高二数学(1.1.1正弦定理拓展)

合集下载

(完整)1.1.1正弦定理(用)

(完整)1.1.1正弦定理(用)
(1)在△ABC中,已知 A=30°,B=120°,b=12。
解三角形.
C 30o, a c 4 3
(2)已知两边和其中一边的对角,求其他边和角.
例2:在ABC中,a= 3,b 2, B 450,求A,C,c
解:
sin A a sin B
3 2 2
3
b
2
2
Q a b, A B,且00 A 1800 A 600 或A 1200
sin A sin B sin B sin C sin C sin A
2sin A : sin B : sin C a : b : c
(3) a b c sin A sin B sin C

abc
k(k 0)
sin A sin B sinC
或a k sin A,b k sin B,c k sinC (k 0).
(1)当A 600,C 1800 ( A B) 75(0 三角形中大边对大角)
c bsin C 2 6 2 6 2
sin B 2 4
2
2 (2)当A 1200,C 1800 ( A B) 150
c bsin C 2 6 2 6 2

k,由


定理,

a ksinA,b ksinB,c ksinC
代入已知条件,得:
sinA

sinB
sinC
cosA cosB cosC
即 tanA tanB tanC
又A,B,C (0,π),A B C, 从而ΔABC为正三角形。
3.在△ABC中,A、B、C的对边分别为a、b、c, 若b=acos C,试判断△ABC的形状.

高中数学《1.1.1 正弦定理》复习导学案2 新人教A版必修5

高中数学《1.1.1 正弦定理》复习导学案2 新人教A版必修5

作业 布置 学习 小结 / 教 学 反思
课本 49 页练习 2 的 2,3,4 题
2
2 ,b 3 ,
A 450 ,求角 B .
小结:在 ABC 中,已知 a, b 和 A 时求角 B 的各种情况: (1).角 A 为锐角: ①若 a b sin A ,则一解. ②若 b sin A a b ,则两解. ③若 a b ,则一解 (2).角 A 为直角 a b ,则一解. (3).角 A 为钝角 a b ,则一解. 例 2 在 ABC 中,角 A, B, C 所对的边分别为 a, b, c .已知 A 300 , c 2 3, b 2 ,求
1
ABC 的面积.
达标训练: 1.判断下列各题角 B 的解的个数: 1. a 7, b 14, A 300 .
2. a 30, b 25, A 1500 . 3. a 72, b 50, A 1350 .
4. a 30, b 40, A 260 .
§1.1.2 正弦定理
授课 时间 学习 目标 重点 难理及其拓展. 2.已知两边和其中一边的对角,判断三角形时解的个数. 3.三角形面积公式. 重点:正弦定理的应用. 难点:正弦定理的应用. 自主学习: 正弦定理:_________________________. 正弦定理的变形公式:_________________________. 问题 1.在 ABC 中,已知 a 20, b 28, A 400 ,求 B (精确到 1 )和 c (保留两个有效数
0 问题 3.在 RtABC 中, C 90 ,则 ABC 的面积 S
学习 过程 与方 法
1 ab .对于任意 ABC ,已知 a, b 及 2

1.1.1正弦定理

1.1.1正弦定理
(3)已知c=2,A=45°,a= 2√6 3 75°或15° B=_____________. ,则
B
CBD 90, C C c sin C sin C 2R
c O
a
C
c A b 2R sin C a b 同理, 2 R, 2R sin A sin B C/ a b c 2R sin A sin B sin C (R为外接圆半径)
1.1.1 正弦定理
正弦定理 在一个三角形中,各边和它 所 对角的正弦的比相等,即
a b c sin A sin B sin C
2R
定理结构特征: 含三角形的三边及三内角
剖析定理、加深理解
a b c 正弦定理: sin A sin B sin C
1、A B C 或180 ;


b sin A 3 sin 45 = = 2 ∴ a sin B sin 60
(1)在△ABC中,已知b= 3,A= 45 ,B= 60 ,求a。
a b 解: ∵ sin A sin B
,A= 75 ,B= 60 ,求b。 (2) 在△ABC中,已知c= 3 解: ∵ C 1800 ( A B) = 180 (75 60 ) 45 b c 3 sin 60 3 2 c sin B ∴b 又∵ sin B sin C sin 45 2 sin C
a
B
c sin A 10 sin 45 10 2 得a = sin 30 sin C
b c 由正弦定理 sin B sin C
c sin B 10 sin 105 5( 6 2 ) 得 b= = sin C sin 30

高中新课程数学(新课标人教A版)必修五《 正弦定理》教案

高中新课程数学(新课标人教A版)必修五《 正弦定理》教案

课题:1.1.1 正弦定理主备人: 执教者: 【学习目标】1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法。

2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

【学习重点】正弦定理的探索和证明及其基本应用。

【学习难点】已知两边和其中一边的对角解三角形时判断解的个数。

【授课类型】新授课【教 具】课件、电子白板【学习方法】【学习过程】一、引入: 固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来?二、新课学习:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === ,从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, 同理可得sin sin c b C B =, 从而sin sin a b A B =sin c C = 证法二):过点A 作j AC ⊥, 由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅j个性设计cos cosj AB j CB+j BC,可得⊥∆ABC是钝角三角形时,以上关系式仍然成立。

年高中数学 第1章1.1.1正弦定理和余弦定理 正弦定理知能优化训练

年高中数学 第1章1.1.1正弦定理和余弦定理 正弦定理知能优化训练

【优化方案】2014年高中数学第1章1.1.1正弦定理和余弦定理正弦定理知能优化训练新人教A版必修5 1.在△ABC中,A=60°,a=43,b=42,则( )A.B=45°或135°B.B=135°C.B=45° D.以上答案都不对解析:选C.sin B=22,∵a>b,∴B=45°.2.△ABC的内角A,B,C的对边分别为a,b,c,若c=2,b=6,B=120°,则a 等于( )A. 6 B.2C. 3D. 2解析:选D.由正弦定理6sin 120°=2sin C⇒sin C=12,于是C=30°⇒A=30°⇒a=c= 2.3.在△ABC中,若tan A=13,C=150°,BC=1,则AB=__________.解析:在△ABC中,若tan A=13,C=150°,∴A为锐角,sin A=110,BC=1,则根据正弦定理知AB=BC·sin Csin A=102.答案:1024.已知△ABC中,AD是∠BAC的平分线,交对边BC于D,求证:BDDC=ABAC.证明:如图所示,设∠ADB=θ,则∠ADC=π-θ.在△ABD中,由正弦定理得:BDsinA2=ABsin θ,即BDAB=sinA2sin θ;①在△ACD中,CDsinA2=ACsinπ-θ,∴CDAC=sinA2sin θ.②由①②得BD AB =CDAC ,∴BD DC =AB AC.一、选择题1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57解析:选A.根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,若sin A a =cos Cc,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B.∵sin A a =cos C c ,∴sin A cos C =ac ,又由正弦定理a c =sin Asin C.∴cos C =sin C ,即C =45°,故选B.3.(2010年高考湖北卷)在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223C .-63D.63解析:选D.由正弦定理得15sin 60°=10sin B ,∴sin B =10·sin 60°15=10×3215=33.∵a >b ,A =60°,∴B 为锐角.∴cos B =1-sin 2B =1-332=63. 4.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 解析:选B.由题意有a sin A =b =bsin B,则sin B =1,即角B 为直角,故△ABC 是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c=( )A .1B .2 C.3-1 D. 3解析:选B.由正弦定理a sin A =b sin B ,可得3sinπ3=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°. 故C =90°,由勾股定理得c =2.6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A .两解 B .一解 C .无解 D .无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解. 二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________.解析:AB =sin Csin ABC =2BC =2 5.答案:2 58.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得:a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶ 39.(2010年高考北京卷)在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析:由正弦定理,有3sin2π3=1sin B ,∴sin B =12.∵∠C 为钝角,∴∠B 必为锐角,∴∠B =π6,∴∠A =π6.∴a =b =1. 答案:1 三、解答题10.在△ABC 中,已知sin A ∶sin B ∶sin C =4∶5∶6,且a +b +c =30,求a . 解:∵sin A ∶sin B ∶sin C =a 2R ∶b 2R ∶c2R =a ∶b ∶c ,∴a ∶b ∶c =4∶5∶6.∴a =30×415=8.11.在△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c .已知a =5,b =2,B =120°,解此三角形.解:法一:根据正弦定理a sin A =b sin B ,得sin A =a sin Bb =5×322=534>1.所以A不存在,即此三角形无解.法二:因为a =5,b =2,B =120°,所以A >B =120°.所以A +B >240°,这与A +B +C =180°矛盾.所以此三角形无解.法三:因为a =5,b =2,B =120°,所以a sin B =5sin 120°=532,所以b <a sin B .又因为若三角形存在,则b sin A =a sin B ,得b >a sin B ,所以此三角形无解.12.在△ABC 中,a cos(π2-A )=b cos(π2-B ),判断△ABC 的形状.解:法一:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形.法二:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.。

1.1.1正弦定理教案

1.1.1正弦定理教案

1.1.1正弦定理一、教学目标: 1、能力要求:①掌握正弦定理,能初步运用正弦定理解一些斜三角形; ②能够运用正弦定理解决某些与测量和几何有关的实际问题。

2、过程与方法:①使学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系——正弦定理。

②在探究学习中认识到正弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

二、教学重点、难点:重点: 理解和掌握正弦定理的证明方法。

难点: 理解和掌握正弦定理的证明方法;三角形解的个数的探究。

三、预习问题处理:1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。

那么斜三角形怎么办?确定一个直角三角形或斜三角形需要几个条件?2、正弦定理:在一个三角形中,各边和它所对角的 的比相等,即 。

3、一般地,把三角形的三个角C B A ,,和它们所对的边c b a ,,叫做三角形的 ,已知三角形的几个元素求其它元素的过程叫做 。

4、用正弦定理可解决下列那种问题① 已知三角形三边;②已知三角形两边与其中一边的对角;③已知三角形两边与第三边的对角;④已知三角形三个内角;⑤已知三角形两角与任一边;⑥已知三角形一个内角与它所对边之外的两边。

5、上题中运用正弦定理可求解的问题的解题思路是怎样的?四、新课讲解:在ABC Rt ∆中,设90=C ,则1sin ,sin ,sin ===C c b B c a A ,即:C cc B b c A a c sin ,sin ,sin ===, CcB b A a sin sin sin ==。

问题一:对于一般的三角形,上述关系式是否依然成立呢? 设ABC ∆为锐角三角形,其中C 为最大角。

如图(1)过点A 作BC AD ⊥于D ,此时有bADC c AD B ==sin ,sin ,所以C b B c sin sin =,即C c B b sin sin =.同理可得CcA a sin sin =, 所以CcB b A a sin sin sin ==。

高二数学正弦定理1

高二数学正弦定理1
在ABC中,已知a, b和A时解 注意: 三角形的情况:
当A为锐角
当A为直角或钝角
我舰在敌岛A南50西相距12 nmile的B处, 发现敌舰正由岛沿北10西的方向以 10nmile/h的速度航行,问:我舰需要以多 大速度,沿什么方向航行才能用2小时追上 敌舰? 即追击速度为14mile/h AC BC 又:∵△ABC中,由正弦定理: sin B sin A ∴ AC sin A 5 3
sin B
5 3 B arcsin 14
BC

5 3 (50 arcsin ) 14

14
我舰航行方向为北东




• 1.1.1正弦定理 素材
正弦定理
证明一(传统证法)在任意斜△ABC当中: S△ABC= 1 ab sinC 1 ac sin B 1 bc sin A 2 2 2 b a c 1 两边同除以 abc 即得: = = sin A sin B sin C 2 用向量证明:1.过A作单位向量 j 垂直于 AC 2.找 j 与 AB 、 AC 、 CB 的夹角 3。利用等式 AC + CB = AB ,与 j 作内积 比值的意义:三角形外接圆的直径2R
B 180 ( n 105 b 19 sin C sin 30
小结:1。正弦定理可以用于解决已知两角和 一边求另两边和一角的问题。 2。正弦定理也可用于解决已知两边及一边 的对角,求其他边和角的问题。 3。正弦定理及应用于解决两类问题,注意 多解情况。

注意: (1)正弦定理适合于任何三角形。 a b c (2)可以证明 = =
sin A
sin B
sin C
=2R
(R为△ABC外接圆半径) (3)每个等式可视为一个方程:知三求一 解三角形时,注意大边对大角

(完整版)1.1.1 正弦定理

(完整版)1.1.1 正弦定理
人教版A版 高中必修五
第一章 解三角形 1.1.1 正弦定理
学习目标
• 1. 掌握正弦定理的内容; • 2. 掌握正弦定理的证明方法; • 3. 会运用正弦定理解斜三角形的两类基本问题。
学习重点:
正弦定理的内容; 正弦定理的基本应用。
学习难点:
正弦定理的证明。
在初中阶段我们学过:在同一个三角形中,大 边对大角,小边对小角。
C 180°(A B)=105°
得 sin A a sin B 1 b2
由b c sin B sin C
∵ 在 ABC 中 a b
∴ A 为锐角
得c bsin C 4 sin B
2 sin105 sin 45

2
62
2
A 30
【探究二】正弦定理的在解三角形中的应用
(1)在 ABC 中,一定成立的等式是( C)
A. asin A bsinB
B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)在△ABC中,R为△ABC外接圆半径,sina
A

b sin B

c sin C

k
则k为( A )
A.2R B.R C.4R D.R
【探究二】正弦定理的在解三角形中的应用
我们利用正弦定理可以解 决一些怎样的解三角形问 题呢?
例1 在 ABC 中,已知 c 10, A 45,C 30 ,求a和b。
(保留两个有效数字).
解 : 根据正弦定理
ac sin A sin C
a

c sin A sin C

10sin 45 sin 30

1.1.1正弦定理

1.1.1正弦定理

1.1.1正弦定理正弦定理是中学数学中比较重要的一个定理,它可以用来求解任意三角形的边长和角度大小。

正弦定理是三角形学中最基本、最通用的定理之一,它的应用范围很广,并且在其他分支学科中也有很多实际应用。

在三角形ABC中,假设BC=a,AC=b,AB=c,∠A的对边为a,∠B的对边为b,∠C的对边为c。

则正弦定理的表述是:$$\frac{a}{\sin\angle A} = \frac{b}{\sin\angle B} = \frac{c}{\sin\angle C}$$其中,a、b、c分别为三角形ABC中BC、AC、AB的边长,∠A、∠B、∠C分别为三角形ABC的内角大小,sin指的是这些角的正弦值。

正弦定理解题的基本步骤有以下几步:(1)确定三角形ABC的已知数据,包括三边和三角度数中的已知数据;(2)应用正弦定理,根据已知数据求解未知数据;(3)特别注意角度的选择,有时需要用到角的补角或余角。

以下是一些正弦定理的应用实例:例1:已知三角形的两条边及夹角,求第三边的长度。

则:由正弦定理,有:即:因为$\sin\angle C\leq 1$,所以:同理,可以求得BC的另一角度∠C。

解:设三角形ABC的第一边为AB=a,角度A为∠A,角度B为∠B,已知数据为a和∠A、∠B,要求的为第二边的长度BC=b。

所以:其中,角B的大小为:其中角C可以用第二个角度公式求得,即:(注:第二个角度公式指的是正弦公式的逆变形式,即给定三角形的两条边和夹角,则可以根据正弦公式求得未知角度。

)正弦定理不仅仅在数学中有重要的应用,它也被广泛应用于实际生活中的许多领域。

例如,它在建筑学中可以用来计算建筑物的高度和角度;在航空和航海中可以用来计算航线的长度和方向;在地理和地质学中可以用来计算地球上两个点之间的距离等等。

因此,熟练掌握正弦定理的公式和应用方法是十分必要的。

正弦定理-高二数学人教版(必修5)

正弦定理-高二数学人教版(必修5)

第一章 解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即____________.正弦定理对任意三角形都成立.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的____________.已知三角形的几个元素求其他元素的过程叫做____________.K 知识参考答案:1.sin sin sin a b c ==A B C2.元素 解三角形K —重点 正弦定理的变形和推广、正弦定理在解三角形中的应用 K —难点 三角形解的个数的探究、三角形形状的判断K —易错 解三角形时要明确角的取值范围,同时注意对角的讨论正弦定理的常见变形及推广(1)sin sin sin ,,,sin sin ,sin sin ,sin sin sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ======. (2)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++. (3)::sin :sin :sin a b c A B C =. (4)正弦定理的推广:2sin sin sin a b cR A B C===,其中R 为ABC △外接圆的半径. (1)已知△ABC 中,sin :sin :sin =1:2:3A B C ,则a:b:c =_____________;(2)已知△ABC 中,∠A =60︒,3a ,则++sin +sin +sin a b cA B C=_____________.【答案】(1)1:2:3;(2)2.【解析】(1)根据正弦定理的变形,可得=sin :sin :sin =1:2:3a:b:c A B C . (2)方法1:设=sin sin a b A B ==(>0)sin ck k C,则有sin sin sin a k Ab k Bc k C ===,,, 从而sin sin sin sin sin sin sin sin sin a b c k A k B k C k A B C A B C ++++++++==,又32sin sin60a k A ===︒,所以sin sin sin a b c A B C ++++=2. 方法2:根据正弦定理的变形,可得2sin sin sin sin a b c aA B C A++++==.【名师点睛】熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果.在ABC △中,求证:22sin 2sin 22sin a B b A ab C +=.【答案】证明见解析.【解析】设ABC △外接圆的半径为R ,则2sin ,2sin ,a R A b R B == 于是222222sin 2sin 2(2sin )sin 2(2sin )sin 28sin sin (sin cos cos sin )8sin sin sin 22sin 2sin sin 2sin ,a Bb A R A B R B A R A B A B A B R A B CR A R B C ab C +=+=+==⋅⋅⋅=所以22sin 2sin 22sin a B b A ab C +=. 【解题技巧】===2sin sin sin a b c R A B C的两种变形的应用: (1)(边化角)2sin ,2sin ,2sin a R A b R B c R C ===; (2)(角化边)sin ,sin ,sin 222a b cA B C R R R===. 正弦定理在解三角形中的应用、三角形解的个数的探究1.正弦定理可以用来解决下列两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 2.三角形解的个数的探究(以已知a b ,和A 解三角形为例) (1)从代数角度来看①若sin sin 1b AB=a >,则满足条件的三角形的个数为0,即无解; ②若sin sin 1b AB=a=,则满足条件的三角形的个数为1;③若sin sin 1b AB=a<,则满足条件的三角形的个数为1或2. 注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”、“三角形内角和等于180°”等进行讨论. (2)从几何角度来看①当A 为锐角时:一解一解 两解 无解②当A 为钝角或直角时:一解 一解 无解 无解(1)已知在ABC △中,10,45,30c A C ==︒=︒,则a =_______,b =_______,B =_______;(2)已知在ABC △中,3,60,1b B c ==︒=,则a =_______,A =_______,C =_______; (3)已知在ABC △中,6,45,2c A a ==︒=,求b 和,B C .【答案】(1)102,5652+,105︒;(2)2,90︒,30︒;(3)见解析. 【解析】(1)10,45,30180()105c A C B A C ==︒=︒∴=︒-+=︒,,由sin sin a c A C =,得sin 10sin 45102sin sin 30c A a C ⨯︒===︒, 由sin sin b c B C =,得sin 10sin10562205652sin sin 304c B b C ⨯︒+===⨯=+︒.(2)∵sin 1sin 601,sin sin sin 23b c c B C B C b ⨯︒=∴===, ,60,b c B C B >=︒∴<,C 为锐角,30,90C A ∴=︒=︒,∴222=+=c b a .(3)sin 6sin 453,sin sin sin 22a c c A C A C a ⨯︒=∴===, sin ,60c A a c C <<∴=︒或120︒,∴当60C =︒时,sin 6sin 7575,31sin sin 60c B B b C︒=︒===+︒,当120C =︒时,sin 6sin1515,31sin sin 60c B B b C ︒=︒===-︒. 31,75,60b B C ∴=+=︒=︒或31,15,120b B C =-=︒=︒.【解题技巧】(1)已知三角形的两角与一边解三角形时,由三角形内角和定理可以计算出三角形的另一角,由正弦定理可计算出三角形的另两边.(2)已知两边和其中一边的对角解三角形时,先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,则利用三角形中“大边对大角”看能否判断所求这个角是锐角,①当已知的角为大边所对的角时,则能判断另一边所对的角为锐角;②当已知的角为小边所对的角时,则不能判断,此时就有两解,再分别求解即可;③然后由三角形内角和定理求出第三个角;④最后根据正弦定理求出第三条边.三角形形状的判断判断三角形形状的常用方法——边化角,已知条件中同时包含边角关系,判断三角形形状时,将边化为角,从三角变换的角度来研究角的关系和特征,进而判断三角形的形状.一般来说,这种方法能够判断的三角形都是特殊的三角形,如直角三角形、等腰三角形、等边三角形、等腰直角三角形.在ABC △中,已知sin sin sin a b Ba B A+=-,且cos()cos 1cos 2A B C C -+=-,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形【答案】B【解析】设ABC △的外接圆半径为R ,由正弦定理的推广,得sin 2a A R =,sin 2bB R=,代入sin sin sin a b B a B A +=-,可得a b ba b a+=-,即22b a ab -=. 因为cos()cos 1cos 2A B C C -+=-,所以2cos()cos()2sin A B A B C -++=, 即2sin sin sin A B C =. 由正弦定理的推广可得2()222a b cR R R⋅=,所以2ab c =, 由22b a ab -=及2ab c =可得222b a c =+,所以ABC △是直角三角形. 故选B .【名师点睛】注意到a ,b ,c 在条件式中是齐次线性关系,因此可以考虑利用正弦定理将边化为角.通过角的特征或者关系来判断三角形的形状.忽略角的取值范围而出错在ABC △中,若3C B =,求cb的取值范围. 【错解】由正弦定理,可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 220cos 1,14cos 13B B ≤<∴-≤-<,由0,0b c >>,可得03cb<<. 故cb的取值范围为(0,3). 【错因分析】错解中没有考虑角B 的取值范围,误认为角B 的取值范围为(0,180)︒︒. 【正解】由正弦定理可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 2180,3,045,cos 12A B C C B B B ++=︒=∴︒<<︒<<, 214cos 13B ∴≤-<,即13cb<<, 故cb的取值范围为(1,3). 【名师点睛】解三角形时要注意三角形的内角为正角且必须满足三角形内角和定理,这是解题中的隐含条件,应特别注意.忽略对角的讨论而出错已知在ABC △中,4,22,30,a b B ===︒ 求角,A C 和边c .【错解】由正弦定理sin sin a b A B =可得422sin sin 30A =︒, 2sin ,452A A ∴==︒,1803045105C ∴=︒-︒-︒=︒,62,sin105sin sin 4c b C B +=︒=,sin 232sin b C c B ∴==+. 【错因分析】错解中由正弦定理求出角A 的正弦值后误认为角A 是锐角,从而导致错误. 【正解】由正弦定理,sin sin a b A B =得422sin sin 30A =︒, 2sin ,2A ∴=,45a b A >∴=︒或135︒.当45A =︒时,1803045105C =︒-︒-︒=︒,62sin ,sin105,232sin sin 4sin c b b Cc C B B+=︒=∴==+;当135A =︒时,1803013515C =︒-︒-︒=︒,62sin ,sin15,232sin sin 4sin c b b Cc C B B-=︒=∴==-. 综上,45,105,232A C c =︒=︒=+或135,15,232A C c =︒=︒=-.【名师点睛】在ABC △中,已知两边和其中一边的对角解三角形时,可先用正弦定理求出另一边的对角,此时解的个数可能不确定,应注意讨论,避免漏解导致错误.1.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,83,6,60a b A ===︒,则sin B = A .2B 6C 2D 32.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =45B =︒,2b =,则A =A .30︒或150︒B .30︒C .150︒D .45︒3.在ABC △中,若∠A =60°,∠B =45°,BC =AC =A .B .CD 4.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知A :B :C =1:2:3,则a :b :c =A .1:2:3B .C .D .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,b =,4B π∠=,tan A =,则a =A .210B .C .10D .26.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,15,18,30a b A ===︒,则此三角形解的个数为 A .0 B .1 C .2D .不能确定8.已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A :cos B =b :a ,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形9.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若8a =,60B =︒,75C =︒,则b =______________.10.在ABC △中,角A ,C 的对边分别为a ,c ,其中1=a ,33=c 3A π=,则角=C ______________.11.在ABC △中,若B =30°,AB =23,AC =2,则ABC △的周长为______________. 12.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,己知A −C =90°,a +c =2b ,求C .13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =52b ,A =2B ,则cos B = A 5 B 5C 5 D 5 14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π,3,23A a b ===,则B = A .π6 B .π4 C .π3D .π215.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π3,6,3a b A ===,则角B 等于 A .π4B .3π4C .π4或3π4D .以上都不正确16.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,若cos (2)cos c a B a b A -=-,则ABC △是A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos cos A B Ca b c==,则ABC △是 A .有一内角是30°的三角形 B .等边三角形C .等腰直角三角形D .有一内角是30°的等腰三角形18.在ABC △中,已知31,6,15b c B =-==︒,则边长a =A .31+或2B .31+C .2D .2319.在ABC △中,已知2AB AC =,30B =︒,则A =______________.20.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD .为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ∠=︒,沿山坡前进50m 到达B 处,又测得45DBC ∠=︒.根据以上数据计算可得cos θ=______________.21.如图,在ABC △中,点D 在BC 边上,π72cos 42CAD AC ADB ∠==∠=,,. (1)求sin C 的值;(2)若5BD =,求AD 的长.22.(2017山东理)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =23.(2017新课标全国Ⅰ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12 B .π6 C .π4D .π324.(2017新课标全国Ⅱ文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =______________.25.(2017新课标全国Ⅲ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =______________.26.(2018北京理)在△ABC 中,7a =,8b =,1cos 7B =-. (1)求A ∠;(2)求AC 边上的高.1.【答案】D【解析】∵83,6,60a b A ===,由sin sin a b A B =得sin 3sin .8b A B a ==故选D . 2.【答案】B【解析】在ABC △中,由sin sin a b A B =得21sin sin sin 4522a A Bb ===︒,由于a b <,所以A B <,所以30A =︒,故选B . 3.【答案】B【解析】由正弦定理得23sin 60sin 45AC =︒︒,所以AC =23sin 452 2.sin 60︒=︒故选B .4.【答案】C【解析】因为在ABC △中,A +B +C =π,且A :B :C =1:2:3,所以A =6π,B =3π,C =2π,由正弦定理的变形,得a :b :c =sin A :sin B :sin C 13=1=22::1:3:2.故选C .6.【答案】B【解析】由已知可得2sin cos cos sin sin B C B C A +=,∴2sin()sin B C A +=,∴sin 1A =,∴π2A =,三角形为直角三角形.故选B . 7.【答案】C【解析】由正弦定理可得sin 18sin 303sin 155b A B a ︒===,因为b a >,所以30B A >=︒,所以角B 可能是锐角,也可能是钝角,所以此三角形有两解,故选C .8.【答案】D【解析】由正弦定理可得cos sin cos sin A b BB a A==,即sin A cos A =sin B cos B ,所以sin2A =sin2B ,即2A =2B 或2A +2B =π,即A =B 或A +B =2π,故ABC △是等腰或直角三角形.故选D .9.【答案】46【解析】∵60B =︒,75C =︒,∴45A =︒,∵sin sin a bA B=,∴82322b=,∴46b =. 10.【答案】π6【解析】由正弦定理可得313πsin sin 3C =,即212333sin =⨯=C ,所以π6C =或5π6,又a c <,所以π6C =.12.【答案】o =15C .【解析】由正弦定理可得sin sin 2A C B +=,又由于o o90=180()A C B A C -=-+,,故cos sin 2)C C A C +=+o 22)22C C =+=,即22sin cos 2,22C C C +=o cos(45)cos 2C C -=. 因为o o 090C <<,所以o 2=45C C -,即o =15C . 13.【答案】B【解析】由正弦定理,得sin sin a A b B =,所以a =52b 可化为sin sin A B =52.又A =2B ,所以sin 2sin B B =52,所以cos B =54.故选B . 14.【答案】D【解析】在ABC △中,由正弦定理可得2πsin sin sin 133b B A a ==⨯=,又0πB <<,所以B =π2,故选D . 15.【答案】 A【解析】在ABC △中,∵π3,6,3a b A ===,∴36πsin sin sin sin 3a b A B B =⇒=2sin 2B ⇒=,又63b a =<=,∴π03B A <<=,∴π4B =,故选A .16.【答案】D【解析】由正弦定理和已知条件可得sin sin cos 2sin cos sin cos C A B A A B A -=-, 所以sin()sin cos 2sin cos sin cos ,A B A B A A B A +-=- 即cos (sin sin )0A B A -=,所以cos 0A =或sin sin 0B A -=,即90A =︒或=A B .故ABC △是等腰三角形或直角三角形. 故选D .18.【答案】A【解析】由正弦定理可得,sin 63sin 231c B C b ===-, 在ABC △中,c b >,60C ∴=或120.当60C =时,105A =︒,sin 6sin10531sin c A a C ︒∴===; 当120C =时,45A =︒,此时sin 6sin 452sin c A a C ︒∴===. 综上,可得31a =或2.故选A .19.【答案】105︒或15︒【解析】由正弦定理得sin sin AB AC C B =,得sin 2sin 2sin 302AB B C AC ==︒=, 由AB AC >,得C B >,所以45C =︒或135︒,从而105A =︒或15︒.21.【答案】(1)45;(2)22. 【解析】(1)因为2cos ADB ∠=72sin ADB ∠= 又π4CAD ∠=,所以π4C ADB =∠-, 所以πππ722224sin sin()sin coscos sin 4445C ADB ADB ADB =∠-=∠⋅-∠⋅==. (2)在ACD △中,由sin sin AD ACC ADC =∠,可得sin 22sin AC C AD ADC⋅==∠. 22.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A . 23.【答案】B【解析】由sin()sin (sin cos )0A C A C C ++-=可得sin cos cos sin sin sin A C A C A C ++-sin cos 0A C =,即πsin (sin cos )2sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =可得223πsin sin 4C =,即1sin 2C =,因为c a <,所以C A <,所以π6C =,故选B . 24.【答案】π3【解析】由正弦定理可得12sin cos sin cos sin cos sin()sin cos 2B B A C C A A C B B =+=+=⇒=π3B ⇒=. 25.【答案】75︒【解析】由正弦定理sin sin b c B C=,可得36sin 22sin 32b C Bc ⨯===,结合b c <可得45B =︒,则18075A B C =︒--=︒. 26.【答案】(1)π3A ∠=;(2)AC 边上的高为332. 【解析】(1)在△ABC 中,因为1cos 7B =-,所以π(,)2B ∈π,所以243sin 1cos 7B B =-=. 由正弦定理7sin sin sin a b A B A =⇒=8437,所以3sin 2A =. 因为π(,)2B ∈π,所以π(0,)2A ∈,所以π3A ∠=(2)在△ABC 中,3114333sin sin()sin cos sin cos ()272714C A B A B B A =+=+=⨯-+⨯=. 如图所示,在△ABC 中,sin h C BC =,所以3333sin 7142h BC C =⋅=⨯=, 所以AC 边上的高为332.。

1.1.1正弦定理

1.1.1正弦定理
一、解斜三角形(求边a,b,c;求角A,B,C.); 二、在三角形中实现边角互化.(a=2RsinA)
正弦定理在解斜三角形中的 三类应用:
(1)、已知两角和任一边,求一角和其他两条边.
aa
bb
c 2R
sin A sin BB sin CC
(2)、已知两边和其中一边的对角,求另一边的 对角(进而求其他的角和边)
4、在ABC中,若 3a=2bsinA,那么B的值是 C
A 、
B 、
3
6
C、 或 2
33
D、 或 5
66
5、在ABC中,AC= 3,A=45 ,C=75 ,那么 BC=___2__
6、在ABC中,a+b=12, A=60 ,B=45 , 那么a=__3_6_-1_2___6___,b=_1_2___6_-_2_4__
(3)S 1 absin C 1 bc sin A 1 ac sin B
2
2
2
例题讲解:
例1.已知在ΔABC中,c=10,A=450,C=300,求a,b和B
解:∵c=10 A=450,C=300
∴B= 1800 -(A+C)=1050

a sin
A
c
=sin C

a=a sin A
sin C
一、前提测评
回顾三角形中的边角关系:
1、边的关系:
1)两边之和大于第三边;两边之差小于第三边
2)在直角三角形中:a2+b2=c2
2、角的关系:
1)A+B+C=1800
2) sin( A B) sin C
sin A B cos C
ቤተ መጻሕፍቲ ባይዱ

第一部分 第一章 1.1 1.1.1 正弦定理

第一部分  第一章  1.1  1.1.1 正弦定理

弦值可求锐角唯一.
(3)如果已知的角为小边所对的角时,则不能判断另一边 所对的角为锐角,这时由正弦值可求两个角,要分类讨论.
返回
π π 3.若把本例中 C=3改为 A=4,其他条件不变,求 C,B,b.
π 解:∵ 6sin4<2< 6, ∴本题有两解. a c csin A 3 ∵sin A=sin C,∴sin C= a = 2 .
且sin 2A=sin 2B+sin 2C,试判断△ABC的形状. [思路点拨] 首先利用正弦定理将角的关系式sin2A
=sin 2B+sin2C转化为边的关系式,进而判断三角形的 形状.
返回
[精解详析]
a b c 法一:设sin A=sin B=sin C=k, (2 分)
则 a=ksin A,b=ksin B,c=ksin C ∵sin2A=sin2B+sin2C. ∴(ksin A)2=(ksin B)2+(ksin C)2. ∴a2=b2+c2. ∴A=90° ,B+C=90° .
6.在△ABC中,若acos A=bcos B,试判断△ABC的形状.
a b 解:由正弦定理,设sin A=sin B=k,则 a=ksin A,b=ksin B, ∴由 acos A=bcos B,得:sin Acos A=sin Bcos B. 即 sin 2A=sin 2B. ∵2A、2B∈(0,2π), ∴2A=2B 或 2A=π-2B 或 2A-π=2π-2B. π 即 A=B 或 A+B=2. ∴△ABC 为等腰三角形或直角三角形.
A为钝角或直角
图形
关系 ①a=bsin A bsin A<a 式 解的 ②a≥b 一解 <b 两解
a<bsin A
a>b
a≤b
个数

2014年高中数学 1.1.1正弦定理教案(一)新人教A版必修5

2014年高中数学 1.1.1正弦定理教案(一)新人教A版必修5

1.1.1正弦定理讲授新课[合作探究]师那么对于任意的三角形,关系式CcB b A a sin sin sin ==是否成立?(由学生讨论、分析)生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则B b A a sin sin =,同理,可得B bC c s i ns i n =.从而C cB b A a s i ns i n s i n ==.(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin ==.师是否可以用其他方法证明这一等式? 生可以作△ABC 的外接圆,在△ABC 中,令BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明CcB b A a sin sin sin ==这一关系. 师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在△ABC 中,已知BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=RcB C 2sin sin ='=. ∴R Cc2sin =. 同理,可得R B bR A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===. 这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式CcB b A a sin sin sin ==. 点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫. [知识拓展]师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢?生向量的数量积的定义式A ·B =|A ||B |C osθ,其中θ为两向量的夹角.师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?生 可以通过三角函数的诱导公式sinθ=Co s(90°-θ)进行转化. 师这一转化产生了新角90°-θ,这就为辅助向量j 的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j 垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j 垂直于三角形一边的原因.师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得=+而添加垂直于的单位向量j 是关键,为了产生j 与、、CB 的数量积,而在上面向量等式的两边同取与向量j 的数量积运算,也就在情理之中了.师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点.点评: (1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用.(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用. 向量法证明过程:(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C .由向量的加法原则可得=+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到j j ∙=+∙)(由分配律可得j j ∙=∙+.∴Co s90°Co s(90°-C Co s(90°-A ).∴A sin C =C sin A .∴CcA a sin sin =. 另外,过点C 作与垂直的单位向量j,则j 与的夹角为90°+C ,j 与的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与的夹角为90°-C ,j与的夹角为90°-B )∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与垂直的单位向量j,则j 与的夹角为A -90°,j 与的夹角为90°-C .由=+,得j·+j·=j·, 即A ·Co s(90°-C )=C ·Co s(A -90°), ∴A sin C =C sin A . ∴CcA a sin sin = 另外,过点C 作与垂直的单位向量j,则j 与的夹角为90°+C ,j 与夹角为90°+B .同理,可得C cB b sin sin =.∴CcB b simA a sin sin ==(形式1). 综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立. 师在证明了正弦定理之后,我们来进一步学习正弦定理的应用. [教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使A =ksin A ,B =ksin B ,C =ksin C ;(2)C cB b A a sin sin sin == 等价于CcA aB bC c B b A a sin sin ,sin sin ,sin sin === (形式2). 我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题. ①已知三角形的任意两角及其中一边可以求其他边,如BAb a sin sin =.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P 4的例1就属于此类问题. ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如B baA sin sin =.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形. 师接下来,我们通过例题评析来进一步体会与总结. [例题剖析]【例1】在△ABC 中,已知A =32.0°,B =81.8°,A =42.9 c m,解三角形.分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B ,若求边C ,再利用正弦定理即可.解:根据三角形内角和定理, C =180°-(A +B )=180°-(32.0°+81.8°)=66.2°; 根据正弦定理,b =ooA B a 0.32sin 8.81sin 9.42sin sin =≈80.1(c m); c =osin32.02.66sin 9.42sin sin oA C a =≈74.1(c m). [方法引导](1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理.(2)对于解三角形中的复杂运算可使用计算器.【例2】在△ABC 中,已知A =20c m ,B =28c m ,A =40°,解三角形(角度精确到1°,边长精确到1 c m ).分析:此例题属于B sin A <a <b 的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性.解:根据正弦定理,sin B =2040sin 28sin oa Ab =≈0.899 9.因为0°<B <180°,所以B ≈64°或B ≈116°.(1)当B ≈64°时,C =180°-(A +B )=180°-(40°+64°)=76°,C =ooA C a 40sin 76sin 20sin sin =≈30(c m). (2)当B ≈116°时,C =180°-(A +B )=180°-(40°+116°)=24°,C =ooA C a 40sin 24sin 20sin sin =≈13(c m). [方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会.变式一:在△ABC 中,已知A =60,B =50,A =38°,求B (精确到1°)和C (保留两个有效数字).分析:此题属于A ≥B 这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B 为钝角的情形.解:已知B <A ,所以B <A ,因此B 也是锐角.∵sin B =6038sin 50sin oa Ab =≈0.513 1,∴B ≈31°.∴C =180°-(A +B )=180°-(38°+31°)=111°.∴C =ooA C a 38sin 111sin 60sin sin =≈91. [方法引导]同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B 所受限制而求出角B 的两个解,进而求出边C 的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解.变式二:在△ABC 中,已知a =28,b =20,A =120°,求B (精确到1°)和C (保留两个有效数字). 分析:此题属于A 为钝角且A >B 的情形,有一解,可应用正弦定理求解角B 后,利用三角形内角和为180°排除角B 为钝角的情形.解:∵sin B =28120sin 20sin oa Ab =≈0.618 6, ∴B ≈38°或B ≈142°(舍去).∴C =180°-(A +B )=22°. ∴ C =︒︒=120sin 22sin 28sin sin A C a ≈12. [方法引导](1)此题要求学生注意考虑问题的全面性,对于角B 为钝角的排除也可以结合三角形小角对小边性质而得到.(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形.(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解. 师为巩固本节我们所学内容,接下来进行课堂练习:1.在△ABC 中(结果保留两个有效数字), (1)已知C =3,A =45°,B =60°,求B ;(2)已知B =12,A =30°,B =120°,求A .解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,CcB b sin sin =,∴B =︒︒=75sin 60sin 3sin sin C B c ≈1.6.(2)∵BbA a sin sin =,∴A =︒︒=120sin 30sin 12sin sin B A b ≈6.9. 点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的学生进行在黑板上解答,以增强其自信心. 2.根据下列条件解三角形(角度精确到1°,边长精确到1): (1)B =11,A =20,B =30°;(2)A =28,B =20,A =45°; (3)C =54,B =39,C =115°;(4)A =20,B =28,A =120°.解: (1) ∵B bA a sin sin =.∴sin A =1130sin 20sin ︒=b B a ≈0.909 1.∴A 1≈65°,A 2≈115°.当A 1≈65°时,C 1=180°-(B +A 1)=180°-(30°+65°)=85°,∴C 1=︒︒=30sin 85sin 11sin sin sin 1B C b ≈22.当A 2≈115°时,C 2=180°-(B +A 2)=180°-(30°+115°)=35°,∴C 2=︒︒=30sin 35sin 11sin sin 2B C b ≈13.(2)∵sin B =2845sin 20sin ︒=a A b ≈0.505 1,∴B 1≈30°,B 2≈150°.由于A +B 2=45°+150°>180°,故B 2≈150°应舍去(或者由B <A 知B <A ,故B 应为锐角). ∴C =180°-(45°+30°)=105°.∴C =︒︒=45sin 105sin 28sin sin A C a ≈38.(3)∵CcB b sin sin =, ∴sin B =54115sin 39sin ︒=c C b ≈0.654 6.∴B 1≈41°,B 2≈139°.由于B <C ,故B <C ,∴B 2≈139°应舍去. ∴当B =41°时,A =180°-(41°+115°)=24°,A =︒︒=115sin 24sin 54sin sin C A c ≈24. (4) sin B =20120sin 28sin ︒=a A b =1.212>1. ∴本题无解.点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍. 课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形. 布置作业(一)课本第10页习题1.1 第1、2题. (二)预习内容:课本P 5~P 8余弦定理 [预习提纲](1)复习余弦定理证明中所涉及的有关向量知识.(2)余弦定理如何与向量产生联系.(3)利用余弦定理能解决哪些有关三角形问题.板书设计正弦定理1.正弦定理:2.证明方法:3.利用正弦定理,能够解决两类问题:CcB b A a sin sin sin == (1)平面几何法 (1)已知两角和一边 (2)向量法 (2)已知两边和其中一边的对角。

【K12学习】高二数学《正弦定理》教案

【K12学习】高二数学《正弦定理》教案

高二数学《正弦定理》教案一、教材正弦定理是高中新教材人教A版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之间的数量关系。

提出两个实际问题,并指出解决问题的关键在于研究三角形的边、角关系,从而引导学生产生探索愿望,激发学生的学习兴趣。

在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导,并引导学生分析正弦定理可以解决两类关于解三角形的问题:已知两角和一边,解三角形;已知两边和其中一边的对角,解三角形。

二、学情本节授课对象是高二学生,是在学生学习了必修四基本初等函数和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。

高二学生对生产生活问题比较感兴趣,由实际问题出发可以激发学生的学习兴趣,使学生产生探索研究的愿望。

三、教学目标【知识与技能目标】能准确写出正弦定理的符号表达式,能够运用正弦定理理解三角形、初步解决某些测量和几何计算有关的简单的实际问题。

【过程与方法目标】通过对定理的证明和应用,锻炼独立解决问题的能力和体会分类讨论和数形结合的思想方法。

【情感态度价值观目标】通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识。

四、教学重难点【重点】正弦定理及其推导。

【难点】正弦定理的推导与正弦定理的运用。

五、教学方法运用“发现问题——自主探究——尝试指导——合作交流”的教学方式,整堂课围绕“一切为了学生发展”的教学原则,突出:师生互动、共同探索,教师指导、循序渐进。

新课引入——提出问题,激发学生的求知欲。

掌握正弦定理的推导证明——分类讨论,数形结合动脑思考,由一般到特殊,组织学生自主探索,获得正弦定理及证明过程。

例题处理——始终由问题出发,层层设疑,让他们在探索中得到知识。

巩固练习——深化对正弦定理的理解。

1.1.1 正弦定理

1.1.1  正弦定理

a b c 1.正弦定理 sin A sin B sin C
它是解三角形的工具之一. 2.应用正弦定理可以解以下两种类型的三角形: (1)已知两角及任意一边;
(2)已知两边及其中一边的对角.
【拓展提升】用正弦定理进行边角互化的两种方法
(1)边化角 a c b 根据sin A= ,sin B= ,sin C= 化边为角(其中 2R 2R 2R R为△ABC外接圆的半径).
(2)角化边
根据a=2Rsin A,b=2Rsin B,c=2Rsin C化角为边(其中R
为△ABC外接圆的半径).
O a b B c A` A
一、正弦定理: 在一个三角形中,各边和它所对角的正弦的比相等, a b c . 即 sin A sin B sin C 注意:(1)正弦定理指出了任意三角形中三条边与对应角 的正弦之间的一个关系式.由正弦函数在区间上的
单调性可知,正弦定理非常好地描述了任意三角形
判断:(正确的打“√”,错误的打“×”) (1)正弦定理只适用于锐角三角形.( )
(2)在△ABC中,等式asinA=bsinB总能成立.(

(3)在△ABC中,已知a=30,b=23,A=130°,则此三角形
பைடு நூலகம்
有唯一解.(

提示:(1)错误.正弦定理对于任意三角形都适用. (2)错误.由正弦定理得asinB=bsinA. (3)正确.由A=130°>90°,a=30>b=23.根据大边对大角 知,三角形有唯一解. 答案:(1)× (2)× (3)√
) C. 无解 D. 不确定
B. 两解
解答:b>c,一解
3.(2012·福建高考)在△ABC中,已知∠BAC=60°,

高中数学必修五第一章《正弦定理和余弦定理》1.1.1正弦定理

高中数学必修五第一章《正弦定理和余弦定理》1.1.1正弦定理

§1.1 正弦定理和余弦定理1.1.1 正弦定理学习目标 1.掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.知识点一 正弦定理思考1 如图,在Rt △ABC 中,a sin A ,b sin B ,csin C分别等于什么?答案a sin A =b sin B =c sin C=c . 思考2 在一般的△ABC 中,a sin A =b sin B =csin C 还成立吗?答案 在一般的△ABC 中,a sin A =b sin B =csin C 仍然成立.梳理 在任意△ABC 中,都有a sin A =b sin B =c sin C,这就是正弦定理. 特别提醒:正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.知识点二 解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.1.对任意△ABC ,都有a sin A =b sin B =csin C.(√)2.任意给出三角形的三个元素,都能求出其余元素.(×) 3.在△ABC 中,已知a ,b ,A ,则三角形有唯一解.(×)类型一 正弦定理的证明例1 在钝角△ABC 中,证明正弦定理. 考点 正弦定理及其变形应用 题点 正弦定理的理解证明 如图,过C 作CD ⊥AB ,垂足为D ,D 是BA 延长线上一点,根据正弦函数的定义知,CD b =sin ∠CAD =sin(180°-A )=sin A ,CD a =sin B . ∴CD =b sin A =a sin B . ∴a sin A =bsin B. 同理,b sin B =csin C .故a sin A =b sin B =c sin C. 反思与感悟 (1)用正弦函数定义沟通边与角内在联系,充分挖掘这些联系可以使你理解更深刻,记忆更牢固.(2)要证a sin A =bsin B ,只需证a sin B =b sin A ,而a sin B ,b sin A 都对应CD .初看是神来之笔,仔细体会还是有迹可循的,通过体会思维的轨迹,可以提高我们的分析解题能力.跟踪训练1 如图,锐角△ABC 的外接圆O 半径为R ,角A ,B ,C 对应的边分别为a ,b ,c ,证明:asin A=2R .考点 正弦定理及其变形应用 题点 正弦定理的理解证明 连接BO 并延长,交外接圆于点A ′,连接A ′C , 则圆周角A ′=A .∵A ′B 为直径,长度为2R , ∴∠A ′CB =90°, ∴sin A ′=BC A ′B =a 2R ,∴sin A =a 2R ,即asin A =2R .类型二 已知两角及一边解三角形例2 在△ABC 中,已知A =30°,B =60°,a =10,解三角形. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据正弦定理,得b =a sin B sin A =10sin 60°sin 30°=10 3. 又C =180°-(30°+60°)=90°. ∴c =a sin C sin A =10sin 90°sin 30°=20.反思与感悟 (1)正弦定理实际上是三个等式:a sin A =b sin B ,b sin B =c sin C ,a sin A =csin C ,每个等式涉及四个元素,所以只要知道其中的三个就可以求另外一个.(2)因为三角形内角和为180°,所以已知两角一定可以求出第三个角. 跟踪训练2 在△ABC 中,已知a =18,B =60°,C =75°,求b 的值. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据三角形内角和定理,得A =180°-(B +C )=180°-(60°+75°)=45°. 根据正弦定理,得b =a sin B sin A =18sin 60°sin 45°=9 6.类型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知c =6,A =45°,a =2,解三角形. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 ∵a sin A =c sin C ,∴sin C =c sin A a =6sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. 引申探究若把本例中的条件“A =45°”改为“C =45°”,则角A 有几个值? 解 ∵a sin A =c sin C ,∴sin A =a sin C c =2·226=33.∵c =6>2=a ,∴C >A .∴A 为小于45°的锐角,且正弦值为33,这样的角A 只有一个. 反思与感悟 已知三角形两边和其中一边的对角解三角形的方法:首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边. 跟踪训练3 在△ABC 中,若a =2,b =2,A =30°,则C =________. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 105°或15°解析 由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°.1. 在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin AD .a cos B =b cos A考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 C解析 由正弦定理a sin A =bsin B ,得a sin B =b sin A ,故选C.2.在△ABC 中,sin A =sin C ,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 B解析 由sin A =sin C 及正弦定理,知a =c , ∴△ABC 为等腰三角形.3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6D .4考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 C解析 易知A =45°,由a sin A =b sin B 得b =a sin B sin A=8×3222=4 6. 4.在△ABC 中,a =3,b =2,B =π4,则A =________.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 π3或2π3解析 由正弦定理,得sin A =a sin Bb=3×222=32, 又A ∈(0,π),a >b ,∴A >B ,∴A =π3或2π3.5.在△ABC 中,已知a =5,sin C =2sin A ,则c =________. 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 2 5解析 由正弦定理,得c =a sin Csin A=2a =2 5.1. 正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0). 2. 正弦定理的应用范围(1)已知两角和任一边,求其他两边和其余一角. (2)已知两边和其中一边的对角,求另一边和其余两角.3. 已知三角形两边和其中一边的对角解三角形的方法 (1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求唯一锐角.(3)如果已知的角为小边所对的角,则不能判断另一边所对的角为锐角,这时由正弦值可求得两个角,要分类讨论.一、选择题1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 A解析 根据正弦定理,得sin A sin B =a b =53.2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由题意有a sin A =b =bsin B,则sin B =1,又B ∈(0,π),故角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( )A .30°B .45°C .60°D .90° 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由正弦定理知sin A a =sin Cc ,∴sin C c =cos Cc,∴cos C =sin C ,∴tan C =1, 又∵C ∈(0°,180°),∴C =45°,故选B.4.在△ABC 中,若A =105°,B =45°,b =22,则c 等于( ) A .1 B .2 C. 2 D. 3 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 ∵A =105°,B =45°,∴C =30°. 由正弦定理,得c =b sin C sin B =22sin 30°sin 45°=2.5.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( ) A .-223 B.223 C .-63 D.63考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 D解析 由正弦定理,得15sin 60°=10sin B ,∴sin B =10sin 60°15=10×3215=33. ∵a >b ,∴A >B ,又∵A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-⎝⎛⎭⎫332=63. 6.在△ABC 中,已知A =π3,a =3,b =1,则c 的值为( )A .1B .2 C.3-1 D. 3 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 B解析 由正弦定理a sin A =bsin B,可得3sinπ3=1sin B ,∴sin B =12,由a >b ,得A >B ,∴B ∈⎝⎛⎭⎫0,π3,∴B =π6. 故C =π2,由勾股定理得c =2.7.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A 等于( )A.310B.1010C.55D.31010 考点 用正弦定理解三角形 题点 正弦定理解三角形综合 答案 D解析 如图,设BC 边上的高为AD ,不妨令AD =1.由B =π4,知BD =1.又AD =13BC =BD ,∴DC =2,AC =12+22= 5.由正弦定理知,sin ∠BAC =sin B ·BC AC =225·3=31010.8.在△ABC 中,若A =60°,B =45°,BC =32,则AC 等于( ) A .4 3 B .2 3 C. 3 D.32考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.二、填空题9.在△ABC 中,若C =2B ,则cb的取值范围为________.考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 (1,2)解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2Bsin B =2cos B ,所以1<2cos B <2,故1<cb<2.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =_____.考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,又a =1,由正弦定理得b =a sin B sin A =2113.11.锐角三角形的内角分别是A ,B ,C ,并且A >B .则下列三个不等式中成立的是______. ①sin A >sin B ; ②cos A <cos B ;③sin A +sin B >cos A +cos B . 考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 ①②③解析 A >B ⇔a >b ⇔sin A >sin B ,故①成立. 函数y =cos x 在区间[0,π]上是减函数, ∵A >B ,∴cos A <cos B ,故②成立. 在锐角三角形中,∵A +B >π2,∴0<π2-B <A <π2,函数y =sin x 在区间⎣⎡⎦⎤0,π2上是增函数, 则有sin A >sin ⎝⎛⎭⎫π2-B ,即sin A >cos B , 同理sin B >cos A ,故③成立.三、解答题12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,c =10,A =45°,C =30°,求a ,b 和B .考点 用正弦定理解三角形题点 已知两角及一边解三角形解 ∵a sin A =c sin C, ∴a =c sin A sin C =10sin 45°sin 30°=10 2. B =180°-(A +C )=180°-(45°+30°)=105°.又∵b sin B =c sin C, ∴b =c sin B sin C =10sin 105°sin 30°=20sin 75° =20×6+24=5(6+2). 13.在△ABC 中,A =60°,a =43,b =42,求B .考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 由正弦定理a sin A =b sin B ,得sin B =22, ∵a >b ,∴A >B .∴B 只有一解,∴B =45°.四、探究与拓展14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =x ,b =2,B =45°.若△ABC 有两解,则x 的取值范围是( )A .(2,+∞)B .(0,2)C .(2,22)D .(2,2)考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形答案 C解析 因为△ABC 有两解,所以a sin B <b <a ,即x sin 45°<2<x ,所以2<x <22,故选C.15.已知下列各三角形中的两边及其中一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°;(2)a =23,b =6,A =30°.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103,∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°,∵b sin A =6sin 30°=3,a >b sin A ,∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32, 又∵B ∈(0°,180°),∴B =60°或B =120°.当B =60°时,C =90°,c =a sin C sin A =23sin 90°sin 30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin 30°sin 30°=2 3. ∴当B =60°时,C =90°,c =43;当B =120°时,C =30°,c =2 3.。

年高中数学 第1章1.1.1正弦定理和余弦定理 正弦定理配套课件

年高中数学 第1章1.1.1正弦定理和余弦定理 正弦定理配套课件

思考感悟 正弦定理对任意三角形都适用吗? 提示:正弦定理对任意的三角形都适用.
课堂互动讲练
考点突破 已知两角及一边解三角形 已知三角形的两角和任一边解三角形的基本解法 是:若所给边是已知角的对边时,可由正弦定理 求另一边,由三角形内角和定理求出第三个角, 再由正弦定理求第三边;若所给边不是已知角的 对边时,可先由三角形内角和定理求出第三个角, 再由正弦定理求另外两边.
判断三角形的形状 判断三角形的形状,可以从三边的关系入手, 也可以从三个内角的关系入手.从条件出发, 利用正弦定理进行代换、转化,求出边与边的
关系或求出角与角的关系,从而作出准确判
断.
例3
在△ABC中,若sin A=2sin Bcos C,且
sin2A=sin2B+sin2C,试判断△ABC的形状.
2.在 Rt△ABC 中,a、b 分别为 A 与 B 所对的直 a 角边的长,c 为斜边的长,则 sin A=___ c ,cos A=
b ___. c
3. 对于两个向量 a 和 b, 有 a· b=|a|· |b|cos θ(其中 θ 为 a 与 b 的夹角).
知新益能
1.正弦定理 在一个三角形中,各边和它所对角的_____ 正弦 的比值 相等,即 ______ =______=_______ 2.解三角形 (1)把三角形的_____ 三边 和它们的____ 对角叫做三角形的元 素. 其他元素 的过程叫做 (2)已知三角形的几个元素求_________ 解三角形.
∴b=c,
∴△ABC为等腰直角三角形.
方法感悟
1.在△ABC 中,a、b 分别为 A、B 的对边.由 a b 正弦定理: = ,再由大角对大边知 A> sin A sin B B⇔a>b⇔sin A>sin B,即三角形中大角的正弦 值大.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.在正弦定理中,
a sin A
a = 2R sin A
C
a O A D
思考3:设△ABC的外接圆半径为R,则 a sin A 等于什么?
思考4:如图,若∠A为钝角,上述结论 还成立吗? 若∠A为直角呢?
B A
a = 2R sin A
O
a
C D
探究(二):正弦定理的变式拓展
思考1:在三角形中有“大边对大角”原 理,如何利用正弦定理进行理论解释?
思考2:利用等比定理,正弦定理可作哪 些变形?
a b c a+b a+c b+ c = = = = = sin A sin B sin C sin A + sin B sin A + sin C sin B + sin C
a + b+ c = = 2R sin A + sin B + sin C
思考3:利用正弦定理如何求三角形的周 长?
1.1
正弦定理和余弦定理
1.1.1
正弦定理
第二课时
问题提出 1.正弦定理的外在形式和数学意义分别 是什么?
a b c = = sin A sin B sin C
在一个三角形中,各边和它所对角的正 弦之比相等.
2.在解三角形中,利用正弦定理可以解 决哪两类问题? 已知两角和一边解三角形; 已知两边和其中一边的对角解三角形.
ቤተ መጻሕፍቲ ባይዱ
例4 在△ABC中,已知
t an A - t an B b+ c ,求角A的值. = t an A + t an B c
120°
小结作业 1.正弦定理是以三角形为背景的一个基 本定理,它不仅可以用来求三角形的边 角值,而且可以在三角变换中实现边角 转化,是解决三角形问题的一个重要工 具. 2.正弦定理的应用具有一定的灵活性, 在处理三角形的边角关系时,利用 a=2RsinA,b=2RsinB,c=2RsinC,可达 到化边为角的目的.
3.正弦定理不是万能的,如已知三角形 的三边长,利用正弦定理就不能求出三 个内角,因此我们还需要建立新的理论. 欲知后事如何,且听下回分解.
作业: P10习题1.1 A组:2. B组:2.
a 3.在正弦定理中, A 有什么几何意义? sin
利用正弦定理可以得到哪些相关结论? 这需要我们作进一步了解和探究,加深 对正弦定理的理性认识.
a sin A
探究(一):正弦定理的几何意义 a 思考1:在直角三角形ABC中, 等于 sin A 什么? C b a
3.在正弦定理中,
A
c
B
思考2:如图,作△ABC的外接圆,你能 构造一个一条直角边长为a,其对角大小 为A的直角三角形吗? B
你能用正弦定理证明这个结论吗?
A
B
D
C
理论迁移 例1 在钝角△ABC中,已知AB= 3 , AC=1,B=30°,求△ABC的面积.
3 4
例2 在△ABC中,已知 ab 60 3 , sinB=sinC,且△ABC的面积为 15 3, 求c边的长. 2 15
例3 在△ABC中,已知acosB=bcosA, 试确定△ABC的形状. 等腰三角形
a + b + c = 2R sin A + sin B + sin C) (
思考4:设△ABC的外接圆半径为R,则其 1 面积公式 S = ab sin C 可以作哪些变形? 2
1 2 S = abc = 2R sin A sin B sin C 4R
思考5:在△ABC中,设∠A的平分线交BC
AB BD = 边于点D,则 A C CD(角平分线定理),
相关文档
最新文档