O ,则AC ⊥BD ,AO =CO =12AC ,BO =DO =12BD =6,(10分)∴OC =BC 2-BO 2=3,∴AC =2OC =2 3.(12分)22.解:过点E 作EF ⊥AC ,EG ⊥CD ,垂足分别为点F ,G .(1分)∵在Rt △DEG 中,DE =1620尺,∠D =30°,∴EG =DE ·sin D =1620×12=810(尺).(3分)由题意可得BC =857.5尺,CF =EG =810尺,∴BF =BC -CF =857.5-810=47.5(尺).∵在Rt △BEF 中,tan ∠BEF =BFEF ,∠BEF =30°,∴EF =3BF .(7分)设AB =x 尺.∵在Rt △AEF 中,∠AEF =60°,tan ∠AEF =AFEF ,∴AF =EF ·tan ∠AEF =3EF =3BF ,∴x +47.5=3×47.5,∴x =95.(11分)答:雕像AB 的高度为95尺.(12分)23.解:(1)如图,过点C 作CE ⊥AB ,垂足为点E ,过点D 作DF ⊥AC ,垂足为点F .(2分)设AE =x 海里.在Rt △AEC 中,∠CAE =60°,∴CE =AE ·tan60°=3x 海里,AC =AEcos60°=2x 海里.(4分)在Rt △BCE 中,∠CBE =45°,∴BE =CE =3x 海里.∵AB =AE +BE =100(3+1)海里,∴x +3x =100(3+1),解得x =100.∴AC =200海里.(6分)在△ACD 中,∠DAC =60°,∠ADC =75°,则∠ACD =45°.设AF =y 海里.在Rt △AFD 中,∠DAF =60°,∴AD =2y 海里,DF =3y 海里.在Rt △CFD 中,∠DCF =45°,∴CF =DF =3y 海里.∵AC =AF +CF =200海里,∴y +3y =200,解得y =100(3-1),∴AD =2y =200(3-1)海里.(9分)答:A 与C 之间的距离AC 为200海里,A 与D 之间的距离AD 为200(3-1)海里.(10分) (2)没有.(11分)由(1)可知DF =3AF =3×100(3-1)≈127(海里).(13分)∵127海里>100海里,∴巡逻船A 沿直线AC 航行去营救船C ,在去营救的途中没有触暗礁危险.(14分)。
人教版九年级数学下册第28章锐角三角函数单元检测及解析

人教版数学九年级下学期第28章《锐角三角函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.sin60°的值等于( )A .12 B C D2.已知α为锐角,sin (α﹣20°),则α=( )A .20°B .40°C .60°D .80°3.在正方形网格中,∠α的位置如图所示,则tan α的值是( )A B C .12 D .24.在△ABC 中,∠C=90°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,下列各式成立的是()A .b=a •sinB B .a=b •cosBC .a=b •tanBD .b=a •tanB5.在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定6.在△ABC中,∠C=90°,tanA=13,则cosA的值为()AB.23C.34D7.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()ABCD8.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()AA.3米B.C.D.9.坡度等于1)A.30°B.40°C.50°D.60°10.济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,3≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m二、填空题(共6小题,每小题3分,共18分)11.求值:sin60°﹣tan30°=.12.如图,在直角三角形ABC中,∠C=90°,3AB=10,则∠A=度.AC B13.如图,将∠AOB放置在5×5的正方形网格中,则cos∠AOB的值是.O BA14.△ABC中,∠C=90°,斜边上的中线CD=6,sinA=13,则S△ABC=.15.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高).16.在我们生活中通常用两种方法来确定物体的位置.如小岛A在码头O的南偏东60°方向的14千米处,若以码头O为坐标原点,正东方向为x 轴的正方向,正北方向为y轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A也可表示成_________________.三、解答题(共8题,共72分)17.(本题8分)已知α为一锐角,sinα=45,求tanα.18.(本题8分)如图,在△ABC中,∠C=90°,BC=1,AB=2,求sinA的值.C B A19.(本题8分)如图,已知AC=4,求AB 和BC 的长.105°30°CB AAB 于点D ,根据三角函数的定义在Rt △ACD 中,在Rt △CDB 中,即可求出CD ,AD ,BD ,从而求解.20.(本题8分)如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(本题8分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为2AC 的长度.D22.(本题10分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:3,AB=10米,AE=15米,求这块宣传牌CD的高度.23.(本题10分)如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是2(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP3/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.24.(本题12分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)第28章《锐角三角函数》单元测试卷解析一、选择题1. 【答案】sin60°.故选C.2.【答案】∵α为锐角,sin(α﹣20°),∴α﹣20°=60°,∴α=80°,故选D.3.【答案】由图可得,tanα=2÷1=2.故选D.4.【答案】A 、∵sinB=b c ,∴b=c •sinB ,故选项错误; B 、∵cosB=a c ,∴a=c •cosB ,故选项错误; C 、∵tanB=b a ,∴a=b tan B ,故选项错误; D 、∵tanB=b a,∴b=a •tanB ,故选项正确. 故选D .5.【答案】∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A 的三角函数值不变,故选A .6. 【答案】如图,CA∵tanA=13,∴设BC=x,则AC=3x,∴,∴.故选D.7.【答案】延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,BD=5,∴,∴sinB=CDBC=14.故选:B.D8.【答案】设直线AB与CD的交点为点O.∴BO DOAB CD=.∴AB=BO CDDO⨯.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=BO DO.∵CD=6.∴AB=BO DO×故选B.A9.【答案】坡角α,则tanα=1α=30°.故选A.10.【答案】根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=6051(m).故选B.二、填空题11.【答案】原式.12.【答案】∵∠C=90°,AB=10,∴cosA=ACAB,∴∠A=30°,故答案为:30°.13.【答案】由图可得cos ∠AOB=32. 故答案为:32.B14.【答案】在Rt △ABC 中,∵斜边上的中线CD=6,∴AB=12.∵sinA=13,∴BC=4,S △ABC =12AC •. 15. 【答案】由题意得:AD=6m ,在Rt △ACD 中,∴AB=1.6m∴CE=CD +DE=CD + 1.6,所以树的高度为( 1.6)m .16.【答案】过点A 作AC ⊥x 轴于C .在直角△OAC 中,∠AOC=90°﹣60°=30°,OA=14千米,则AC=12OA=7千米,因而小岛A 所在位置的坐标是(7).故答案为:(7).三、解答题17.【解答】由sin α=45,设a=4x ,c=5x ,则b=3x ,故tan α=43.a 18.【解答】sinA=BC AB =12. 19.【解答】作CD ⊥AB 于点D ,105°30°CD B A在Rt△ACD中,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,CD=12AC=2,AD=AC•cosA=23.在Rt△CDB中,∵∠DCB=∠ACB﹣∠ACD=45°,∴BD=CD=2,∴BC=22,∴AB=AD+BD=2+23.20.【解答】作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180 º-∠BAD=180 º-90 º=90 º, ∠ADF+∠DAF=90 º, ∴∠ADF=36 º.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sinα=BEAB,∴AB=oBEsin36=240.60=40mm在Rt△ADF中,cos∠ADF==DFAD,∴AD=oDFcos36=48600.80=mm.∴矩形ABCD的周长=2(40+60)=200mm.21.【解答】如图,在Rt△ABD中,AD=ABsin45°22=4.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=8.即新传送带AC的长度约为8米;22.【解答】过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABG中,i=tan∠3,∴∠BAG=30°,∴BG=12AB=5,3BF=AG+315.在Rt△BFC中,∵∠CBF=30°,∴CF:3,∴CF=5+3在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CF+FE﹣DE=5+35﹣15=(35)m.答:宣传牌CD高约(35)米.23.【解答】(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=3千米.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴33PA=6千米.∴AB=BD+AD=3+3;(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=12AB=3332+千米,AF=32AB=3+3 千米.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴CF=BF=3332+千米,∴PC=AF+CF﹣AP=33千米.故小船沿途考察的时间为:33÷3=3(小时).24.【解答】(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=AMME,则x22x255-=+,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=MEAE.∴AE=oMEcos22即A、E之间的距离约为48m专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ) A.16 B.π6 C.π8 D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________. 三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
人教版九年级数学下册第28章《锐角三角函数》 单元考试测试卷

人教版数学九年级下学期第28章《锐角三角函数》单元测试卷(配答案)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.tan 45°的值为( )A.12 B .1 C.22 D. 2 2.在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A.43B.45C.54D.343.一段拦水坝横断面如图所示,迎水坡AB 的坡度为1i =: 3,坝高6BC m =,则坡面AB 的长度( )A. 12mB. 18mC. 63D. 1234.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A.55 B.255 C .2 D.12,第4题图 第5题图 第6题图 第7题图5.如图,在Rt △ABC 中,CD 是斜边AB 上的高,已知∠ACD 的正弦值是23,则ACAB的值是( )A.25B.35C.52D.236.如图,在△ABC 中,AD ⊥BC ,垂足为D ,若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( ) A .2 B .3 C .3 2 D .2 37.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD ,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB(单位:米)为( )A .50 3B .51C .503+1D .1018.如图,在▱ABCD 中,点E 是AD 的中点,延长BC 到点F ,使CF ∶BC =1∶2,连接DF ,EC.若AB =5,AD =8,sin B =45,则DF 的长等于( )A.10B.15C.17 D .2 5第8题图 第9题图 第10题图9.如图,两个宽度都为1的平直纸条,交叉叠放在一起,两纸条边缘的夹角为α,则它们重叠部分(图中阴影部分)的面积为( )A .1B .sin α C.1sin α D.1sin 2α10.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .2 kmD .(4-2)km二、填空题(本大题共6个小题,每小题3分,共18分)11. α为锐角,当20141tan α-+2013无意义时,sin(α+15°)+cos(α-15°)的值为__________.12.如图,在四边形ABCD 中,对角线AC 、BD 交于点E ,点E 为BD 的中点,11805tan 2BAC BDC AB CD ACB ∠+∠===∠=o ,,,则AD = ______ .,,第12题图 第13题图 第14题图 第15题图 第16题图13.如图,菱形的两条对角线分别是8和4,较长的一条对角线与菱形的一边的夹角为θ,则cos θ=____. 14.为测量某观光塔的高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.已知楼房高AB 约是45 m ,根据以上观测数据可求观光塔的高CD 是____米.15.如图,河流两岸a ,b 互相平行,点A ,B 是河岸a 上的两座建筑物,点C ,D 是河岸b 上的两点,A ,B 的距离约为200米.某人在河岸b 上的点P 处测得∠APC =75°,∠BPD =30°,则河流的宽度约为____米. 16.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD =2∶1,则△ABC面积的所有可能值为____.三、解答题(共8题,共72分)17.(8分)计算:(1)3tan 30°+cos 245°-2sin 60°; (2)tan 260°-2sin 45°+cos 60°.18.(8分)△ABC 中,∠C =90°.(1)已知c =83,∠A =60°,求∠B ,a ,b ; (2)已知a =36,∠A =30°,求∠B ,b ,c.19. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6 m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°. (1)求∠BPQ 的度数;(2)求该电线杆PQ 的高度.(结果精确到1 m ,参考数据:≈1.7, ≈1.4)20.(8分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D,E点为线段BC的中点,AD=2,tan∠ABD=12.(1)求AB的长;(2)求sin∠EDC的值.21.(8分)在一次地震灾区抢险工作中,如图,某探测队在地面A,B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,3≈1.7)22.(10分)如图,AB 是⊙O 的直径,AB =10,DC 与⊙O 相切于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E.(1)求证:AC 平分∠BAD ;(2)若sin ∠BEC =35,求DC 的长.23.(10分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡度为i =1∶10(即EF ∶CE =1∶10),学生小明站在离升旗台水平距离为35 m (即CE =35 m )处的C 点,测得旗杆顶端B 的仰角为α.已知tan α=37,升旗台高AF =1 m ,小明身高CD =1.6 m ,请帮小明计算出旗杆AB 的高度.24.(12分)如图,“中国海监20”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B,C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中国海监20”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监20”的航行距离.(结果保留根号)参考答案二、选择题(共10小题,每小题3分,共30分)1. B 2.A 3. A 4. D 5. D 6. A 7. C 8. C 9. C 10 B二、填空题(本大题共6个小题,每小题3分,共18分)11.3 12.210 13.25514.135. 15.100. 16.8或24三、解答题(共8题,共72分)17.(8分)解:原式=12 解:原式=72- 218.(8分)解:(1)∠B =30°,a =12,b =4 3(2)∠B =60°,b =92,c =6 6 19.(8分)(1)30度;(2)9m. 解析:(1) 延长PQ 交直线AB 于点E ,如图所示:∠BPQ =90°-60°=30°.(2)设PQ =x ,则QB =QP =x , 在△BEQ 中,BE =x,cos 30°=3 x ,QE =12x. 在△AEP 中,EA =EP , 所以63x =12x +x.解得x =3+6. 所以PQ =3+6≈9, 即该电线杆PQ 的高度约为9 m .20.(8分)解:(1)∵AD =2,tan ∠ABD =12,∴BD =2÷12=4,∴AB =AD 2+BD 2=22+42=2 5(2)∵BD ⊥AC ,E 点为线段BC 的中点,∴DE =CE ,∴∠EDC =∠C ,∵∠C +∠CBD =90°,∠CBD +∠ABD =90°,∴∠C =∠ABD ,∴∠EDC =∠ABD ,在Rt △ABD 中,sin ∠ABD =AD AB =225=55,即sin ∠EDC =5521.(8分)解:作CD ⊥AB 交AB 延长线于点D ,设CD =x 米.Rt △ADC 中,∠DAC =25°,∴tan25°=CDAD =0.5,∴AD =CD 0.5=2x.Rt △BDC 中,∠DBC =60°,∴tan 60°=CD BD ,∴x2x -4=3,解得x ≈3,∴生命迹象所在位置C 的深度约为3米22.(10分)解:(1)连接OC ,∵DC 是切线,∴OC ⊥DC ,又∵AD ⊥DC ,∴AD ∥OC ,∴∠DAC =∠ACO ,又OA =OC ,∴∠BAC =∠ACO ,∴∠DAC =∠BAC ,∴AC 平分∠BAD(2)∵AB 为直径,∴∠ACB =90°,又∠BAC =∠BEC ,∴BC =AB ·sin ∠BAC =6,∴AC =8,∴CD =AC ·sin ∠DAC =24523.(10分)解:作DG ⊥AE 于点G ,则∠BDG =α,易知四边形DCEG 为矩形,∴DG =CE =35 m ,EG =DC =1.6 m ,在直角三角形BDG 中,BG =DG ·tan α=35×37=15(m),∴BE =15+1.6=16.6(m).∵斜坡FC 的坡度为i =1∶10,CE =35m ,∴EF =35×110=3.5(m),∵AF =1 m ,∴AE =AF +EF =1+3.5=4.5(m),∴AB =BE -AE =16.6-4.5=12.1(m),则旗杆AB 的高度为12.1 m24.(12分)解:(1)如图,过点C 作CD ⊥BA 交BA 的延长线于点D ,由题意可得∠CBD =30°,BC =120海里,则DC =60海里,故cos30°=DC AC =60AC =32,∴AC =403,则点A 到岛礁C 的距离为403海里(2)如图,过点A ′作A ′N ⊥BC 于点N ,可得∠1=30°,∠BA ′A =45°,则∠2=15°,即A ′B 平分∠CBA ,∴A′N=A′E,设AA′=x,则A′E=32x,故CA′=2A′N=2×32x=3x,∵3x+x=403,∴x=(60-203),则此时“中国海监20”的航行距离为(60-203)海里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年九年级下《第28章锐角三角函数》检测卷 (4)
姓名:__________ 班级:__________
一、选择题(每小题3分;共33分)
1.计算5sin30°+2cos245°-tan260°的值是( )
A. B. C. - D. 1
2.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面
AB的长度是()
A. 15m
B. 20m
C. 20m
D. 10m
3.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式是( )
A. B. C. atanA D.
4.在Rt△ABC中,∠C=90º,c=5,a=4,则sinA的值为( )
A. B. C. D.
5.在Rt△ABC中,∠C=90°,下列等式: (1) sin A=sin B;(2) a=c·sin B;(3) sin A=tan A·cos A;(4) sin2A+
cos2A=1.其中一定能成立的有( )
A. 1个
B. 2个
C. 3个
D. 4个
6.如图,在边长为1的小正方形组成的网格中,点A、B、O为格点,则tan∠AOB=()
A. B. C. D.
7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则
tanB的值为()
A. B. C. D.
8.如图,一艘轮船在B处观测灯塔A位于南偏东50°方向上,相距40海里,轮
船从B处沿南偏东20°方向匀速航行至C处,在C处观测灯塔A位于北偏东10°
方向上,则C处与灯塔A的距离是()
A. 20海里
B. 40海里
C. 20海里
D. 40海里
9.如图,小明要测量河内小岛B到河边公路的距离,在A点测得
,在C点测得,又测得米,则小岛
B到公路的距离为()
A. 25
B.
C.
D.
10.计算cos80°﹣sin80°的值大约为()
A. 0.8111
B. ﹣0.8111
C. 0.8112
11.已知α、β都是锐角,如果sinα=cosβ,那么α与β之间满足的关系是()
A. α=β;
B. α+β=90°;
C. α-β=90°;
D. β-α=90°.
二、填空题(共9题;共27分)
12.如图1所示的晾衣架,支架主视图的基本
图形是菱形,其示意图如图2,晾衣架伸缩
时,点G在射线DP上滑动,∠CED的大小也
随之发生变化,已知每个菱形边长均等于
20cm,且AH=DE=EG=20cm.
(1)当∠CED=60°时,CD=________cm.
(2)当∠CED由60°变为120°时,点A向左移动了________cm(结果精确到0.1cm)(参考数据≈1.73).
13.小虎同学在计算a+2cos60°时,因为粗心把“+”看成“﹣”,结果得2006,那
么计算a+2cos60°的正确结果应为________.
14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC
的正弦值为________ .
15.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为________.
16.已知a为锐角,tan(90°﹣a)=,则a的度数为________°.
17.在Rt△ABC中,∠C=90°,BC= ,AC= ,则cosA的值是________.
18.在Rt△ABC中,∠C=90°,AB=10,sinA= ,则BC=________.
19.已知<cosA<sin70°,则锐角A的取值范围是________
20.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=________ .
三、解答题(共4题;共40分)
21.计算:3tan30°﹣2tan45°+2sin60°+4cos60°.
22.如图,D为等边△ABC边BC上一点,DE⊥AB于E,若BD:CD=2:1,DE=2,求AE.
23.如图,小敏在测量学校一幢教学楼AB的高度时,她先在点C测得教学楼的顶部A的仰角为30°,然后向教学楼前进12米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼AB的高
度.(结果精确到0.1米,参考数据:≈1.73)
24.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:
(1)选择哪个坡度建设轮椅专用坡道AB是
符合要求的?说明理由;
(2)求斜坡底部点A与台阶底部点D的水平距离AD.
参考答案
一、选择题
B C A B B A B B B B B
二、填空题
12.(1)20 (2)43.8 13.2008 14.15.
16.30 17.18.6 19.20°<∠A<30°20.
三、解答题
21.解:原式=3× ﹣2×1+2× +4× = ﹣2+ +2=2 .
22.解:∵△ABC是等边三角形,
∴AB=BC,∠B=60°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠BDE=30°,
∴BD=2BE,
在Rt△BDE中,设BE=x,则BD=2x,
∵DE=2,
由勾股定理得:(2x)2﹣x2=(2)2,
解得:x=2,
所以BE=2,BD=4,
∵BD:CD=2:1,
∴CD=2,
∴BC=BD+CD=6,
∵AB=BC,
∴AB=6,
∵AE=AB﹣BE
∴AE=6﹣2=4.
23.解:由已知,可得:∠ACB=30°,∠ADB=45°,
在Rt△ABD中,BD=AB.
又在Rt△ABC中,
∵tan30°= = ,
∴= ,即BC= AB.
∵BC=CD+BD,
∴AB=CD+AB,
即(﹣1)AB=12,
∴AB=6(+1)≈16.4.
答:教学楼的高度约为16.4米.
24.(1)解:∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5(米),
由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;(2)解:如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,
∵= ,
∴= ,
∴AE=DF=30,
∴AD=AE+EF+DF=60+2=62,
答:斜坡底部点A与台阶底部点D的水平距离AD为62米。