数学的发展史汇编

合集下载

数学发展史

数学发展史

数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。

数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。

埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。

西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。

巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。

中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。

人类现在主要采用十进制,与“人的手指共有十个”有关。

而记数也是伴随着计数的发展而发展的。

四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。

古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。

古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。

二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。

该时期的基本成果,构成现在中学数学的主要内容。

这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。

下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。

数学的发展与演变

数学的发展与演变

数学的发展与演变
第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念的时期。

人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。

第二时期:初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)这个时期的基本的、最简单的成果构成中学数学的主要内容,大约持续了两千年。

这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。

第三时期:变量数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus)的创立。

第四时期:现代数学时期(十九世纪末开始),数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。

数学发展的历史介绍(2024)

数学发展的历史介绍(2024)

引言概述:数学作为一门古老而且普遍存在的学科,在人类文明发展的过程中扮演着重要的角色。

数学的发展历史可以追溯到古代文明,并随着时间的推移逐渐演化和发展。

本文将介绍数学的历史发展,从古代数学的起源开始,逐步展开正文,分五大点来阐述数学的进展与演化。

正文内容:一、古代数学的起源1.原始数学:人类最早的数学思想主要是基于实际需求的,主要应用于计数和测量。

2.古代数学的典范:古埃及的几何学和古代巴比伦的代数学。

3.古希腊数学的诞生:毕达哥拉斯定理和欧几里得的几何学。

二、中世纪数学的发展1.印度数学的传播:阿拉伯数学家将印度数字系统和代数学引入欧洲。

2.贝克勒尔学派:贝克勒尔、纳西尔丁·图西和奥马尔·海亚姆等数学家对代数和几何学作出了重要贡献。

3.罗益席尔皮和方程的大发现:罗益席尔皮在解决高次方程时提出了新的解法。

三、现代数学的崛起1.十七世纪的数学革命:笛卡尔几何学的诞生和数学分析的发展。

2.牛顿和莱布尼茨的微积分学:微积分的发明进一步推动了数学的进步。

3.概率论与统计学的兴起:贝努利家族和拉普拉斯等人对概率论和统计学的贡献。

四、数学的现代化与应用1.抽象代数学的兴起:伽罗华和埃尔米特等人将代数学从具体问题中抽象出来。

2.黎曼几何学:黎曼将几何学从平面拓展到曲面,为现代几何学奠定了基础。

3.数学与信息科学的结合:在计算机科学和密码学领域,数学的应用越来越广泛。

五、当代数学的发展1.数学的交叉学科:数学与物理学、工程学等学科的交叉研究成为当代数学的一个重要方向。

2.数学的开放性问题:著名的费马猜想和黎曼猜想等问题一直未能得到证明。

3.数学的计算机辅助研究:计算机技术的进步使得数学研究更加高效和精确。

总结:数学发展的历史演化是一段源远流长的故事。

从原始数学到古代数学的起源,再到中世纪数学的发展,数学以其独特的逻辑和思维方式为人类文明进程提供了重要的支撑。

现代数学的崛起与应用为科学技术的发展和社会进步提供了坚实的基础。

数学的发展历史概述

数学的发展历史概述

数学的发展历史概述
数学的发展历史可以追溯到古代文明时期。

以下是数学发展的一些重要阶段和
里程碑:
古代数学(约公元前3000年-公元前500年):古代数学主要发展在古埃及、
古巴比伦、古印度和古希腊等地。

这个时期的数学主要集中在计数、测量和几何等方面。

古巴比伦人发明了基于60进制的数制系统和计算法则,古希腊人则在几何
学方面作出了重要贡献。

中世纪数学(公元500年-公元1500年):在中世纪,数学的发展主要由阿拉
伯数学家推动。

阿拉伯数学家将印度的十进制数制和零的概念引入欧洲,这对于现代数学的发展起到了重要作用。

同时,他们还对代数学和三角学等领域做出了贡献。

近代数学(公元1500年-1900年):在这个时期,数学经历了重大的变革和发展。

文艺复兴时期的欧洲浮现了许多重要的数学家,如勒内·笛卡尔、伽利略·伽利
雷和爱尔兰的威廉·罗万等人。

他们对代数学、几何学和力学等领域做出了重要贡献。

此外,牛顿和莱布尼茨的微积分的发明也是这个时期的重要成就。

现代数学(20世纪至今):20世纪以来,数学的发展取得了巨大的发展。


这个时期,数学分支日益细分,如数理逻辑、抽象代数、拓扑学、数论、概率论和统计学等。

数学在物理学、工程学、计算机科学和经济学等领域的应用也日益广泛。

总的来说,数学的发展历史是一个不断积累和演化的过程,每一个时代都有其
独特的贡献和突破。

数学的发展不仅为人类认识世界提供了工具和方法,也为其他学科的发展提供了基础和支持。

数学发展历程

数学发展历程

数学发展历程数学作为人类社会科学的一支重要学科,经历了漫长的发展历程。

下面将对数学从古至今的发展做一简要概述。

数学的历史可以追溯到古老的文明时代。

早在古埃及、古希腊和古印度,人们就开始进行基本的计算和几何探索。

古埃及人用简单的加减法进行贸易和建筑,古希腊人发展了几何学,而古印度人则研究了代数学。

数学真正开创了新纪元的是古希腊数学家毕达哥拉斯。

他提出了“万物皆数”的思想,并建立了毕达哥拉斯学派。

毕达哥拉斯学派研究了几何学和数论,并发现了一些重要的定理,如毕达哥拉斯定理。

毕达哥拉斯的工作为后来的数学家们奠定了基础。

公元前三世纪,古希腊数学家欧几里得发表了《几何原本》,成为几何学的奠基之作。

欧几里得的几何学被广泛传播,并在古罗马时代得到了广泛应用。

中世纪,算术和代数学开始受到重视。

印度数学家布拉马古提出了代数学中的布拉马古定理,这为以后的数学发展打下了基础。

此时数学受到天主教会的限制,因为它被认为是与神学无关的。

然而,在伊斯兰世界,数学得到了巨大的发展。

文艺复兴时期,数学经历了一个重要的转折点。

数学的发展与科学革命相互影响,互为推动力。

数学家如勒让德、笛卡尔、牛顿等人开辟了新的领域。

勒让德提出了微积分和解析几何学的概念,为现代数学的发展奠定了基础。

18世纪和19世纪,数学进入了现代数学的黄金时代。

欧拉、高斯、拉格朗日等数学家做出了许多重要的贡献。

欧拉的数论研究、高斯的代数学和概率论、拉格朗日的微积分等理论为数学的进一步发展奠定了基础。

同时,数学在物理学、天文学和工程学等自然科学领域中得到了广泛应用。

20世纪,数学得到了巨大的发展。

数学从纯粹理论走向应用,成为解决实际问题的有力工具。

庞加莱提出了拓扑学的概念,为数学的现代拓扑学和几何学的发展做出了重要贡献。

高德尔的数理逻辑为人工智能的发展提供了理论基础。

同时,计算机的发展也推动了数学在计算机科学和密码学等领域的应用。

至今,数学在各个领域都扮演着重要的角色。

【精品】数学发展历史

【精品】数学发展历史

【精品】数学发展历史公元前2000年左右,古埃及人开始采用一种简单的方法进行计数,这种方式被称为“鸟群计数”。

当时人们认为鸟的数量可以代表某种物品的数量,因此他们使用几种不同的姿势来代表不同数值,例如双手升高代表10,一个手掌代表5等等。

公元前2000年左右,另一种类似的计数方式在美索不达米亚地区也开始出现,这种方法采用六十进制,而不是基于10的十进制计数方式。

这对于时间的测量特别有用,因为六十正好可以被分为一小时中的分钟数。

公元前1300年左右,古希腊人开始开发几何学,这是数学领域的一次革命,因为它将人们从简单的计数方式中解放出来,将他们引向抽象思维的领域。

几何学使人们能够跨越五大洲建造建筑物,并在航海中使用星象,这一切都得益于几何学的发展。

公元前3世纪,欧几里得发表了一本书,这本书名为《几何原本》,成为古希腊几何学的经典之作。

它被称为完美的几何学之书,几千年来一直在欧洲的学校教授,成为了欧洲数学教育的基础。

公元7世纪左右,印度开始使用一种被称为“阿拉伯数字”的算术系统,这种算术系统最初由印度人发明,但被阿拉伯人广泛使用并传播至整个欧洲。

阿拉伯数字最大的优点在于它奠定了数学中十进制的基础,即数的基本单位是10。

公元17世纪,牛顿和莱布尼茨同时独立发明了微积分学,这一发现成为了现代数学的重要基础之一。

微积分学是一种研究数量变化的数学方法,它被广泛用于物理学、工程学和经济学等领域。

19世纪和20世纪,数学的发展进入了一个全新的阶段。

数学家们开始在不同领域探讨数学理论,发现了一些新的数学分支,例如拓扑学、数论等。

现代数学的快速发展,给人们带来了许多新的发现和应用,包括算法、密码学、计算机科学等。

总体而言,数学的发展历史是一个漫长而精彩的过程,从最初的简单计数方式到现代的复杂数学理论体系,人们一直在不断探索和发现数学的新领域,为世界带来了许多创新和进步。

数的发展与演变了解数学的发展历程和演变过程

数的发展与演变了解数学的发展历程和演变过程

数的发展与演变了解数学的发展历程和演变过程数的发展与演变数学是一门古老而神奇的学科,它的发展与演变伴随着人类文明的进步。

从古代的计数工具到现代的数学理论,数的概念经历了漫长的历程和不断的变革。

本文将带您回顾数的发展与演变的历史,让我们一同探索数学的奥秘。

1. 古代的计数工具在数学发展的早期,人们使用一些简单的计数工具来辅助计数。

最早的计数工具可以追溯到公元前3千年的古代文明,包括骨骼、石块、木棍和绳结等。

这些原始的计数工具虽然简单,但为人们进行基本的计数提供了帮助,初步形成了数的概念。

2. 阿拉伯数字的引入随着时间的推移,人们渐渐发现原始的计数工具有一些局限性,无法满足更复杂的计算需求。

然而,阿拉伯人的贡献改变了这一现状。

在公元9世纪,阿拉伯数学家将现代使用的阿拉伯数字系统引入到世界。

这些数字以0到9的符号表示,并具有地位价值的概念,使得数字可以组成无限多的数。

阿拉伯数字的引入极大地推动了数学的发展。

3. 数的表达形式的变化在数的发展过程中,人们对数的表达形式进行了不断的探索和变化。

古希腊的数学家们发现了无理数的存在,证明了它们不能用分数表示。

勾股定理的发现也为数学家带来了新的挑战,人们开始思考如何表示它的平方根。

这些挑战促使数学家们发展了更多的数学概念和符号来表达不同类型的数,使数学的发展更加多样化。

4. 高等数学的出现随着数学的发展,人们开始研究更高级的数学概念和理论。

微积分的发展标志着数学从计算和应用到更深层次的思考与探索。

牛顿和莱布尼兹的微积分理论使人们能够更好地理解和描述运动、变化和曲线等现象。

同时,线性代数、概率论、数论等不同分支的出现进一步丰富了数学的内容。

5. 数学在科学与技术中的应用随着数学的不断发展,它渗透到了科学和技术的各个方面。

数学与物理学、工程学、计算机科学等学科紧密结合,为这些学科提供了强大的工具和理论基础。

通过数学,人们能够理解和预测自然界的规律,研发新的科技产品和创新解决方案。

数学发展史时间轴及事件

数学发展史时间轴及事件

数学发展史时间轴及事件1.古埃及数学(公元前3000年-公元前1000年)数学在古埃及有着悠久的历史。

古埃及人发展出了一套完整的计数系统,以及用于计算和测量的一系列实用技术和工具。

例如,他们使用了“象形数字”来表达数值,同时发明了一种称为“祭坛测量的土地”的算法,用于计算矩形或金字塔的面积。

2.古希腊数学(公元前600年-公元500年)古希腊数学在西方数学史上占据了重要的地位。

在这个时期,出现了许多杰出的数学家,如毕达哥拉斯、欧几里得和阿基米德等。

他们为数学界的发展做出了巨大的贡献,如毕达哥拉斯提出了著名的勾股定理,欧几里得写下了著名的《几何原本》,阿基米德则发明了微积分的基本原理。

3.中世纪欧洲数学(公元500年-1500年)在中世纪欧洲,数学得到了进一步的发展。

在这个时期,出现了许多修道士和学者,如奥尔本修道士和尼科马科斯等。

他们对数学进行了深入的研究,并在代数、几何和三角学等领域取得了一些重要成果。

同时,中世纪欧洲的数学教育也变得日益重要,一些大学纷纷开设数学课程。

4.文艺复兴时期数学(公元1500年-1700年)在文艺复兴时期,数学经历了巨大的变革和发展。

人们重新审视古希腊数学,并在此基础上进行创新。

代数学逐渐成为数学的主流,同时平面几何和立体几何也得到了极大的发展。

一些重要的数学思想和方法开始形成,如极限、导数和微积分等。

在这个时期,一些重要的数学家如雷科德、韦达和牛顿等为数学界的发展做出了巨大贡献。

雷科德在其著作《大术》中系统地阐述了代数符号和算术方法,韦达则发展出了符号代数,为现代代数奠定了基础。

牛顿则在微积分和物理学等领域做出了杰出的贡献。

5.近现代数学(公元1800年至今)近现代数学的发展可以说是日新月异。

在19世纪,数学家们开始研究更抽象的问题,如数论、抽象代数和拓扑学等。

同时,概率论和统计学也得到了迅速的发展。

20世纪初,数学开始与物理学、工程学等领域紧密联系,出现了许多应用数学分支,如量子力学、计算机科学、经济学等。

数学发展历史

数学发展历史

数学史数学是一门古老的学科,它伴有着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或者某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。

数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。

第一节发展历史普通认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元 6 世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。

这个时期数学的成就以巴比伦、埃及和中国的数学为代表。

古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。

巴比伦王国形成于约公元前 19 世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60 进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。

几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。

中国是最早使用十进位值制记数法的国家。

早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。

用阴 (——)、阳(一)符号构成八卦表示 8 种事物,后来发展为 64 卦。

春秋战国之际,筹算已普遍应用,其记数法是十进位值制。

数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。

几何方面,4500 年前就有测量工具规、矩、准、绳,有圆方平直的概念。

公元前 1100 年摆布的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。

第二节数学发展简史

第二节数学发展简史

第二节数学发展简史第二节数学发展简史数学发展史大致可以分为四个阶段。

一、数学形成时期(——公元前 5 世纪)建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。

二、常量数学时期(前 5 世纪——公元 17 世纪)也称初等数学时期,形成了初等数学的主要分支:算术、几何、代数、三角。

该时期的基本成果,构成中学数学的主要内容。

171.古希腊(前 5 世纪——公元 17 世纪)毕达哥拉斯——“万物皆数”欧几里得——《几何原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元 2 世纪——15 世纪)1)中国西汉(前 2 世纪)——《周髀算经》《九章算术》、魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π宋元时期(公元 10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰天元术、正负开方术——高次方程数值求解;大衍总数术——一次同余式组求解2)印度现代记数法(公元 8 世纪)——印度数码、有 0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)数学与天文学交织在一起阿耶波多——《阿耶波多历数书》(公元 499 年)开创弧度制度量18婆罗摩笈多——《婆罗摩修正体系》《肯特卡迪亚格》、代数成就可贵婆什迦罗——《莉拉沃蒂》《算法本源》、(12 世纪)算术、代数、组合学3)阿拉伯国家(公元 8 世纪——15 世纪)花粒子米——《代数学》曾长期作为欧洲的数学课本“代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。

阿布尔.维法奥马尔.海亚姆阿拉伯学者在吸收、融汇、保存古希腊、印度和中国数学成果的基础上,又有他们自己的创造,使阿拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好的学术准备。

3.欧洲文艺复兴时期(公元 16 世纪——17 世纪)1)方程与符号意大利-塔塔利亚、卡尔丹、费拉里三次方程的求根公式法国-韦达引入符号系统,代数成为独立的学科2)透视与射影几何画家-布努雷契、柯尔比、迪勒、达.芬奇数学家-阿尔贝蒂、德沙格、帕斯卡、拉伊尔193)对数简化天文、航海方面烦杂计算,希望把乘除转化为加减。

数学的发展历程

数学的发展历程

数学的发展历程一、古代数学(公元前3000年 - 公元5世纪)1. 古埃及数学- 古埃及人在公元前3000年左右就有了初步的数学知识。

他们主要为了满足实际生活的需要,如土地测量、建筑工程等。

- 埃及人发展了一套独特的计数系统,以10为基数,但不是位值制。

例如,他们用象形文字表示数字,一个竖线表示1,一个倒置的U形符号表示10等。

- 在几何学方面,他们能够计算简单的面积和体积。

如计算三角形、梯形面积,并且在建造金字塔等建筑时运用了一定的几何知识。

2. 古巴比伦数学- 古巴比伦人大约在公元前1800年就有了较为发达的数学。

他们的计数系统是60进制,这种进制对现代的时间(60秒为1分钟,60分钟为1小时)和角度(360度,1度 = 60分,1分 = 60秒)计量有深远影响。

- 他们能解一元二次方程,有泥板记录了大量的数学问题,包括商业中的算术问题、土地划分等几何问题等。

3. 古希腊数学- 早期希腊数学(公元前600 - 公元前300年)- 泰勒斯被认为是古希腊第一位数学家,他引入了演绎推理的思想,证明了一些几何定理,如等腰三角形两底角相等。

- 毕达哥拉斯及其学派强调数的和谐,发现了毕达哥拉斯定理(勾股定理),并且对数字进行了分类,如奇数、偶数、完全数等。

但他们也有一些神秘主义的数学观念,如认为数是万物的本原。

- 古典希腊数学(公元前300 - 公元前200年)- 希腊化时期数学(公元前200 - 公元5世纪)- 阿基米德是这一时期最伟大的数学家之一。

他在几何学方面取得了巨大成就,计算出许多复杂图形的面积和体积,如球的表面积和体积公式。

他还善于将数学应用于实际问题,如利用杠杆原理计算物体的重量等。

同时,他也是一位伟大的物理学家。

4. 古代中国数学- 中国古代数学有着悠久的历史。

早在商代(公元前1600 - 公元前1046年)就有了甲骨文记载的数字。

- 南北朝时期(公元420 - 589年)的祖冲之进一步将圆周率精确到3.1415926和3.1415927之间,这一成果领先世界近千年。

从古至今的数学发展

从古至今的数学发展

从古至今的数学发展
数学的发展是一个漫长而复杂的过程,从古至今,大致经历了以下几个重要阶段:
1.
数学萌芽时期(公元6世纪以前):这是人类原始社会和奴隶社会的初期。

在这个时期,数学的成就主要出现在巴比伦、埃及和中国。

由于实际计算的需要,人们逐渐形成了简单的自然数和分数概念,也都积累了一些计算简单几何图形的面积和体积的几何知识。

这个时期的数学知识仅限于一些简单的、与人们切身经验有直接关系的感性知识,且是零散的而不是系统的。

2.
初等数学时期(公元前5世纪到公元17世纪):这个时期标志着数学从萌芽期向成熟期的过渡。

在此期间,数学的基本概念和公式得到了进一步的发展和完善。

3.
变量数学时期(17世纪上半叶-19世纪20年代):这个时期的重要特点是引进了变量和函数的概念,这为数学的进一步发展奠定了基础。

4.
近代数学时期(19世纪20年代-20世纪40年代):这一时期涌现出了许多杰出的数学家,如高斯、欧拉、黎曼等。

他们不仅对已有的数学理论进行了深入的研究,而且开创了许多新的数学分支。

5.
现代数学时期(20世纪40年代以来):二十世纪数学的发展超过了以前所有数学发展的总和。

随着计算机技术的出现和发展,数学在许多领域都取得了突破性进展。

数学的发展史及数学本身的美

数学的发展史及数学本身的美

03
数学的应用
物理学的应用
总结词
数学在物理学中有着广泛的应用,从经典力学到量子力学,再到相对论和宇宙学,数学都发挥着至关 重要的作用。
详细描述
物理学中的许多概念和公式都需要用到数学知识,如牛顿的万有引力定律、爱因斯坦的广义相对论等 。数学为物理学提供了强大的工具,帮助科学家们更好地理解自然界的规律和现象。
数学的发展史及数学本身的美
汇报人: 202X-01-05
• 数学的发展史 • 数学的美 • 数学的应用 • 数学的挑战与未来发展
01
数学的发展史
数学的起源
01
数学起源于人类早期的生产活动,如计数、测量等。
02
最早的数学概念可以追溯到古埃及和巴比伦时期,他们使用数
学来建立土地边界、计算税收等。
古希腊数学家开始使用公理化方法来研究数学,为现代数学奠
19世纪的数学家如高斯 、柯西等,在代数、几 何和数论方面取得了重
要进展。
现代数学的发展
20世纪的数学家如希尔伯特、冯·诺依曼等,在数学基础、代数、几何和 拓扑方面做出了重要贡献。
计算机技术的出现和发展,为数学研究提供了新的工具和方法,推动了数 学的发展。
现代数学在金融、物理、工程等领域都有广泛的应用,成为现代社会不可 或缺的一部分。
03
定了基础。
古代数学的发展
古希腊数学家如欧几里得、阿基米德 等,对几何学和算术学做出了重要贡 献。
中国古代数学家如祖冲之等,在算术 、几何和天文学方面都有重要贡献。
阿拉伯数学家在代数和三角学方面取 得了重要进展,如花拉子密等人的工 作。
中世纪数学的发展
中世纪欧洲的数学家如斐波那 契、欧几里得等,在数论、几 何和三角学方面有重要贡献。

数学发展历史

数学发展历史

数学发展历史LT学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。

知识简介:尼罗河-世界上最长的大河尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。

流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。

尼罗河——阿拉伯语意为“大河”。

“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。

古埃及人在这里创造出高度的文明。

世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江中国第一大河——长江长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。

以干流长度和入海水量论,长江均居世界第三位。

长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。

长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。

长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡)世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年)中华民族的母亲河—黄河黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。

干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游.数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。

一、数学萌芽时期(公元前6世纪以前)1.“数”概念的产生早在远古时代,人类就已具备了识别事物多少的能力。

数的发展史

数的发展史

数学与经济学的结合:金融数学、 经济数学等
数学与哲学的结合:数学哲学、逻 辑学等
数学与艺术的结合:数学艺术、数 学美学等
数学在未来的应用前景
人工智能:数学是人工智能发展的基础未来将在机器学习、深度学习等领域发挥重要作用 生物科技:数学在生物科技领域有广泛应用如基因测序、药物研发等 量子计算:数学在量子计算领域有重要应用如量子算法、量子通信等 宇宙探索:数学在宇宙探索领域有广泛应用如天体物理、宇宙学等
古代数学的发展
古埃及:发明了十进制和分数用于测量土地和建筑 古希腊:欧几里得、阿基米德等数学家对几何学、代数学、数论等领域做出了重要贡献 古印度:发明了阿拉伯数字对三角学、代数学等领域做出了重要贡献 古代中国:发明了算盘、勾股定理等对数学的普及和应用做出了重要贡献
数学在古代的应用
古代希腊:用于哲学、科学 和艺术
18世纪数学的发展
概率论的兴起:伯努利家族 对概率论的贡献
微积分的创立:牛顿和莱布 尼兹分别独立创立了微积分
数论的进展:欧拉对数论的 深入研究
解析几何的完善:笛卡尔和 费马对解析几何的贡献
19世纪数学的发展
非欧几何的诞生:罗巴切夫斯基、黎曼等数学家创立了非欧几何打破了欧几里得几何的垄断地位。
代数拓扑学的兴起:庞加莱、李群等数学家创立了代数拓扑学为现代学的发展奠定了基础。
感谢观看
汇报人:
拓扑学的发展:由法国数学家庞加莱等人推动为现代数学提供了拓扑学的基础
代数几何的发展
20世纪初代数几何开始兴起 1930年代代数几何成为数学的一个重要分支 1950年代代数几何在拓扑学、微分几何等领域得到广泛应用 1980年代代数几何在计算机科学、物理学等领域得到广泛应用 2000年代代数几何在生物信息学、人工智能等领域得到广泛应用

中国数学发展历史

中国数学发展历史

丘成桐,1949年生,广东汕头人,1969 年毕业于香港中文大学数学系,22岁获 博士学位,27岁因证明世界数学难题卡 拉比猜想而引起轰动,华人中惟一获得 被称为世界数学领域的诺贝尔奖的菲 尔兹奖,美国哈佛大学讲座教授,中科 院外籍院士,美国科学院院士,中科院 晨兴数学研究中心、浙江大学数学研 究中心主任,香港中文大学数学研究所 所长。
15
近现代数学发展时期
2021/10/10
16
陈省身 数学家,美国国籍 。曾获美国国家科
学奖(1975),沃尔夫数学奖(1984)等。 1994年当选为中国科学院外籍院士。陈省 身是20世纪的伟大几何学家,在微分几何 方面的成就尤为突出,被世人称为“微分 几何之父”。
2021/10/10
17
2021/10/10
杨辉三角”又称为“贾宪三角”.
在西方,称为“帕斯卡三角形”.贾宪 比帕斯卡早600年左右,杨辉比帕斯卡早400
多年
2021/10/10
11
创造了"大衍求1术"(整数论中的 一次同余式求解法)。不仅在当 时处于领先地位,在近代数学和 现代电子计算设计中,也起到重 要的作用,被称为"中国剩余定理 "。他所论的"正负开方术"(数学 高次方程根法),被称为"秦九韶 程序"。现在世界各国从小学、中 学、大学的数学课程,几乎都接 触到他的定理、定律、解题原则。
22
2021/10/10
19
2021/10/10
20
2021/10/10
华罗庚(Hua Loo-Keng,公元1910年11月12 日─公元1985年6月12日)是近代世界有名的 中国数学家。对数学的贡献是多方面的,在数 论中,他解决了高斯完整三角和的估计,对华 林问题、塔里问题的结果做出了重大推进。他 在圆法与三角和估计法方面的结果长期居世界 领先地位。他的著作《堆垒素数论》、《数论 导引》及与王元合着的《数论在近似分析中的 应用》等都已成为经典著作。华罗庚在复分析 和典型群方面也有许多工作,其中论文《典型 域上的多元复变量函数论》被国际学术界称为 「华氏定理」。

数的发展简史

数的发展简史

数的发展简史标题:数的发展简史引言概述:数是人类文明发展的基石,数的概念和运用贯穿于人类社会的方方面面。

本文将从古代数学的起源开始,概述数的发展简史,探讨数学在人类社会中的重要性和影响。

一、古代数学的起源1.1 古代数学的起源可以追溯到古埃及和美索不达米亚文明。

1.2 古埃及人使用简单的几何学知识解决土地测量和建筑问题。

1.3 美索不达米亚人发展了基本的算术运算,建立了数字系统。

二、古希腊数学的发展2.1 古希腊数学在几何学和数论方面取得了重大成就。

2.2 毕达哥拉斯学派提出了著名的毕达哥拉斯定理,开创了几何学的新纪元。

2.3 欧几里德的《几何原本》成为了几何学的经典著作,对后世数学家产生了深远影响。

三、中世纪数学的传播与发展3.1 中世纪数学在阿拉伯世界得到了传承和发展。

3.2 阿拉伯数学家对印度数字系统进行了改进,引入了阿拉伯数字。

3.3 中世纪欧洲的数学家通过阿拉伯世界传入的知识,开启了文艺复兴时期的数学复兴。

四、近代数学的革新与发展4.1 近代数学在代数学、微积分等领域取得了重大突破。

4.2 牛顿和莱布尼茨的微积分理论为物理学和工程学的发展提供了重要支持。

4.3 欧拉、高斯等数学家的工作为数学的发展奠定了坚实基础。

五、现代数学的多元发展5.1 现代数学在拓扑学、数论、概率论等领域有了长足发展。

5.2 康托尔的集合论为数学建立了新的基础。

5.3 现代数学与计算机科学的结合,推动了数学在人工智能和大数据领域的应用。

结论:数的发展简史展示了数学在人类社会中的重要性和不断发展的进程。

数学作为一门普遍存在的科学,为人类认识世界、解决问题提供了强大工具,也推动了人类文明的进步和发展。

希望通过深入了解数的发展简史,能够更好地认识数学在我们生活中的重要作用。

数学的历史与发展

数学的历史与发展

数学的历史与发展数学作为一门学科,在人类文明的发展中起着重要的作用。

它不仅是一种思维工具,也是一种解决现实问题的方法。

本文将探讨数学的历史与发展,从古代到现代,探索数学发展的脉络和关键里程碑。

一、古代数学的起源与发展古埃及和巴比伦是古代数学的发源地之一。

早在公元前3000年左右,古埃及人就开始使用几何学原理来解决土地测量和建筑工程等实际问题。

而巴比伦人则在数值计算和代数方面做出了重要贡献,他们发明了一套计算方法,用于解决商业和财务问题。

古希腊数学对现代数学的发展影响深远。

毕达哥拉斯学派开启了几何学的新纪元,提出了众所周知的毕达哥拉斯定理,奠定了几何学的基础。

欧几里得以他的《几何原本》闻名于世,系统总结了希腊几何学的知识,成为几何学的经典教材。

二、中世纪数学的发展与新兴数学学派中世纪欧洲是数学发展的低谷时期,但也有一些数学学派在此时兴起。

阿拉伯数学传播至欧洲,为数学的复兴带来了契机。

阿拉伯数学家伽利略·伽利列奥的著作《算法关于印度人算术》为欧洲数学的复兴打下了基础。

文艺复兴时期,数学又迎来了新的发展机遇。

数理逻辑学家盖德尔提出了不完全性定理,引起了数学界的轰动,这一发现引发了对数学基础的重新思考。

同时,微积分学的发展也打开了新世界的大门。

三、近代数学的革新与应用随着科学技术的发展,数学开始在实际应用中发挥重要作用。

物理学的发展推动了微积分学的进一步深化,牛顿和莱布尼茨的微积分理论为科学界提供了强有力的工具。

19世纪的数学革新更是引起了巨大的飞跃。

高斯的数论、欧拉的复数理论以及黎曼的几何理论等都为现代数学的复兴做出了重要贡献。

同时,矩阵论和概率论等新的数学分支也相继涌现,为统计学和现代信息科学的发展奠定了基础。

四、当代数学的挑战与发展方向进入20世纪以来,数学领域仍然处于不断发展的阶段。

随着计算机技术的进步,数值计算和计算机模拟成为数学应用的重要手段。

另外,数学的交叉学科也不断涌现,如数学物理学和生物数学等,这些领域的融合为数学的发展带来了新的机遇和挑战。

数学的发展史

数学的发展史

数学的发展我们在生活中处处有数学,随处见数学知识,每天用数学解决问题,那数学又是怎样发展到现在的呢?带着疑问我们走进图书馆去寻找答案。

通过我们本组的学习,我们明确了解到万古埃及、美索大达米亚·玛雅、印度及中国等多国的数学发展史,每一个国家的数学发展都有它的自身的原因及其意义。

古埃及的数学是因为要丈量居民的耕地面积.从而逐渐发展成几何;紧接着使用“十进记数法”为人民积累了经验;但最终没有成为理论。

美索大达米亚·玛雅、印度等国,随着埃及的数学起步也能逐渐的发展,一个国家比一个国家的数学发展更前进一大步。

公元前2900以后,埃及人建造了许多金字塔,从金字塔的结构可知当时埃及人已懂得不少天文和几何的知识,例如基底的误差与底面正方形两边同正北的偏差都非常小。

中国的数学在世界上是领先的,大约在3000年以前中国已经知道自然的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中;公元三世纪至今我国的数学仍不断的发展与进步。

每个国家数学的发展进步不同,但在这过程中汗水与泪水是相同的,每个国家的数学家在研究探讨数学时都是克服重重困难及挫折,经历一次又一次失败的打击。

从而奋起直至成功。

他们从不畏惧挫折也不会被困难打倒才有了今天的数学。

从数学的发展中不难发现数学来源于生活,每当所有体系不够用时,人们就会深入地去研究、去扩大。

从而使数学在其他领域也能深入发展而服务于人们.在现实生活中,数学是一门最令人头痛的科目,数学难,难在于它必须要人们经过思想、解答等繁杂的程序才有一个结果。

我们必须克服一切挫折与困难,学好数学,把中国数学的发展史延续下去,让我国的数学史在世界上更辉煌。

参考资料《数学天地》,《数学史话》,《数学的机智》,《数学的由来》、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学的发展史学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。

知识简介:尼罗河-世界上最长的大河尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。

流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。

尼罗河——阿拉伯语意为“大河”。

“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。

古埃及人在这里创造出高度的文明。

世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江中国第一大河——长江长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。

以干流长度和入海水量论,长江均居世界第三位。

长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。

长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。

长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡)世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年)中华民族的母亲河—黄河黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。

干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游. 数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。

一、数学萌芽时期(公元前6世纪以前)1.“数”概念的产生早在远古时代,人类就已具备了识别事物多少的能力。

逐渐地,这种原始的“数觉”经过漫长的历史演进,发展并形成了“数”的概念。

早期人类在对事物数量共性的认识与提炼中,获取数的概念,从而播下了人类文明史上的数学火种。

大约发生于30万年以前的这一过程可能与早期人类对火的认识与使用一样悠久而漫长。

数对于人类文明的意义决不亚于火的使用。

当对“数”的认识变得越来越明确时,人们开始对其表达萌生了一种冲动,于是就有了记数(实物记数、书写记数)的产生。

最早比较成功的计数方式可能来自于最方便的实物工具,那就是人类自己的手指。

一只手上的五个指头可以被现成地用来表示五个以内事物的集合。

两只手上的指头合在一起,不超过10个元素的集合就有办法表示。

当十指不够用时,随处可见的石子便成了当然的替代与补充。

但记数的石子堆,很难长久保存信息,于是又有了结绳记数和书契(qi)记数。

结绳记数是我国原始公社时期的一种计量方法,是原始公社时期社会生产力发展到一定程度,由于社会生活的实际需要而产生的。

《周易·系辞下》:“上古结绳而治”。

传说结绳记数,始于伏羲时代。

西汉时曾经出现伏羲与女娲结绳的画像;在东汉武梁祠的浮雕上还刻有“伏羲仓精,初造王业,画卦结绳,以理海内”的铭文。

原始公社时期,代结绳记事而起的一种比较进步的计量方法是书契记数。

《周易·系辞下》:“上古结绳而治,后世圣人易之以书契”。

“书”指文字,刻字在竹、木或龟甲、兽骨上以记数,称为“书契”。

结绳、刻痕之法大约持续了有数万年之久,才迎来书写记数的诞生。

大约距今五千年左右,人类历史上开始先后出现一些不同的书写记数方法(数字的产生)。

随之逐步形成各种较为成熟的记数系统。

如古埃及的象形数字(公元前3400年左右)、古巴比伦的楔(xie)形数字(公元前2400年左右)、中国的甲骨文数字(公元前1600年左右)以及中美洲的玛雅数字(约公元前1000年左右)。

到公元前500年左右,人类关于书写记数的方法已经发展得相当完善,如古希腊数字、古罗马数字、中国的算筹数码。

在这些记数系统中,除了巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系。

由中国人首创的十进位值制记数法,对人类文明尤其是一项特殊贡献。

记数系统的出现使数与数之间的书写运算成为可能,在此基础上初等算术便在几个古老的文明地区发展起来。

2.形概念的产生与算术的产生相仿,最初的几何知识也从人们对形的直觉中萌发出来。

史前人类首先从自然界本身提取几何形式,如注意到圆月与挺松在形象上的区别,并从圆月处获得圆形的感悟。

他们还把自己的这种感悟再现于器皿制作、建筑设计和绘画装饰。

(埃及陶罐)经验的几何知识随着人们的实践活动而不断扩展,不过在不同的地区,几何学的这种实践来源方向不尽相同。

古埃及几何学产生于尼罗河泛滥后土地的重新丈量。

埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200年左右,形成一个统一的国家。

尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。

由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。

公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。

从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。

现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书(见上右彩图);一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。

两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。

纸草书给出圆面积的计算方法、正四棱台体积的计算方法。

古巴比伦几何学是与实际测量有密切联系的。

从许多具体例子可以看到,巴比伦人在公元前2000到1600年,就已熟悉了计算长方形面积、直角三角形和等腰三角形(也许还不知道一般三角形)面积,有一边垂直于平行边的梯形面积、长方形的体积,以及以特殊梯形为底的直棱柱体积的一般规则。

古代印度几何学的起源则与宗教实践密切相关,公元前8世纪至5世纪就有对祭坛与寺庙建造中几何问题及其求解法则的记载。

在古代中国,几何学的起源更多地与天文观测相联系。

至晚成书于公元前2世纪的中国数学经典《周髀(bi)算经》,就是一部讨论西周初年(公元前1100年左右)天文测量中所用数学方法的著作。

不过在此之前,即夏禹治水之初,规矩准绳之用在中国已相当普遍。

(伏羲规矩)很少文明能够像古埃及人那样,在历史上留下如此永难消逝的记号。

古埃及从公元3500年开始,经早王朝、古王国、中王国、新王国、后埃及和希腊、罗马统治时代,直至公元641年被阿拉伯人征服为止,先后持续了4000年的文明,为世界文明的发展作出了杰出的贡献。

在这4000年里,古埃及经历了从分散、独立的城市国家到统一王国的历史阶段,又从统一王国发展到称霸亚非的古代世界第一大帝国,后被希腊、罗马、阿拉伯所征服。

见证:卡拉克神殿是埃及规模最大的多元化神殿,为神殿王者。

占地二十公顷。

其中极品--埃及之柱,共十四双。

一、已走过从前:尼罗河入境埃及,贯穿南北。

在他的孕育下,发热,发光。

创造了埃及独特的文化,滋生了无穷的神秘与风采。

在尼罗河迷濛的夜色中,浮现了炫丽的开罗之夜,充满浪漫与神奇。

梦妲(da)栅花园,一座充满土耳其与意大利风格的国王宫殿,为土耳其统治埃及时的国王避暑胜地。

1922年,埃及独立后,即对外开放。

这座国王宫殿已成为梦妲栅饭店。

“弥纳之家”大饭店为“开罗会谈”的场所。

第二次世界大战结束前夕,公元1943年12月22日。

中华民国(蒋中正),美国(罗斯福),英国(邱吉尔)三国元首在埃及首都开罗举行会谈。

二、永恒的沙漠: 巴哈利亚绿洲为游牧民族常驻之处白色沙漠:撒哈拉沙漠分为三个区域:白色沙漠、黄色沙漠、黑色沙漠。

此为白色沙漠一景。

找不见人迹,见不到绿荫,摸不著甘露,闻不到烟火!体验唯一的灼热、炎阳。

哈拉沙漠奇特的黑色沙漠:蔚蓝的天空下有黑色的山峦、黑色的地貌、黑色地毡。

如似一幅梦幻中的奇景!拉美西斯二世,在13世纪曾统治埃及长达67年之久金字塔参考资料:在尼罗河的西岸,从开罗附近的吉沙 Giza 到上埃及的希拉康坡里斯一带,分布着大大小小近一百座金字塔.金字塔一词是中国人对古埃及的角锥体陵墓的形象化的称呼,因为这种建筑物的外形类似汉字中金字的外形.古埃及人称之為麦尔 Mr , 意為国王及其父太阳神升天的地方.至於现代西方通用的 Pyramid 一词来源於古希腊文的 Pyramis ,意為小麦饼,因為古希腊人见到金字塔,联想到他们吃惯的叁角形小麦饼,故名之.最早建造的金字塔是第叁王朝名建筑师伊姆霍太普(Imhotep)為其君主左塞王(Djoser)建造的,这就是有名的梯阶金字塔.最早按标準设计的金字塔是第四王朝斯尼弗鲁王的金字塔,座落在达赫舒尔(Dahshur),不过,第一个并不成功,变成了弯曲金字塔,斯尼弗鲁王不满意,后来又建造了第二个,这次成功了,因為塔身用红色石灰石覆盖,所以人们称之為红色金字塔.斯尼弗鲁的儿子胡夫,在开罗近郊尼罗河的西岸吉沙(Giza)建造金字塔,塔高原146.5米(现减损為137.2米),基底边长230.38米(现减损為227.5米),角度為51度51分,塔身共计250层,以平均2.5吨重的230万块石材砌成,总计约570万吨重.因為这个金字塔最大,所以人们称為大金字塔.在大金字塔的东西南面,分佈着一些王妃的金字塔及王室人员的马斯塔巴.距离胡夫大金字塔160米处,有一座胡夫的儿子哈夫拉金字塔,这座金字塔着名处在於他有一个举世闻名的狮身人面像相伴;在哈夫拉金字塔西南200米处,还有一座孟考拉(Menkaure)金字塔,规模只有胡夫大金字塔的一半,这叁座金字塔,人们通称之為吉沙叁大金字塔.阿尔忒(te)弥斯神庙数学名著——《算经十书》《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。

十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阴算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀zhui术》。

这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。

《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。

三国时期刘徽作过注。

第三部是《海岛算经》,它是刘徽(约225—约295)所作。

《五曹算经》、《五经算术》为[北周] 甄鸾撰。

《孙子算经》、《夏侯阴算经》、《张丘建算经》、《缉古算经》为唐武德八年(625)王孝通撰,《缀zhui术》是南北朝时期著名数学家祖冲之的著作。

宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。

相关文档
最新文档